Fully Deniable Interactive Encryption

Ran Canetti', Sunoo Park?, and Oxana Poburinnaya?

! Boston University
2 MIT and Harvard
3 University of Rochester

Abstract. Deniable encryption (Canetti et al., Crypto 1996) enhances
secret communication over public channels, providing the additional guar-
antee that the secrecy of communication is protected even if the parties
are later coerced (or willingly bribed) to expose their entire internal
states: plaintexts, keys and randomness. To date, constructions of deni-
able encryption — and more generally, interactive deniable communica-
tion — only address restricted cases where only one party is compromised
(Sahai and Waters, STOC 2014). The main question — whether deniable
communication is at all possible if both parties are coerced at once —
has remained open.

We resolve this question in the affirmative, presenting a communication
protocol that is fully deniable under coercion of both parties. Our scheme
has three rounds, assumes subexponentially secure indistinguishability
obfuscation and one-way functions, and uses a short global reference
string that is generated once at system set-up and suffices for an un-
bounded number of encryptions and decryptions.

Of independent interest, we introduce a new notion called off-the-record
deniability, which protects parties even when their claimed internal states
are inconsistent (a case not covered by prior definitions). Our scheme
satisfies both standard deniability and off-the-record deniability.

1 Introduction

The ability to communicate secret information without having any prior shared
secrets is a central pillar of modern cryptography [DH76L [RSA78| [GM8&4]. How-
ever, standard definitions and existing algorithms for secure communication only
guarantee security if the parties’ local randomness remains hidden. If the parties’
secret keys or randomness are exposed, say as a result of coercion or bribery,
secrecy is no longer guaranteed. Moreover, the transcript in common encryption
and key exchange schemes often “commits” the sender to the plaintext, in that
each transcript is consistent with only one plaintext and randomness.

To address this issue, Canetti, Dwork, Naor and Ostrovsky [CDNQO96] introduced
the notion of deniable encryption, which provides a mechanism for preserving the
secrecy of communicated plaintexts even in the face of post-communication co-
ercion or briberyﬂ Specifically, deniable encryption (or, more generally, deniable

4 While our results address both bribery and coercion, bribery might be the better
setting to keep in mind. Indeed, protecting against bribery is more challenging in

2 Ran Canetti, Sunoo Park, and Oxana Poburinnaya

interactive communication) introduces additional algorithms, called faking al-
gorithms, that are not present in standard secure communication definitions.
The faking algorithms allow the communicating parties to present fake internal
states (including keys and randomness) that make any communication transcript
appear consistent with any plaintext of the parties’ choice. Concretely, an ad-
versary should not be able to tell whether the sender and the receiver gave it
the true keys, randomness, and plaintext, or fake ones.

When the communicating parties have a secret key that was shared ahead of
time, deniable encryption can be simple. The classic one-time-pad scheme is
perfectly deniable: having sent ¢ = k @ m, the parties can claim that they sent
any plaintext m’ by claiming that &’ = ¢®m/ is their true key. However, shared-
key deniable schemes fail to address the crucial question of how to deniably agree
on a shared key in the first place. Indeed, existing key exchange protocols are
“committing” in a way that precludes deniability. For instance, in Diffie-Hellman
key exchange, there exists only one key consistent with any given transcript, so
it is impossible to equivocate a one-time pad key generated using Diffie-Hellman
key exchange. Thus, the core question here is how to deniably transmit a value
(or equivalently, to establish a shared key) without any pre-shared secrets.

This setting turns out to be much more challenging. Even the restricted case
where only the sender is coerced (or bribed) was fully resolved only much later,
assuming indistinguishability obfuscation, in the breakthrough work of Sahai
and Waters [SW14]E| The case where only the receiver is coerced or bribed
follows from the sender-only case via a general transformation, at the cost of
an additional message [CDNO96]; hence, the [SW14] scheme implies a 3-round
receiver-deniable protocol. This transformation can also be extended to han-
dle the case where the adversary may coerce either party, but only one of the
two. Furthermore, as demonstrated by Bendlin, Nielsen, Nordholt, and Orlandi
[BNNO11], any receiver-deniable encryption protocol must take at least three
rounds of communication.

Constructing bideniable encryption protocols, namely encryption protocols that
guarantee deniability in the unrestricted case where both the sender and the
receiver can be simultaneously coerced or bribed, has remained open:

Do there exist bideniable encryption protocols, with any number of rounds?

Bideniability is a significantly stronger property than any of the restricted vari-
ants above, where the adversary only learns the internal state of either the sender

that the parties are incentivized to disclose all internal state, including all random
choices.

® Prior to [SW14|, we only had the partial solution of [CDNO96|, where the adver-
sary’s distinguishing advantage decreases linearly with ciphertext size; in particular,
to get indistinguishability with negligibly small advantage, one has to send super-
polynomially long ciphertexts.

Fully Deniable Interactive Encryption 3

or the receiverﬂ Indeed, when both parties are coerced, the adversary obtains a
complete transcript of an execution, including all the random choices, inputs and
outputs of both parties. This means that the adversary can now fully run this
execution, step by step, and compare it against the recorded communication.
Even so, as long as the sender and receiver follow the protocol during the actual
exchange of messages, bideniability guarantees that any (real or fake) internal
state provided by the parties looks just as plausible as any other (real or fake)
one.

Off-the-record deniability. When the attacker bribes or coerces both parties,
a new concern emerges: what happens if the plaintext claimed by the sender is
different from that claimed by the receiver? This could arise in various scenarios:
the parties might simply not have the chance to coordinate a story in advance
(e.g., if they are separated and interrogated); or the parties might be incentivized
to tell different stories (e.g., to protect themselves or those close to them); or
the parties might find themselves incentivized to “defect” on each other as in
a prisoner’s dilemma. Still, standard bideniability (as defined by [CDNO96])
provides no guarantees for these cases.

1.1 Our Contributions

Our first contribution is defining a security guarantee, called off-the-record denia-
bility, that holds even in the above setting, where the coerced (or bribed) parties’
responses are inconsistent with each otherEI Off-the-record deniability achieves
protection akin to an ideal, physically protected communication channel where
the communication leaves no trace behind. That is, off-the-record deniability
guarantees that the communication transcript does not help the attacker to de-
termine which of the two parties is telling the truth, if any. This holds even if the
parties deviate from the protocol — as long as the deviation happens after the
actual protocol execution completes. In other words, off-the-record deniability
guarantees protection for each party independently of the other party’s actions.
This contrasts with standard bideniability where, for the security guarantee to
hold, both parties must lie, and their claims must be consistent.

Our second and main contribution is the first encryption protocol that is both
bideniable and off-the-record deniable. We call such protocols fully deniable. A
fully deniable protocol provides protection akin to an ideal channel, in that after
message transmission, each party can claim that the message was any value
whatsoever (say, from a pre-specified domain) and the attacker has no way to
tell which party, if any, is telling the truth.

We stress that, prior to this work, even the existence of bideniable encryption
(without the additional off-the-record property) was an open question.

6 We note that a related but different concept, multi-distributional bideniability, has
previously been considered in a setting where both parties are attacked [OPW11];
see Section [I.4] and the full version of this paper [CPP18| for more details.

" The off-the-record messaging protocol [BGB04] is a messaging protocol that shares
our motivation of enabling encrypted communications as close as possible to an ideal
private channel, but is otherwise unrelated to our off-the-record deniability notion.

4 Ran Canetti, Sunoo Park, and Oxana Poburinnaya

Theorem 1. Assuming subexponentially secure indistinguishability obfuscation
and subexponentially secure one-way functions, there exists a 3-message inter-
active bit encryption scheme that is fully deniable (i.e., both bideniable and
off-the-record-deniable) in the common reference string model. In addition,
the receiver’s deniability is public (i.e., the true random coins of the receiver are
not required to compute fake randomness of the receiver).

Our common reference string (CRS) consists of six obfuscated programs: three
for the sender (programs P1 and P3 for generating the first and third messages,
respectively, and the sender faking program SFake) and three for the receiver
(programs P2 for generating the second message, the decryption program Dec,
and the receiver faking program RFake). The scheme instructs the parties to run
the obfuscated programs on their relevant inputs and uniformly chosen random
inputs.

Designing the scheme requires addressing two main classes of challenges. First,
the operation of the six programs should follow a certain “internal logic” - which
ends up being necessary even in an idealized model where parties only have
oracle access to the encryption scheme programs. We make this logic explicit
by constructing and proving security of a fully deniable encryption scheme in
this idealized model. While this construction is not used directly in the full-
fledged scheme, it highlights key design difficulties. Interestingly, while many
cryptographic primitives are trivial to construct in this idealized model, deniable
encryption is still highly non-trivial; indeed, our technical overview (section @)
is fully devoted to building deniable encryption in the idealized model.

The next challenge lies in translating this idealized protocol to one that is prov-
ably secure when the programs are (a) actual programs and (b) protected only
by indistinguishability obfuscation (I0), not ideal obfuscation. Here, we use the
sophisticated tools developed in [KLW15| [CHIV14 BPR15, BPW16| that were
developed for dealing with obfuscated programs that are designed to be repeat-
edly run on inputs that were generated earlier by the program itself. Our situa-
tion is however significantly more complex: We have several programs that are
designed to take inputs from each other with a specific and context-dependent
set of constraints. We thus develop additional tools and abstractions that allow
us to deal with this more complicated setting.

We now turn to discussing our definitions and constructions in mor detail.

1.2 Fully Deniable Interactive Encryption: Definition in a Nutshell

Deniable interactive encryption is equipped with algorithms to generate protocol
messages, to decrypt, and to generate fake randomness. We present the definition
for the three-message case, since our protocol has three messages.

We start with syntax. A scheme consists of six programs: P1, P2, P3, Dec, SFake,
and RFake. Program P1, run by the sender, takes as input a message m and
sender random string s, and outputs a first message p1. Program P2, run by
the receiver, takes as input a message p; and receiver random string r, and

Fully Deniable Interactive Encryption 5

outputs second message pp. Program P3, run by the sender, takes s,m, p1, po
and outputs a third message ps. Program Dec, run by the receiver, takes input
T, 41, 2, 3 and outputs plaintext 7m. Program SFake takes as input the public
transcript of the protocol (namely messages u1, 42, 43), the sender randomness
s, the message m, a fake message m’, and potentially some additional random
input pg, and outputs a fake random string s,,, that is intended to explain
the transcript as an encryption of m’. Program RFake takes as input the public
transcript, the receiver randomness r, the message m, a fake message m’, and
potentially some additional random input pr, and outputs a fake random string
rm that is intended to explain the transcript as decrypting to m’.

We define correctness in the natural way: if the sender runs P1, P3 with plaintext
m and uniformly chosen s, and the receiver runs P2, Dec with uniformly chosen
r, the receiver must decrypt m = m except with negligible probability.

Bideniability requires that no PPT adversary can distinguish the following two
distributions: (1) a protocol transcript for plaintext m’, and both parties’ true
random coins for that transcript; and (2) a protocol transcript for plaintext m
and fake random coins which make that transcript decrypt to m’. That is,

(tr(s,r,m'), s,7) = (tr(s,7,m), Sry s) (1)

where s,r are uniformly random, tr(s,r, m) is the transcript from running the
protocol to transmit m with random inputs s for the sender and r for the receiver,
Sm: = SFake(s,m,m’,tr(s,7,m); ps), rm: = RFake(r,m,m’ tr(s,r,m); pr), and
~. denotes computational indistinguishability.

Off-the-record deniability requires that no PPT adversary can distinguish
between the following three cases:

— The sender tells the truth and the receiver lies. That is, the adversary
sees a transcript for plaintext m, the sender’s true random coins, and fake
random coins from the receiver consistent with m/’.

— The sender lies and the receiver tells the truth. That is, the adver-
sary sees a transcript for plaintext m’, fake random coins from the sender
consistent with m, and the receiver’s true random coins.

— Both the sender and the receiver lie. That is, the adversary sees a
transcript for plaintext m’, fake random coins from the sender consistent
with m, and fake random coins from the receiver consistent with m/'.

That is,
(tr(87 T, m)7 S, Tm’) e (tl’(& T, m/)7 Sm T) e (tr(37 T, m//)7 Sm, Tm’) s (2)

where s, r, tr are defined as in , and $,,, 7y are fake coins produced by running
faking algorithms on the corresponding transcript.

Observe that bideniability implies that tr(s, r,m) = tr(s,r,m’), so a bideniable
scheme is also semantically secure. Similarly, off-the-record deniable schemes are
also semantically secure.

6 Ran Canetti, Sunoo Park, and Oxana Poburinnaya

Full deniability. A scheme is fully deniable if it is both bideniable and off-
the-record deniable. Full deniability provides protection akin to an ideal secure
channel in that the parties can freely claim any plaintext was sent or received,
and which guarantees protection even when parties’ claims do not match.

1.3 A Very Brief Overview of the Construction

Our starting point is an elegant technique from [SW14] that transforms any
randomized algorithm A (with domain X and range Y) into a “deniable version”
using I0. The technique creates two obfuscated programs A’ and F, where:
A’ is the “deniable version” of A; and F is a “faking algorithm” that, for any
input (z,y) € X x Y, outputs randomness p such that A’(x;p) = y. Using this
technique, for any protocol, we can equip parties with a way to “explain” any
given protocol message sent: that is, to produce fake randomness which makes
that protocol message consistent with any plaintext of the parties’ choice.

Based on this, a first attempt at a bideniable scheme might be to apply the
[SW14] technique to an arbitrary public-key encryption scheme to create ob-
fuscated programs for encryption, decryption, sender-fake and receiver-fake —
and then use the sender-fake and receiver-fake programs to “explain” the proto-
col messages one by one. However, this does not yield a bideniable encryption
scheme: the [SW14] technique is guaranteed to work only when applied to inde-
pendent algorithm executions, but here the algorithms are run on the same keys
and randomness, protocol messages are interrelated, and any convincing over-
all explanation must consist of a sequence of consistent explanations across the
algorithmsﬁ The problem in a nutshell is that although the [SW14] technique
could create a deniable version of any single program, applying the technique
separately to the key generation, encryption, and decryption programs fails to
achieve deniability with respect to the programs’ joint behavior.

More concretely, it is problematic that the adversary can manipulate any given
transcript and randomness to generate certain “related” transcripts and random-
ness, and then try running the decryption algorithm on different combinations
of them. Next, we give some intuition as to why this is a problem.

The Accumulating Attack. A fake r (i.e., receiver randomness) can be viewed
as a string which “encodes” or “remembers”, explicitly or implicitly, an instruction
to decrypt a certain transcript to a certain fake plaintext. An adversary can run
RFake iteratively on a given r (and a series of related transcripts) to successively
obtain 71,79, ..., hoping that each new application of RFake will add a new (ith)
instruction into the “memory” of r; in addition to all the preceding instructions.
Since r; is a bounded-length string which, information-theoretically, can carry
only a fixed amount of information, sooner or later, one of the instructions will
be lost from the “memory” of r;« for some i*. It can be shown that, assuming r
was fake, an adversary running RFake many times can obtain some r; which does
not carry the original r’s instruction, and thus decrypts the original transcript

8 Indeed, if this approach worked, it would yield two-message bideniable encryption,
which is impossible [BNNO11].

Fully Deniable Interactive Encryption 7

honestly. (This attack first appeared in [BNNOII] in the two-message setting
and was used to demonstrate impossibility of two-message receiver-deniable en-
cryption.)

While the above attack does not carry over to the three-message case generically,
it stills remains valid for many protocols: namely, for those protocols where it
is easy, given the challenge transcript tr*, to find transcripts “related” to tr*.
Here “related” means that these transcripts can be successfully decrypted using
the same true randomness r that was used to generate tr*. (In particular, in
the two-message case, it is always easy to generate related transcripts (pk, c) by
setting pk = pk* and setting ¢ to be a fresh ciphertext with respect to pk.)

Therefore our approach, based on the above ideas, involves: (1) designing a pro-
tocol that prevents the adversary from computing related transcripts that force
receiver randomness to “accumulate”’ information as described above, and then
(2) applying the [SW14] technique to the algorithms for generating each message
of this protocol. For the first step, we design such a protocol in the oracle-access
model, where everyone (parties and adversaries) has only oracle access to the
programs for computing protocol messages. Then, we adapt the construction to
the setting where everyone has access to program code, obfuscated under 10.

Step 1 of our plan — designing a protocol resistant to the Accumulating Attack
— itself consists of two key steps, further detailed below: (1a) design a “Base
Protocol” that resists only some attacks, then (1b) augment the base protocol
using the ideas of a level system and comparison-based decryption, to obtain a
protocol secure in the oracle-access model (the “Idealized Protocol”).

STEP 1a STEP 1B STEP 2
Base Protocol Idealized Protocol Full Protocol
Prevents some attacks Fully deniable in Fully deniable under
but ultimately insecure oracle-access model subexp. iI0 & OWF
\ !
\} + Level system /\ AN + [SW14] technique L/
+ Comparison-based ~ > + Level system s
decryption construction from iO

Fig. 1: The construction, step by step. The second arrow is dashed because
while conceptually the Idealized Protocol is a stepping-stone to the Full Proto-
col, technically the Full Protocol requires very different techniques, and must be
proven from scratch rather than “building on” the Idealized Protocol.

STEP 1A: We design the Base Protocol in the oracle-access model as follows.
The first message u1 is a PRF output for input (s,m) where s is the sender
randomness s and m is the plaintext. The second message u» is a PRF output
for input (r, u1) where r is the receiver randomness r. The third message ps3 is
an encryption of (m, py, u2). All keys for PRFs and encryption are hidden inside
these programs (and not known to anyone, including parties). After exchanging
11, 2, 3 with the sender, the receiver runs Dec, which decrypts the ciphertext

8 Ran Canetti, Sunoo Park, and Oxana Poburinnaya

13 and outputs m. In addition, the programs contain certain consistency checks:
Dec returns an output only if it gets the correct r (i.e., consistent with p,), and
P3 only returns an output if it gets the correct s (i.e., consistent with p1).

The intuition for this design is as follows. The first two messages serve as “hashes”
of the parties’ internal state so far, and the next two programs — P3 and Dec
— produce output only if the parties “prove” to the programs (by giving ran-
domness consistent with these “hashes”) that they are continuing to execute the
protocol on the same inputs used to generate these hashes. This design aims
to prevent the adversary from computing related transcripts (and thus prevent
the Accumulating Attack): for instance, an adversary must not be able to reuse
1, po from a transcript (uq, po, 143) to compute a new us3’ such that (ug, o, 3’)
is also a valid transcript with respect to the same r. Section [2|gives more intuition
about this.

STEP 1B: Unfortunately, the intuition from Step la is only partially correct: it
turns out that it is still possible to generate related transcripts, although the de-
sign above indeed protects against “most” ways of generating them. Concretely,
we describe a method 2 (detailed in Section to compute a series of re-
lated transcripts differing only in the third message. Importantly, {2 is generic:
it works for any three-message bideniable encryption scheme. {2 takes any tran-
script (p1, po, u3) and, applied iteratively, produces a “chain” of valid transcripts
try = (pa, po, u3™M), try = (1, p2, p3?), and so on. However, the scheme from
Step la importantly ensures that (2 is the only way to compute valid related
transcripts: this is crucial for the security proof.

It remains to ensure that the adversary cannot learn the true plaintext from the
chain of related transcripts produced using {2 (e.g., by performing the Accumu-
lating Attack). To do this, we augment the Base Protocol with a level system,
under which each 3", generated using £2, encodes a number which we call a
level, which is set to that transcript’s own index zﬂ Concretely, p3(*) is an en-
cryption of (m, p1, po,). Additionally, any fake randomness r; — generated by
running RFake on (p1, 12, 13() — also encodes the level i of the transcript used
to generate this r;. The level ¢ is encrypted, and so hidden from parties and the
adversary, but the programs can decrypt and learn ¢ using their internal keys.
To complete the Idealized Protocol, we modify the decryption algorithm such
that any fake r; associated with level ¢ may be used to decrypt transcripts with
139 where j > i (“correctness forward”), but decryption will fail (i.e., output
1) if attempted with respect to 7; and u3") where j < i (“oblivious past”). We
call this comparison-based decryption behavior.

The Idealized Protocol, just described, is fully deniable in the oracle-access
model. In particular, it prevents the Accumulating Attack: intuitively, this is
because comparison-based decryption ensures that an iteratively faked r only

9 Since {2 is inherently applied sequentially, the index i of each transcript produced
by {2 is well defined.

Fully Deniable Interactive Encryption 9

) 02 2

N £ 0} (9}
tr tri trier —— try —— trign —— trij2 —— -

Oblivious past: J{RFake Correctness forward:
decrypting with r; fails decrypting with r; succeeds

Ti

Fig. 2: Comparison-based decryption behavior

encodes the most recent faked plaintext, rather than accumulating a sequence
of past fake plaintexts.

STEP 2: We obtain the Full Protocol by applying the [SW14] technique to the
Idealized Protocol, which enables the parties to use obfuscated programs (not
oracle access) to compute protocol messages and to generate fake randomness.
Proving security of the resulting protocol based on IO presents a number of
challenges. To start with, the security argument in the oracle-access model relies
heavily on certain outputs of programs being hard to find provided the corre-
sponding inputs are hard to find. To make the analogous argument with respect
to I0, we need to show that such inputs don’t exist (rather than being hard to
find). Furthermore, as part of our construction, we introduce and construct a
special primitive that could be called “deterministic order-revealing encryption”
a variant of deterministic encryption where Enc(0) and Enc(1) must be indistin-
guishable, even given programs which homomorphically increment ciphertexts
(producing Enc(2), Enc(3) and so on up to some superpolynomial bound) and
homomorphically compare them. (Intuitively, homomorphic comparison enables
the comparison-based decryption behavior; see section . To argue security of
this special deterministic encryption, we employ different primitives and tech-
niques from the literature, including the asymmetrically contrained encryption
from [CHJV14], and the proof techniques from [BPR15| to argue unreachability
of the end of a superpolynomially-long chain.

This concludes the brief overview of our scheme. An in-depth technical overview
of the scheme, including the intuition for the construction and the proof, can
be found in section [2| (technical overview). Impatient readers may wish to jump
ahead to the Idealized Protocol program descriptions in figures [6] and [7] or refer
to the Full Protocol in the full version of this paper [CPP18].

1.4 Variants of Deniable Encryption and Other Related Concepts

Next, we overview some variants of deniable encryption, deniable communica-
tion, and surrounding concepts. While they are not directly relevant to this work,
clarifying these concepts may prevent confusion.

— Post-execution vs. adaptive coercion. This paper considers coercion that
happens after protocol execution. A broader definition, adaptive coercion,
would capture coercion at some (arbitrary) point during the protocol execu-
tion (with uncoerced parties possibly unaware of the coercion).

— Private vs. public deniability. The deniability of the sender (or receiver,
or both) is public [SW14] if the corresponding faking algorithm does not re-
quire the true randomness or the true plaintext as input. Our scheme has

10 Ran Canetti, Sunoo Park, and Oxana Poburinnaya

public receiver deniability (our RFake has syntax RFake(m/,tr;pr)). This
means that anyone, not just the receiver, can produce fake random coins
for the receiver. Note that any publicly deniable faking algorithm must be
randomized: otherwise, the adversary could easily check if a claimed r is fake
by comparing it to RFake(m’, tr).

— “Coordinated” schemes. One can also consider “coordinated” schemes
[OPW11] where a single faking algorithm takes as input the true coins of
both the sender and the receiver at the same time. Such schemes require co-
ordination between the sender and the receiver in order to compute fake ran-
domness. Our scheme does not require coordination, but we note that prior
to this work, even coordinated fully bideniable schemes were not known.

Deniable encryption is related to a number of other cryptographic concepts:

— Incoercible key exchange is equivalent to deniable encryption. The former
can be used to establish deniable one-time-pad keys for encryption. The latter
enables a sender to pick a random key and transmit it deniably to a receiver.

— Flexible deniability. [CDNO96] also proposed a weaker deniability notion,
variously called flexible deniability, multi-distributional deniability (JOPW11],
BNNO11l Daci2l [AFL16| [CIO16]), or dual-scheme deniability ([GKWI1T]).
In a nutshell, this notion considers a setting where the coercer does not know
which scheme is actually in use, and the coerced party has the freedom to
“lie” in an undetectable way regarding the scheme that was actually used.
(Equivalently, this notion assumes that the coercer does not expect to see
some of the randomness used by the coerced party.) We note that none of
the schemes in [OPW11l [BNNO11l Daci2l [AFL16l [CIO16] are deniable in a
setting where the coercer knows the scheme used in full and expects to see
all the random coins of the coerced party.

— Non-committing (adaptively secure) encryption (NCE, [CEFGN96|)
is weaker than deniable encryption, and designed for a different purpose.
NCE requires that a simulator can generate dummy ciphertexts that can
later be opened to any plaintext. The differences with deniable encryption
are twofold. First, deniable encryption enables faking of real ciphertexts (that
carry plaintexts), while NCE ciphertexts can either be faked (if simulated)
or carry a plaintext (if real). Thus, in NCE, parties cannot fake; only the
simulator can. Secondly, fake opening on behalf of all parties in NCE is done
by the same entity, the simulator, while in deniable encryption the sender
and the receiver fake independently of each other.

Bideniable encryption is strictly stronger than NCE: any bideniable encryp-
tion is also an NCE [CDNO96], but two-message NCE (e.g., [CDMWQ9]) is
provably not bideniable, due to the three-message lower bound of [BNNOT1].

— Deniable authentication. Deniable encryption is incomparable to deniable
authentication. Deniable authentication allows the receiver of a message to
authenticate the message’s origin and contents, while preventing the receiver
from convincing a third party who did not directly witness the communication
that the message came from the sender (see, e.g., [DKSWO09]). In contrast,
in deniable encryption, the third party (adversary) may directly witness the

Fully Deniable Interactive Encryption 11

communicated ciphertext and learn whether the parties have communicated
with each other. The goal of deniable encryption is not to hide whether a
party participated in a communication, but rather to preserve secrecy of
the communication contents — even when parties are coerced (separately or
jointly) to reveal their internal secrets.

1.5 Prior Work on Deniable Encryption

The definition of deniable encryption was introduced in 1996 by [CDNO96].
However, the techniques of that time fell short of achieving deniability: in fact,
[CDNO96] presented a construction where the distinguishing advantage between
real and fake opening was inversely proportional to the length of the ciphertext,
thus requiring superpolynomially long ciphertexts in order to achieve crypto-
graphic deniability. It was not until 2014 that Sahai and Waters presented the
first (and, to date, the only) construction of sender-deniable encryption [SW14].
Their construction is based on indistinguishability obfuscation.

The [SW14] scheme can be transformed into a three-message receiver-deniable
protocol using a generic transformation from sender- to receiver-deniable en-
cryption (due to [CDNO96]) at the cost of one additional round, as follows: the
receiver first deniably sends a random bit b to the sender deniably using the
sender-deniable protocol, then the sender sends b @ m to the receiver in the final
round. Furthermore, if the sender sends b@®m using the sender-deniable protocol
rather than in the clear, the resulting scheme will be sender-or-receiver-deniable:
that is, deniable against adversaries that coerce either one but not both of the
parties. This final step incurs no additional rounds if (as in [SW14]) the message
needs not be decided until the last round of the sender-deniable protocol. How-
ever, all these constructions rely heavily on the fact one of the parties’ internal
states remains hidden, and therefore fail to achieve bideniability.

Several prior works have focused on proving lower bounds for deniable encryp-
tion. [CDNO96| showed that a certain class of schemes cannot achieve better
distinguishing advantage than inverse polynomial. [Daci2] extended this result
to a broader class of constructions, showing that the same holds for any black-box
construction of sender-deniable encryption from simulatable encryption. [NieQ2]
showed that any non-committing encryption, including bideniable encryption,
can only reuse its public key an a priori bounded number of times; and therefore
deniable communication must be interactive, even if two messages. Using differ-
ent techniques, [BNNOT1] showed that two-message receiver-deniable schemes,
and hence also bideniable schemes, do not exist.

1.6 Organization of the Paper

The rest of the paper is organized as follows. Section 2] gives an informal yet
almost complete description of the scheme, and outlines the main proof steps.
Due to space constraints, the rest of the paper (definitions, the level system, full
description of the deniable encryption scheme both in oracle-access and the CRS
model, and formal proofs) is in the full version [CPP18§].

12 Ran Canetti, Sunoo Park, and Oxana Poburinnaya

2 Towards the Scheme: Technical Overview

This section provides an informal yet almost complete overview of our construc-
tion. The primary purpose of this section is to guide the reader through the
process of designing the scheme, outlining concrete attacks and corresponding
protection mechanisms. This should be helpful for readers who want to gain
some intuition about the scheme and its security, but are not willing to read the
whole 250-page full version [CPP18§]|, and for readers seeking to design a scheme
from weaker assumptions (several issues described in this overview inhere in any
3-round deniable encryption, and could arise in schemes with more rounds too).

In this overview we describe the scheme in the oracle-access model. That is,
we assume that all parties and the adversary have oracle access to programs
P1,P2,P3 (which generate the three messages of the protocol), decryption pro-
gram Dec, and faking programs SFake, RFake.

We build our scheme in two main steps. As a first attempt, we try to avoid the
known attacks on the 2-message case by considering a 3-message scheme. Next,
we discuss some attacks and augment our scheme with levels and comparison-
based decryption behavior, which yields our final scheme.

2.1 A First Attempt

Recall the [SW14] technique, mentioned above, that transforms any algorithm
into a deniable version using indistinguishability obfuscation. Given this, a nat-
ural attempt to build deniable encryption is to take any (2-message) public-key
encryption scheme and use the [SW14] technique to make each of its algorithms
Gen, Enc, and Dec deniable. Concretely, the [SW14] technique takes any ran-
domized algorithm A (with domain X and range Y') and outputs two obfuscated
programs A’ and F, where: A’ is the “deniable version” of A; and F is a “faking
algorithm” that, for any input (z,y) € X x Y, outputs randomness p such that
A’(z; p) = y. Using this technique, we can take any protocol and equip parties
with a way to “explain” any given protocol message they send: that is, to pro-
duce fake randomness which makes that protocol message consistent with any
plaintext of the parties’ choice.

This approach would allow, for example, the receiver to create a fake sk’ decrypt-
ing a given ciphertext ¢ to any plaintext of its choice. This sk’ would even be
indistinguishable from the real sk, to an adversary that only sees the purported
secret key. But the problem is that the adversary sees other related information:
e.g., it has the public key, so can run the encryption algorithm and generate
outputs related to sk. The [SW14] technique does not work when applied to
multiple programs with interrelated outputs: such as Gen, Enc and Dec.

Let us now outline the result of [BNNO11|: impossibility of bideniable encryption
in 2 messages. This will give us insight on how to construct a 3-message bideni-
able encryption scheme while “avoiding” the impossibility. Also, the [BNNO11]
result yields a concrete attack on the first-attempt scheme outlined above.

Impossibility of the 2-message case ([BNNO11]). [BNNO11] shows that
even receiver-deniable (as opposed to bideniable) schemes are impossible with

Fully Deniable Interactive Encryption 13

two messages. Their result is unconditional. Their proof shows that any 2-
message receiver-deniable encryption scheme, even for a single-bit plaintext, can
be used to deniably send any polynomial number of plaintexts, simply by reusing
the first message (pk) and sending multiple second messages ¢1,...,cy (where
N is arbitrarily, but polynomially, large); then they show that all these cipher-
texts can be faked simultaneously using a single fake decryption key. This im-
plies a method for compressing an arbitrary string beyond what is information-
theoretically possible, as follows. To compress a string by,...,by from N bits
(where N is larger than |sk|) to |sk| bits: (1) prepare N encryptions of 0 un-
der a single pk (call them ci, ..., cn){ (2) compute sk < RFake(sk, c1,by),
sk® < RFake(sk™M), ¢a,ba), . .., sk™) «— RFake(sk®™ V) ¢y, by). The final string
sk™) is a compressed description of by,..., by, since it is shorter than N and
since the original string can be recovered by decrypting each b; as Dec(sk(N), ¢i)-
Since most strings cannot be compressed, we have a contradiction.

Stated differently, this impossibility says that a secret key which was faked mul-
tiple times to lie about different ciphertexts has to “remember” or store infor-
mation about each lie; but information-theoretically, it cannot remember more
information than its length allows. Thus, at some point, such a secret key has
to “forget” previous lies, and then it can be used to decrypt the original cipher-
text to its real plaintext. That is, there is always an attack on any 2-message
scheme, which roughly goes as follows. Assume the adversary sees a ciphertext c,
claimed to encrypt plaintext m/, together with a fake sk’ that decrypts c to m/’;
but in reality, ¢ encrypts m. The adversary can generate N > |sk| ciphertexts
c1,...,cny as above, and run RFake iteratively to compute sk as above, and
then compute Dec(sk(N); ¢) = m to learn the true plaintext.

In summary, the core issue with the 2-message schemes is that for a single re-
ceiver message (i.e., pk) it is possible to efficiently generate many different sender
messages (i.e., ciphertexts), such that all these ciphertexts are valid ciphertexts
with respect to the same receiver key; this, in turn, means we must be able to
use a single secret key to fake all the ciphertexts at once, which is information-
theoretically impossible.

What would be the analogous argument in the 3-message case? Consider a 3-
message scheme with messages (11, pz, u3). If the scheme has the property that,
given a receiver message o, one can efficiently generate many different sender
messages 11", 3 yielding valid transcripts (p1®), po, 3(?), then the scheme
is subject to the [BNNO11] impossibility. For example, consider a 3-message
scheme where the third message is a fresh encryption under freshly sampled
random coins: this enables generating many third messages y3(® for any given
1, p2, and applying the [BNNO11| argument shows that any fake receiver ran-
domness must remember a lie for each 13(?), so this scheme is susceptible to the
same attack as two-message schemes.

10 These ciphertexts do not depend on the string to be compressed and thus can be
thought of as public parameters of the compression protocol.

14 Ran Canetti, Sunoo Park, and Oxana Poburinnaya

Base Protocol. Now we present our Base Protocol, which is insecure but will
be augmented later to achieve a secure version. The scheme has parties first
exchange two PRF values, then has the sender encrypt its plaintext m into a
ciphertext us using program P3, which the receiver can decrypt using program
Dec. Before presenting the scheme formally, we give motivation for the design.

With the [BNNO11] impossibility in mind, a natural approach to building a 3-
message scheme is to ensure that for any given first two messages pu1, pp, only
one consistent third message s can be efficiently computed. The Base Protocol
achieves this using the following ideas.

1. The first message p1 “commits” to the sender’s coins s and message m.

2. The third message p3 is a deterministic, symmetric-key encryption of m under
a key K that is hardwired in programs P3 and Dec and is unknown to parties.

3. P3(s,m, u1, u2) does a validity check before its output: if p4 is indeed a “com-
mitment” to s and m, P3 outputs us; otherwise, it outputs L.

In other words, the only way for the sender to generate a valid p3 is to “prove”
to P3 that it is running P3 on the same s, m used to compute p;. Thus, as long
as K remains secret and the ciphertexts are sufficiently sparse, for any 1, uo,
there is only one (efficiently computable) consistent ps.

So far, since 3 is computed under the same key K in each execution and it is not
randomized, all executions with the same m yield the same p3, which is clearly
insecure. To fix this, we let u3 encrypt not only m, but the first two messages
w1, 2 as well, forcing different executions to have different third messages.

We have not yet discussed how the second message p should be computed, which
actually depends on an extension of the attack based on [BNNOT1], described
above. Recall that we wanted it to be hard to compute multiple transcripts with
the same jio: say, (u1?, p2, u3). In fact, we also want it to be hard to convert
a transcript (pi, po, #3) with receiver randomness r into a different transcript
(1’ po’, p3") consistent with the same r, since it is possible to extend the attack
to this case as well. With this in mind, we design the protocol as follows.

1. The second message py is a pseudorandom function output PRF(r, 1), for a
PRF key that is hardwired into P2 and Dec and not known to the partiesE
The PRF inputs are the receiver randomness r and the first message 1.

2. Dec(r, u1, 2, u3) does a validity check before decryption: if p, is the correct
PRF output for input (r, 1), Dec outputs m; otherwise, it outputs L.

Thus, the only way for the receiver to decrypt is to “prove” to Dec that it is
running Dec on a valid r (consistent with uy). This ensures that it is hard to
transform a transcript (p1, 12, 13) into a different (pq’, uo’, u3’) consistent with
the same receiver randomness r, since that would require finding pq’, up’ such
that up” = PRF(r, u1'), for an unknown 7 and an unknown PRF key.

' Tn this high-level description we omit PRF keys to simplify notation.

Fully Deniable Interactive Encryption 15

We conclude this protocol design with a couple of final notes. First, we instanti-
ate our “commitment” using a PRF as well, with its key hardwired into programs
P1,P3 and not known to parties (thus, both p; and p, are PRF outputs). Sec-
ondly, we augment each program P1, P2, P3, Dec with a “trapdoor step” which
makes each of these programs separately deniable, in the spirit of the [SW14]
technique. Finally, we make the validity check inside Dec accept if P2(r, u1) = ua,
rather than if PRF(r, u1) = po; the difference is that P2 also accepts “fake” values
which are not real preimages of the PRF. We make a similar modification to P3:
its validity check verifies that P1(s,m) = p; and therefore would also accept fake
s which is not a real opening of the “commitment”. These changes are necessary
because without them, an adversary could use the validity check to test whether
a given s is a real (PRF) preimage of uy or a fake one.

We present the programs P1, P2, P3, Dec, SFake, RFake as described so far, in fig.
For readability, the program includes comments to explain what the code is
doing. Despite the somewhat dense code, the programs are very structured, and
in a nutshell they behave as follows.

— Each program has a main step which is triggered when the program is run
on uniformly random s or r (which is the case during an honest execution);

— Programs P1,P2,P3, Dec each have a trapdoor step which is triggered when
the programs are given fake randomness (which has a special format recog-
nizable to the programs). The set of fake randomness is sufficiently sparse
that the trapdoor steps are almost never triggered on uniform s or r. Fake
randomness contains an “instruction” of how the program should behave.

— Programs P3 and Dec run validity checks, as described and motivated above.

— Programs SFake and RFake generate fake randomness which can be recognized
by other programs.

In particular, during an honest execution with uniformly random s and
r and plaintext m, the parties exchange messages 1,2, u3 (computed
by programs P1,P2 P3, respectively), as follows: pu3 = PRF(s,m), up =
PRF(r, u1), ps = EncK(m7ﬂ17ﬂ2)E The receiver decrypts (p1, 2, 43) by run-
ning Dec(r, 1, tt2, 13), which verifies that PRF(r, 1) = uo, then decrypts us and
outputs m.

If the parties want to claim to a coercing adversary that they transmitted a dif-
ferent plaintext 1, they can use SFake, RFake to compute fake s’ and r’, which
are random-looking strings with 1, u1, p2, and s encrypted inside. If the adver-
sary decrypts the transcript (u1, po, u3) with fake ' = Encg, (1, p1, 2, i3, pR),
it will get m as a result (via the trapdoor step of the decryption program).
Similarly, the other programs, when given fake s’ or r’ as input, employ their
trapdoor steps as well, making each protocol message appear consistent with .

12 Note that s,m (and r, u1) are both inputs to the PRF, not keys; we omit PRF keys
for simplicity of notation.

13 We treat s,r as non-random inputs, even though they are supposed to be uniformly
chosen, since they are reused across different programs.

16 Ran Canetti, Sunoo Park, and Oxana Poburinnaya

Base Protocol programs: first attempt at deniable encryption.
Program P1(s,m)
1. Trapdoor step: if Deckg(s) = (m/, u1’, p2’, u3’) and m’ = m, then return p:’ //if
s is fake and encodes m, output encoded ,u,l/
2. Main step: Return p; < PRF(s,m). //otherwise output PRF(s,m)

Program P2(r, u1)

1. Trapdoor step: if Deck,(r) = (m/,u1’, p2’, p3’) and w1’ = pa, then return po'.
//if r is fake and encodes 1, output encoded [LQ/

2. Normal step: else return PRF(r, u11). //otherwise output PRF(r, 1)

Program P3(s,m, u1, p2)

1. Validity check: if P1(s,m) # u1, then abort;

2. Trapdoor step: if Decxg(s) = (m/, p’, p2’, us’) and (m/, ', p2') = (m, p1, p2),
then return p3’. //if s is fake and encodes correct (m, ju1, j12), output encoded ps’

3. Normal step: else return Encg (m, p1, p2).//otherwise encrypt m

Program Dec(r, p1, p2, 43)

1. Validity check: if P2(r, u1) # p2, then abort;

2. Trapdoor step: if Deck, (r) = (m/, u1’, p2’, u3’) and (w1, p2’, us") = (u1, p2, ps3),
then return m’'. //if r is fake and encodes correct (u1, p2, p3), output encoded m’

3. Normal step: else decrypt (m”, 1", u2”") < Decr (us). If (p1”, p2"" = p1, p2) then
output m”, else abort. //otherwise decrypt honestly

Program SFake(s, m,m, pu1, 2, 43; ps)

1. Validity check: if P1(s,m) # u1, then abort;

2. Normal step: else return Encg (1, p1, 2, pus, ps) // output fake s with fake plain-
text and the transcript inside.

Program RFake(mh, 1, p2, pus; pr)

1. Normal step: return Encg, (1, pi1, pi2, p3, pr) // output fake r with fake plaintext
and the transcript inside

Fig. 8: Base Protocol programs: first attempt at deniable encryption.
P1,P2,P3,Dec are deterministicEﬁFake, RFake are randomized.

The problem with the Base Protocol. We designed our scheme above with
specific attacks in mind, but is it secure against all attacks? The answer is
“almost”: it is relatively easy to show security of the scheme in an idealized model
where parties (and the adversary) have only oracle access to the programs, but
only as long as the adversary cannot query the SFake oracle. Concretely, the
adversary can use SFake to mount a certain attack {2 on the scheme, but this
turns out to be the only possible type of attack. In section 2.2 we describe
a special protection mechanism — comparison-based decryption behavior —
which, when added to the protocol, prevents this type of attack and yields a
scheme that is fully deniable even if the adversary has an access to all oracles
including SFake. (And in the full version [CPP18|, we prove this result even when
the adversary can see the code of all programs, obfuscated under 10).

Let’s unpack why the protocol described so far is insecure. Recall that we wanted
11 to serve as a “commitment”, and we wanted P3 to output pz only if the
sender uses the same s and m in the commitment and as input to P3. This

Fully Deniable Interactive Encryption 17

was important to make sure that for any i, 2, at most one consistent us is
efficiently computable. Then, however, we said that P3 should perform its validity
check with respect to the whole program Pl and not just the commitment;
in particular, the validity check in P3 accepts not only the true opening of
the commitment, but also fake s. The problem is that P1, due to its trapdoor
step, is not binding: given any u1* = PRF(s*,mg) and my # my, it is easy to
generate a different s; that passes the verification check. In fact, SFake does
exactly that: given (s*,mg,mq, u1*, 2, pu3) for some pp, uz, it outputs s; such
that P1(s1,m1) = p1*.

While this is not yet a concrete attack, it exposes a problem with our initial hope
of a committing first message: sender deniability guarantees the first message is
easily invertible, potentially with respect to inconsistent plaintexts m, so puj
cannot, be committing. Thus, it is easy to create many fake s; consistent with
p1, and therefore many third messages pus™"), s, . . ., all consistent with a given
(u1*, p2*). A procedure (2 that does this is detailed in fig. 4| For our purposes,
the key features of the attack {2 are as follows.

— To generate such a u3?), encrypting some m; for a given (u1*, uo*), one has
to run P3 on certain fake sender randomness s;.

— P3 can recognize when it is being used to generate such a p3?. (This is
because P3 will be run on a “mixed input”: that is, P3 should be run on
s,m, p1*, uo*, and a fake s; that encodes the same p1* but different o # uo*.)

— The only way to generate such fake s; efficiently is to run SFake (on a tran-
script different from the one being attacked: specifically, with a different
second message).

A procedure (? to generate a new third message encrypting m;
and consistent with given first and second messages 1, 2.

Inputs to 2(u1™, p2™, u3™, s*, m*, my) are: transcript (u1™, p2*, us*), sender randomness
s* (which could be real or fake), plaintext m*, and new desired plaintext m:

1. Compute an auxiliary transcript tr = (u1*, fi2, /i3) with the same first message p1*,
but different second message (i», by choosing fresh receiver randomness 7 and setting
tr < tr(s*, 7, m*). Note that the first message of this transcript is P1(s*, m*) = u1*.

2. Compute s1 < SFake(s*,m",mq, pu1*, ti2, tiz). Note that s; is fake randomness
which remembers mi, u1™ and a new fip # puo™.

3. Compute pz™™ < P3(s1,m1, ua*, u2™).

2 can now be repeated on input pu1™, p2™, u3(1)7 s1, m1, m2 to generate ,u3<2), and so on.

Fig. 4: Procedure (2 to compute many third messages consistent with given pq, piz.

Since it is easy to generate many third messages, our scheme is subject to the
same attack as all 2-message schemes: namely, the adversary can generate many
ciphertexts p3(?, fake each of them to compute an N-times-faked (™), and then
use it to correctly decrypt the original ps*. While this attack inheres in all 2-
message schemes [BNNO11], in the 3-message case we can fix it. We do so by

18 Ran Canetti, Sunoo Park, and Oxana Poburinnaya

introducing levels and comparison-based decryption behavior, which specify how
the decryption program should behave when the adversary tries to use such (V)
to decrypt a transcript (u*, u2*, u3?) or a challenge transcript (u1*, po*, us*).

2.2 Levels, Comparison-Based Decryption, and the Final Scheme

Comparison-based decryption behavior. Let (u1*, u2*, u3*) be a challenge
transcript. For any superpolynomial T and j € {0,...,T}, let r; be the output
of RFake on transcript (u1*, jo*, 13%)), where p3(9) is computed by j iterations
of 2. Let 113(”) denote the challenge u3*. When Dec is run on r; and p3®, for
i,7 € {0,..., T}, comparison-based decryption behavior requires the following.

1. Oblivious past: When j > i, Dec outputs L.

2. Correctness forward: When j < i, Dec decrypts us3? correctly (as long as
consistency checks pass).

3. When j = i, Dec should decrypt u3" according to the instruction in fake ;.

That is, if an adversary creates fake r; using 139, the jth in the sequence of
ciphertexts, this r; can be used to honestly decrypt ciphertexts “after” us?), but
cannot be used to decrypt ciphertexts “before” ;i3¢); and naturally, r; decrypts
139 itself according to the instruction inside fake ;.

2 02 02 9] £ k04 0
tr tr cee tricr —— try —— trign —— trigo —— .-
Oblivious past: iRFake Correctness forward:
decrypting with r; fails e decrypting with r; succeeds
1

Fig. 5: Comparison-based decryption behavior

Comparison-based decryption behavior prevents the attack described above, de-
spite the fact that (2 enables the adversary to generate many third messages.
Next, we give some intuition as to why. Recall that the attack had the adversary
generate a fake r; (by faking a ciphertext sequence 3, 3 ..) and then
return to the challenge us* and decrypt it. Thus, a natural idea to mitigate this
attack is to make Dec output L whenever fake r; is used to try to decrypt the
initial pus3* = ,u3(0) This simple modification indeed stops the attack, but in-
troducing it alone would break security. To maintain security, we need to make
sure that Dec on inputs 7, u3 should output L for all j > i, and not just
j>i= OEIH other words, the “oblivious past” rule is the “minimum” modifica-

' Such a restriction is not possible in the 2-message case, in contrast to the 3-message
case. This relates to the fact that our procedure {2 which generates 13 is “one way”,
i.e., it is easy to generate /L3(i+1> from p3?, but it could be hard — and is hard, in
our scheme — to generate ,u3<i) from ,u3(i+1). In contrast, in any 2-message scheme,
there is no order on the ciphertexts; they are always easy to generate.

15 To see this, suppose Dec outputs | whenever 7;,j > 0 is used to decrypt usz* = ,u3(0).

Now consider trying to decrypt some u3' with, say, rirs. rs does not decrypt us(®,

Fully Deniable Interactive Encryption 19

tion which prevents fake r; from decrypting pz* = 139 and maintains security
of the scheme.

Finally, the “correctness forward” rule must hold as well, since it is implied by
sender-deniability. As a result, the behavior of the decryption program depends
on the comparison of “indices” of the transcript and the receiver randomness;
therefore, we call this comparison-based decryption behavior.

Implementing comparison-based decryption behavior: levels.

Next, we consider how to construct our programs such that comparison-based
decryption behavior holds. When we run Dec on some p3 and some r, how does
it know whether usz is “forward” of r in the chain (meaning Dec should decrypt
honestly), or “in the past” with respect to r (meaning Dec should output 1)?

To this end, we introduce levels. That is, we have all fake sender randomness,
all fake receiver randomness, and all third message ;3 also encrypt a number
{ between 0 and some superpolynomial 7', as follows.

— Fake sender randomness encrypts, among other things, a level ¢ which is how
many times this randomness was faked. (E.g., to compute fake randomness,
the sender would normally run SFake once, so the level ¢ of the resulting fake
randomness is 1. If it runs SFake on the resulting randomness again, its level
¢ will be 2, and so on).

— Each potential third message u3(® also encrypts, in addition to m and py, o,
its level, which is its indez i in the chain. Note that the algorithm (2 which
computes u3? outputs 3, 433, ... sequentially, and therefore their index
1 is well defined. In an honest execution, the level of u3 is always set to 0.

— Fake receiver randomness encrypts, among other things, a level ¢ which is the
level of its “parent” transcript (i.e., the transcript which was used as input
to RFake). (E.g., to compute fake randomness, the receiver would normally
run RFake on the honest transcript, which has level 0, so the resulting fake
randomness would have level 0 too).

We claim that storing this “level” information in fake randomness and third
messages is enough for the scheme to maintain the level information accurately
and follow comparison-based decryption behavior. For instance, Dec can decide
its output behavior by comparing the levels inside » and u3. RFake can record
the correct level of r by copying the level of its parent ciphertext. SFake can
maintain the correct number of times something was faked, by reading the level
in its input s and incrementing it. P3, as discussed above, can detect when it is
being run within {2, and it can put inside its output third message the level it
copied from input s; since generating each new us requires once-more fake s, the
level in s — i.e., the number of times it was faked — corresponds to the index
of 3 in the chain.

and the difference between (u3(9),r3) and (,u3<i),r,'+3) is that pg(o) was generated
with truly random s whereas 3 used s; which was faked i times. Sender deniability
requires these two cases be indistinguishable, so y3(¥) must not be decrypted by ;3.

20 Ran Canetti, Sunoo Park, and Oxana Poburinnaya

Our final protocol in the oracle-access model. We present our final protocol
(albeit still in the oracle model) in figs. This scheme is a provably secure
deniable encryption scheme in the oracle access model. A proof outline follows the
program descriptions, and a complete proof is given in the full version [CPP1§].

The structure of the final protocol programs is summarized below.

— Each program has a main step which is triggered when the program is run
on uniformly random s or r, which is the case during an honest execution.

— Programs P1, P2, P3, and Dec also have a trapdoor step which is triggered
when the programs receive fake randomness (which has a special format rec-
ognizable to the programs). The set of fake randomness is sufficiently sparse
that the trapdoor step is almost never triggered on uniformly chosen s or r.
Fake randomness contains an “instruction” of how the program should behave
on some particular input.

— Programs P3 and Dec also have a “mixed input” step which serves to pre-
vent attacks using {2 to generate many third messages ps. P3’s mixed input
step copies the level from its input s into the third message us3, ensuring us
encrypts its own index in the sequence. Dec’s mixed input step implements
comparison-based decryption behavior by comparing the levels of pu3 and 7.
The mixed input steps are triggered when the programs receive fake s (or
r) as input, but the program’s other inputs do not match the inputs in the
instruction inside s (or 7). P3 enters its mixed input step when its input and
fake s contain the same p; but different second messages, and Dec enters
its mixed input step when its input and fake r contain the same pui, o but
different third messages.

— Programs P3 and Dec’s output behavior depends on validity checks, as in the
Base Protocol (and for the same reasons as in the Base Protocol).

— Programs SFake and RFake generate fake randomness that is recognizable to
the other programs, and maintain accurate level information inside the fake
randomness as follows: SFake increments the level of sender randomness with
respect to its input sender randomness (unless the latter is honest, in which
case SFake sets the level to 0); and RFake copies the level from the parent
transcript into fake randomness.

The interesting cases of protocol execution are summarized next.

— Normal protocol execution. Executing the programs on randomly cho-
sen s*,r* and plaintext mg triggers the main step, yielding outputs p1* =
PRF(s*,mf), pe* = PRF(r*, u1*), and ps* = Encg(mg, pi*, u2*,0), where
the last 0 is the level. Dec, given the resulting transcript as input, outputs
mg via its main step.

— Fake randomness of parties. A sender wishing to claim that it sent plain-
text mj # mg can run SFake to obtain fake s’ encoding (m7, pu1*, o™, ps*, 1),
where the last 1 is the level. A receiver wishing to claim that it received
mj # mg can run RFake to obtain fake 7’ encoding (mj, u1*, uo*, us*, 0),
where the last 0 is the level. Executing programs on fake s’ or fake v’ and mj

Fully Deniable Interactive Encryption 21

Programs P1,P3, SFake.

Program P1(s,m)
1. Trapdoor step:

(a) out <+ Deckg(s); if out = ’fail’ goto main step, else parse out as

(m/7 .U‘1/7 /J“Q/, /-1’317 él)7

(b) If m = m/ then return p'; //if s is fake and encodes m, output encoded p1’
2. Main step:

(a) Return p; < PRFg4(s,m). //otherwise output PRF(s,m)

Program P3(s,m, p1, i)

1. Validity check: if P1(s,m) # p1 then abort;

2. Trapdoor step:

(a) out + Decky(s); if out = 'fail’ goto main step, else parse out as
(m/vullaﬂ2l7ﬂ3/7£/);

(b) If m,p1, 2 = m', 1, o’ then return ps’; //if s is fake and encodes correct
(m, pa, u2), output encoded ps’

3. Mixed input step: If m,u1 = m',ui’ but po # po’ then return psz <+
Enck (m, u1, u2,£'); //if s is fake and encodes correct (m,pu1) but incorrect p,’,
encrypt m with level copied from s

4. Main step:

(a) Return ps < Enck(m, p1, p2,0). //otherwise encrypt m with level 0

Program SFake(s, m,m, u1, p2, 43)
1. Validity check: if P1(s,m) # p1 then abort;
2. Trapdoor step:
(a) out <+ Decky(s); if out = ’fail’ goto main step, else parse out as
(mlz “1/7 /”“2/, /-1’317 Zl)7
(b) If m, 1 = m', u1’ then
i. If £ > T then abort;
ii. Return Encgyg (mh, pa, p2, pi3, £ + 1). //if input s is already fake then output
new fake s with fake plaintext, the transcript, and incremented level
3. Main step:
(a) Return Encgg(1h, p1, p2, 3, 1). //otherwise output fake s with fake plaintext,
the transcript, and level 1

Fig. 6: Programs P1,P3, SFake.

triggers the trapdoor step, so programs will output the values hardwired into
the fake s’ or /. Thus, P1 will output p1*, P2 will output u*, P3 will output
u3*, and Dec will output m7 via their trapdoor steps, making the transcript,
originally for plaintext mg, appear consistent with mj.

Efficiently computable related transcripts. It is only possible to
compute related transcripts of the form (ui*,p2*,u3), where uz =
Enci (m, pu1*, u2*,¢), £ > 1; moreover, the only way of doing so is to use
the procedure {2 described above (which invokes SFake). Trying to compute
u3 a for such transcript will cause program P3 to execute its “mixed input
step”, ensuring that such ps receives level ¢ > 1; for this, it is important that
SFake increments the level inside s. Trying to decrypt such a related tran-
script (p1™, po™, u3) will cause program Dec to execute its “mixed input step”,

22 Ran Canetti, Sunoo Park, and Oxana Poburinnaya

Programs P2, Dec, RFake.

Program P2(r, u1)
1. Trapdoor step:

(a) out <« Decky(r); if out = ’fail’ then goto main step, else parse out as

(m/7“1/7/~/“2/,/-//317L/7ﬁ);

(b) If pa = pa’ then return pp’; //if r is fake and encodes p1, output encoded po’
2. Main step:

(a) Return pp < PRFy, (7, p1). //otherwise output PRF(r, 1)

Program Dec(r, u1, p12, u3)
1. Validity check: if P2(r, u1) # uo then abort;
2. Trapdoor step:
(a) out <+ Decky(r); if out’ = 'fail’ then goto main step; else parse out’ as
(m/v /"’1,5 /’L2l7 “3/7 Z/a ﬁ)v
(b) if p1,p2, u3 = p1’, w2’ us’ then return m'; //if r is fake and encodes correct
(1, pi2, 13), output encoded m’
(c) out < Deck (us3); if out” = fail’ then abort, else parse out” as (m”, ", 2", £");
3. Mixed input step: If p1, uo = pa’, po’ but ps # pz’ then
(a) If (u1',pm2") = (1", 2") and ¢ < ¢” then return m”; //if r is fake and en-
codes correct (ju1,p12) but incorrect us’, decrypt honestly or abort, depending
on whether the level in r is smaller than in u3 or not
(b) Else abort.
4. Main step:
(a) out < Deck (u3); if out = 'fail’ then abort, else parse out as (m”, u1"’, u2", £");
(b) If (p1, p2) = (u1”, p2”") then return m’’; //otherwise decrypt honestly
(c) Else abort.

Program RFake(7h, u1, po, i3; p)
1. out + Deck (113); if out = ‘fail’ then abort, else parse out as (m”, u1"”, 2", ¢");

2. Return r’ < Enckp, (T, pa, po, u3, £, prg(p)). // output fake r with fake plaintext,
the transcript, and the level copied from us3

Fig. 7: Programs P2, Dec, RFake.

ensuring that the requisite decryption behavior is observed (that fake r de-
crypts correctly transcripts with larger level, but fails to decrypt transcripts
with smaller level); for this, it is important that RFake copies the level from
the transcript to r.

Outline of security proof in oracle-access model. Since the proof even
in this simpler (oracle-access) model is somewhat lengthy, we only outline the
main steps here, with intuition for each. The proof proceeds in four main hybrid
steps. We start with a real execution corresponding to plaintext mg, where the
adversary receives real randomness s*, r*.

— Step I: indistinguishability of sender explanations. Instead of giving
the adversary real s*, we give it s’ = Encgs(mf, u1*, u2*, ps*, £ = 0) (note
that this s’ contains level 0, unlike fake randomness produced by SFake which
contains level at least 1).

Fully Deniable Interactive Encryption 23

Intuitively, the reason why we can switch from s* to s’ indistinguishably is
because all programs treat s* and s’ indistinguishably. That is:

e cither the programs output the same value, possibly via different branches
of execution (e.g., P1 on input (s*,m¢) outputs u1* via its main step and
on input (s’,mg) outputs p1* via its trapdoor step);

e or the programs execute the same code, possibly outputting different re-
sults (e.g., P1, on input (s*,mj) or (s’,m}), evaluates a PRF on its input
and outputs the result).

The above, and the fact that s’ is pseudorandom, allow us to change s* to s’
(similarly to the [SW14] proof for sender-deniable encryption).

Step II: indistinguishability of receiver explanations. Instead of giving
the adversary real r*, we give it fake 1/, i.e., 7’ = Encg, (mg, u1*, po*, ps*, € =
0, pr). Unlike in Step I, here there is a transcript with respect to which the
decryption program treats r* and r’ distinguishably.

Recall that r* honestly decrypts all related transcripts, while v’ only honestly
decrypts “forward”, i.e., for related transcripts with level ¢ > 1. Thus, the
two programs may treat level-0 transcripts differently. Consider a transcript
(u1*, po*, pu3*), where us* = Encg (mf, ui*, po*, € = 0) is like uz* except that
it encrypts the wrong plaintext mj. This transcript decrypts correctly to mj
with r*, but decrypting it with v’ returns L due to the level comparison logic.
This single transcript makes r* and r’ distinguishable. As a result, the proof
of Step I does not work here. Therefore, we first move to a hybrid where this
“differing” transcript doesn’t exist, as follows. First, since s* (the preimage of
PRF output p;1*) is not part of the distribution anymore, we can move p*
outside the PRF image. Then we argue that P3 never outputs us*:

e The main step cannot output uz*, since it is executed only if the validity
check passes via a correct PRF preimage, which now does not exist.

o The mized step cannot output usz*, since P3 can only output a ciphertext
with level 0 (like p3*) via the mixed step if its input randomness has level
0, and such input randomness is hard to find since SFake never outputs
randomness with level 0.

e The trapdoor step cannot output uz*, since P3 can only output uz* via the
trapdoor step if it receives as input fake randomness that has us* inside
to begin with. Since there are no other means of computing uz*, such
randomness is also hard to find.

Once the differing transcript (u1*, po*, p3*) is eliminated, we can switch r*
to 7’ similarly to Step L.

Step III: indistinguishability of plaintexts. The next step is to switch
3™ from encrypting mg to encrypting mj. This is done by “detaching” psz*
from its key K in programs P3 and Dec. Concretely:

e P3 can only output us* via the trapdoor thread (which does not use the
key K). The reason is very similar to the case-by-case analysis of P3 in
Step II: the main step requires a PRF preimage, which does not exist,
and the mixed step requires level-0 sender randomness, which is hard to
find.

24

Ran Canetti, Sunoo Park, and Oxana Poburinnaya

*

e Dec can only “decrypt” us* via the trapdoor thread (which, again, does
not use K). To guarantee this, we first move u,* outside of the PRF image
(this is possible since r* is no longer part of the distribution). Then pus*
is never decrypted via the main step because the preimage for u,* does
not exist. Further, u3* cannot be decrypted via the mixed step either,
because the “correctness forward” decryption rule outputs L unless the
input receiver randomness has level smaller than the level in p3*, and this
is not possible since p3* has the smallest possible level, 0.

In other words, neither P3 nor Dec need to use K to encrypt or decrypt ps*.
Therefore we can “detach” K and p3* and change the plaintext to mj.

Note that the transcript now contains mj, and both sender and receiver
randomness s',r" are consistent with mg. However, the proof is not finished
yet, since parties cannot produce such s’ themselves (since s’ has level 0).
Step IV: indistinguishability of levels. The last step is to change the
level inside s’ from 0 to 1, i.e., let s = Encgg(mg, pa*, po*, us™, ¢ = 1).
To understand the challenge of this step, it is instructive to take a “level-
centric” perspective: let’s put aside that the scheme is about transmitting
plaintexts, and instead think of fake s as an encryption of level (0 or 1),
think of u3* as an encryption of level 0, and think of the programs of deniable
encryption as implementing homomorphic operations on encrypted levels. For
example, program SFake outputs fake randomness which is an encryption of
incremented level, and thus implements a homomorphic Increment operation
on levels. Program Dec compares levels inside u3 and r and, based on that,
decrypts or outputs L, and thus it implements a homomorphic isLess function
on levels, which reveals (in the clear) if one level is smaller than the other.
From this perspective, step IV essentially requires switching s’ from an en-
cryption of 0 to an encryption of 1, while the adversary has access to homo-
morphic functions Increment and isLessE In the oracle-access model, it can
be easily shown that polynomially bounded adversaries cannot distinguish
between Enc(0) and Enc(1), even given oracle access to isLess and Increment,
as long as the largest allowed level T is superpolynomial: this is because the
adversary can only generate polynomial-length sequences of encryptions —
Enc(1),Enc(2),... or Enc(2), Enc(3), ... (depending on whether the challenge
ciphertext was Enc(0) or Enc(1)) — and the oracles’ behavior will be identical
on both sequences.

This concludes the proof outline in the oracle-access model. We underline that

in

the actual construction we need special types of PRFs, encryption schemes,

and a special level system primitive in order to prove security with iO. The
proofs of steps I-IIT in the final construction roughly follow the same outline
(sometimes with several hybrids per each logical step), but the proof of the step
IV (indistinguishability of levels) requires substantial additional work when the
adversary possesses the code of the programs.

16

Recall that the adversary also has p3™ which is an encryption of level 0. For simplicity,

we ignore this fact in this high-level overview.

Fully Deniable Interactive Encryption 25

3 Defining Bideniable and Off-the-Record Deniable
Encryption

We present the definition of interactive deniable encryption, or, more formally,
interactive bideniable message transmission, in the CRS model.

Syntax. An interactive deniable encryption scheme 7 consists of seven algo-
rithms m = (Setup, P1, P2, P3, Dec, SFake, RFake), where Setup is used to gener-
ate the public programs (i.e., the CRS), programs P1, P3 and SFake are used
by the sender, and programs P2, Dec and RFake are used by the receiver. Let
tr = m(s,r,m) denote the transcript of a protocol execution on input plaintext
m, sender randomness s, and receiver randomness r, i.e., the sequence of three
messages sent in the protocol execution. That is, m(s,r,m) = tr = (u1, 2, 43),
where p; = P1(s,m), po = P2(r, 1), and p3 = P3(s,m, p1, p2).

The faking algorithms have the following syntax: SFake(s,m,m’,tr; p) expects
to take as input a transcript tr along with the true random coins s and true
plaintext m which were used to compute tr, and a desired fake plaintext m/'.
SFake is randomized and p denotes its randomness. RFake has the same syntax
except that it expects receiver randomness r instead of sender randomness s.

Bideniable and off-the-record-deniable encryption in the CRS model.
Next, we define standard and off-the-record deniability for interactive deniable
encryption in the CRS model. For simplicity, we focus on bit encryption. The
definitions are naturally extensible to multi-bit plaintexts.

Formally, the deniable encryption algorithms should take the CRS as input.
We omit this for notational simplicity as it is unnecessary in our construction
(where the CRS contains the programs, and the programs do not take the CRS
as input).

Definition 1 Bideniable bit encryption in the CRS model. 7 =
(Setup, P1,P2,P3, Dec, SFake, RFake) is a 3-message bideniable interactive en-
cryption scheme for message space M = {0, 1}, if it satisfies the following cor-
rectness and bideniability properties.

— Correctness: There ezists a negligible function v(\) such that for at least a
(1 —v) fraction of randomness rserup € {0, 1}|Tse‘”p|, for any m € M,

CRS < Setup(rsetup)
s« {0, 1}l
Prlm #m oy (o) <v(N) .
tr < mw(s,r,m)
m’ < Dec(r, tr)

— Bideniability: No PPT adversary Adv has more than negligible advantage
in the following game, for any my,my € M:
1. The challenger chooses random rsewp and generates CRS <— Setup(rsetup)-
It also chooses a bit b at random.

26 Ran Canetti, Sunoo Park, and Oxana Poburinnaya

2. If b =0, then the challenger behaves as follows:
(a) It chooses random s*,r* and computes tr* = w(s*,r* mp).
(b) It gives the adversary (CRS,mqg,mq, s, r*, tr*).

3. If b =1, then the challenger behaves as follows:
(a) It chooses random s*,r* and computes tr* < mw(s*,r*,my).
(b) It sets s’ « SFake(s*,m1,mo,tr*; ps) for random pg.
(c) It sets v’ < RFake(r*, myi, mg,tr*; pr) for random pgr.
(d) It gives the adversary (CRS,mg, my, s, 7/, tr*).

4. Adv outputs b and wins if b=1'.

Next, we define off-the-record deniability. We define it for an arbitrary message
space instead of bit encryption, since having |M| > 2 allows for an extra case
when plaintexts claimed by the sender, by the receiver, and the real plaintext
are three different strings (case b = 2 in the definition below).

Definition 2 Off-the-record deniable encryption in the CRS model. We
say that a scheme is off-the-record deniable, if it satisfies correctness as above
and also has the following property.

Off-the-record deniability: No PPT adversary Adv wins with more than
negligible advantage in the following game, for any mg, my, mo € M:

1. The challenger chooses random rset,, and generates CRS < Setup(rsetup)- It
also chooses random b € {0, 1, 2}.

2. If b =0, then the challenger generates the following variables:
(a) The challenger chooses random s*,r* and computes tr* <— m(s*,r* mg);
(b) It sets r' < RFake(r*, mg, m1,tr*; pgr) for randomly chosen pg.
(¢) It gives the adversary (CRS,mq, my1, ma,s*, 7/, tr*).

3. If b =1, then the challenger generates the following variables:
(a) The challenger chooses random s*,r* and computes tr* « 7(s*,r*,my);
(b) Tt sets s’ <+ SFake(s*, my,mg,tr*; pg) for randomly chosen pg.
(c) It gives the adversary (CRS,mq, m1, ma, s, 7", tr*).

4. If b = 2, then the challenger generates the following variables:
(a) The challenger chooses random s*,r* and computes tr* « 7(s*,r*,m2);
(b) It sets s’ «— SFake(s*,ma, mo,tr*; ps) for randomly chosen pg.
(c¢) It sets v’ < RFake(r*, mq, mq,tr*; pr) for randomly chosen pg.
(d) It gives the adversary (CRS,mq, my,ma, s, 7’ tr*).

5. Adv outputs b’ and wins if b = ¥'.

We say that an encryption scheme is bideniable (resp., off-the-record deniable)
with (¢, e)-security, if the distinguishing advantage of any any size-t adversary
in the bideniability (resp., off-the-record deniability) game is at most e.

Single-execution security implies multi-execution security. In definitions
[[]and[2] the CRS is global (i.e., non-programmable). These definitions do not in-
volve simulation and the same set of programs is used throughout. Furthermore,

Fully Deniable Interactive Encryption 27

even though definitions [1] and [2| consider a single protocol execution, a simple
hybrid argument shows that security of a single execution implies security of
arbitrarily polynomially many executions with the same set of programsm

Definition 3 Public receiver deniability. A deniable scheme has public
receiver-deniability if RFake takes as input only the transcript tr and fake plain-
text m’ (not true random coins of the receiver r* and true plaintext m).

This concludes the informal scheme description, proof intuition, and full defini-
tions. We have overviewed the key ideas underlying the full construction. Please
see the full version [CPP18§| for complete details and proofs.

Acknowledgements. RC is a member of the Check Point Institute for Informa-
tion Security. Supported by the NSF MACS project. SP’s research is supported
by the MIT Media Lab’s Digital Currency Initiative and its funders, and earlier,
was supported by the following grants: NSF MACS (CNS-1413920), DARPA
IBM (W911NF-15-C-0236), Simons Investigator award agreement dated June
5th, 2012, and the Center for Science of Information (CSol), an NSF Science &
Technology Center, under grant agreement CCF-0939370.

References

AFL16. Daniel Apon, Xiong Fan, and Feng-Hao Liu. Deniable attribute based en-
cryption for branching programs from LWE. In TCC 2016-B, Proceedings
Part II, pages 299-329, 2016.

BGBO04. Nikita Borisov, Ian Goldberg, and Eric A. Brewer. Off-the-record commu-
nication, or, why not to use PGP. In Vijay Atluri, Paul F. Syverson, and
Sabrina De Capitani di Vimercati, editors, Workshop on Privacy in the
Electronic Society (WPES 2004), Proceedings, pages 77-84. ACM, 2004.

BNNO11. Rikke Bendlin, Jesper Buus Nielsen, Peter Sebastian Nordholt, and Claudio
Orlandi. Lower and upper bounds for deniable public-key encryption. In
ASIACRYPT 2011, Proceedings, pages 125-142, 2011. 2] [6] [7} [LO] [T} L2}
13} 14 7

BPR15. Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hard-
ness of finding a nash equilibrium. Electronic Colloquium on Computational
Complezity (ECCC), 22:1, 2015. [i] o]

BPW16. Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the
edge of chaos - trapdoor permutations from indistinguishability obfusca-
tion. In TCC 2016-A, Proceedings, Part I, pages 474-502, 2016. [4]

CDMWO09. Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee.
Improved non-committing encryption with applications to adaptively se-
cure protocols. In ASTACRYPT 2009, Proceedings, pages 287-302, 2009.
i)

CDNO96. Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable
encryption. JACR Cryptology ePrint Archive, 1996:2, 1996. [1] 2] [3] [0} L]

17 We can change all executions from real to fake one by one, where the reduction from
a single-execution security will generate other executions on its own, since knowing
the CRS (but not its generation randomness) suffices to run all programs.

28 Ran Canetti, Sunoo Park, and Oxana Poburinnaya

CFGN96.

CHJV14.

CIO16.

CPP18.

Dacl2.

DHT76.

DKSWO09.

GKW17.

GM84.

IKOS10.

KLW15.

Nie02.

OPWIL1.

RSATS.

SW14.

Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively
secure multi-party computation. In STOC 1996, Proceedings, pages 639—
648, 1996. [1I0]

Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan.
Indistinguishability obfuscation of iterated circuits and RAM programs.
IACR Cryptology ePrint Archive, 2014:769, 2014. [[9]

Angelo De Caro, Vincenzo Iovino, and Adam O’Neill. Deniable functional
encryption. In PKC 2016, Proceedings, Part I, pages 196222, 2016.
Ran Canetti, Sunoo Park, and Oxana Poburinnaya. Fully bideniable in-
teractive encryption. JACR Cryptol. ePrint Arch., 2018:1244, 2018. [3
[T} [} [16} 20} 27

Dana Dachman-Soled. On the impossibility of sender-deniable public key
encryption. JACR Cryptology ePrint Archive, 2012:727, 2012.
Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEFE Trans. Information Theory, 22(6):644-654, 1976.

Yevgeniy Dodis, Jonathan Katz, Adam D. Smith, and Shabsi Walfish.
Composability and on-line deniability of authentication. In TCC 2009,
Proceedings, pages 146-162, 2009.

Shafi Goldwasser, Saleet Klein, and Daniel Wichs. The edited truth. In
TCC 2017, Proceedings, Part I, pages 305-340, 2017. [I0]

Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput.
Syst. Sci., 28(2):270-299, 1984.

Yuval Ishai, Abishek Kumarasubramanian, Claudio Orlandi, and Amit Sa-
hai. On invertible sampling and adaptive security. In ASTACRYPT 2010,
Proceedings, pages 466-482, 2010.

Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistin-
guishability obfuscation for turing machines with unbounded memory. In
STOC 2015, Proceedings, pages 419-428, 2015. [4

Jesper Buus Nielsen. Separating random oracle proofs from complexity
theoretic proofs: The non-committing encryption case. In CRYPTO 2002,
Proceedings, pages 111-126, 2002. [T1]

Adam O’Neill, Chris Peikert, and Brent Waters. Bi-deniable public-key
encryption. In CRYPTO 2011, Proceedings, pages 525-542, 2011.
Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for ob-
taining digital signatures and public-key cryptosystems. Commun. ACM,
21(2):120-126, 1978.

Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In STOC 2014, Proceedings, pages 475—484,

2014. 2 {6} [7 B LT (12} [L5} 23]

	Fully Deniable Interactive Encryption

