
Dynamic Decentralized Functional Encryption

Jérémy Chotard1,2,3, Edouard Dufour-Sans2,3,4, Romain Gay5, Duong Hieu
Phan1, and David Pointcheval2,3

1 XLIM, University of Limoges, CNRS, Limoges, France
2 DIENS, École normale supérieure, CNRS, PSL University, Paris, France

3 INRIA, Paris, France
4 Carnegie Mellon University, Pittsburgh, USA

5 Cornell Tech, New York, USA

Abstract. We introduce Dynamic Decentralized Functional Encryption
(DDFE), a generalization of Functional Encryption which allows multiple
users to join the system dynamically, without relying on a trusted third
party or on expensive and interactive Multi-Party Computation protocols.
This notion subsumes existing multi-user extensions of Functional En-
cryption, such as Multi-Input, Multi-Client, and Ad Hoc Multi-Input
Functional Encryption.
We define and construct schemes for various functionalities which serve
as building-blocks for latter primitives and may be useful in their own
right, such as a scheme for dynamically computing sums in any Abelian
group. These constructions build upon simple primitives in a modular
way, and have instantiations from well-studied assumptions, such as DDH
or LWE.
Our constructions culminate in an Inner-Product scheme for computing
weighted sums on aggregated encrypted data, from standard assumptions
in prime-order groups in the Random Oracle Model.
Keywords. Dynamic, Decentralized, Functional Encryption, Inner Prod-
uct.

1 Introduction

At TCC’11, Boneh, Sahai, and Waters [11] formalized Functional Encryption
(FE), a new paradigm of Public-Key Encryption that allows the owner of the
secret key to generate restricted keys, enabling third parties to recover function
evaluations of the plaintext from a ciphertext. The formalization of FE gave
many researchers a common framework in which to consider their schemes: the
nuances between Identity-Based Encryption (IBE), Hierarchical IBE, Fuzzy IBE,
and different forms of Attribute-Based Encryption (ABE) [9, 10, 27, 32] could
now be captured simply by specifying which functionality the scheme aims to
implement. The set of algorithms to be implemented and the indistinguishibility
game in which to prove security were now standard.

But for all its successes, Functional Encryption has two, somewhat related,
important limitations: (1) In many contexts, FE encourages centralization. In
his 2015 position paper The Moral Character of Cryptographic Work, Rogaway

2 J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan, and D. Pointcheval

pointed out that a switch from Public-Key Encryption to Identity-Based Encryp-
tion would represent "a radical change in the trust model", as the authority with
knowledge of the master secret key would have the ability to fully recover every
message encrypted under its public key, even though those messages would be
intended for a variety of parties. This criticism can be extended to many other
functionalities of Functional Encryption. (2) The kind of controlled computation
enabled by Functional Encryption does not extend to computations involving
data from multiple parties. This is limiting because a significant component of
the public’s privacy concerns today is related to data being made available to
a third-party for the advertised purpose of retrieving some form of intelligence
of the public’s needs, from the computation of simple statistics to the training
of advanced machine learning models. This means FE is not an appropriate
framework for addressing this pressing issue.

1.1 Our Contributions

1. First, we fill the gap left by the definition of FE by introducing a new primitive
we term Dynamic Decentralized Functional Encryption (DDFE). DDFE allows
aggregating data coming from different parties, does not require a trusted
party with a master secret key, and accounts for participants wanting to join
at various stages during the lifetime of a system. Previous extensions of FE,
which we review in more detail in Section 1.2, either failed to address the
concerns we raised above, or partially forwent the generality that made the
success of FE as a framework for describing cryptographic schemes. We give
a formal definition of DDFE as well as a security definition.

2. We define All-or-Nothing Encapsulation (AoNE), a functionality of DDFE
which we found to be a critical building-block when constructing useful DDFE
schemes later in this work. AoNE allows a participant to send its data to be
aggregated with other data coming from a group of participants agreeing on
a label `. Only if all those participants choose to send data for aggregation
with the same group under the same label will the data of all participants
be revealed, otherwise, nothing is revealed. We provide two constructions of
AoNE. The first one is generic from any IBE, but has individual ciphertexts
that grow linearly in the number of participants in an aggregation, which
is not ideal. The second construction is specific and achieves constant size
ciphertexts. It relies on bilinear maps, and we prove its security under the
DBDH assumption in the Random Oracle Model (ROM).

3. We define and provide a construction of DSum, a functionality of DDFE
which is both interesting in its own right and a useful building-block for other
constructions. DSum operates over any Abelian group and allows multiple
parties to send an element from that group for aggregation with a set of
participants agreeing on a label `. Once every participant has sent data for
aggregation with that set and that label, the sum (or rather the repeated
group operation) of the data is revealed. We provide a generic construction of
DSum from Non-Interactive Key Exchange (NIKE), AoNE DDFE and Pseudo-
Random Functions (PRF).

Dynamic Decentralized Functional Encryption 3

4. We define and provide a construction of Inner-Product DDFE (IP-DDFE),
which allows for more complex patterns of aggregation than DSum. In
IP-DDFE, participants can contribute to the generation of functional de-
cryption keys that enable individuals to compute weighted sums of plaintext
data, with the weights being encoded in the key. Our construction relies on
AoNE, DSum, Single-Input Inner-Product Functional Encryption, and PRFs,
and we prove that it is selectively secure under the DDH assumption in the
ROM.

1.2 Related Work

Fully Homomorphic Encryption (FHE) [23] is a commonly cited as a cryp-
tographic solution to issues involving computations on encrypted data at large.
We stress here that FHE shines when computation delegation is intended. That is,
it is useful when a client, owning some data it wishes to protect the confidentiality
of, wants a server to perform computations on their data without seeing the data.
This scenario arises when the computation depends on parameters known only
to the server (as in the case of Information Retrieval), or when the client wants
to leverage the computational power of the server.
In the scenarii we are concerned with, however, the server directly learns some-
thing about the aggregated data, without interacting with them. This stands
in contrast with FHE, where the parties need to engage in extra rounds of
interaction to perform a joint decryption of the encrypted data.
FE enables the server to recover information as controlled by the client through
key delegation, while FHE does not limit the types of computations the server can
perform, but prevents the server from accessing any data. Given these advantages,
we naturally focus on extending the line of works involving FE.
Note that FHE was also initially defined for a single data owner, and was later
extended to multiple users under the name Multi-Key FHE [31].

Private Stream Aggregation (PSA). This notion, initially termed Privacy-
Preserving Aggregation of Time-Series Data, is an early primitive for non-
interactive aggregation of multi-party data introduced by Shi et al. [34]. Unlike
our DDFE schemes, PSA, under its standard definitions, relies on a trusted
third-party distributing the participant’s secret keys, cannot accommodate new
participants, and does not allow the participants to choose which functions can be
computed by whom via functional decryption key derivation. Most PSA schemes
in the literature focus on computing (non-weighted) sums of the participants’
data [8, 14, 28]. Note that Private Stream Aggregation usually relies on a Dif-
ferential Privacy component as an added privacy protection, while we leave the
addition of a Differential Privacy layer in DDFE for future work.

Multi-Authority Functional Encryption (MAFE) was introduced by Chan-
dran et al. [15]. Like DDFE, it is a strongly decentralized variant of Functional

4 J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan, and D. Pointcheval

Encryption. It allows for encrypting messages for sets of authorities along with an
access policy. These authorities can then generate keys for individual identities.
Armed with a single ciphertext and a set of functional decryption keys from the
appropriate authorities, the decrypter can recover a function of the plaintext
that is specified by the access policy on the identities for which the functional
keys were computed. Unlike DDFE, MAFE does not account for the possibility
of multiple ciphertexts being decrypted together, and having their data interact
with one another.

Multi-Client Functional Encryption (MCFE) was defined in [25,26] along
with Multi-Input Functional Encryption (MIFE), and also enables computing func-
tions of multiple parties’ data in the presence of a trusted third-party distributing
both the parties’ secret keys and functional decryption keys. That is, both MIFE
and MCFE extend Functional Encryption to a setting where the input is spread
across different sources. Each source can encrypt its data independently, and the
ciphertexts can then be aggregated and decrypted with functional decryption
keys. Generation of the latter still requires a trusted authority, which owns a
so-called master secret key: a single point of failure for the cryptosystem.

As opposed to MIFE, the encryption algorithm of an MCFE takes an additional
input, referred to as a label, which enforces a finer-grained control on access
to the encrypted data. Unlike in MIFE, where individual ciphertexts can be
arbitrarily combined, in MCFE, only ciphertexts generated for the same label can
be used together to decrypt. This limits how much information is revealed by
each functional decryption key, thereby strengthening security. Typically, labels
are used as timestamps. In this context, a functional decryption key can only
compute, say, statistics on aggregated data for the same time frame.

Any MCFE for a given functionality directly implies an MIFE for the same
functionality, by simply using a fixed label for all encryptions6. Reciprocally, an
MIFE for general functions would directly imply an MCFE for general functions,
since the label can be part of the plaintext, and the function can check that every
slot used the same label. However, this is not true for the case of smaller classes
of functions for which there are practical schemes, such as Inner-Products.

The first construction of MIFE for inner products was given in [5], from
standard assumptions in pairing groups. This was later improved by [4], which
gave a generic construction from any single-input FE for inner products. The
first construction of MCFE from standard assumptions was given by Chotard et
al. [17] for computing inner products, although the security they achieved admits
several limitations compared to the standard MCFE security definition.

Decentralized Multi-Client Functional Encryption (DMCFE). Chotard
et al. [17] also defined a new variant of MCFE, called Decentralized MCFE
(DMCFE), for which they gave Inner-Product instantiations from pairings. The

6 Note that this was not true for MCFE as originally defined in [25], as that definition
had strictly increasing timestamps for labels. But followup works on MCFE have
usually allowed any bitstring to be used as a label, opening the primitive to the
possibility of repetitions

Dynamic Decentralized Functional Encryption 5

DMCFE variant did away with the trusted third-party, as it enabled participants
to choose their own secret keys and generate functional decryption keys non-
interactively. However, it still had an interactive setup, with no easy way of
adding new participants, and it suffered from the same security caveats as the
MCFE it was a variant of.

In a follow-up work, [30] provided a construction in the standard model from
the LWE assumption, which still suffers from the same security restrictions as [17].
The works [1, 2] improved the security guarantees obtained, the former using
the DDH assumption in the ROM, the latter using a generic construction from
any single-input FE for inner products. Both schemes however have individual
ciphertexts of size proportional to the total number of users. Thus, we use different
techniques to obtain the desirable security notion without having asymptotically
large ciphertexts.

Ad Hoc Multi-Input Functional Encryption. In [6], the authors define
the notion of Ad Hoc Multi-Input Functional Encryption, where users can join
the system on-the-fly, and functional decryption keys can be generated in a
decentralized way, by each client, without interaction. They give a feasibility
result for all functions, and a practical construction for inner products.

The definition of DDFE we put forth is more general than [6]. For instance,
in our definition, the algorithm that generates functional decryption key does
not necessarily require a specified group of users: schemes with potentially more
flexibility than Ad Hoc MIFE can be captured by our definition.

Moreover, their scheme for inner product cannot handle labels, which implies
that ciphertexts computed by each client individually can be mix and matched
arbitrarily. As explained above, this implies that each functional decryption key
reveals large amounts of information on the encrypted values, and renders the
security vacuous whenever sufficiently many keys are issued. Labels help mitigate
this leakage by enforcing a better granularity on the way the encrypted data is
accessed.

Besides, the security model of [6] does not explicitly address the information
that can be leaked when decrypting partial ciphertexts, that is, ciphertexts coming
from an incomplete group of users. Preventing the adversary from recovering
information on partial ciphertexts is made more challenging in our construction,
which handles labels.

1.3 Outline

We first provide a definition of DDFE in Section 2, along with a security definition
and functionalities of interest. In Section 3, we recall some useful preliminaries
and definitions. We then showcase our constructions: a generic construction
of AoNE is presented in Section 4, while a specific instantiation is studied in
Section 5. We use it modularly in Section 6 to construct a DSum scheme. In
Section 7, we capitalize on both those primitives to construct a DDFE scheme
for the Inner-Product functionality.

6 J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan, and D. Pointcheval

2 Definitions and Security Models

In this section, we provide the formal definition of our new primitive of Dynamic
Decentralized Functional Encryption (DDFE), together with several security
models. Then, we list a few instantiations with some concrete functionalities.

2.1 Notations

In the following, [n] will denote the set of integers {1, . . . , n}. For any set A, L(A)
will denote the set of finite lists of elements of A, while S(A) will denote the set
of finite subsets of A. Unlike sets, lists are ordered and may contain repeated
elements.

2.2 Dynamic Decentralized Functional Encryption

In defining DDFE, one of our key concerns is generality: we want to achieve for
multi-user primitives what Functional Encryption did for single-user primitives.
We resist as much as possible the temptation to let the idiosyncrasies of the
functionalities we present and implement in this work leak into the definition
of DDFE itself. Perhaps the best example of this is in the role of the label. We
believe labels, as used in MCFE, are useful for practical use, because in limiting
what can be decrypted, they limit data leakage and make it possible to consider
using the same primitive over a long time. However, we recognize that some
primitives which are of practical use without labels may arise, that some schemes
using labels may want to have them interact in more complex ways than perfect
matching, and that there is value in our definitions being able to capture existing
work. In Section 2.3, we give more details on how our umbrella notion captures a
large set of existing primitives, ranging from Public-Key Encryption to Ad Hoc
Multi-Input Function Encryption as introduced in Agrawal et al. [6].

Definition 1 (Dynamic Decentralized Functional Encryption). A dy-
namic decentralized functional encryption scheme over a set of public keys PK
for functionality F : L(PK ×K)× L(PK ×M)→ {0, 1}∗ consists of five algo-
rithms:

– Setup(λ): Generates and outputs public parameters pp. Those parameters are
implicit arguments to all the other algorithms;

– KeyGen(): Generates and outputs a party’s public key pk ∈ PK and the
corresponding secret key skpk;

– Encrypt(skpk,m): Takes as input a party’s secret key skpk, a value m ∈M to
encrypt, and outputs a ciphertext ctpk;

– DKeyGen(skpk, k): Takes as input a party’s secret key sk, a key space object
k, and outputs a functional decryption key dkpk,k;

– Decrypt
(
(dkpk,kpk)pk∈UK , (ctpk)pk∈UM

)
: Takes as input a finite list of functional

decryption keys (dkpk,kpk)pk∈UK , a finite list of ciphertexts (ctpk)pk∈UM , where
UM ,UK ∈ L(PK) are the lists of senders and receivers, respectively. It outputs
a value y ∈ {0, 1}∗.

Dynamic Decentralized Functional Encryption 7

We call a DDFE scheme Public-Key if its encryption algorithm does not make
use of the secret key skpk.

Correctness: We require that, for all security parameters λ ∈ N, for all polynomial
size lists UM ,UK ∈ L(PK) of public keys issued by KeyGen(), (pk, kpk)pk∈UK ∈
L(PK ×K) and (pk,mpk)pk∈UM ∈ L(PK ×M), it holds that the probability for

Decrypt((dkpk,kpk)pk∈UK , (ctpk)pk∈UM) = F ((pk, kpk)pk∈UK , (pk,mpk)pk∈UM)

is 1, taken over pp ← Setup(λ), dkpk,kpk ← DKeyGen(skpk, kpk) for all pk ∈ UK ,
ctpk ← Encrypt(skpk,mpk) for all pk ∈ UM .

We stress that each user is identified by a public key pk, which it can generate on
its on with the associated secret key, using KeyGen. Anyone can thus dynamically
join the system, by publishing its public key.

Remark 2 (Empty keys). Note that, unlike with standard, Single-Input FE, we
do not require the empty key ε to be in K, because we operate over lists of
elements of PK ×K, so we simply define ε as the empty list.
In both Single-Input Functional Encryption and DDFE, the empty key serves
to capture all the information about the plaintext that intentionally leaks from
every ciphertext (see [11, Section 2]). In Single-Input FE, this is typically only
used to highlight the fact that encryption leaks the length of the message.
It is crucial to the security of any Functional Encryption scheme which accepts
messages of variable lengths and leaks the length of the message, for otherwise
it would be easy to win the IND security game by querying QLeftRight for two
messages of different lengths (see Definition 17). With the leakage clearly stated
in the functionality of the scheme, such a query would trigger the condition in
the game’s Finalize, and it would cause the adversary’s guess to be discarded.
But in the case of DDFE, more information is usually publicly associated with a
ciphertext that simply its length. For instance, the set of users the data should be
aggregated with, or the aggregation label, are typically public. Besides, it happens
that the leakage of a set of ciphertexts is more than the cumulative leakage of
the indidivual ciphertexts. Our AoNE and DSum schemes have this property, and
it is expressed by their functionality outputting the relevant information when
evaluated on the empty key with a (possibly non-singleton) list of ciphertexts.

Definition 3 (IND-Security Game for DDFE). Let us consider a DDFE
scheme. No adversary A should be able to win the following security game against
a challenger C, with unlimited and adaptive access to the oracles QNewHonest,
QEncrypt, QLeftRight, QDKeyGen, and QCorrupt described below:

– Initialize: the challenger C runs the setup algorithm pp ← Setup(λ) and
chooses a random bit b $← {0, 1}. It provides pp to the adversary A;

– Participant creation queries QNewHonest: the challenger C runs the key
generation algorithm (pk, skpk) ← KeyGen() to simulate a new participant,
stores the association (pk, skpk) and returns pk to the adversary;

8 J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan, and D. Pointcheval

– Encryption queries QEncrypt(pk,m): Recovers the secret key sk associated
to pk and outputs the ciphertext ct← Encrypt(sk,m). If pk is not associated
with any secret key, nothing is returned;

– Challenge queries QLeftRight(pk,m0,m1): runs and forwards the output of
QEncrypt(pk,mb). Wlog. we assume m0 6= m1.

– Functional decryption key queries QDKeyGen(pk, k): Recovers the secret
key sk associated to pk and outputs the functional decryption key dkk ←
DKeyGen(sk, k). If pk is not associated with any secret key, nothing is re-
turned;

– Corruption queries QCorrupt(pk): Recovers the secret key sk associated to pk
and outputs it. If pk is not associated with any secret key, nothing is returned;

– Finalize: A provides its guess b′ on the bit b, and this procedure outputs the
result β of the security game, according to the analysis given below.

The output β of the game depends on some conditions, where HS is the set of
honest participants at the end of the game (the set of public keys generated via
QNewHonest-queries and not corrupted via QCorrupt). Finalize outputs the bit
β = (b′ = b), unless the following condition (*) is satisfied, in which case Finalize
outputs a random bit β.

The condition (*) is true if there exist two lists of public keys UM ,UK ∈ L(PK),
two lists of messages (~m0 = (pk,m0

pk)pk∈UM , ~m
1 = (pk,m1

pk)pk∈UM), and a list of
keys ~k = (pk, kpk)pk∈UK , such that F (~k, ~m0) 6= F (~k, ~m1), with

– m0
pk = m1

pk, for all pk ∈ UM such that pk 6∈ HS;
– QLeftRight(pk,m0

pk,m
1
pk) or QEncrypt(pk,mpk)-queries have been asked for

all pk ∈ UM ∩HS;
– QDKeyGen(pk, kpk)-queries have been asked for all pk ∈ UK ∩HS.

We say DDFE is IND-secure if for any adversary A,

AdvINDDDFE(A) = |2× Pr[β = 1]− 1|

is negligible.

Intuitively, condition (*) means that the adversary can trivially recover b and
win the game, which is thus not a real attack, hence a meaningless output with a
random bit. Otherwise, β = 0 is a wrong guess and β = 1 is a correct guess during
a meaningful attack. As usual, we are interested in adversaries with non-negligible
advantage. Note however that the condition of trivial win cannot, in general,
be checked in polynomial time. This is because there are exponentially many
choices that can be made for the various lists, including the participant public
keys and the values of the messages. Even if we impose strict requirements on the
functionality, such as the presence of a label and a set of participants, it might
not be possible to guarantee that the condition can be checked in polynomial
time without a direct analysis of the structure of the functionality. There may
exist functionalities for which such a check is a computationally hard problem.
The issue of how to efficiently check for violations is thus left to the cryptosystem

Dynamic Decentralized Functional Encryption 9

designers and provers. In the following, we will consider functionalities for which
this condition can be efficiently checked.

Now we present several weaker variants of the above security notion.

Definition 4 (sym-IND-Security Game for DDFE). We define a symmetric-
key variant of the above security game in which the Finalize procedure outputs
0 if the adversary makes a query of the form (pk,m0,m1) to QLeftRight and
queries the same pk to QCorrupt. This means that the secret key skpk not only
allows users to encrypt on behalf of party pk, but also empowers them to decrypt
the ciphertext generated by party pk. Thus, the challenge messages m0 and m1

have to be the same to avoid the adversary trivially recovering the random bit β.
That is, the oracle QEncrypt should be used instead of QLeftRight.

Definition 5 (sel-IND-Security Game for DDFE). We define a selective
variant of the above security game in which the adversary is forced to send all
its queries to QNewHonest, upon which it receives the corresponding public keys.
Then it sends all its queries to the oracles QEncrypt, QLeftRight, QDKeyGen and
QCorrupt in one shot, and receives all of the outputs at once.

Note that our security notions is strong, in the sense that it allows the
adversary to generate malicious public keys on its own. The challenger does not
know the corresponding secret keys (which may not exist) for such public keys.
More precisely, we allow dishonest key registrations, as originally introduced
in [13] in the context of NIKE.

2.3 Versatility of the Notion of DDFE

The notion of DDFE captures many existing primitives. We go over some such
primitives and provide details here.

We first show that the notion of public-key encryption is captured by DDFE.
That is, we can cast the former as a DDFE for a specific functionality that we
present here. Apart from being a warm-up before delving into more advanced
primitives, this shows that DDFE is not fundamentally restricted to secret-key
primitives.

Public-Key Encryption. Here, the message spaceM = {0, 1}∗×PK comprises
pairs of plaintext and public keys. The key space is restricted to the identity
function over the plaintexts: {fid}. The functionality takes as input the list of
pairs (pk,mpk) from all senders pk ∈ UM . In our case, the list UM will contain
only one user pk1 who wishes to send the plaintext pt ∈ {0, 1}∗ to user pk2. This
information is contained in the message mpk1 = (pt, pk2).

The functionality also takes the list of pairs (pk, kpk) from all receivers pk ∈ UK .
In our case, the list UK only contains the recipient pk′2. The associated key space
object is the identity function fid, which is the only function available here.

The functionality outputs the plaintext if the intended recipient is the actual
recipient. That is F

(
(pk′2, fid), (pk1, (pt, pk2))

)
= pt if pk2 = pk′2, ⊥ otherwise.

10 J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan, and D. Pointcheval

On any input that does not have that format (for instance on lists UM and UK
of more than one element), the functionality will also output ⊥.

The above example can be generalized straightforwardly to capture single-
input Functional Encryption [11], by considering a larger key space {f} that is
not only restricted to the identity function.

Decentralized Attribute-Based Encryption. The notion of DDFE can also
capture existing decentralized primitives, such as the notion of decentralized
Attribute-Based Encryption introduced in [29], as shown below. It also captures
the more general Multi-Authority Functional Encryption [15].

Here, the message spaceM = {0, 1}∗ ×P ×L(PK) comprises tuples, each of
which contains a plaintext, a predicate, and a list of public keys. The key space
K = A× ID comprises pairs of an attribute and an identifier.

The functionality takes as input the list of pairs (pk,mpk) from all senders
pk ∈ UM . In our case, the list UM will contain only one user pk who wishes to
send the plaintext pt ∈ {0, 1}∗ to any user with proper credentials, that is, whose
attributes satisfy an access policy expressed by a predicate P ∈ P . This predicate
takes as inputs attributes that are handled by different authorities, listed in U .
All of this information is contained in the message mpk = (pt,P,U).

The functionality also takes the list of pairs (pk, kpk) from all receivers pk ∈ UK .
In our case, the list UK contains the authorities involved. For each authority, the
associated key space object is an attribute, and a global identifier.

The functionality is defined as F
(
(pki, (atti,GIDi))pki∈UK , (pk, (pt,P,U))

)
=

pt if U = UK , all the identifiers GIDi are the same, and the predicate P on the
attributes atti evaluates to true. If these conditions are not met, or if the input
does not have the right syntax (e.g. the list UM has more than one element), the
functionality outputs ⊥.

Ad Hoc Multi-Input FE. We now show that DDFE captures more advanced
decentralized primitives, such as Ad Hoc Multi-Input FE, introduced in [6].

Here, the message spaceM = {0, 1}∗, the key space K comprises pairs (f,U)
where f : {0, 1}` → {0, 1}∗ is an `-ary function for arbitrary ` ∈ N, and U is a
list of ` users.

The functionality takes as input the list of pairs (pk,mpk) from all senders pk ∈
UM , and the list of pairs (pk, kpk) from all receivers pk ∈ UK . If all the key space
objects agree on a function on the inputs of the list of users UM , the functionality
outputs the evaluation of the function: F

(
(pki, (fi,Ui))pki∈UK , (pkj ,mj)pkj∈UM

)
=

f(m1, . . . ,m`) if fi = f and Ui = UM for all i, and |UM | = `. It outputs ⊥
otherwise.

Limitations of DDFE. Whereas the notion of DDFE is a strong generalization
of preexisting decentralized variants of Functional Encryption, capturing func-
tionalities not covered by Ad Hoc MIFE or MAFE, it does not cover everything.
Function Private [12] and Delegatable [15] variants of Functional Encryption have

Dynamic Decentralized Functional Encryption 11

been introduced, and our definitions leave room for similar variants of DDFE.
Some important cryptographic protocols, such as Private Information Retrieval,
Oblivious Pseudo Random Functions, or Non-Interactive Key Exchange, similarly
cannot be written as DDFE functionalities. DDFE fails to capture key exchange
because its definition doesn’t allow us to express cryptographic properties of a
function evaluation: the idea that the result of an evaluation would "look random"
cannot be written as a functionality. It also cannot capture the aforementioned
two party interactive protocols because it is non-interactive by nature, while
interactivity is a core requirement for PIR and OPRFs, to ensure the protocol is
not run more times than any party whishes for.

2.4 DDFE Functionalities

We now give some examples of concrete functionalities. The first two will be of
independent interest, but also layers to improve the security and the functionalities
of the later Inner-Product DDFE constructions.

All-or-Nothing Encapsulation (AoNE) allows several parties of a group to
encapsulate individual messages, that can all be extracted by anybody if and
only if all the parties of this group have sent their contributions. Otherwise,
the messages remain hidden. The set UM of public keys describes the group of
parties and the label ` imposes a constraint on which encapsulations can be
considered together: if for a given pair (UM , `) all the parties in UM send their
encapsulations, all the messages can be recovered by anybody, otherwise the
messages remain hidden. Note that all the players have to agree on the pair
(UM , `) for their encapsulation, and any encapsulation naturally leaks that pair
(UM , `).

Definition 6 (All-or-Nothing Encapsulation). AoNE is defined on messages
of length L as follows:

K = ∅ M = {0, 1}L × S(PK)× {0, 1}∗.

Then, F (ε, (pk, (x,U , `))) = (U , `) and

F (ε, (pk,mpk)pk∈UM) =

{
(pk, xpk)pk∈UM if condition (*)
⊥ otherwise.

and AoNE condition (*) is: ∃` ∈ {0, 1}∗,∀pk ∈ UM ,mpk = (xpk,UM , `).

Decentralized Sum (DSum) allows several parties of a group to commit to
values, so that their sum is automatically revealed when all the parties of this
group have sent their contributions. Otherwise, the values remain hidden. The
set UM of public keys describes the group of parties and the label ` imposes
a constraint on which values can be added together: if for a given pair (UM , `)
all the parties in UM send their values, the sum can be recovered by anybody,

12 J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan, and D. Pointcheval

otherwise the individual values remain hidden. As above, all the players have
to agree on the pair (UM , `) for their encryption, and any encryption naturally
leaks that pair (UM , `). The terminology sum is an abuse, as it works for any
Abelian group.

Definition 7 ((A,+)-Decentralized Sum). DSum is defined for any Abelian
group (A,+) as follows:

K = ∅ M = A× S(PK)× {0, 1}∗.

Then, F (ε, (pk, (x,U , `))) = (U , `) and

F (ε, (pk,mpk)pk∈UM) =

{ ∑
pk∈UM xpk if condition (*)

⊥ otherwise.

and DSum condition (*) is: ∃` ∈ {0, 1}∗,∀pk ∈ UM ,mpk = (xpk,UM , `).

Inner-Product DDFE (IP-DDFE). We now present a more advanced func-
tionality for Inner Products. It allows senders with public key pk, as part of
a group UM , to encrypt inputs ~xpk under a label `. But they maintain control
on which computations will be performed on their inputs, as they all have to
agree on the weights ~ypk to produce the functional decryption key that allows
the inner-product. The set UM of public keys describes the group of parties and
the label ` imposes a constraint on which values can be aggregated together, the
set UK of public keys describes the support of the inner-product, and (~ypk)pk
specifies the weights. If UM = UK and all the ciphertexts are provided (by all the
senders on the same pair (UM , `)), with the appropriate functional decryption key
(with the same (UK , (~ypk)pk), one can get the inner-product value, otherwise the
individual values remain hidden. As above, all the players have to agree on the
pair (UM , `) for their encryption, and any encryption naturally leaks that pair
(UM , `). Similarly, all the players have to agree on (UK , (~ypk)pk) for the functional
decryption key, otherwise they are useless.
Because our construction is based on prime-order groups, we need to impose
a bound on the messages and the keys to guarantee that we can perform the
discrete logarithm efficiently and recover the result of the functional evaluation
in polynomial time.

Definition 8 (Inner-Product DDFE.). IP-DDFE is defined for a dimension
d ∈ N and a bound B ∈ N, and the sets UM and UK must perfectly match:

K = {(~ypk, pk)pk∈UK where ~ypk ∈ [−B,B]d and UK ∈ S(PK)}
M = [−B,B]d × S(PK)× {0, 1}∗.

Then, F (ε, (pk, (~x,U , `))) = (U , `) and

F ((pk, kpk)pk∈UK , (pk,mpk)pk∈UM) =

{ ∑
pk∈UK ~x

>
pk~ypk if condition (*)

⊥ otherwise.

and IP-DDFE condition (*) is:

Dynamic Decentralized Functional Encryption 13

– UK = UM
– ∃(~ypk)pk∈UK ∈ S([−B,B]d),∀pk′ ∈ UK , kpk′ = (~ypk, pk)pk∈UK
– ∃` ∈ {0, 1}∗,∀pk ∈ UK ,mpk = (~xpk,UM , `)

We stress that in all the above definition, F should always be understood to
be equal to ⊥ on inputs on which it was not explicitly defined above.

3 Notations and Assumptions

3.1 Groups

Prime Order Groups. We use a prime-order group generator GGen, a proba-
bilistic polynomial time (PPT) algorithm that on input the security parameter
1λ returns a description G = (G, p, P) of an additive cyclic group G of order p
for a 2λ-bit prime p, whose generator is P .

We use implicit representations of group elements as introduced in [21].
For a ∈ Zp, define [a] = aP ∈ G as the implicit representation of a in G.
More generally, for a matrix A = (aij) ∈ Zn×mp we define [A] as the implicit
representation of A in G:

[A] :=

a11P ... a1mP

an1P ... anmP

 ∈ Gn×m

We will always use this implicit notation of elements in G, i.e., we let [a] ∈ G
be an element in G. Note that from a random [a] ∈ G, it is generally hard
to compute the value a (discrete logarithm problem in G). Obviously, given
[a], [b] ∈ G and a scalar x ∈ Zp, one can efficiently compute [ax] ∈ G and
[a+ b] = [a] + [b] ∈ G.

Pairing-Friendly Groups. We also use a pairing-friendly group generator
PGGen, a PPT algorithm that on input 1λ returns PG = (G1,G2,GT , p, P1, P2, e),
a description of asymmetric pairing-friendly groups where G1, G2, GT are additive
cyclic groups of order p for a 2λ-bit prime p, P1 and P2 are generators of G1

and G2, respectively, and e : G1 ×G2 → GT is an efficiently computable (non-
degenerate) bilinear map. Define PT := e(P1, P2), which is a generator of GT .
We again use implicit representation of group elements. For s ∈ {1, 2, T} and
a ∈ Zp, define [a]s = aPs ∈ Gs as the implicit representation of a in Gs. Given
[a]1, [b]2, one can efficiently compute [ab]T using the pairing e. For two matrices
A, B with matching dimensions define e([A]1, [B]2) := [AB]T ∈ GT .

3.2 Intractability Assumptions

Definition 9 (Computational Diffie-Hellman Assumption). The CDH
assumption states that, in a prime-order group G $← GGen(1λ), no PPT adversary
can compute [xy], from [x] and [y] for x, y $← Zp, with non-negligible success
probability.

14 J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan, and D. Pointcheval

Equivalently, this assumption states it is hard to compute [a2] from [a] for a $← Zp.
This comes from the fact that 4[xy] = [(x+ y)2]− [(x− y)2].

Definition 10 (Decisional Diffie-Hellman Assumption). The DDH as-
sumption states that, in a group G $← GGen(1λ), no PPT adversary can dis-
tinguish between the two following distributions with non-negligible advantage:
{([a], [r], [ar]) | a, r $← Zp} and {([a], [r], [s]) | a, r, s $← Zp}.

Equivalently, this assumption states it is hard to distinguish, knowing [a], a
random element from the span of [~a] for ~a =(1

a
) , from a random element in G2:

[~a] · r = [~ar] = ([r]
[ar]

) ≈ ([r]
[s]
) .

Definition 11 (Decisional Bilinear Diffie Hellman Assumption). The
DBDH assumption states that, in a pairing group PG $← PGGen(1λ), for any PPT
adversary, the following advantage is negligible, where the probability distribution
is over a, b, c, s $← Zp:

AdvDBDH
PG (A) =|Pr[1← A(PG, [a]1, [b]1, [b]2, [c]2, [abc]T)]

− Pr[1← A(PG, [a]1, [b]1, [b]2, [c]2, [s]T)]|.

Definition 12 (Q-fold DBDH). For any integer Q, the Q-fold DBDH as-
sumption states for any PPT adversary, the following advantage is negligible,
where the probability distribution is over a, b, ci, si

$← Zp:

AdvQ-DBDH
PG (A) =|Pr[1← A(PG, [a]1, [b]1, [b]2, {[ci]2, [abci]T }i∈[Q])]

− Pr[1← A(PG, [a]1, [b]1, [b]2, {[ci]2, [si]T }i∈[Q])]|.

This Q-fold DBDH assumption is equivalent to classical DBDH assumption:

Lemma 13 (Random Self Reducibility of DBDH). For any adversary A
against the Q-fold DBDH, running within time t, there exists an adversary B
running within time t+ 2Q(tGT

+ tG2
), where tGT

and tG2
denote respectively the

time for an exponentiation in GT and G2 (we only take into account the time for
exponentiations here), such that

AdvQ-DBDH
PG (A) ≤ AdvDBDH

PG (B).

Proof. Upon receiving a DBDH challenge (PG, [a]1, [b]1, [b]2, [c]2, [s]T), B samples
αi, c

′
i

$← Zp computes [ci]2 := [αi · c]2 + [c′i]2, [si]T := [αi · s]T + [ci · ab]T for all
i ∈ [Q], and gives the challenge (PG, [a]1, [b]1, [b]2, {[ci]2, [si]T }i∈[Q]) to A. ut

3.3 Non-Interactive Key Exchange

We give a definition of Non-Interactive Key Exchange below. This a rephras-
ing of the m-CKS-heavy model (with dishonest key registrations) as originally
introduced in [13] and further refined in [22].

Dynamic Decentralized Functional Encryption 15

Definition 14 (Non-Interactive Key Exchange). A NIKE scheme consists
of three PPT algorithms:

– Setup(λ): Generates and outputs public parameters pp. Those parameters are
implicit arguments to all the other algorithms;

– KeyGen(): Generates and outputs a party’s public key pk ∈ PK and the
corresponding secret key skpk;

– SharedKey(pk, skpk′): Takes as input a public key and a secret key corre-
sponding to a different public key. Deterministically outputs a shared key
K.

Correctness: We require that, for all security parameters λ ∈ N, it holds that:

Pr
[
SharedKey(pk, skpk′) = SharedKey(pk′, skpk)

]
= 1,

where the probability is taken over pp ← Setup(λ), (pk, skpk) ← KeyGen(),
(pk′, skpk′)← KeyGen().

Definition 15 (Security Game for NIKE). Let us consider a NIKE scheme.
No adversary A should be able to win the following security game against a
challenger C, with unlimited and adaptive access to the oracles QNewHonest,
QReveal, QTest, and QCorrupt described below:

– Initialize: the challenger C runs the setup algorithm pp ← Setup(λ) and
chooses a random bit b $← {0, 1}. It initializes the set H of honest participants
to ∅. It provides pp to the adversary A;

– Participant creation queries QNewHonest(): the challenger C runs the KeyGen
algorithm (pk, skpk) ← KeyGen() to simulate a new participant, stores the
association (pk, skpk) in the set H of honest keys, and returns pk to the
adversary;

– Reveal queries QReveal(pk, pk′): Requires that at least one of pk and pk′ be
in H. Without loss of generality assume it is pk. The challenger returns
SharedKey(pk′, skpk);

– Test queries QTest(pk, pk′): Requires that both pk and pk′ were generated via
QNewHonest.
• If b = 0, the challenger returns SharedKey(pk′, skpk);
• If b = 1, the challenger returns a (uniformly) random value, which it
stores so it can consistently answer further queries to QTest(pk, pk′) or
QTest(pk′, pk)

– Corruption queries QCorrupt(pk): Recovers the secret key sk associated to
pk from H and outputs it, then removes the key-pair from H. If pk is not
associated with any secret key (i.e. it is not in H), then nothing is returned;

– Finalize: A provides its guess b′ on the bit b, and this procedure outputs the
result β of the security game, according to the analysis given below which
aims at preventing trivial wins.

16 J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan, and D. Pointcheval

Finalize outputs the bit β = (b′ = b) unless a QCorrupt query was made for any
public key which was involved in a query to QTest, or a QReveal query was made
for a pair of public keys which was also involved in a QTest query, in which case
a random bit β is returned.
We say NIKE is secure if for any adversary A, the following advantage is negligible:

AdvNIKE(A) = 2× |Pr[β = 1]− 1/2|.

Definition 16 (Static Security Game for NIKE). We define a static variant
of the security game above in which the adversary does not have access to the
QCorrupt oracle, which means all parties created by the challenger will remain
honest, and the only corrupt parties are entirely managed by the adversary.

3.4 Definition of Symmetric Key Encryption

A symmetric key encryption SKE = (SEnc,SDec) with key space K is defined as:

– SEnc(K,m): given a key K and a message m, outputs a ciphertext ct;
– SDec(K, ct): given a key K and a ciphertext ct, outputs a plaintext.

Correctness. For all m in the message space and all K in the key space, we must
have SDec(K,SEnc(K,m)) = m.

Security. We say SKE is secure if for any PPT adversary A, the following
advantage is negligible:

AdvSKE(A) =
∣∣∣∣2× Pr

[
b′ = b :

K
$← K, b $← {0, 1}

b′ ← A(1λ)QLeftRight(·,·)

]
− 1

∣∣∣∣ ,
where the oracle QLeftRight, when queried on m0,m1, returns SEnc(K,mb).

One-Time Security. We say SKE is One-Time Secure if the above security holds
for only one QLeftRight-oracle query. Note that if the key space is larger than the
message space, on can simply use the one-time pad to build a One-Time Secure
symmetric encryption. Otherwise, a pseudo-random generator can stretch the
key to the right length.

3.5 Single-Input Functional Encryption

For some of our constructions, we will need a instatiations of single-input Func-
tional Encryption (for a specific functionalities). A Functional encryption scheme
for a family of functions F consists of the following PPT algorithms:

– KeyGen(λ): on input a security parameter, it outputs a master secret key
msk and a public key pk.

– Encrypt(pk,m): outputs a ciphertext ct.
– DKeyGen(msk, f): on input the master secret key and a function f ∈ F , it

outputs a decryption key dkf .
– Dec(ct, dkf): deterministic algorithm that returns a message or a rejection

symbol ⊥ if it fails.

Dynamic Decentralized Functional Encryption 17

Correctness. For any message m, and any function f in the family F , we have:
Pr[Dec(ct, dkf) = f(m)] = 1, where the probability is taken over (msk,mpk)←
Setup(λ), ct← Encrypt(msk,m), and dkf ← DKeyGen(msk, f).

Indistinguishability. The security notion is defined by a classical indistinguisha-
bility game:

Definition 17 (IND-Security Game for FE). Let FE be a functional en-
cryption scheme. No adversary A should be able to win the following security
game:

– Initialize: runs (msk,mpk)← Setup(λ), choose a random bit b $← {0, 1} and
returns mpk to A.

– QLeftRight(m0,m1): on input two messages (m0,m1), returns Enc(msk,mb).
– QDKeyGen(f): on input a function f ∈ F , returns DKeyGen(msk, f).
– Finalize: from the guess b′ of A on the bit b, it outputs the bit β = (b′ =
b) unless some f was queried to QDKeyGen and (m0,m1) was queried to
QLeftRight such that f(m0) 6= f(m1), in which case it outputs a uniformly
random bit β.

The adversary A has unlimited and adaptive access to the left-right encryption
oracle QLeftRight, and to the key generation oracle QDKeyGen. We say FE is
IND-secure if for any adversary A, AdvINDFE (A) = |2× Pr[β = 1]− 1| is negligible.

We can also define a weaker selective variant, where pairs (m0,m1) to QLeftRight-
queries are known from the beginning.

Identity-Based Encryption. Here we define the functionality that corresponds
to Identity-Based Encryption, originally envisioned in [33], and first realized
in [10, 19]. The functionality is described by an identity space I, which can be of
exponential size. Each function is described by an identity id ∈ I, and given as
input a pair (m, id′) where m is a payload, and id′ ∈ I is an identity, the function
outputs m if id = id′, nothing otherwise.

Inner Product Functionality. For any dimension d ∈ N and cyclic group G of
prime order p, the inner product functionality corresponds to the set of functions
described by a vector ~y ∈ Zdp that on input a vector [~x] ∈ Gd, outputs [~x>~y].
FE schemes for the inner-product functionality were originally introduced in [3],
later in [7] with adaptive security.

We will make use of the following property, satisfied by several FE schemes,
including [3, 7]. For concreteness we recall the scheme from [7] in Appendix A.

Property 18 (Linear Homomorphism). An FE for inner products (IP-FE.Setup,
IP-FE.Encrypt, IP-FE.DKeyGen, IP-FE.Dec) satisfies the linear homomorphism prop-
erty if there exists a PPT algorithm Add such that for all ~x, ~x′ ∈ Zdp, the following

18 J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan, and D. Pointcheval

are identically distributed:(
IP-FE.Encrypt(IP-FE.pk, ~x), IP-FE.Encrypt(IP-FE.pk, ~x+ ~x′)

)
and(

IP-FE.Encrypt(IP-FE.pk, ~x), Add
(
IP-FE.Encrypt(IP-FE.pk, ~x), ~x′)

)
,

where (IP-FE.pk, IP-FE.sk)← IP-FE.Setup(λ).

4 All-or-Nothing Encapsulation from IBE

4.1 Technical Overview

Our generic construction only requires an IBE. Messages are encrypted under the
public key of each member of the group successively, using the set of participants
UM and the label ` as the identity. The |UM |-layers deep encryption is accompanied
by the functional decryption key of the IBE for the encrypting participant and the
same identity. The only way to recover the messages is to gather all the decryption
keys in order to decrypt all layers of IBE encryption: this requires having access
to all the ciphertexts. IBE is a well-studied primitive, which admits constructions
from multiple hardness assumptions, including pairings [10], LWE [24], or more
recently the CDH assumption [20]. This directly implies feasability of AoNE from
these assumptions. To keep the size of the ciphertext polynomial in the number
of users, we use rate-1 IBE, using hybrid encryption. In Section 5 we give a more
efficient construction directly from pairings, inspired by the IBE from [10].

4.2 A Generic Construction of All-or-Nothing Encapsulation

Our construction uses an Identity-Based encryption scheme IBE.
– Setup(λ): Return pp← IBE.Setup(λ)
– KeyGen(): Return (pk, skpk)← IBE.KeyGen().
– Encrypt(skpk,m): Parse m = (xpk,UM , `) where xpk ∈ {0, 1}L, UM ∈ S(PK),

and ` ∈ {0, 1}∗. If pk /∈ UM , return ⊥. Let n = |UM | be the cardinal of UM ,
and, for some universally accepted order, number the elements in UM as
UM = {pk1, . . . , pkn}.
Let αpk,0 = xpk, and for i going from 1 to n, compute

αpk,i := IBE.Encrypt(pki, (αpk,i−1,UM ||`)).
We write αpk,UM ,` = αpk,n Compute γpk,UM ,` = IBE.DKeyGen(skpk,UM ||`).
Return (αpk,UM ,`, γpk,UM ,`,UM , `).

– DKeyGen(sk, k): There are no keys in this functionality, so no DKeyGen;
– Decrypt(ε, (ctpk)pk∈UM): Parse the ciphertexts, for all pk ∈ UM , as

ctpk = (αpk,UM ,`, γpk,UM ,`,UM , `),
with common (UM , `) (otherwise return ⊥). For each pk ∈ UM , we recover
xpk as follows: with UM = {pk1, . . . , pkn}, recompute the αpk,i for i going
from n to 0 as αpk,n = αpk,UM ,` and αpk,i = IBE.Decrypt(γpki,UM ,`, αpk,i+1).
Output (pk, xpk)pk∈UM .

Dynamic Decentralized Functional Encryption 19

Correctness: Correctness follows immediately from the correctness of IBE.

Remark 19 (Rate-1 IBE). To avoid ciphertexts having length exponential in |UM |,
we require that IBE has rate-1 encryption. That is, the ciphertext has the same
size as the plaintext plus a polynomial in the security parameter. This can be
obtained generically via hybrid encryption: the IBE is used to encrypt a symmetric
key, that is used to encrypt the actual message. Assuming such properties of the
IBE scheme, our ciphertexts have length linear in |UM |.

Remark 20. The astute reader will have noticed that the γpk,UM ,` seem to be
playing the role of a Functional Decryption Key. Indeed, AoNE could have been
defined with keys allowing decryption of the ciphertext if the appropriate key
shares (i.e., for that pair (UM , `)) are contributed by all parties. However, our
applications of AoNE are such that we would always end up giving out the
key share with the corresponding ciphertext, so we gave a definition which is
more practical for our uses and may allow constructions in settings where the
alternative with keys would be harder to design.

Remark 21. Note that while we show here how to construct AoNE from IBE,
it’s also possible to construct IBE from AoNE. A possible construction uses only
two AoNE identities, one of which creates AoNE ciphertexts that serve as IBE
ciphertexts, while the other creates AoNE ciphertexts that serve as IBE functional
keys. The secret key for the first identity is made public (it is part of the IBE’s
public key) while that for the latter remains private. Identities are encoded as
labels, and groups are always chosen as the pair of identities. Now to recover the
message behind a ciphertext, even generated with the known AoNE secret key of
the first identity, one needs an AoNE ciphertext from the second identity for the
same label/identity, which effectively acts as an IBE secret key.

4.3 Security Proof

Theorem 22 (IND-Security of AoNE). The All-or-Nothing Encapsulation
scheme described in Section 4.2 is IND-secure (as per Definition 3) assuming the
IBE scheme is IND-secure (as per Definition 17).

The proof can be found in Appendix B.

5 All-or-Nothing Encapsulation from Bilinear Maps

5.1 Technical Overview

This construction is essentially an instantiation of the generic construction given
in Section 4.2 using Boneh and Franklin’s IBE [10]. However, we make a few
optimizations exploiting the structure of the Boneh-Franklin IBE (BF) to achieve
short ciphertexts. First, we use the IBE as a Key-Encapsulation Mechanism to
generate a symmetric key, which we then use to encrypt the message. Second,
we exploit the randomness reusability of El Gamal-like schemes, from which

20 J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan, and D. Pointcheval

BF benefits, to only commit to a randomness once. The size difference between
the message and the ciphertext in BF comes entirely from that commitment to
randomness, so sharing it across all encryptions removes the dependence on the
size of the set of participants in the size of the ciphertext.
We provide a direct security analysis of the resulting scheme in Section 5.3.

5.2 A Construction of All-or-Nothing Encapsulation from Bilinear
Maps

Our construction uses pairing-friendly groups, a hash function modeled as a
random oracle in the security analysis, and a (One-Time Secure) symmetric
encryption scheme.

– Setup(λ): Generate PG = (G1,G2,GT , p, P1, P2, e)
$← PGGen(1λ), a full do-

main hash function H from {0, 1}∗ into G1, and return pp = (PG,H). For
the sake of clarity, for any input x, we will denote H(x) = hxP1 = [hx]1,
where hx is the unknown discrete logarithm.

– KeyGen(): Sample tpk
$← Zp and return (pk, skpk) = ([tpk]2, tpk).

– Encrypt(skpk,m): Parse skpk = tpk ∈ Zp and m = (xpk,UM , `) where xpk ∈
{0, 1}L, UM ∈ S(PK), and ` ∈ {0, 1}∗. If pk /∈ UM , return ⊥. Otherwise,
sample rpk

$← Zp and compute the symmetric key Kpk,UM ,` as

e

H(UM ||`), rpk ·
 ∑

pk′∈UM

pk′

 =

hUM ||` · rpk · ∑
pk′∈UM

tpk′

T

,

and use it to encrypt xpk as cpk = SEnc(Kpk,UM ,`, xpk). Compute its share
Spk,UM ,` = tpk · H(UM ||`) = [tpk · hUM ||`]1, and output the ciphertext ctpk =
(cpk, [rpk]2, Spk,UM ,`,UM , `).

– DKeyGen(sk, k): There are no keys in this functionality, so no DKeyGen;
– Decrypt(ε, (ctpk)pk∈UM): Parse the ciphertexts, for all pk ∈ UM , as ctpk =
(cpk, [rpk]2, Spk,UM ,`,UM , `), with common (UM , `). For each pk ∈ UM , compute

Kpk,UM ,` = e

 ∑
pk′∈UM

Spk′,UM ,`, [rpk]2

 =

hUM ||` · rpk · ∑
pk′∈UM

tpk′

T

and recover xpk as xpk = SDec(Kpk,UM ,`, cpk).

Correctness: First, note that the use of Kpk,UM ,` is consistent across Encrypt and
Decrypt. Then, the two evaluations correspond to

[
hUM‖` · rpk ·

∑
pk′∈UM tpk′

]
T
.

Now correctness immediately follows from the correctness of the underlying
symmetric encryption scheme.

Remark 23. Note that the sum
∑

pk′∈UM Spk′,UM ,` is common to all ciphertexts
for the same pair (UM , `) and can thus be precomputed and reused, such that n
messages can be recovered in time O (n).

Dynamic Decentralized Functional Encryption 21

5.3 Security Proof

Theorem 24 (IND-Security of AoNE). The All-or-Nothing Encapsulation
scheme described in Section 5.2 is IND-secure (as per Definition 3) under the
DBDH assumption, in the random oracle model.

The proof can be found in the full version [18].

6 Decentralized Sum

6.1 Technical Overview

The starting point of our construction is the "Sum-of-PRFs" technique used by
Chase and Chow [16]. The technique aims to enable a set of parties to evaluate
local PRFs for a common label `, such that the sum of their local PRFs is zero.
It relies on shared seeds between each pair of participants, that are computed
on-the-fly using Non-Interactive Key Exchange. Those PRFs can then be added
to each participant’s input, masking the individual contribution but revealing
their sum, because adding the masked ciphertexts causes the PRF evaluation to
cancel out.

Remarkably, this is not enough to achieve IND security in the DDFE setting. As
such, the random mask would be a deterministic function of the set of participants
UM and the label `. So, repeated QLeftRight queries to the same pair (UM , `)
with different messages would enable an adversary to break security, simply by
subtracting two ciphertexts associated with the same pair (UM , `) so as to remove
the identical masks. This issue can be addressed with a layer of AoNE encryption.
Since our AoNE construction is asymmetric and its encryption is randomized,
the layer prevents the adversary from combining ciphertexts for the same pair
(UM , `) in a meaningful way. Only when all the ciphertexts are revealed can the
adversary remove the AoNE layer, and get access to the underlying ciphertexts.
In that case however, the information recovered by the adversary is part of
the information revealed by the functionality. For instance, the adversary can
subtract two deterministic ciphertexts to obtain the different of the underlying
messages. This information can also be learnt by subtracting two sums that are
revealed by correctness of the scheme. In general, we show that when the AoNE
layer can be removed, the Finalize condition imposes sufficient constraints on
the adversary’s queries that trivial attacks are no longer on the table.

Moreover, the AoNE layer that lets us achieve full IND security, instead
of having to settle for sym-IND security, since, as explained, the AoNE is an
asymmetric form of encryption.

6.2 A Generic Construction of Decentralized Sum DDFE for (A,+)

For our construction, we assume a NIKE scheme NIKE, an All-or-Nothing En-
capsulation scheme AoNE for messages of length the size of an element of A, and
a PRF family (FK)K that takes keys from the NIKE and messages from {0, 1}∗
and outputs pseudo-random elements in A.

22 J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan, and D. Pointcheval

– Setup(λ): Run NIKE.pp ← NIKE.Setup(λ), AoNE.pp ← AoNE.Setup(λ), and
output pp = (NIKE.pp,AoNE.pp);

– KeyGen(): Run the KeyGen algorithms from the NIKE and the AoNE:

(NIKE.pk,NIKE.skpk)← NIKE.KeyGen(),

(AoNE.pk,AoNE.skpk)← AoNE.KeyGen(),

and output the key pair

(pk, skpk) = ((NIKE.pk,AoNE.pk), (NIKE.skpk,AoNE.skpk));

– Encrypt(skpk,m): Parse m as (x,UM , `), with x ∈ A, UM ∈ S(PK), and
` ∈ {0, 1}∗. Let pk be our encryptor’s public key7. If pk /∈ UM , then return
⊥. Otherwise, for all pk′ = (NIKE.pk′,AoNE.pk′) ∈ UM such that pk′ 6= pk,
compute Kpk,pk′ = NIKE.SharedKey(NIKE.skpk,NIKE.pk′) and rpk,pk′,UM ,` =
FKpk,pk′ (UM ||`). Compute cpk = x+

∑
pk′<pk rpk,pk′,UM ,`−

∑
pk′>pk rpk,pk′,UM ,`,

where the sums are on pk′ ∈ UM , on which a total ordering is defined. Return

ctpk = (AoNE.Encrypt(AoNE.skpk, (cpk,UM , `)),UM , `);

– DKeyGen(sk, k): There are no keys in this functionality, so no DKeyGen;
– Decrypt(ε, (ctpk)pk∈UM): Get (cpk)pk∈UM = AoNE.Decrypt(ε, (ctpk)pk∈UM), and

return
∑

pk∈UM cpk.

Correctness: The (cpk) should be consistent between Encrypt and Decrypt by
correctness of AoNE. Besides:

∑
pk∈UM

ctpk =
∑

pk∈UM

xpk + ∑
pk′<pk,pk′∈UM

rpk,pk′,UM ,` −
∑

pk′>pk

rpk,pk′,UM ,`

=

∑
pk∈UM

xpk +
∑

pk,pk′∈UM
pk′<pk

rpk,pk′,UM ,` − rpk,pk′,UM ,` =
∑

pk∈UM

xpk

by correctness of NIKE.

6.3 Security Proof

Theorem 25 (IND-Security of DSum). The Decentralized Sum scheme de-
scribed in Section 6.2 is IND-secure (as per Definition 3) so long as NIKE is
IND-secure (as per Definition 15) and (FK)K is a secure PRF family.

The proof can be found in the full version [18].

7 Depending on the details of NIKE and AoNE it may be necessary to explicitly include
pk in skpk to ensure the following check can be performed.

Dynamic Decentralized Functional Encryption 23

7 Inner-Product DDFE

7.1 Technical Overview

Our starting point is Chotard et al.’s Inner-Product MCFE [17]: as they do, we
use a Random Oracle to generate shared randomness across participants for a
given label ` (in our case a (UM , `) pair). However, their construction has several
drawbacks, which we overcome:

1. Their security game requires that if one ciphertext is queried for a label `,
all such ciphertexts must be queried (for the same label ` and for all other
honest parties). We lift this requirement by protecting ciphertexts with a
layer of AoNE.

2. Their Encrypt algorithm is a deterministic function of the message and the
label `, and thus they do not tolerate repeated queries to the same partici-
pant for the same label. We address this by adding a layer of IP-FE, which
randomizes ciphertexts. IP-FE keys are provided in our KeyGen algorithm,
and they are protected by an AoNE layer to ensure ciphertexts can only be
decrypted once the all the partial functional decryption keys are present.

3. Their scheme, being MCFE, only works in the context of a fixed group. We
show how using a PRF to dynamically generate independent secret keys for
different groups removes this constraint.

4. To enable non-interactive generation of functional decryption keys in DMCFE,
they introduce pairings, and perform message-related operations in G1 while
key-related operations take place in G2. Instead, we use our DSum to enforce
proper key aggregation, which simplifies the scheme to a pairing-free group8.
DSum has the added benefit that it is a DDFE functionality and thus non-
interactive, meaning our Inner-Product scheme is also non-interactive, while
their DMCFE has an interactive setup.

7.2 A construction of IP-DDFE

To build our IP-DDFE, we use a cyclic group G of prime order p where DDH
holds, a random oracle H : {0, 1}∗ → G, an single-input FE for the inner product
functionality, where each function is described by a vector ~y ∈ Zdp, and on input
a vector [~x] ∈ Gd, outputs [~x>~y]. We require that IP-FE is IND secure, and
satisfies Property 18. We also use an All-or-Nothing Encapsulation scheme AoNE,
a Distributed Sum DSum over (Zp,+), and a PRF family (FK)K that outputs
in Zdp.

– Setup(λ): Generate G = (G, p, P) $← GGen(1λ). Generate a full domain
hash function H : {0, 1}∗ → G. Compute AoNE.pp ← AoNE.Setup(λ) and
DSum.pp← DSum.Setup(λ). Return:

pp = (G,H,NIKE.pp,AoNE.pp).
8 Of course, our DSum and our IP-DDFE themselves use AoNE, which may rely on
pairings if instantiated with our construction from Section 5.

24 J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan, and D. Pointcheval

– KeyGen(): Sample the keys
• a PRF key K,
• IP-FE keys (IP-FE.pk, IP-FE.skpk)← IP-FE.KeyGen(G, d),
• AoNE keys (AoNE.pk,AoNE.skpk)← AoNE.KeyGen(),
• and DSum keys (DSum.pk,DSum.skpk)← DSum.KeyGen().

Set the public key pk = (IP-FE.pk,AoNE.pk,DSum.pk) and the secret key
skpk = (K, IP-FE.skpk,AoNE.sk,DSum.sk). Return the key pair (pk, skpk).

– Encrypt(skpk,m): Parse m as (~x,UM , `), where ~x ∈ Zdp, UM ∈ S(PK), ` ∈
{0, 1}∗, ~spk,UM = FK(UM) ∈ Zdp, [h`] = H(`) ∈ G, and

cpk ← IP-FE.Encrypt(IP-FE.skpk, [~x] + ~spk,UM · [h`]).

Return

ctpk =
(
AoNE.Encrypt(AoNE.skpk, (cpk, (AoNE.pk′)pk′∈UM , ”ct”||`)),UM , `

)
;

– DKeyGen(skpk, k): Parse k as (~ypk′ , pk′)pk′∈UK . Compute ~spk,UK = FK(UK) ∈
Zdp and

dpk,k = DSum.Encrypt(DSum.skpk, (~yTpk~spk,UK , (DSum.pk′)pk′∈UK , k)).

Compute d′′pk,k = IP-FE.DKeyGen(IP-FE.skpk, ~ypk) and

d′pk,k ← AoNE.Encrypt(AoNE.skpk, (d′′pk,k, (AoNE.pk′)pk′∈UK , ”key”||k))

and return dkpk,k = (dpk,k, d
′
pk,k);

– Decrypt((dkpk′,kpk′)pk′∈UK , (ctpk)pk∈UM): If UM 6= UK return ⊥. Now let U =
UM = UK . Let k ∈ K be such that k = kpk for all pk ∈ U . If there is no such
k return ⊥. Parse dkpk,k as (dpk,k, d′pk,k) for all pk ∈ U .
Get

(cpk)pk∈U = AoNE.Decrypt(ε, (ctpk)pk∈U)

and
(d′′pk,k)pk∈U = AoNE.Decrypt(ε, (d′pk,k)pk∈U).

Then compute sk =
∑

pk∈U ~y
T
pk~spk,U = DSum.Decrypt(ε, (dpk,k)pk∈U).

For all pk ∈ U , compute zpk ∈ G as

zpk ← IP-FE.Decrypt(d′′pk,k, cpk).

Let ` ∈ {0, 1}∗ such that all ctpk for pk ∈ U contain `. If there is no such
`, return ⊥. Otherwise, compute [h`] = H(`) ∈ G and return the discrete
logarithm in base [1] of ∑

pk∈U

zpk

− sk · [h`].

Dynamic Decentralized Functional Encryption 25

Correctness: We write ~spk,U = FKpk
(U). By correctness of AoNE, the use of cpk in

Encrypt and in Decrypt is consistent, as well as the use of d′′pk,k in DKeyGen and
Decrypt; By correctness of DSum, we have sk =

∑
pk∈U ~y

T
pk~spk,U ; By correctness

property of IP-FE, we have zpk = [~yTpk~xpk + ~yTpk~spk,Uh`]. Thus we eventually
compute and return the discrete logarithm of∑

pk∈U

zpk

− sk · [h`] =
∑

pk∈U

[~yTpk~xpk + ~yTpk~spk,Uh`]

−
∑

pk∈U

~yTpk~spk,U

 · [h`]
=

∑
pk∈U

~yTpk~xpk + ~yTpk~spk,Uh`

−
∑
pk∈U

~yTpk~spk,Uh`

 =

∑
pk∈U

~yTpk~xpk

7.3 Security Proof

Theorem 26 (sel-sym-IND-Security of our IP-DDFE). The Inner-Product
DDFE scheme described in Section 7.2 is sel-sym-IND-secure (as per Definition 5)
under the DDH assumption, assuming IP-FE is sel-IND secure, the AoNE scheme
is sel-sym-IND-secure, the DSum scheme is sel-sym-IND-secure, and (FK)K is
a secure PRF family.

The proof can be found in the full version [18].

Acknowledgments.

This work was supported in part by the European Community’s Seventh Frame-
work Programme (FP7/2007-2013 Grant Agreement no. 339563 – CryptoCloud),
the European Community’s Horizon 2020 Project FENTEC (Grant Agreement
no. 780108), the Google PhD fellowship, and the French FUI ANBLIC Project.
This work was partially done while the third author was visiting ENS, Paris, and
UC Berkeley, California.

References

1. Abdalla, M., Benhamouda, F., Gay, R.: From single-input to multi-client
inner-product functional encryption. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019, Part III. LNCS, vol. 11923, pp. 552–582. Springer, Heidelberg (Dec
2019)

2. Abdalla, M., Benhamouda, F., Kohlweiss, M., Waldner, H.: Decentralizing inner-
product functional encryption. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II.
LNCS, vol. 11443, pp. 128–157. Springer, Heidelberg (Apr 2019)

3. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp.
733–751. Springer, Heidelberg (Mar / Apr 2015)

26 J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan, and D. Pointcheval

4. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional en-
cryption for inner products: Function-hiding realizations and constructions without
pairings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol.
10991, pp. 597–627. Springer, Heidelberg (Aug 2018)

5. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional
encryption from pairings. In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part I. LNCS, vol. 10210, pp. 601–626. Springer, Heidelberg (Apr / May 2017)

6. Agrawal, S., Clear, M., Frieder, O., Garg, S., O’Neill, A., Thaler, J.: Ad hoc multi-
input functional encryption. In: 11th Innovations in Theoretical Computer Science
Conference (ITCS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

7. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner prod-
ucts, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016,
Part III. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (Aug 2016)

8. Benhamouda, F., Joye, M., Libert, B.: A new framework for privacy-preserving
aggregation of time-series data. ACM Trans. Inf. Syst. Secur. 18(3), 10:1–10:21
(2016)

9. Boneh, D., Boyen, X., Goh, E.J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (May 2005)

10. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(Aug 2001)

11. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(Mar 2011)

12. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key
setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp.
306–324. Springer, Heidelberg (Mar 2015)

13. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (Apr 2008)

14. Chan, T.H.H., Shi, E., Song, D.: Privacy-preserving stream aggregation with fault
tolerance. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 200–214.
Springer, Heidelberg (Feb / Mar 2012)

15. Chandran, N., Goyal, V., Jain, A., Sahai, A.: Functional encryption: Decentralised
and delegatable. Cryptology ePrint Archive, Report 2015/1017 (2015), http://
eprint.iacr.org/2015/1017

16. Chase, M., Chow, S.S.M.: Improving privacy and security in multi-authority
attribute-based encryption. In: Al-Shaer, E., Jha, S., Keromytis, A.D. (eds.) ACM
CCS 2009. pp. 121–130. ACM Press (Nov 2009)

17. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized
multi-client functional encryption for inner product. In: Peyrin, T., Galbraith,
S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 703–732. Springer,
Heidelberg (Dec 2018)

18. Chotard, J., Dufour-Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Dynamic
decentralized functional encryption. Cryptology ePrint Archive, Report 2020/197
(2020), https://eprint.iacr.org/2020/197

19. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
IMA international conference on cryptography and coding. pp. 360–363. Springer
(2001)

http://eprint.iacr.org/2015/1017
http://eprint.iacr.org/2015/1017
https://eprint.iacr.org/2020/197

Dynamic Decentralized Functional Encryption 27

20. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp.
537–569. Springer, Heidelberg (Aug 2017)

21. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (Aug 2013)

22. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key exchange.
In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 254–271.
Springer, Heidelberg (Feb / Mar 2013)

23. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC. pp. 169–178. ACM Press (May / Jun 2009)

24. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC.
pp. 197–206. ACM Press (May 2008)

25. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.H., Sahai, A.,
Shi, E., Zhou, H.S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(May 2014)

26. Gordon, S.D., Katz, J., Liu, F.H., Shi, E., Zhou, H.S.: Multi-input functional
encryption. Cryptology ePrint Archive, Report 2013/774 (2013), http://eprint.
iacr.org/2013/774

27. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani
di Vimercati, S. (eds.) ACM CCS 2006. pp. 89–98. ACM Press (Oct / Nov 2006),
available as Cryptology ePrint Archive Report 2006/309

28. Joye, M., Libert, B.: A scalable scheme for privacy-preserving aggregation of time-
series data. In: Sadeghi, A.R. (ed.) FC 2013. LNCS, vol. 7859, pp. 111–125. Springer,
Heidelberg (Apr 2013)

29. Lewko, A.B., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(May 2011)

30. Libert, B., Titiu, R.: Multi-client functional encryption for linear functions in the
standard model from LWE. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019,
Part III. LNCS, vol. 11923, pp. 520–551. Springer, Heidelberg (Dec 2019)

31. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Karloff, H.J., Pitassi,
T. (eds.) 44th ACM STOC. pp. 1219–1234. ACM Press (May 2012)

32. Sahai, A., Waters, B.R.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (May
2005)

33. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(Aug 1984)

34. Shi, E., Chan, T.H.H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving aggre-
gation of time-series data. In: NDSS 2011. The Internet Society (Feb 2011)

A Single-Input FE for Inner Products

Here we recall the IPFE from [7] on a cyclic group G. Its IND security is proven
in [7], under the DDH assumption in G.

http://eprint.iacr.org/2013/774
http://eprint.iacr.org/2013/774

28 J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan, and D. Pointcheval

– IP-FE.KeyGen(G, d ∈ N): ~a $← DDH, U $← Zd×2p , pk = ([~a], [U~a]), msk = U.
Return (pk,msk).

– IP-FE.Enc(pk, ~x ∈ Zdp): r
$← Zp, return

[
~ar

~x+U~ar

]
∈ Gd+2.

– IP-FE.DKeyGen(msk, ~y ∈ Zdp): return
(
−U>~y
~y

)
∈ Zd+2

p .

– IP-FE.Dec(pk, [~c],~k): return [~c]>~k ∈ G.

B Security Proof: Theorem 22 (IND-Security of AoNE)

The All-or-Nothing Encapsulation scheme described in Section 4.2 is IND-secure
(as per Definition 3) assuming the IBE scheme is IND-secure (as per Definition 17).

Proof. Let qp, qc denote (polynomial) upper bounds on the number of adversary
queries to the QNewHonest oracle, and the number of unique pairs (UM , `) for
which the adversary sends at least one QEncrypt or QLeftRight query, respectively.
We define the following games for i ∈ {0, . . . , qc}:

Game Gi: The challenger does as specified in Definition 3, except for queries
to QLeftRight. Queries to QLeftRight take as arguments a public key pk and two
messages m0 = (x0,UM,0, `0) and m1 = (x1,UM,1, `1). Note that by functionality
and by description of the scheme, the response reveals UM,b, `b, so if the adversary
wants to avoid the Finalize condition ignoring its guess, it must have `0 = `1 = `
and UM,0 = UM,1 = UM . Now let (UM,j , `j) be the j’th such pair queried to
QEncrypt or QLeftRight. In Gi, the challenger will respond to QLeftRight queries
by encrypting m0 if i < j and mb otherwise, where b

$← {0, 1} is the random bit
chosen by the challenger.

Note that in G0, all challenge ciphertexts contain the left message, while in
Gqc all challenge ciphertexts contain the right message. Thus we only need to
show that Gi−1 ∼c Gi for all i ∈ [qc].

Gi−1 ∼c Gi: We proceed by contradiction, and, from a PPT adversary A which
can distinguish between Gi−1 and Gi with noticeable advantage, we construct a
PPT algorithm B which breaks the IND-security of IBE with noticeable advantage.
B starts playing the IBE IND-security game and gets a public key IBE.pk. We

need to choose the participant whose AoNE public key will be AoNE.pk = IBE.pk
carefully, because we wont be able to answer QDKeyGen requests for them. The
key is to notice that if the adversary is going to distinguish between Gi−1 and
Gi, the two need to be different, meaning the adversary A needs to make at least
one query to QLeftRight on (UM,i, `i) with x′0 6= x′1 with noticeable probability,
and that, conditioned on that event, A retains noticeable advantage. We can
thus safely assume that A will make such a query, and abort otherwise. From
then on, if it were the case that for every pk ∈ UM , the adversary either makes a

Dynamic Decentralized Functional Encryption 29

QEncrypt or QLeftRight query on (UM , `) or pk is eventually not honest9, then
the condition in the Finalize part of the security game (see Definition 3) would
notice that x′0 6= x′1 and set the adversary’s guess at random, rendering the
adversary’s efforts fruitless. We can thus safely assume that there is a pk∗ ∈ UM
such that pk∗ will be created via QNewHonest10, and the adversary will not query
QEncrypt or QLeftRight on (UM , `) for pk∗ or query QCorrupt on pk∗.

We proceed by guessing which query to QNewHonest will eventually be pk∗.
We cannot simply guess a member of UM because we do not know anything
about UM during the initialization phase of the game, and by the time the
ith (UM , `) pair is queried, it is possible that many queries have been made to
the QNewHonest oracle, and at that point it would be too late to embed the
IBE public key in the adversary’s view. Instead, we guess the index t∗ ∈ [qp]
of the query to QNewHonest which eventually yields a public key pkt∗ which
we hope matches pk∗. At that index, we respond with pkt∗ = IBE.pk. Because
the adversary will only make polynomially many queries to QNewHonest, our
advantage is only polynomially degraded by this guess and the reduction remains
valid.

Having done this, we can naturally answer most queries involving pkt∗ by
using the oracles of the IND security game of IBE and the fact that our IBE is
public key. That is, we answer all QEncrypt and most (see below) QLeftRight
queries by running IBE.Encrypt ourselves and making IBE.QDKeyGen queries.

The exceptions are QLeftRight queries to any pk ∈ UM for (UM , `). Let n =
|UM | and ζ ∈ [n] be such that pk∗ is the ζth public key in UM for the universally
agreed upon order. In responding to QLeftRight(pk, (x0,UM , `), (x1,UM , `)), we
will compute two sequences of α’s as follows: for s ∈ {0, 1}, k ∈ [ζ − 1], let
αspk,0 = xs and αpk,k = IBE.Encrypt(pkk, (αpk,k−1,UM ||`)). Now compute αpk,ζ =

IBE.QLeftRight((α0
pk,ζ−1,UM ||`), (α1

pk,ζ−1,UM ||`)), and compute the rest of the
α’s and the resulting ciphertext as per AoNE.Encrypt.

When IBE.b = 0, the adversary A is playing Gi−1. When IBE.b = 1, the
adversary A is playing Gi. We only need to check that we do not violate the
Finalize condition of the IBE IND-security game. But this is clear because the
only IBE.QLeftRight query we make is for (UM , `), and for that pair we never get
a AoNE.QLeftRight or AoNE.QEncrypt query so we never make an IBE.QDKeyGen
query. This concludes our proof. ut

9 Note that here there are two ways for pk to be dishonest: either the adversary has
the challenger create pk via QNewHonest and later corrupts it via QCorrupt, or the
adversary generates pk on its own.

10 Note that here, and in subsequent proofs, we implicitly ignore the very real possibility
that the adversary sends a query for a set UM for which a later query to QNewHonest
generates a pk ∈ UM . Because this happens with negligible probability it is safe to
abort when this situation materializes.

	Dynamic Decentralized Functional Encryption
	Introduction
	Our Contributions
	Related Work
	Outline

	Definitions and Security Models
	Notations
	Dynamic Decentralized Functional Encryption
	Versatility of the Notion of DDFE
	DDFE Functionalities

	Notations and Assumptions
	Groups
	Intractability Assumptions
	Non-Interactive Key Exchange
	Definition of Symmetric Key Encryption
	Single-Input Functional Encryption

	All-or-Nothing Encapsulation from IBE
	Technical Overview
	A Generic Construction of All-or-Nothing Encapsulation
	Security Proof

	All-or-Nothing Encapsulation from Bilinear Maps
	Technical Overview
	A Construction of All-or-Nothing Encapsulation from Bilinear Maps
	Security Proof

	Decentralized Sum
	Technical Overview
	A Generic Construction of Decentralized Sum DDFE
	Security Proof

	Inner-Product DDFE
	Technical Overview
	A construction of IP-DDFE
	Security Proof

	Single-Input FE for Inner Products
	Security Proof: Theorem 22 (IND-Security of AoNE)

