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Abstract. In this work, we show the hardness of finding a Nash equilib-
rium, a PPAD-complete problem, based on the quasi-polynomial hard-
ness of the decisional assumption on groups with bilinear maps intro-
duced by Kalai, Paneth and Yang [STOC 2019]. Towards this goal, we
construct an unambiguous and updatable delegation scheme under this
assumption for deterministic computations running in super-polynomial
time and polynomial space.
This delegation scheme, which is of independent interest, is publicly ver-
ifiable and non-interactive in the common reference string (CRS) model.
It is unambiguous meaning that it is hard to compute two different proofs
for the same statement. It is updatable meaning that given a proof for
the statement that a Turing machine M reaches configuration cfT in
T steps, one can efficiently generate a proof for the statement that M
reaches configuration cfT+1 in T + 1 steps.
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1 Introduction

The computational complexity of finding a Nash equilibrium in bimatrix games
has been the subject of extensive research in recent years. In his seminal work,
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Papadimitriou [27] defined the complexity class PPAD and showed that it con-
tains the problem NASH. Daskalakis, Goldberg and Papadimitriou [14], and
Chen, Deng and Teng [11] proved that NASH is PPAD-complete.

Currently polynomial (or even subexponential) time algorithms for PPAD
are not known and NASH is conjectured to be intractable. A promising approach
to proving the hardness of PPAD, proposed by Papadimitriou, is to base its
hardness on assumptions from cryptography. Despite tremendous progress in
this direction over the past five years, PPAD-hardness is only known under
very strong and “non-standard” cryptographic assumptions. Building on [1],
Bitanski, Paneth and Rosen [6] show that PPAD is hard on average assuming
sub-exponentially secure indistinguishability obfuscation. Hubáček and Yogev
[19] extended this result to CLS, a subclass of PPAD. The assumption was
relaxed in [18, 23] from indistinguishability obfuscation to strong assumptions
related to functional encryption. Very recently, Choudhuri et al. [13, 12] and
Ephraim et al. [17] showed average-case hardness of PPAD under an assumption
closely related to the soundness of the Fiat-Shamir heuristic when applied to
specific protocols. See Section 2.3 for more details on related work.

Basing PPAD-hardness on weaker, well-studied cryptographic assumptions
remains an important goal.

This work. We prove hardness of CLS and PPAD, under the following assump-
tions:

1. A decisional assumption on groups with bilinear maps (Assumption 1.3).
This is a quasi-polynomial version of an assumption recently introduced by
[20]. It is falsifiable (in quasi-polynomial time) and it holds in the generic
group model.

2. The existence of a hard language L that can be decided in time n(logn)
ε

for
some ε < 1 and polynomial space. For example, the assumption that SAT
over m = (log n)1+ε variables is hard for 2m

c

-size circuits for some c < 1
suffices. If L is hard on average we show average-case hardness of PPAD.

Our result follows a similar approach to that of Choudhuri et al. [13] ex-
ploiting a folklore connection between PPAD and the notion of incrementally
verifiable computation [32]. Specifically, we consider delegation schemes that are
both updatable and unambiguous. Loosely speaking, a delegation scheme for T -
time computations is a computationally sound proof system that can be verified
in time << T . For the purpose of proving PPAD-hardness, in this work we
focus on publicly verifiable non-interactive schemes in the CRS model for dele-
gating super-polynomial time computations with polynomial-time verification.4

A delegation scheme is said to be updatable if given a proof of correctness for
the first t steps of a computation, we can extend it to a proof of correctness
of the first t + 1 steps without recomputing the proof from scratch (that is, in

4 More generally, in the literature delegation may also refer to privately verifiable
schemes and interactive schemes. The focus is often on delegating polynomial-time
computations with near linear-time verification.
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time independent of t). A delegation scheme is said to be unambiguous if it is
computationally hard to construct two different accepting proofs for the same
statement.

We show that the existence of such a delegation scheme for a hard language
L as above, implies the hardness of a problem known as relaxed-Sink-of-
Verifiable-Line (rSVL) that was defined and reduced to a problem in CLS
in [13].

Theorem 1.1 (Informal). Let L be a hard (resp. hard on average) language
decidable by a deterministic Turing machine running in time T (n) = nω(1) and
space S(n) = poly(n). If there exists an updatable and unambiguous delegation
scheme for L then rSVL is hard (resp. hard on average).

We refer the reader to Theorem 4.1 for the formal statement, to Definitions 3.1-
3.3 for updatable and unambiguous delegation schemes, and to Definition 4.1
for the rSVL problem.

Our main technical and conceptual contribution is the construction of such
a delegation scheme. Specifically, we show that for any ε < 1 and T = T (n) ≤
n(logn)

ε

there exists an updatable and unambiguous delegation scheme for any
T -time polynomial-space computation under Assumption 1.3 below.

Theorem 1.2 (Informal). For any deterministic Turing machineM that runs
in time T (n) ≤ n(logn)

ε

for some 0 ≤ ε < 1 and space S(n) = poly(n) the

following holds: Under Λ-hardness of Assumption 1.3 for Λ(κ) = 2(log κ)
1+ε
1−ε

,
there exists an updatable and unambiguous delegation scheme for M with setup
time and proof length poly(S(n)). The prover runs in time T (n) ·poly(S(n)) and
the verifier runs in time poly(S(n)).

We refer the reader to Section 5 for the formal statement (and a more gen-
eral setting of parameters). We note that in Theorem 1.2 the efficiency of the
delegation scheme grows with the space of the computation. We believe that this
dependence can be removed using standard techniques [22, 20]. However, we did
not pursue this in the current work since it would complicate the proof and it is
not needed for showing PPAD-hardness.

Assumption 1.3 is a version of the bilinear group assumption from [20] with
a hardness parameter Λ = Λ(κ). We mention that [20] rely on this assump-
tion for Λ(κ) = poly(κ) to construct a delegation scheme for polynomial-time
computations. To construct a delegation scheme for super-polynomial time com-
putations, towards showing PPAD-hardness, we rely on this assumption for
super-polynomial Λ(κ).

Assumption 1.3. Let G be a group of prime order p = 2Θ(κ) equipped with a
bilinear map. For every α(κ) = O(logΛ(κ)) given the following 3-by-α matrix of
group elements:

(
gs
jti
)
i∈[0,2]
j∈[0,α]

=

gs
0

gs
1

. . . gs
α

gs
0t gs

1t . . . gs
αt

gs
0t2 gs

1t2 . . . gs
αt2

 ,
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for random g ∈ G and s ∈ Zp, it is Λ(κ)-hard to distinguish between the case
where t = s2α+1 and the case where t is a random independent element in Zp.

2 Technical Overview

In this section we give an overview of our delegation scheme with unambiguous
and updatable proofs. We build on the non-interactive delegation scheme of [20]
(KPY) and we start by recalling the high-level structure of their scheme.

2.1 The KPY Delegation Scheme

The KPY construction consists of two steps: first, they construct quasi-
arguments for NP which, following [22], are known to imply delegation for P.
The KPY quasi-arguments have a long CRS which results in a delegation scheme
for P with a long CRS (of length proportional to the running time of the com-
putation). Then they use quasi-arguments again to “bootstrap” a delegation
scheme with a long CRS to get a delegation scheme with a short CRS.

Quasi-arguments. A quasi-argument is a relaxation of an argument-of-
knowledge: in a quasi-argument, the standard knowledge extraction requirement
is replaced by a weaker requirement called non-signaling (local) extraction. To
argue about locality, the definition specifically considers the NP complete lan-
guage 3SAT. Roughly speaking, in an argument-of-knowledge for 3SAT, for any
prover that convinces the verifier to accept a formula ϕ there exists an extrac-
tor that produces a satisfying assignment for ϕ. In a quasi-argument, however,
the extractor is not required to produce a full assignment. Rather it is given a
small set of variables S and it produces an assignment only for the variables in
S. This partial assignment is required to be locally consistent, satisfying every
clause of ϕ over variables in S. Furthermore, the partial assignments produced
by the extractor should satisfy the non-signaling property. Loosely speaking, this
property requires that for any subsets S ⊂ S′ the distribution of the assignments
produced by the extractor for the variables in S′, when restricted to the variables
in S, is independent of the variables in S′\S. The notion of a quasi-argument was
introduced in [26] under the name “core protocol with a local assignment gener-
ator”. Prior works including [21, 22, 8] (implicitly) construct privately verifiable
two-message quasi-arguments for NP.

The BMW heuristic. The KPY quasi-argument is inspired by the BMW heuristic
[2] for converting a multi-prover interactive proof (MIP) into a two-message
privately verifiable delegation scheme. In this delegation scheme, the verifier
generates the MIP queries, encrypts each query using a homomorphic encryption
scheme (with a fresh key), and sends the encrypted queries to the prover. The
prover then homomorphically computes the encrypted answers, and the verifier
decrypts and checks the answers. While this heuristic is known to be insecure
in general [16, 15], the work of [21] shows that it is sound for MIPs satisfying a
strong soundness condition called non-signaling soundness.
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From private to public verification. To obtain a publicly verifiable non-interactive
delegation scheme, KPY follow the blueprint of Paneth and Rothblum (PR) [26]
and place the encrypted queries in the CRS. Now, since the verifier does not
encrypt the queries itself, it can no longer decrypt the answers. Instead, the
queries are encrypted using a special homomorphic encryption equipped with a
weak zero-test that allows the verifier to check the validity of the prover’s answers
without decrypting them. Modularizing the analysis of [21, 22], PR show that
the resulting protocol is a quasi-argument for NP.

The CRS length. Unlike the PR solution that was based on mulilinear maps,
KPY construct a zero-testable homomorphic encryption scheme based only on
bilinear maps. In the KPY scheme, however, the ciphertext length grows expo-
nentially with the length of the encrypted query. This results in a quasi-argument
with a long CRS. To shorten the CRS, KPY use an idea known as “bootstrap-
ping” that was previously used to obtain succinct arguments of knowledge for
NP (SNARKs) with a sort CRS [32, 3]. In this setting, a SNARK with a long
CRS is recursively composed with itself yielding a SNARK with a short CRS.
In contrast, KPY compose a delegation scheme for P and a quasi-argument for
NP, both with a long CRS to obtain a delegation scheme for P with a short
CRS.

2.2 Our Delegation Scheme

We modify the KPY delegation scheme to make its proofs updatable and unam-
biguous. Obtaining updatability is fairly straightforward. Previous work [32, 3]
used recursive proof composition to merge proofs and applied this technique both
for bootstrapping proofs (with the goal of shortening the CRS), and for creating
updatable proofs. In the setting of delegation for P, the work of KPY shows how
to use quasi-arguments to merge proofs for bootstrapping. Following KPY, our
work shows how to use quasi-arguments to merge proofs for updatability.

The main technical challenge and the focus of the following overview is achiev-
ing unambiguity. We first construct quasi-arguments for NP with a long CRS
that satisfy a notion of unambiguity. Then we argue that unambiguity is pre-
served in the bootstrapping step. We mention that in addition to satisfying
the unambiguity property, our quasi-arguments are also more efficient than the
quasi-arguments in KPY. As a result, we can delegate nlogn

ε

-time polynomial-
space computations with a poly(n)-size CRS, as opposed to KPY that could
only delegate nO(log logn)-time computations.

Unambiguous delegation. The KPY delegation scheme is obtained by recursively
composing a quasi-argument. Abstracting away the details of this bootstrapping
step, the final delegation scheme has the following structure: the description of
the deterministic computation is translated into a sequence of formulas, and
the proof consists of one quasi-argument proof for each formula. Therefore, to
get an unambiguous delegation scheme we focus on constructing unambiguous
quasi-arguments.
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Unambiguous quasi-arguments. In contrast to delegation for deterministic com-
putations, quasi-arguments argue about non-deterministic formulas. We there-
fore need to take care in defining the required notion of unambiguity. The
strongest requirement would be that the prover cannot find two accepting proofs
for the same formula, even if the formula has multiple satisfying assignments.
This notion, however, is only known under very strong assumptions [31, 10]. A
natural relaxation is to ask for unambiguous proofs only for formulas where the
satisfying assignment is unique, or where finding multiple satisfying assignments
is intractable. However, even this relaxation seems outside the reach of our tech-
niques. The issue is that there exist formulas where the full satisfying assignment
is unique, however, there exists an efficient non-signaling local extractor that can
produce multiple locally consistent assignments for every small set of variables
(without violating the non-signaling property). We therefore further relax the
unambiguity requirement for quasi-arguments to only require that it is hard to
find multiple accepting proofs for formulas where any efficient non-signaling local
extractor can only produce a unique assignment to each small set of variables.
We refer to such formulas as locally unambiguous. We observe that instantiating
the KPY delegation scheme with a quasi-argument satisfying this notion results
in an unambiguous delegation scheme. Indeed, inspecting their soundness proof
reveals that each quasi-argument argues about a locally unambiguous formula.

Unambiguous answers and ciphertexts. Next we describe our high-level strat-
egy for making the KPY quasi-argument unambiguous. Recall that in KPY the
quasi-argument CRS consists of encrypted MIP queries and the proof contains
encrypted answers. Our construction has two steps: first we modify the quasi-
argument so the answers encrypted in the proof are unambiguous. That is, for
an honestly generated CRS, it is hard to find two accepting proofs for the same
locally unambiguous formula that, when decrypted, result in different answers.
Then we proceed to argue the unambiguity of the ciphertexts themselves. We
show that in the KPY encryption scheme it is hard to find two different cipher-
texts that decrypt to the same value without knowing the secret key. Moreover,
this task is hard even given the ciphertexts in the CRS. Together, these two
steps imply the unambiguity of the quasi-argument proof. We first explain how
to achieve unambiguous answers which is the main challenge.

Unambiguity of answers. The MIP queries in the KPY quasi-argument come
from F` where F is a large field and ` is logarithmic in the number of variables
in the formula. The prover’s answers are given by low-degree polynomials in
the queries. The first polynomial evaluated is denoted by X and it encodes the
prover’s assignment. Specifically, X : F` → F is the multilinear extension of the
assignment. That is, X is multilinear, and for every variable Z of the formula
there exists a Boolean input y ∈ {0, 1}` such that the assignment to Z is X(y).
For each encrypted query in the CRS, the proof contains the evaluation of X
on that query as well as evaluations of additional “proof polynomials” that help
convince the verifier that the X evaluations are locally consistent. We first show
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how to make the evaluations of X unambiguous and then extend these techniques
to the evaluations of the proof polynomials as well.

Unambiguity of X. Our first goal is to ensure unambiguity of the X evaluations.
That is, for a locally unambiguous formula and an honestly generated CRS it
should be hard to find two accepting proofs that encrypt different evaluations
of X. In fact, we show that for any fixed query q ∈ F`, the evaluation X(q)
is unambiguous regardless of the other queries encrypted in the CRS. We first
observe that the KPY quasi-argument already guarantees the unambiguity of
X(q) for each Boolean query q ∈ {0, 1}`. This follows from the fact that the
formula is locally unambiguous and from the construction of their local extractor.
To see this, recall that for a Boolean q, the evaluation X(q) gives the assignment
to some variable Z of the formula. The KPY extractor, given a small set of
variables that contains Z, samples a CRS that contains an encryption of q,
evaluates the prover on the CRS and obtains an accepting proof. (If the proof
is rejecting, the extractor tries again with fresh randomness.) It then decrypts
the value X(q) and returns it as the assignment to Z. Since the formula is
locally unambiguous, the value the extractor assigns to Z is unambiguous. Since
the CRS sampled by the extractor has the same distribution as an honestly
generated CRS that contains an encryption of q, it follows that the evaluation
X(q) in the proof is also unambiguous for Boolean q.

Unambiguity of X on general queries. For general non-Boolean queries the KPY
quasi-argument does not guarantee unambiguity. To produce a second accepting
proof, an adversarial prover can compute a different polynomial X̃ 6= X that
agrees with X on all inputs in {0, 1}` such that following the honest prover’s

strategy using X̃ instead of X still results in an accepting proof. Note that,
unlike X, the individual degree of X̃ must be > 1 since a multilinear polynomial
is completely determined by its evaluations on {0, 1}`.

Intuitively, our approach is to force the prover to evaluate a polynomial X
that is multilinear. Following this intuition, however, is tricky. Recall that the
prover does not explicitly specify the polynomial X (this would result in a long
proof) and it only evaluates X on a small set of queries. In fact, given a set of
queries and answers, there typically exists a multilinear polynomial X that is
consistent with them. may not knowX in the clear, since he only gets encryptions
of these queries. However, this polynomial depends on the queries and answers,
in particular, the prover does not know X in the clear. A possible fix is to have
the prover provide a short proof of knowledge of the multilinear polynomial X.
In the non-interactive setting, however, such a proof of knowledge is only known
based on non-falsifiable knowledge assumptions [4].

A proof of multilinearity. In order to avoid knowledge assumptions, we introduce
a new notion of a multilinearity proof that allows us to argue the unambiguity
of X on general queries. We then construct such proofs based on our bilinear
assumption. In a multilinearity proof the CRS contains an encrypted input q ←
F`. The prover can homomorphically evaluate any multilinear polynomial X on

7



q and provide the encrypted evaluation together with a proof of multilinearity
for the question-answer pair. The soundness requirement of our multilinearity
proof is defined based on the notion of unambiguity. Roughly speaking, consider
an efficient adversarial prover that, with non-negligible probability, produces
two different encrypted evaluations and an accepting multilinearity proof for
each of the evaluations with respect to the same encrypted input. We require
that there exists a Boolean input q ∈ {0, 1}` such that the prover continues
to produce two distinct evaluations even when given an encryption of q. (Note
that this requirement does not follow from the security of the encryption since
checking that the answers are distinct requires the secret key.) By adding such
a multilinearity proof to each evaluation of X in the KPY quasi-argument, we
can directly extend the unambiguity of X on Boolean queries to unambiguity
on general queries.

To see why this soundness requirement intuitively captures multilinearity,
consider an adversarial prover that evaluates some polynomial X̃ of individual
degree > 1. If the prover was able to provide an accepting multilinearity proof for
its evaluation, we would have been able to use this prover to break the soundness
requirement as follows: choose a multilinear polynomial X that agrees with X̃
on all inputs in {0, 1}`, homomorphically evaluate X on the input and compute
a multilinearity proof honestly. Output both evaluations and their proofs. This
contradicts the soundness of the multi-linearity test since for every Boolean q the
two evaluations would always agree, whereas there exists q ∈ F` where X and X̃
disagrees resulting in different evaluations. By the security of the encryption, the
prover must output an accepting multilinearity proof with the same probability,
regardless of the encrypted input.

Zero-testable encryption. Our multilinearity proof relies on the weak zero-test of
the homomorphic encryption used in KPY.5 Before describing the construction,
we describe the properties of this test. The weak zero-test is a public procedure
(not using the secret key) that given a ciphertext, tests if it encrypts zero or not.
A perfectly accurate zero-test clearly contradicts semantic security. We therefore
consider a weak zero-test that has false negatives: it never passes on encryptions
of non-zero values, however, it may fail on some encryptions of zero. The test is
only guaranteed to pass on “trivial” encryptions of zero which are ciphertexts
that result from homomorphically evaluating a polynomial that is identically
zero over F on some fresh ciphertext.

We demonstrate how to use the weak zero-test with the following dummy
protocol: the CRS contains an encryption of some input q ∈ F`. The honest
prover homomorphically evaluates three polynomials A,B,C : F` → F on q and
sends the verifier the encrypted evaluations a, b, c respectively. The prover claims
that its polynomials satisfy the identity A·B ≡ C and therefore also a·b = c. The
verifier can test this (without the secret key) by homomorphically computing the

5 As a homomorphic encryption scheme, the KPY construction has several drawbacks:
it can only encrypt short messages, and it is limited to arity-one one-hop homomor-
phic computations. For simplicity, in this overview we ignore these limitations.
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value a · b − c and zero-testing the resulting ciphertext. If A · B − C is indeed
the zero polynomial over F, the verifier evaluates a trivial encryption of zero and
the weak zero-test is guaranteed to pass. If, however, a · b 6= c then the verifier’s
ciphertext encrypts a non-zero value and therefore the weak zero-test fails.

Multilinearity proof from zero-testable encryption. We proceed to construct a
multilinearity proof using the zero-testable encryption. To explain the high-level
idea, we first describe a simple flawed construction. The CRS contains an input
q ∈ F` encrypted under a key sk. Given a multilinear polynomial X : F` → F,
the prover homomorphically computes the evaluation y = X(q). Additionally,
for every i ∈ [`] the prover computes the two multilinear polynomials Ai, Bi :
F`−1 → F such that for every z ∈ F`, X(z) = Ai(z−i)·zi+Bi(z−i) where zi is the
i-th coordinate of z and z−i ∈ F`−1 is z with the i-th coordinate removed. The
prover homomorphically evaluates ai = Ai(q−i) and bi = Bi(q−i) and sends these
2` evaluations to the verifier as the proof of multilinearity. Given the encrypted
query q, the encrypted evaluation y and the proof, the verifier homomorphically
computes the value ai ·qi+bi−y for every i ∈ [`], and checks that all the resulting
ciphertexts pass the weak zero-test.

The completeness of the proof follows from the properties of the weak zero-
test. However, the proposed multilinearity proof is not sound: a cheating prover
can evaluate a polynomial X̃ of individual degree > 1 together with an accept-
ing multilinearity proof by homomorphically computing the values ai, bi as a
function of the entire query q rather than just q−i. To prevent this, we need to
somehow force the prover to compute the evaluations ai, bi without using the
encryption of qi. Our solution is to add to the CRS another input q′ encrypted
under a different key sk′. In addition to the encrypted evaluations y and {ai, bi},
the prover provides the evaluations

{
a′i = Ai(q

′
−i), b

′
i = Bi(q

′
−i)
}

which are en-
crypted under sk′. Now imagine that we set q′ to be the same as q except that
q′i = 0. Since q−i = q′−i, we have that the honest (ai, bi) = (a′i, b

′
i). We would

like the prover to somehow convince the verifier that indeed (ai, bi) = (a′i, b
′
i).

Intuitively, since q′ contains no information about qi, such a proof would mean
that the evaluations ai, bi were computed without using qi. However, proving
this equality is clearly impossible: the prover and verifier have neither of the se-
cret keys, and therefore they cannot even test that indeed q−i = q′−i. Instead we
ask the prover to argue a conditional claim: if q−i = q′−i then (ai, bi) = (a′i, b

′
i).

To prove this claim we design a sub-protocol that we call an equality proof.

Soundness of the multilinearity proof. Before delving into the equality proof, we
first argue the soundness of the multilinearity proof. The adversarial prover is
given the inputs q and q′ encrypted under keys sk and sk′ respectively, and it
outputs the evaluations y, {ai, bi} and {a′i, b′i} together with equality proofs that
for every i ∈ [`], if q−i = q′−i then (ai, bi) = (a′i, b

′
i). We assume that for any

Boolean input q ∈ {0, 1}` the evaluation y is unambiguous. That is, the prover
cannot produce two distinct evaluations together with accepting proofs. We need
to show that the same holds for general inputs q ∈ F`. Focusing on i = 1, for
every z1 ∈ {0, 1}, consider an experiment where the CRS encrypts q = (z1, 0

`−1)
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and q′ = 0`. We first argue that the line given by a′1, b
′
1 is also unambiguous.

Since q−1 = q′−1, when the proof is accepted we have that (a1, b1) = (a′1, b
′
1) and

therefore y = a′1·z1+b′1. If the prover could produce two different lines a′1, b
′
1, since

y is unambiguous, the two lines must agree on z1. Therefore, given only sk′ we
can decrypt the two lines and recover their unique intersection point z1, thereby
contradicting semantic security under sk. Now consider the same experiment
except that z1 is in F instead of {0, 1}. Again by semantic security, the proof
must continue to be accepting and the line a′1, b

′
1 must remain unambiguous

(since this can be tested without sk). The equality q−1 = q′−1 still holds and
hence also y = a′1 · z1 + b′1. Therefore, this argument shows y must remain

unambiguous even for q ∈ F × {0, 1}`−1. More generally, for each i ∈ [0, ` − 1]

we use this argument to show that the unambiguity of y for q ∈ Fi × {0, 1}`−i

implies its unambiguity for q ∈ Fi+1 × {0, 1}`−i−1 until we get unambiguity for
general inputs q ∈ F`.

Equality proof. In an equality proof the CRS contains a pair of inputs q, q′ ← F`
each encrypted independently under a different key. The prover can homomor-
phically evaluate a multilinear6 polynomial X on both q and q′ and provide
the encrypted evaluations y = X(q) and y′ = X(q′) together with a proof of
equality. The soundness requirement of our equality proof is that if q = q′ and
the verifier accepts then y = y′ with overwhelming probability. Intuitively, the
equality proof does not guarantee that the encrypted evaluations are equal, but
that the prover computed both evaluations using the same polynomial.

We construct such an equality proof using the zero-testable encryption. The
first challenge is that the inputs q and q′ are encrypted under different keys.
Fortunately, the zero-testable homomorphic encryption from KPY is multi-key
homomorphic7 and therefore we can compute jointly over q and q′ under both
keys.

A natural approach to implementing the equality proof is to simply have the
verifier homomorphically compute the value y − y′ and zero-test the resulting
ciphertext. This approach, however, does not achieve completeness. Even if the
prover is honestly evaluating the same polynomial X on both inputs, since q
are q′ are encrypted independently the verifier’s ciphertext would be a non-
trivial encryption of zero and would fail the zero-test. In more detail, the tested
ciphertext is obtained by evaluating the polynomial D(z, z′) = X(z)−X(z′) on
a ciphertext encrypting (q, q′). Unless X is constant, we have that D(z, z′) 6= 0
for some z 6= z′ and hence, starting from a CRS encrypting z and z′ would lead
the zero-test to fail. Therefore, by semantic security the test must also fail when
the CRS encrypts q = q′.

6 Our equality proof supports any polynomial of low individual degree. For simplicity,
in this overview we focus on the multilinear case.

7 In KPY, as well as in this work, multi-key homomorphism is also used to evaluate
the proof polynomials over multiple queries that are encrypted under different keys.
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Equality proof from zero-testable encryption. Instead we take a different ap-
proach. Suppose that the prover’s polynomial X is sparse. In this case, the
prover can simply send X’s coefficients and the verifier can evaluate X on both
inputs by itself. For a general polynomial X our idea is inspired by the interactive
sum-check proof [25]. In a nutshell, we restrict X to a sequence of axis-parallel
lines transitioning from q to q′. Each restriction is sparse and its consistency can
be checked by the verifier using the weak zero-test.

In more detail, for every i ∈ [`] the prover computes the polynomials Ai, Bi :
F`−1 → F where X(z) = Ai(z−i)·zi+Bi(z−i). We denote by q̃(i) the vector whose
first i coordinates are from q and whose last ` − i coordinates are from q′ (so
q̃(0) = q′ and q̃(`) = q). The prover homomorphically computes the evaluations
y = X(q) and y′ = X(q′) and the equality proofs that contain for every i ∈ [`]
the encrypted evaluations:

yi = X
(
q̃(i)
)
, ai = Ai

(
q̃
(i)
−i

)
, bi = Bi

(
q̃
(i)
−i

)
,

y′i = X
(
q̃(i−1)

)
, a′i = Ai

(
q̃
(i−1)
−i

)
b′i = Bi

(
q̃
(i−1)
−i

)
.

The verifier uses the weak zero-test to check that y′ = y′1, y = y`, and yi = y′i+1

for every i ∈ [` − 1]. Additionally, for every i ∈ [`] the verifier checks that
yi = ai · qi + bi, y

′
i = a′i · q′i + b′i, and (ai, bi) = (a′i, b

′
i). The completeness of

the proof follows from the properties of the weak zero-test together with the

fact that, by construction, q̃
(i)
−i and q̃

(i−1)
−i are encrypted by the same ciphertext.

To show soundness, we assume that q = q′ and use the equalities tested by the
verifier to deduce that y = y′.

Unambiguity of the multilinearity proof. To achieve the unambiguity of the eval-
uations of X we added multilinearity proofs. Thus, to show the unambiguity of
the quasi-argument proof, we must also guarantee that the multilinearity proofs
themselves are unambiguous.

Unambiguity of the proof polynomials. In addition to the evaluations of X the
KPY quasi-argument contains the evaluations of the proof polynomials which
must also be made unambiguous. To argue the unambiguity of these evaluations
we rely on the tests performed by the KPY verifier designed to check the con-
sistency between the proof polynomials and X. We show that if the evaluations
of X are unambiguous and the evaluations of the proof polynomials pass the
verifier’s zero-tests, then the evaluations of the proof polynomials must also be
unambiguous.

Towards both ends, we use some of the techniques discussed above as well as
additional tools, some of which use modifications of the KPY encryption scheme.
We refer the reader to the full version for more details.

Unambiguity of ciphertexts. So far we focused on the unambiguity of the en-
crypted answers. Next, we argue the unambiguity of the ciphertexts themselves.
That is, we show that given the CRS that contains an encryption of a random
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query q ∈ F`, an adversarial prover cannot find two different ciphertexts that
decrypt to the same value under the same key. Together with the unambiguity
of the answers (in the multilinearity proof and proof polynomials), this implies
the unambiguity of the entire quasi-argument proof. We show that the KPY en-
cryption scheme already satisfies the unambiguity of ciphertexts property. In the
KPY encryption scheme, the secret key is a random element sk ∈ F and a cipher-
text encrypting an element q ∈ F is given by an injective encoding of a random
low-degree polynomial P such that P (sk) = q. Therefore, the encryption of the
random query q ∈ F` in the CRS is just an encoding of random polynomials and
therefore, it does not reveal any information about sk. Finding two ciphertexts
that encrypt the same value requires finding two encoded low-degree polynomi-
als that agree on sk which is information theoretically impossible. Note that this
unambiguity of ciphertexts only holds when the CRS contains encryptions of
random queries in F` and therefore it is crucial that we prove the unambiguity
of the encrypted answers for general queries and not just for Boolean queries.

Bootstrapping preserves unambiguity. Finally, to go from the unambiguity of the
quasi-argument to that of the delegation scheme, we need to show that the boot-
strapping step preserves unambiguity. In more detail, the bootstrapping step uses
the quasi-argument recursively: at the base of the recursion each quasi-argument
is for a formula that encodes a small block of the delegated computation. We
can directly show that each of these base formulas is locally unambiguous and
therefore their quasi-argument proofs are also unambiguous. Then, to reduce the
number of quasi-argument proofs, KPY use the quasi-argument again to argue
about a formula that verifies multiple lower-level quasi-argument proofs. The
fact that this formula is also locally unambiguous follows from the unambiguity
of these lower-level proofs. Therefore, its quasi-argument proof is also unam-
biguous and the unambiguity of the entire delegation scheme proof follows by
induction.

2.3 Related Work

Comparison with Choudhuri et al. and followup work. The PPAD-hardness
proof of Choudhuri et al. [13] and followup work [12, 17, 24] can all be seen
as as constructing an updatable and unambiguous delegation scheme for some
particular contrived language. In [13] the language is related to the computation
of a round-collapsed sum-check proof and [12, 17] start from the protocol of
Pietrzak [28] instead of sum-check. In contrast, this work constructs updatable
and unambiguous delegation scheme for general (bounded space) deterministic
computations.

The delegation schemes in [13, 12, 17, 24] are based on an interactive protocol
that is made non-interactive via the Fiat-Shamir transform. The unambiguity
property is inherited from that of the original protocol. Updatability relies on
the recursive structure of the interactive protocol and requires augmenting the
language to depend on the protocol itself. In comparison, the delegation scheme
in our work is based on the scheme from [20] for general computation and relies on
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a quasi-polynomial version of their assumption on bilinear groups. Updatability
follows from the bootstrapping technique developed in [20] and the focus of this
work is on achieving ambiguity.

Following the work of Canetti et al. [9] on instantiating the Fiat-Shamir
huristic from simpler assumptions, Choudhuri et al. [13] show that that the
security of their sum-check based scheme follows from a strong assumption on the
“optimal security” of Learning with Errors against quasi polynomial attacks. In
a recent work (concurrent to ours) Lombardi and Vaikuntanathan [24] start from
Pietrzak’s protocol and replace the Fiat-Shamir assumption by sub-exponential
hardness of Learning with Errors.

In addition to the assumption behind the delegation scheme, previous work
as well as ours rely on the hardness of the underlying language. Choudhuri et
al. [13] assume hardness of #SAT with poly-logarithmic number of variables,
while [12, 17, 24] rely on super-polynomial or sub-exponential hardness of the
repeated squaring problem that is behind Pietrzak’s protocol and the time-lock
puzzle of [30]. Since our delegation scheme supports general languages we can
rely on any hard language that can be decided in quasi-polynomial time and
polynomial space.

Hardness of local search. Recently, Bitansky and Gerichter [5] showed the hard-
ness of the class Polynomial Local Search (PLS), which is a different subclass of
TFNP that contains CLS, based on the delegation scheme of KPY [20]. They
observe that the KPY delegation scheme can be made incremental and use this
to show PLS hardness. For hardness in PPAD and CLS, however, we need the
unambiguity property achieved in this work.

3 Delegation

In this section we define the notion of a non-interactive delegation scheme for
deterministic Turing machines.

Fix any Turing machineM. Let T (n) be an upper bound on the running time
of M on inputs of length n and let S(n) be an upper bound on the size of M’s
configuration which includes the machine’s state, input tape and all of the work
tapes. We always assume, without loss of generality, that T (n) ≥ S(n) ≥ n. Let
UM denote the language such that (cf, cf ′, t) ∈ UM if and only ifM transitions
from configuration cf to configuration cf ′ in exactly t steps. Let UMn ⊆ UM be
the set of instances (cf, cf ′, t) ∈ UM such that the input tapes in cf, cf ′ are of
length n.

A non-interactive delegation scheme for UM consists of algorithms
(Del.S,Del.P,Del.V) with the following syntax:

Setup: The probabilistic setup algorithm Del.S takes as input a security pa-
rameter κ ∈ N and an input length n ∈ N, and outputs a pair of public keys:
a prover key pk and a verifier key vk.
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Prover: The deterministic prover algorithm Del.P takes as input a prover key
pk and an instance x ∈ UM. It outputs a proof Π.

Verifier: The deterministic verifier algorithm Del.V takes as input a verifier
key vk, an instance x ∈ UM and a proof Π. It outputs a bit indicating if it
accepts or rejects.

Definition 3.1. A non-interactive delegation scheme (Del.S,Del.P,Del.V) for
UM with setup time TS = TS(κ, n) and proof length LΠ = LΠ(κ, n) satisfies the
following requirements:

Completeness. For every κ, n ∈ N such that T (n) ≤ 2κ and x = (cf, cf ′, t) ∈
UMn :

Pr

[
Del.V(vk, x,Π) = 1

∣∣∣∣ (pk, vk)← Del.S(κ, n)
Π ← Del.P(pk, x)

]
= 1 .

Efficiency. In the completeness experiment above:

– The setup algorithm runs in time TS(κ, n).
– The prover runs in time t · O(LΠ(κ, n)) and outputs a proof of length
LΠ(κ, n).

– The verifier runs in time O(|x|+ LΠ(κ, n)).

(Λ, n)-Soundness. For every poly(Λ(κ))-size adversary Adv there exists a neg-
ligible function µ such that for every κ ∈ N:

Pr

[
Del.V(vk, x,Π) = 1
x /∈ UMn(κ)

∣∣∣∣ (pk, vk)← Del.S(κ, n(κ))
(x,Π)← Adv(pk, vk)

]
≤ µ(Λ(κ)) .

Next we define the notion of an unambiguous delegation scheme [29]. We
adapt the definition to our setting.

Definition 3.2 ((Λ, n)-Unambiguity). A non-interactive delegation scheme
(Del.S,Del.P,Del.V) for UM is (Λ, n)-unambiguous if for every poly(Λ(κ))-size
adversary Adv there exists a negligible function µ such that for every κ ∈ N:

Pr

Del.V(vk, x,Π) = 1
Del.V(vk, x,Π ′) = 1
Π 6= Π ′

∣∣∣∣∣∣ (pk, vk)← Del.S(κ, n(κ))
(x,Π,Π ′)← Adv(pk, vk)

 ≤ µ(Λ(κ)) .

Lastly we define the notion of an updatable delegation scheme.

Definition 3.3 (Updatability). A non-interactive delegation scheme
(Del.S,Del.P,Del.V) for UM is updatable if there exists a determinis-
tic polynomial-time algorithm Del.U such that for every κ, n ∈ N such that
T (n) ≤ 2κ, and x1, x2 ∈ UMn of the form x1 = (cf, cf1, t) and x2 = (cf, cf2, t+1):

Pr

 cf ′2 = cf2
Π ′2 = Π2

∣∣∣∣∣∣∣∣
(pk, vk)← Del.S(κ, n)
Π1 ← Del.P(pk, x1)
Π2 ← Del.P(pk, x2)
(cf ′2, Π

′
2)← Del.U(pk, x1, Π1)

 = 1 .
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4 PPAD-Hardness

The complexity class PPAD is a subclass of TFNP that consists of all problems
that are polynomial-time reducible to the End-of-the-Line problem. We show
PPAD-hardness by following the blueprint of Choudhuri et al. [13] and refer the
reader to their work for background material. Specifically, we show the hardness
of the subclass CLS that lies in the intersection of PPAD and PLS. Towards
this end, we consider the Relaxed-Sink-of-Verifiable-Line problem that was defined
and proven to be reducible to a problem in CLS in [13].

Definition 4.1 ([13]). A Relaxed-Sink-of-Verifiable-Line (rSVL) instance
(Succ,Ver, T, v0) consists of T ∈ [2m], v0 ∈ {0, 1}m, and circuits Succ :
{0, 1}m → {0, 1}m and Ver : {0, 1}m × [T ] → {0, 1} with the guarantee that for
every (v, i) ∈ {0, 1}m × [T ] such that v = Succi(v0), it holds that Ver(v, i) = 1.
A solution consists of one of the following:

1. The sink: A vertex v ∈ {0, 1}m such that Ver(v, T ) = 1.
2. A false positive: A pair (v, i) ∈ {0, 1}m× [2m] such that v 6= Succi(v0) and

Ver(v, i) = 1.

Lemma 4.1 ([13]). Relaxed-Sink-of-Verifiable-Line is polynomial-time reducible
to a problem in CLS.

Hard search problems. We say that a search problem given by a relation R is
T -hard in the worst-case if for every poly(T (n))-size circuit Adv = {Advn} there
exists an x ∈ {0, 1}n such that (x,Advn(x)) /∈ R.

We say the problem is T -hard in the average-case if there exists an effi-
ciently (polynomial-time) sampleable distribution D = {Dn} such that for every
poly(T (n))-size circuit Adv = {Advn} there exists a negligible function µ such
that for every n ∈ N:

Pr
x←Dn

[(x,Advn(x)) ∈ R] ≤ µ(T (n)) .

Next we show the existence of a hard search problem and the existence of
a non-interactive delegation scheme that is unambiguous and updatable implies
rSVL is hard.

We say a function T̂ is well-behaved if for every polynomial p, it holds that
T̂ (p(n)) = poly(T̂ (n)).

Theorem 4.1. Let R be a search problem that is solvable by a deterministic
Turing machine M that runs in time T = T (n) = nω(1) and space S = S(n) =

poly(n), and let T̂ = T̂ (n) be a well-behaved function such that R is T̂ -hard in
the average-case (respectively in the worst-case).

If there exists a non-interactive delegation scheme for UM with setup time
TS(κ, n) = poly(n) and proof length LΠ(κ, n) = poly(n), and functions Λ = Λ(κ)
and n = n(κ) such that T (n(κ)) ≤ Λ(κ) and the delegation scheme is (Λ, n)-

sound, (Λ, n)-unambiguous, and updatable, then rSVL is T̂ -hard in the average-
case (respectively in the worst-case).
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Proof. We focus on the setting of average-case hardness. The proof for worst-case
hardness is similar.

Let R be T̂ -hard with respect to a distribution D = {Dn}. Let
(Del.S,Del.P,Del.V,Del.U) be a delegation scheme as in the theorem statement.
Let A′ denote a circuit for solving rSVL. We construct a circuit A that uses A′

to solve R.
Given as input an instance x ∈ {0, 1}n, the algorithm A proceeds as follows:

1. Set the security parameter κ such that |x| = n(κ). Sample (pk, vk) ←
Del.S(κ, n). Let m = S(n) + LΠ(κ, n).

2. Let cf0 be the initial configuration of the Turing machineM on input x. We
assume without loss of generality that at every time step, the configuration
ofM contains an index i ∈ [T ] corresponding to the current time step. Let
v0 = (cf0, Π0) where Π0 ← Del.P(pk, (cf0, cf0, 0)).

3. Let Succ = Succx,pk : {0, 1}m → {0, 1}m be the circuit that on input
(cfi, Πi), parses the index i ∈ [0, T ] from cfi and outputs (cfi+1, Πi+1) ←
Del.U(pk, (cf0, cfi, i), Πi).

4. Let Ver = Verx,vk : {0, 1}m × [T ] → {0, 1} be the circuit that on in-
put (v, i) ∈ {0, 1}m × [T ], parses v = (cf, Π) and returns the output of
Del.V(vk, (cf0, cf, i), Π).

5. Run A′ on (Succ,Ver, T, v0).
(a) If A′ outputs v ∈ {0, 1}m such that Ver(v, T ) = 1 (the sink), then parse

v = (cf, Π) and output the solution for x contained in cf.
(b) Otherwise output ⊥.

We construct the following T̂ -hard distribution D′ of rSVL instances: sample
x ← Dn and run Steps 1 to 4 of A to generate (Succ,Ver, T, v0) of length ` =
`(n) ≥ n.

First we show D′ = {D′`} is efficiently sampleable. By the efficiency guaran-
tees of the delegation scheme (Del.S,Del.P,Del.V,Del.U) (given by the theorem
statement, Definition 3.1, Definition 3.3), Steps 1 to 4 take poly(n) = poly(`)
steps. Since D is efficiently sampleable, this shows D′ is efficiently sampleable.

Next we argue that D′ is supported on valid rSVL instances. We show that
for any x ∈ {0, 1}n, A generates (Succ,Ver, T, v0) such that for every i ∈ [T ]
it holds that Ver(Succi(v0), i) = 1. Consider any i ∈ [T ] and let v = (cf, Π) =
Succi(v0). Let cfi be the unique configuration such that (cf0, cfi, i) ∈ UMn and
let Πi = Del.P(pk, (cf0, cfi, i)). By the updatability of the delegation scheme
(Definition 3.3), (cf, Π) = (cfi, Πi) so by the completeness of the delegation
scheme (Definition 3.1), Ver(v, i) = 1, as desired.

To show that R is T̂ -hard with respect to D, assume towards contradiction
there exists a poly(T̂ (`))-size circuit A′ = {A′`} and polynomial function p′ such
that for infinitely many ` ∈ N, given an rSVL instance sampled from D′`, A′` out-

puts a solution (the sink or a false positive) with probability at least 1/p′(T̂ (`)).

Since Steps 1 to 4 take poly(n) steps, ` = poly(n) so T̂ (`) = poly(T̂ (n)). Let p

be a polynomial such that p′(T̂ (`)) ≤ p(T̂ (n)). Since D′ is efficiently sampleable

and A′ is a circuit of size poly(T̂ (n)), A is a circuit of size poly(T̂ (n)). It follows
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from our assumption that for x ← D, A′ outputs a rSVL solution (the sink or

a false positive) in Step 5 with probability at least 1/p(T̂ (n)). Below we show

A′ outputs a false positive with probability at most 1/2p(T̂ (n)) and therefore it

outputs the sink with probability at least 1/2p(T̂ (n)). In this case, we use the
sink to recover a solution for x.

Assume towards contradiction that for infinitely many n ∈ N, A′ out-
puts a false positive (v, i) with probability at least 1/2p(T̂ (n)) ≥ 1/2p(Λ(κ))

(since T̂ (n) < T (n) ≤ Λ(κ)). If (v = (cf, Π), i) is a false positive, then
Del.V(vk, (cf0, cf, i), Π) = Ver(v, i) = 1 and (cf, Π) 6= (cfi, Πi) = Succi(v0),
so either cf 6= cfi, or cf = cfi and Π 6= Πi. One of the two cases must occur
for infinitely many κ ∈ N with probability at least 1/4p(Λ(κ)). In the first case,
cf 6= cfi, and A′ can be used to break the (Λ, n)-soundness of the delegation (Def-
inition 3.1): (cf0, cf, i) 6∈ UMn but Del.V(vk, (cf0, cf, i), Π) accepts. In the second
case, cf = cfi and Π 6= Πi, and A′ can be used to break the (Λ, n)-unambiguity
of the delegation (Definition 3.2): by the efficiency of the delegation (cfi, Πi) can
be computed in time T (n) · poly(n) ≤ poly(Λ(κ)), and Del.V(vk, (cf0, cfi, i), Π)
and Del.V(vk, (cf0, cfi, i), Πi) both accept.

This shows A′ outputs a false positive with probability at most 1/2p(T̂ (n)).

Thus for infinitely many n ∈ N, with probability at least 1/2p(T̂ (n)), A′ outputs
the sink v = (cf, Π) and (cf, Π) = SuccT (v0). By the updatability of the del-
egation (Definition 3.3), (cf0, cf, T ) ∈ UMn , i.e. cf is the configuration of M on
input x after T steps so it contains a solution for x. In this case, A outputs this
solution, contradicting the T̂ -hardness of R.

5 Our Results

In the full version of this work we construct a non-interactive delegation scheme
that is unambiguous and updatable, proving the theorem below. This theorem
is a generalization of Theorem 1.2. The delegation scheme relies on the following
decisional assumption on groups with bilinear maps (also stated in Assump-
tion 1.3). The assumption is parameterized by a function Λ = Λ(κ).

Assumption 5.1. There exists an ensemble of groups G = {Gκ} of prime order
p = p(κ) = 2Θ(κ) with a non-degenerate bilinear map such that for every d(κ) =
O(logΛ(κ)) and poly(Λ(κ))-size adversary Adv, there exists a negligible function
µ such that for every κ ∈ N:

Pr


b′ = b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b← {0, 1}
g ← G
s← Zp
t0 ← Zp
t1 ← s2d+1

b′ ← Adv

((
gs
i·tjb
)
i∈[0,d]
j∈[0,2]

)


≤ 1

2
+ µ(Λ(κ)) .
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Theorem 5.2. For any deterministic Turing machine M that runs in time
T = T (n) and space S = S(n) ≥ n, and for every Λ = Λ(κ) and n = n(κ)
such that T (n(κ)) ≤ Λ(κ), let d = d(κ) = logn T (n) and let Λ∗(κ) =

max{Λ(κ), S(n(κ))d, κd
2}. Under the Λ∗-hardness of Assumption 5.1, there ex-

ists a non-interactive delegation scheme for UM with setup time TS(κ, n) =
poly(S(n), κd) and proof length LΠ(κ, n) = poly(S(n), κd) that is (Λ, n)-sound,
(Λ, n)-unambiguous, and updatable.

Next we state corollaries of Theorem 5.2 for different settings of parameters.

Corollary 5.1. For any deterministic Turing machine M that runs in time
T = T (n) and space S = S(n) = poly(n), and for every Λ = Λ(κ) and

n = n(κ) ≥ 2
√
logΛ·log κ such that T (n(κ)) ≤ Λ(κ), under the Λ-hardness of

Assumption 5.1, there exists a non-interactive delegation scheme for UM with
setup time TS(κ, n) = poly(n) and proof length LΠ(κ, n) = poly(n) that is (Λ, n)-
sound, (Λ, n)-unambiguous, and updatable.

Proof. It suffices to prove that max{Λ(κ), S(n(κ))d, κd
2} ≤ poly(Λ(κ)) where

d = d(κ) = logn T (n), as follows:

S(n(κ))d = n(κ)O(d) = n(κ)O(logn T (n)) = poly(T (n)) ≤ poly(Λ(κ))

κd = κlogn T (n) ≤ κlogn Λ(κ) = 2
logΛ·log κ

logn ≤ n
√

logΛ·log κ
logn ≤ n

κd
2

≤ nd = nlogn T (n) = T (n) ≤ Λ(κ) .

Corollary 5.2 (Quasi-polynomial security). For any constant c ≥ 1 and
any deterministic Turing machine M that runs in time T = T (n) ≤ n(logn)

a

where a = (c − 1)/(c + 1) and space S = S(n) = poly(n), let Λ = Λ(κ) =

2(log κ)
c

and n = n(κ) = 2
√
logΛ·log κ . Under the Λ-hardness of Assump-

tion 5.1, there exists a non-interactive delegation scheme for UM with setup
time TS(κ, n) = poly(n) and proof length LΠ(κ, n) = poly(n) that is (Λ, n)-
sound, (Λ, n)-unambiguous, and updatable.

Proof. By Corollary 5.1, it suffices to prove that T (n) ≤ Λ(κ) by showing:

n(logn)
a

= 2(logn)
a+1

≤ 2(log κ)
c

for a = (c− 1)/(c+ 1) .

It suffices to prove that:

(log n)a+1 ≤ (log κ)c for a = (c− 1)/(c+ 1) .

This follows from the calculation:

(log n)a+1 = (logΛ · log κ)
a+1
2 = ((log κ)c · log κ)

a+1
2 = (log κ)

(c+1)(a+1)
2 = (log κ)c .

By Corollary 5.2, Theorem 4.1 implies the following corollary.
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Corollary 5.3. Assume Assumption 5.1 is Λ-hard for Λ = Λ(κ) = 2(log κ)
c

for
some c ≥ 1. If there exists a search problem R that is solvable by a deterministic
Turing machineM that runs in time T = T (n) ≤ n(logn)a where a = (c−1)/(c+

1) and space S = S(n) = poly(n), and a well-behaved function T̂ = T̂ (n) such

that R is T̂ -hard in the average-case (respectively in the worst-case), then rSVL

is T̂ -hard in the average-case (respectively in the worst-case).

Corollary 5.4 (Sub-exponential security). For any constant ε < 1 and any

deterministic Turing machine M that runs in time T = T (n) ≤ n
ε
2 ·

logn
log logn and

space S = S(n) = poly(n), let Λ = Λ(κ) = 2κ
ε

and n = n(κ) = 2
√
logΛ·log κ

. Under the Λ-hardness of Assumption 5.1, there exists a non-interactive del-
egation scheme for UM with setup time TS(κ, n) = poly(n) and proof length
LΠ(κ, n) = poly(n) that is (Λ, n)-sound, (Λ, n)-unambiguous, and updatable.

Proof. By Corollary 5.1, it suffices to prove that T (n) ≤ Λ(κ) by showing:

n
ε
2 ·

logn
log logn = 2

ε·(logn)2

2 log logn ≤ 2κ
ε

.

It suffices to prove that:
ε · (log n)2

2 log log n
≤ κε .

This follows from the calculation:

log n = (logΛ · log κ)1/2 = (κε · log κ)1/2 ≥ κε/2

ε · (log n)2

2 log log n
=
ε · κε · log κ

2 log log n
≤ ε · κε · log κ

2 · (ε/2) · log κ
= κε .

By Corollary 5.4, Theorem 4.1 implies the following corollary.

Corollary 5.5. Assume Assumption 5.1 is Λ-hard for Λ = Λ(κ) = 2κ
ε

for
some ε < 1. If there exists a search problem R that is solvable by a deterministic

Turing machine M that runs in time T = T (n) ≤ n
ε
2 ·

logn
log logn and space S =

S(n) = poly(n), and a well-behaved function T̂ = T̂ (n) such that R is T̂ -hard

in the average-case (respectively in the worst-case), then rSVL is T̂ -hard in the
average-case (respectively in the worst-case).
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