
Proof-Carrying Data without Succinct Arguments ?

Benedikt Bünz
benedikt@cs.stanford.edu

Stanford University

Alessandro Chiesa
alexch@berkeley.edu

UC Berkeley

William Lin
will.lin@berkeley.edu

UC Berkeley

Pratyush Mishra
pratyush@berkeley.edu

UC Berkeley

Nicholas Spooner
nspooner@bu.edu

Boston University

Abstract. Proof-carrying data (PCD) is a powerful cryptographic primitive that
enables mutually distrustful parties to perform distributed computations that run
indefinitely. Known approaches to construct PCD are based on succinct non-
interactive arguments of knowledge (SNARKs) that have a succinct verifier or a
succinct accumulation scheme.
In this paper we show how to obtain PCD without relying on SNARKs. We
construct a PCD scheme given any non-interactive argument of knowledge (e.g.,
with linear-size arguments) that has a split accumulation scheme, which is a weak
form of accumulation that we introduce.
Moreover, we construct a transparent non-interactive argument of knowledge for
R1CS whose split accumulation is verifiable via a (small) constant number of
group and field operations. Our construction is proved secure in the random oracle
model based on the hardness of discrete logarithms, and it leads, via the random
oracle heuristic and our result above, to concrete efficiency improvements for
PCD.
Along the way, we construct a split accumulation scheme for Hadamard products
under Pedersen commitmentsand for a simple polynomial commitment scheme
based on Pedersen commitments.
Our results are supported by a modular and efficient implementation.

Keywords: proof-carrying data; accumulation schemes; recursive proof composi-
tion

1 Introduction

Proof-carrying data (PCD) [CT10] is a powerful cryptographic primitive that enables
mutually distrustful parties to perform distributed computations that run indefinitely,
while ensuring that the correctness of every intermediate state of the computation can
be verified efficiently. A special case of PCD is incrementally-verifiable computation
(IVC) [Val08]. PCD has found applications in enforcing language semantics [CTV13],
verifiable MapReduce computations [CTV15], image authentication [NT16], blockchains
[Mina; KB20; BMRS20; CCDW20], and others. Given the theoretical and practical

? The full version of this paper is available online[BCL+20].

relevance of PCD, it is an important research question to build efficient PCD schemes
from minimal cryptographic assumptions.
PCD from succinct verification. The canonical construction of PCD is via recursive
composition of succinct non-interactive arguments (SNARGs) [BCCT13; BCTV14;
COS20]. Informally, a proof that the computation was executed correctly for t steps
consists of a proof of the claim “the t-th step of the computation was executed correctly,
and there exists a proof that the computation was executed correctly for t− 1 steps”. The
latter part of the claim is expressed using the SNARG verifier itself. This construction
yields secure PCD (with IVC as a special case) provided the SNARG satisfies an adaptive
knowledge soundness property (i.e., is a SNARK). Efficiency requires the SNARK to
have sublinear-time verification, achievable via SNARKs for machine computations
[BCCT13] or preprocessing SNARKs for circuit computations [BCTV14; COS20].

Requiring sublinear-time verification, however, significantly restricts the choice of
SNARK, which limits what is achievable for PCD. These restrictions have practical
implications: the concrete efficiency of recursion is limited by the use of expensive curves
for pairing-based SNARKs [BCTV14] or heavy use of cryptographic hash functions for
hash-based SNARKs [COS20].
PCD from accumulation. Recently, [BCMS20] gave an alternative construction of
PCD using SNARKs that have succinct accumulation schemes; this developed and
formalized a novel approach for recursion sketched in [BGH19]. Informally, rather
than being required to have sublinear-time verification, the SNARK is required to be
accompanied by a cryptographic primitive that enables “postponing” the verification
of SNARK proofs by way of an accumulator that is updated at each recursion step.
The main efficiency requirement on the accumulation scheme is that the accumulation
procedure must be succinctly verifiable, and in particular the accumulator itself must be
succinct.

Requiring a SNARK to have a succinct accumulation scheme is a weaker condition
than requiring it to have sublinear-time verification. This has enabled constructing PCD
from SNARKs that do not have sublinear-time verification [BCMS20], which in turn
led to PCD constructions from assumptions and with efficiency properties that were not
previously achieved. Practitioners have exploited this freedom to design implementations
of recursive composition with improved practical efficiency [Halo20; Pickles20].
Our motivation. The motivation of this paper is twofold. First, can PCD be built from
a weaker primitive than SNARKs with succinct accumulation schemes? If so, can we
leverage this to obtain PCD constructions with improved concrete efficiency?

1.1 Contributions

We make theory and systems contributions that advance the state of the art for PCD:
(1) We introduce split accumulation schemes for relations, a cryptographic primitive
that relaxes prior notions of accumulation. (2) We obtain PCD from any non-interactive
argument of knowledge that satisfies this weaker notion of accumulation; surprisingly,
this allows for arguments with no succinctness whatsoever. (3) We construct a non-
interactive argument of knowledge based on discrete logarithms (and random oracles)
whose accumulation verifier has constant size (improving over the logarithmic-size

2

verifier of prior accumulation schemes in this setting). (4) We implement and evaluate
constructions from this paper and from [BCMS20].

We elaborate on each of these contributions next.

(1) Split accumulation for relations. Recall from [BCMS20] that an accumulation
scheme for a predicate Φ : X → {0, 1} enables proving/verifying that each input in
an infinite stream q1, q2, . . . satisfies the predicate Φ, by augmenting the stream with
accumulators. Informally, for each i, the prover produces a new accumulator acci+1

from the input qi and the old accumulator acci; the verifier can check that the triple
(qi, acci, acci+1) is a valid accumulation step, much more efficiently than running Φ on
qi. At any time, the decider can validate acci+1, which establishes that for all j ≤ i it
was the case that Φ(qj) = 1. The accumulator size (and hence the running time of the
three algorithms) cannot grow in the number of accumulation steps.

We extend this notion in two orthogonal ways. First we consider relations Φ : X ×
W → {0, 1} and now for a stream of instances qx1, qx2, . . . the goal is to establish that
there exist witnesses qw1, qw2, . . . such that Φ(qxi, qwi) = 1 for each i. Second, we
consider accumulators acci that are split into an instance part acci.x and a witness part
acci.w with the restriction that the accumulation verifier only gets to see the instance
part (and possibly an auxiliary accumulation proof pf). We refer to this notion as split
accumulation for relations, and refer to (for contrast) the notion from [BCMS20] as
atomic accumulation for languages.

The purpose of these extensions is to enable us to consider accumulation schemes in
which predicate witnesses and accumulator witnesses are large while still requiring the
accumulation verifier to be succinct (it receives short predicate instances and accumulator
instances but not large witnesses). We will see that such accumulation schemes are both
simpler and cheaper, while still being useful for primitives such as PCD.

See Section 2.1 for more on atomic vs. split accumulation, and the full version for
formal definitions.

(2) PCD via split accumulation. A non-interactive argument has a split accumulation
scheme if the relation corresponding to its verifier has a split accumulation scheme
(we make this precise later). We show that any non-interactive argument of knowledge
(NARK) having a split accumulation scheme where the accumulation verifier is sublinear
can be used to build a proof-carrying data (PCD) scheme, even if the NARK does not
have sublinear argument size. This significantly broadens the class of non-interactive
arguments from which PCD can be built, and is the first result to obtain PCD from
non-interactive arguments that need not be succinct. Similarly to [BCMS20], if the
NARK and accumulation scheme are post-quantum secure, so is the PCD scheme. (It
remains an open question whether there are non-trivial post-quantum instantiations of
these.)

Theorem 1 (informal). There is an efficient transformation that compiles any NARK with
a split accumulation scheme into a PCD scheme. If the NARK and its split accumulation
scheme are zero knowledge, then the PCD scheme is also zero knowledge. Additionally,
if the NARK and its accumulation scheme are post-quantum secure then the PCD scheme
is also post-quantum secure.

3

Similarly to all PCD results known to date, the above theorem holds in a model where
all parties have access to a common reference string, but no oracles. (The construction
makes non-black-box use of the accumulation scheme verifier, and the theorem does not
carry over to the random oracle model.)

A corollary of Theorem 1 is that any NARK with a split accumulation scheme can be
“bootstrapped” into a SNARK for machine computations. (PCD implies IVC and, further
assuming collision-resistant hashing, also efficient SNARKs for machine computations
[BCCT13].) This is surprising: an argument with decidedly weak efficiency properties
implies an argument with succinct proofs and succinct verification!

See Section 2.2 for a summary of the ideas behind Theorem 1, and the full version
for technical details.
(3) NARK with split accumulation based on DL. Theorem 1 motivates the question
of whether we can leverage the weaker condition on the argument system to improve
the efficiency of PCD. Our focus is on minimizing the cost of the accumulation verifier
for the argument system, because it is the only component that is not used as a black
box, and thus typically determines concrete efficiency. Towards this end, we present a
(zero knowledge) NARK with (zero knowledge) split accumulation based on discrete
logarithms, with a constant-size accumulation verifier; the NARK has a transparent
(public-coin) setup.

Theorem 2 (informal). In the random oracle model and assuming the hardness of the
discrete logarithm problem, there exists a transparent (zero knowledge) NARK for R1CS
and a corresponding (zero knowledge) split accumulation scheme with the following
efficiency:

NARK split accumulation scheme
prover time verifier time argument size prover time verifier time decider time accumulator size

O(M) G O(M) G O(1) G O(M) G O(1) G O(M) G |acc.x| = O(1) G+O(1) F
O(M) F O(M) F O(M) F O(M) F O(1) F O(M) F |acc.w| = O(M) F

Above, M denotes the number of constraints in the R1CS instance, G denotes group
scalar multiplications or group elements, and F denotes field operations or field elements.

The NARK construction from Theorem 2 is particularly simple: it is obtained by
applying the Fiat–Shamir transformation to a sigma protocol for R1CS based on Ped-
ersen commitments (and linear argument size). The only “special” feature about the
construction is that, as we prove, it has a very efficient split accumulation scheme for the
relation corresponding to its verifier. By heuristically instantiating the random oracle,
we can apply Theorem 1 (and [BCCT13]) to obtain a SNARK for machines from this
modest starting point.

We find it informative to compare Theorem 2 and SNARKs with atomic accumulation
based on discrete logarithms [BCMS20]:
– the SNARK’s argument size is O(logM) group elements, much less than the NARK’s
O(M) field elements;

– the SNARK’s accumulator verifier uses O(logM) group scalar multiplications and
field operations, much more than the NARK’s O(1) group scalar multiplications and
field operations.

4

Therefore Theorem 2 offers a tradeoff that minimizes the cost of the accumulator at the
expense of argument size. (As we shall see later, this tradeoff has concrete efficiency
advantages.)

Our focus on argument systems based on discrete logarithms is motivated by the fact
that they can be instantiated based on efficient curves suitable for recursion: the Tweedle
[BGH19] or Pasta [Hop20] curve cycles, which follow the curve cycle technique for
efficient recursion [BCTV14]. (In fact, as our construction does not rely on any number-
theoretic properties of |G|, we could even use the (secp256k1,secq256k1) cycle,
where secp256k1 is the curve used in Bitcoin.) This focus on discrete logarithms is a
choice made for this paper, and we believe that our ideas can lead to efficiency improve-
ments to recursion in other settings (e.g., pairing-based and hash-based arguments) and
leave these to future work.

See Section 2.3 for a summary of the ideas behind Theorem 1, and the full version
for technical details.

(4) Split accumulation for common predicates. We obtain split accumulation schemes
with constant-size accumulation verifiers for common predicates: (i) Hadamard products
(and more generally any bilinear function) under Pedersen commitments (see Section 2.5
for a summary and the full version for details); (ii) polynomial evaluations under
Pedersen commitments (see Section 2.6 for a summary and the full version for technical
details). Split accumulation for Hadamard products is a building block that we use to
prove Theorem 1.

(5) Implementation and evaluation. We contribute a set of Rust libraries1 that real-
ize PCD via accumulation via modular combinations of interchangeable components:
(a) generic interfaces for atomic and split accumulation; (b) generic construction of
PCD from arguments with atomic and split accumulation; (c) split accumulation for
our zkNARK for R1CS; (d) split accumulation for Hadamard products under Peder-
sen commitments; (e) split accumulation for polynomial evaluations under Pedersen
commitments; (f) atomic accumulation for polynomial commitments based on inner
product arguments and pairings from [BCMS20]; (g) constraints for all the foregoing
accumulation verifiers. Practitioners interested in PCD will find these libraries useful for
prototyping and comparing different types of recursion (and, e.g., may help decide if
current systems based on atomic recursion [Halo20; Pickles20] are better off via split
recursion or not).

We additionally conduct experiments to evaluate our implementation. Our experi-
ments focus on determining the recursion threshold, which informally is the number of
constraints that need to be proved at each step of the recursion. Our evaluation demon-
strates that, over curves from the popular “Pasta” cycle [Hop20], the recursion threshold
for split accumulation of our NARK for R1CS is as low as 52,000 constraints, which is
at least 8.5× cheaper than the cost of IVC constructed from atomic accumulation for
discrete-logarithm-based protocols [BCMS20]. In fact, the recursion threshold is even
lower than that for IVC constructed from prior state-of-the-art pairing-friendly SNARKs
[Gro16]. While this comes at the expense of much larger proof sizes, this overhead is
attractive for notable applications (e.g., incrementally-verifiable ledgers).

1 https://github.com/arkworks-rs/accumulation

5

https://github.com/arkworks-rs/accumulation

See the full version for more details on our implementation and evaluation, respec-
tively.

Remark 1 (concurrent work). A concurrent work [BDFG20] studies similar questions
as this paper. Below we summarize the similarities and the differences between the two
papers.

Similarities. Both papers are study by the goal of reducing the cost of recursive
arguments. The main object of study in [BDFG20] is additive polynomial commitment
schemes (PC schemes), for which [BDFG20] considers different types of aggregation
schemes: (1) public aggregation in [BDFG20] is closely related to atomic accumulation
specialized to PC schemes from a prior work [BCMS20]; and (2) private aggregation in
[BDFG20] is closely related to split accumulation specialized to PC schemes from this
paper. Moreover, the private aggregation scheme for additive PC schemes in [BDFG20]
is similar to our split accumulation scheme for Pedersen PC schemes (overviewed in
Section 2.6 and detailed in the full version). The protocols differ in how efficiency
depends on the n claims to aggregate/accumulate: the verifier in [BDFG20] uses n+ 1
group scalar multiplications while ours uses 2n. (Informally, [BDFG20] first randomly
combines claims and then evaluates at a random point, while we first evaluate at a
random point and then randomly combine claims.)

Differences. The two papers develop distinct, and complementary, directions.
The focus of [BDFG20] is to design protocols for any additive PC scheme (and,

even more generally, any PC scheme with a linear combination scheme), including the
aforementioned private aggregation protocol and a compiler that endows a given PC
scheme with zero knowledge.

In contrast, our focus is to formulate a definition of split accumulation for general
relation predicates that (a) we demonstrate suffices to construct PCD, and (b) in the
random oracle model, we can also demonstrably achieve via a split accumulation scheme
based on Pedersen commitments. We emphasize that our definitions are materially
different from the case of atomic accumulation in [BCMS20], and necessitate careful
consideration of technicalities such as the flavor of adaptive knowledge soundness, which
algorithms can be allowed to query oracles, and so on. Hence, we cannot simply rely
on the existing foundations for atomic accumulation of [BCMS20] in order to infer the
correct definitions and security reductions for split accumulation. Overall, our theoretical
work enables us to achieve the first construction of PCD without succinct arguments,
and also to obtain a novel NARK for R1CS with a constant-size accumulation verifier.

We stress that the treatment of accumulation at a higher level of abstraction than
for PC schemes is essential to prove theorems about PCD. In particular, contrary to
what is claimed as a theorem in [BDFG20], it is not known how to build PCD from a
PC scheme with an aggregation/accumulation scheme in any model without making
additional heuristic assumptions. This is because obtaining a NARK from a PC scheme
using known techniques requires the use of a random oracle, which we do not know how
to accumulate. In contrast, we construct PCD in the standard model starting directly
from an aggregation/accumulation scheme for a NARK, and no additional assumptions.
Separately, the security of our accumulation scheme for a NARK in the standard model
is an assumption, which is conjectured based on a security proof in the ROM.

6

Another major difference is that we additionally contribute a comprehensive and
modular implementation of protocols from [BCMS20] and this paper, and conduct an
evaluation for the discrete logarithm setting. This supports the asymptotic improvements
with measured improvements in concrete efficiency.

2 Techniques

We summarize the main ideas behind our results. In Section 2.1 we discuss our new
notion of split accumulation for relation predicates, and compare it with the notion of
atomic accumulation for language predicates from [BCMS20]. In Section 2.2 we discuss
the proof of Theorem 1. In Section 2.3 we discuss the proof of Theorem 2; for this
we rely on a new result about split accumulation for Hadamard products, which we
discuss in Section 2.5. Then, in Section 2.6, we discuss our split accumulation for a
Pedersen-based polynomial commitment, which can act as a drop-in replacement for
polynomial commitments used in prior SNARKs, such as those of [BGH19]. Finally,
in Section 2.7 we elaborate on our implementation and evaluation. Figure 1 illustrates
the relation between our results. The rest of the paper contains technical details, and we
provide pointers to relevant sections along the way.

(zk)NARK with split accumulation

(zk)PCD

Theorem 1

instantiate random oracle

Theorem 2

zkNARK for R1CS
Σ-protocol for R1CS based

on Pedersen commitments

split accumulation for the zkNARK verifier
Theorem 3: split accumulation for

Hadamard products
+

random oracle model

no oracles

Theorem 4: split accumulation for

Pedersen polynomial commitments

Fig. 1: Diagram showing the relation between our results. Gray boxes within a result are
notable subroutines.

2.1 Accumulation: atomic vs split

We review the notion of accumulation from [BCMS20], which we refer to as atomic
accumulation, and then describe the weaker notion that we introduce, which we call split
accumulation.
Atomic accumulation for languages. An accumulation scheme for a language pred-
icate Φ : X → {0, 1} is a tuple of algorithms (P,V,D), known as the prover, verifier,
and decider, that enable proving/verifying statements of the form Φ(q1) ∧ Φ(q2) ∧ · · ·
more efficiently than running the predicate Φ on each input.

This is done as follows. Starting from an initial (“empty”) accumulator acc1, the
prover is used to accumulate the first input q1 to produce a new accumulator acc2 ←
P(q1, acc1); then the prover is used again to accumulate the second input q2 to produce
a new accumulator acc3 ← P(q2, acc2); and so on.

7

Each accumulator produced so far enables efficient verification of the predicate on
all inputs that went into the accumulator. For example, to establish that Φ(q1) ∧ · · · ∧
Φ(qT) = 1 it suffices to check that:
– the verifier accepts each accumulation step: V(q1, acc1, acc2) = 1, V(q2, acc2, acc3) =
1, and so on; and

– the decider accepts the final accumulator: D(accT) = 1.
Qualitatively, this replaces the naive cost T · |Φ| with the new cost T · |V|+ |D|. This is
beneficial when the verifier is much cheaper than checking the predicate directly and the
decider is not much costlier than checking the predicate directly. Crucially, the verifier
and decider costs (and, in particular, the accumulator size) should not grow with the
number T of accumulation steps (which need not be known in advance).

The properties of an accumulation scheme are summarized in the following infor-
mal definition, which additionally includes an accumulation proof used to check an
accumulation step (but is not passed on).

Definition 1 (informal). An accumulation scheme for a predicate Φ : X → {0, 1}
consists of a triple of algorithms (P,V,D), known as the prover, verifier, and decider,
that satisfies the following properties.

– Completeness: For every accumulator acc and predicate input q ∈ X , if D(acc) = 1
and Φ(q) = 1, then for (acc?, pf?)← P(acc, q) it holds that V(q, acc, acc?, pf?) = 1
and D(acc?) = 1.

– Soundness: For every efficiently-generated old accumulator acc, predicate input
q ∈ X , new accumulator acc?, and accumulation proof pf?, if D(acc?) = 1 and
V(q, acc, acc?, pf?) = 1 then, with all but negligible probability,Φ(q) = 1 and D(acc) =
1.

The above definition omits many details, such as the ability to accumulate multiple
accumulators [accj]mj=1 and multiple predicate inputs [qi]ni=1 in one step, the optional
property of zero knowledge (enabled by the accumulation proof pf?), the fact that
P,V,D should receive keys apk, avk, dk generated by an indexer algorithm that receives
the specification of Φ, and others. We refer the reader to [BCMS20] for more details.

The aspect that we wish to highlight here is the following: in order for the verifier
to be much cheaper than the predicate (|V| � |Φ|) it must be that the accumulator
itself is much smaller than the predicate (|acc| � |Φ|) because the verifier receives the
accumulator as input. (And if the accumulator is accompanied by a validity proof pf
then this proof must also be small.)

We refer to this setting as atomic accumulation because the entirety of the accumu-
lator is treated as one short monolithic string. In contrast, in this paper we consider a
relaxation where this is not the case, and will enable us to obtain new instantiations that
lead to new theoretical and practical results.

Split accumulation for relations. We propose a relaxed notion of accumulation: a
split accumulation scheme for a relation predicate Φ : X ×W → {0, 1} is again a tuple
of algorithms (P,V,D) as before. Split accumulation differs from atomic accumulation
in that: (a) an input to Φ consists of a short instance part qx and a (possibly) long
witness part qw; (b) an accumulator acc is split into a short instance part acc.x and a

8

(possibly) long witness part acc.w; (c) the verifier only needs the short parts of inputs
and accumulators to verify an accumulation step, along with a short validity proof instead
of the long witness parts.

As before, the prover is used to accumulate a predicate input qi = (qxi, qwi) into a
prior accumulator acci to obtain a new accumulator and validity proof (acci+1, pfi+1)←
P(qi, acci). Different from before, however, we wish to establish that given instances
qx1, . . . , qxT there exist (more precisely, a party knows) witnesses qw1, . . . , qwT such
that Φ(qx1, qw1) ∧ · · · ∧ Φ(qxT , qwT) = 1. For this it suffices to check that:
– the verifier accepts each accumulation step given only the short instance parts:
V(qx1, acc1.x, acc2.x, pf2) = 1, V(qx2, acc2.x, acc3.x, pf3) = 1, and so on; and

– the decider accepts the final accumulator (made of both the instance and witness part):
D(accT) = 1.

Again the naive cost T · |Φ| is replaced with the new cost T · |V|+ |D|, but now it could
be that an accumulator is, e.g., as large as |Φ|; we only need the instance part of the
accumulator (and predicate inputs) to be short.

The security property of a split accumulation scheme involves an extractor that
outputs a long witness part from a short instance part and proof, and is reminiscent of
the knowledge soundness of a succinct non-interactive argument. Turning this high level
description into a working definition requires some care, however, and we view this as a
contribution of this paper.2 Informally the security definition could be summarized as
follows.

Definition 2 (informal). A split accumulation scheme for a predicate Φ : X ×W →
{0, 1} consists of a triple of algorithms (P,V,D) that satisfies the following properties.

– Completeness: For every accumulator acc and predicate input q = (qx, qw) ∈
X ×W , if D(acc) = 1 and Φ(q) = 1, then for (acc?, pf?)← P(q, acc) it holds that
V(qx, acc.x, acc?.x, pf?) = 1 and D(acc?) = 1.

– Knowledge: For every efficiently-generated old accumulator instance acc.x, old input
instance qx, accumulation proof pf?, and new accumulator acc?, if D(acc?) = 1 and
V(qx, acc.x, acc?.x, pf?) = 1 then, with all but negligible probability, an efficient
extractor can find an old accumulator witness acc.w and predicate witness qw such
that Φ(qx, qw) = 1 and D((acc.x, acc.w)) = 1.

One can verify that split accumulation is indeed a relaxation of atomic accumulation:
any atomic accumulation scheme is (trivially) a split accumulation scheme with empty
witnesses. Crucially, however, a split accumulation scheme alleviates a major restriction
of atomic accumulation, namely, that accumulators and predicate inputs have to be short.

Next, in Section 2.2 we show that split accumulation suffices for recursive composi-
tion (which has surprising theoretical consequences) and then in Section 2.3 we present
a NARK with split accumulation scheme based on discrete logarithms.

2 By “working definition” we mean a definition that we can provably fulfill under concrete
hardness assumptions in the random oracle model, and, separately, that provably suffices for
recursive composition in the plain model without random oracles.

9

2.2 PCD from split accumulation

We summarize the main ideas behind Theorem 1, which obtains proof-carrying data
(PCD) from any NARK that has a split accumulation scheme. To ease exposition, in
this summary we focus on IVC, which can be viewed as the special case where a circuit
F is repeatedly applied. That is, we wish to incrementally prove a claim of the form
“FT (z0) = zT ” where FT denotes F composed with itself T times.

Prior work: recursion via atomic accumulation. Our starting point is a theorem from
[BCMS20] that obtains PCD from any SNARK that has an atomic accumulation scheme.
The IVC construction implied by that theorem is roughly follows.

– The IVC prover receives a previous instance zi, proof πi, and accumulator acci;
accumulates (zi, πi) with acci to obtain a new accumulator acci+1 and accumulation
proof pfi+1; and generates a SNARK proof πi+1 of the following claim expressed as a
circuit R (see Fig. 2, middle box): “zi+1 = F (zi), and there exist a SNARK proof πi,
accumulator acci, and accumulation proof pfi+1 such that the accumulation verifier
accepts ((zi, πi), acci, acci+1, pfi+1)”. The IVC proof for zi+1 is (πi+1, acci+1).

– The IVC verifier validates an IVC proof (πi, acci) for zi by running the SNARK
verifier on the instance (zi, acci) and proof πi, and running the accumulation scheme
decider on the accumulator acci.

In each iteration we maintain the invariant that if acci is a valid accumulator (according
to the decider) and πi is a valid SNARK proof, then the computation is correct up to the
i-th step.

Note that while it would suffice to prove that “zi+1 = F (zi), πi is a valid SNARK
proof, and acci is a valid accumulator”, we cannot afford to do so. Indeed: (i) proving
that πi is a valid proof requires proving a statement about the argument verifier, which
may not be sublinear; and (ii) proving that acci is a valid accumulator requires proving a
statement about the decider, which may not be sublinear. Instead of proving this claim
directly, we “defer” it by having the prover accumulate (zi, πi) into acci to obtain a new
accumulator acci+1. The soundness property of the accumulation scheme ensures that if
acci+1 is valid and the accumulation verifier accepts ((zi, πi), acci, acci+1, pfi+1), then
πi is a valid SNARK proof and acci is a valid accumulator. Thus all that remains to
maintain the invariant is for the prover to prove that the accumulation verifier accepts;
this is possible provided that the accumulation verifier is sublinear.

Our construction: recursion via split accumulation. Our construction naturally
extends the above idea to the setting of NARKs with split accumulation schemes. Indeed,
the only difference to the above construction is that the proof πi+1 generated by the
IVC prover is for the statement “zi+1 = F (zi), and there exist a NARK proof instance
πi.x, an accumulator instance acci.x, and an accumulation proof pfi+1 such that the
accumulation verifier accepts ((zi, πi.x), acci.x, acci+1.x, pfi+1)”, and accordingly the
IVC verifier runs the NARK verifier on ((zi, acci.x), πi) (in addition to running the
accumulation scheme decider on the accumulator acci). This is illustrated in Fig. 2 (lower
box). Note that the circuit R itself is unchanged from the atomic case; the difference is
in whether we pass the entire proof and accumulators or just the x part.

10

Proving that this relaxation yields a secure construction is more complex. Similar
to prior work, the proof of security proceeds via a recursive extraction argument, as we
explain next.

For an atomic accumulation scheme ([BCMS20]), one maintains the following
extraction invariant: the i-th extractor outputs (zi, πi, acci) such that πi is valid according
to the SNARK, acci is valid according to the decider, and FT−i(zi) = zT . The T -th
“extractor” is simply the malicious prover, and we can obtain the i-th extractor by
applying the knowledge guarantee of the SNARK to the (i+ 1)-th extractor. That the
invariant is maintained is implied by the soundness guarantee of the atomic accumulation
scheme.

For a split accumulation scheme, we want to maintain the same extraction invariant;
however, the extractor for the NARK will only yield (zi, πi.x, acci.x), and not the
corresponding witnesses. This is where we make use of the extraction property of the
split accumulation scheme itself. Specifically, we interleave the knowledge guarantees
of the NARK and accumulation scheme as follows: the i-th NARK extractor is obtained
from the (i+ 1)-th accumulation extractor using the knowledge guarantee of the NARK,
and the i-th accumulation extractor is obtained from the i-th NARK extractor using the
knowledge guarantee of the accumulation scheme. We take the malicious prover to be
the T -th accumulation extractor.
From sketch to proof. In the full version we give the formal details of our construction
and a proof of correctness. In particular, we show how to construct PCD, a more general
primitive than IVC. In the PCD setting, rather than each computation step having a
single input zi, it receives m inputs from different nodes. Proving correctness hence
requires proving that all of these inputs were computed correctly. For our construction,
this entails checking m proofs and m accumulators. To do this, we extend the definition
of an accumulation scheme to allow accumulating multiple instance-proof pairs and
multiple “old” accumulators.

We also note that the application to PCD leads to other definitional considerations,
which are similar to those that have appeared in previous works [COS20; BCMS20]. In
particular, the knowledge soundness guarantee for both the NARK and the accumulation
scheme should be of the stronger “multi-instance witness-extended emulation with
auxiliary input and output” type used in previous work. Additionally, the underlying
construction of split accumulation achieves only expected polynomial-time extraction
(in the ROM), and so the recursive extraction technique requires that we are able to
extract from expected-time adversaries.

Remark 2 (knowledge soundness for PCD vs. IVC). The proof of security for PCD
extracts a transcript one full layer at a time. Since a layer consists of many nodes, each
with an independently-generated proof and accumulator, a standard “single-instance”
extraction guarantee is insufficient in general. However, in the special case of IVC, every
layer consists of exactly one node, and so single-instance extraction does suffice.

Remark 3 (flavors of PCD). The recent advances in PCD from accumulation achieve
weaker efficiency guarantees than PCD from succinct verification, and formally these
results are incomparable. (Starting from weaker assumptions they obtain weaker conclu-
sions.) The essential feature that all these works achieve is that the efficiency of PCD

11

recursion circuit via
succinct verification

recursion circuit via
atomic accumulation

recursion circuit via
split accumulation

R
(
(ivk, zi+1), (zi, πi)

)
:

• check that zi+1 = F (zi)
• set SNARK instance xi := (ivk, zi)
• check that SNARK.V(ivk,xi, πi) = 1

R
(
(avk, zi+1, acci+1), (zi, πi, acci, pfi+1)

)
:

• check that zi+1 = F (zi)
• set predicate input qi := ((avk, zi, acci), πi)
• check that ACC.V(avk, qi, acci, acci+1, pfi+1) = 1

R
(
(avk, zi+1, acci+1.x), (zi, πi.x, acci.x, pfi+1)

)
:

• check that zi+1 = F (zi)
• set predicate instance qxi := ((avk, zi, acci.x), πi.x)
• check that ACC.V(avk, qxi, acci.x, acci+1.x, pfi+1) = 1

Fig. 2: Comparison of circuits used to realize recursion with different techniques.

algorithms is independent of the number of nodes in the PCD computation, which is
how PCD is defined.That said, prior work on PCD from succinct verification [BCCT13;
BCTV14; COS20] additionally guarantees that verifying a PCD proof is sublinear in
a node’s computation; and prior work on PCD from atomic accumulation [BCMS20]
merely ensures that a PCD proof has size (but not necessarily verification time) that is
sublinear in a node’s computation. The PCD scheme obtained in this paper does not have
these additional features: a PCD proof has size that is linear in a node’s computation.

2.3 NARK with split accumulation based on DL

We summarize the main ideas behind Theorem 2, which provides, in the discrete log-
arithm setting with random oracles, a (zero knowledge) NARK for R1CS that has a
(zero knowledge) split accumulation scheme whose accumulation verifier has constant
size (more precisely, performs a constant number of group scalar multiplications, field
operations, and random oracle calls).

Recall that R1CS is a standard generalization of arithmetic circuit satisfiability where
the “circuit description” is given by coefficient matrices, as specified below. (“◦” denotes
the entry-wise product.)

Definition 3 (R1CS problem). Given a finite field F, coefficient matrices A,B,C ∈
FM×N, and an instance vector x ∈ Fn, is there a witness vector w ∈ FN−n such that
Az ◦Bz = Cz for z := (x,w) ∈ FN?

We explain our construction incrementally. In Section 2.3.1 we begin by describing
a NARK for R1CS that is not zero knowledge, and a “basic” split accumulation scheme
for it that is also not zero knowledge. In Section 2.3.2 we show how to extend the
NARK and its split accumulation scheme to both be zero knowledge. In Section 2.3.3
we explain why the accumulation scheme described so far is limited to the special case
of 1 old accumulator and 1 predicate input (which suffices for IVC), and sketch how to

12

obtain accumulation for m old accumulators and n predicate inputs (which is required
for PCD); this motivates the problem of accumulating Hadamard products, which we
subsequently address in Section 2.5.

We highlight here that both the NARK and the accumulation scheme are particularly
simple compared to other protocols in the SNARK literature (especially with regard
to constructions that enable recursion!), and view this as a significant advantage for
potential deployments of these ideas in the real world.

2.3.1 Without zero knowledge
Let ck = (G1, . . . , GM) ∈ GM be a commitment key for the Pedersen commitment
scheme with message space FM, and let Commit(ck, a) :=

∑
i∈[M] ai · Gi denote its

commitment function. Consider the following non-interactive argument for R1CS:

P
(
ck, (A,B,C), x, w

)
V
(
ck, (A,B,C), x

)
z := (x,w) ∈ FN

zA := Az ∈ FM CA := Commit(ck, zA) ∈ G
zB := Bz ∈ FM CB := Commit(ck, zB) ∈ G
zC := Cz ∈ FM CC := Commit(ck, zC) ∈ G

CA, CB, CC , w
z := (x,w)

zA := Az CA
?
= Commit(ck, zA)

zB := Bz CB
?
= Commit(ck, zB)

zC := Cz CC
?
= Commit(ck, zC)

CC
?
= Commit(ck, zA ◦ zB)

The NARK’s security follows from the binding property of Pedersen commitments.
(At this point we are not using any homomorphic properties, but we will in the accumu-
lation scheme.) Moreover, denoting by K = Ω(M) the number of non-zero entries in the
coefficient matrices, the NARK’s efficiency is as follows:

NARK prover time NARK verifier time NARK argument size

O(M) G O(M) G O(1) G
O(K) F O(K) F O(N) F

The NARK may superficially appear useless because it has linear argument size
and is not zero knowledge. Nevertheless, we can obtain an efficient split accumulation
scheme for it, as we describe next.3

The predicate to be accumulated is the NARK verifier with a suitable split between
predicate instance and predicate witness: Φ takes as input a predicate instance qx =
(x,CA, CB, CC) and a predicate witness qw = w, and then runs the NARK verifier with
R1CS instance x and proof π = (CA, CB, CC , w).4

3 We could even “re-arrange” computation between the NARK and the accumulation scheme,
and simplify the NARK further to be the NP decider (the verifier receives just the witness
w and checks that the R1CS condition holds). We do not do so because this does not lead
to any savings in the accumulation verifier (the main efficiency metric of interest) and also
because the current presentation more naturally leads to the zero knowledge variant described
in Section 2.3.2. (We note that the foregoing rearrangement is a general transformation that
does not preserve zero knowledge or succinctness of the given NARK.)

4 For now we view the commitment key ck and coefficient matrices A,B,C as hardcoded in the
accumulation predicate Φ; our definitions later handle this more precisely.

13

An accumulator acc is split into an accumulator instance acc.x = (x,CA, CB, CC , C◦) ∈
Fn × G4 and an accumulator witness acc.w = w ∈ FN−n. The accumulation decider
D validates a split accumulator acc = (acc.x, acc.w) as follows: set z := (x,w) ∈ FN;
compute the vectors zA := Az, zB := Bz, and zC := Cz; and check that the following
conditions hold:

CA

?
= Commit(ck, zA) , CB

?
= Commit(ck, zB) , CC

?
= Commit(ck, zC) , C◦

?
= Commit(ck, zA◦zB) .

Note that the accumulation decider D is similar, but not equal, to the NARK verifier.
We are left to describe the accumulation prover and accumulation verifier. Both

have access to a random oracle ρ. For adaptive security, queries to the random oracle
should include a hash τ of the coefficient matrices A,B,C and instance size n, which
can be precomputed in an offline phase. (Formally, this is done via the indexer algorithm
of the accumulation scheme, which receives the coefficient matrices and instance size,
performs all one-time computations such as deriving τ , and produces an accumulator
proving key apk, an accumulator verification key avk, and a decision key dk for P, V,
and D respectively.)

The intuition for accumulation is to set the new accumulator to be a random linear
combination of the old accumulator and predicate input, and use the accumulation
proof to collect cross terms that arise from the Hadamard product (a bilinear, not linear,
operation). This naturally leads to the following simple construction.

PρAS(acc, (qx, qw)):
1. zA := A · (qx.x, qw.w), zB := B · (qx.x, qw.w).
2. z′A := A · (acc.x.x, acc.w.w), z′B := B ·

(acc.x.x, acc.w.w).
3. pf := Commit(ck, zA ◦ z′B + z′A ◦ zB).
4. β := ρAS(τ, acc.x, qx, pf).
5. acc?.x.x := acc.x.x+ β · qx.x.
6. acc?.x.CA := acc.x.CA + β · qx.CA.
7. acc?.x.CB := acc.x.CB + β · qx.CB .
8. acc?.x.CC := acc.x.CC + β · qx.CC .
9. acc?.x.C◦ := acc.x.C◦ + β · pf + β2 · qx.CC .

10. acc?.w.w := acc.w.w + β · qw.w.
11. Output (acc?, pf).

VρAS(acc.x, qx, acc?.x, pf):
1. β := ρAS(τ, acc.x, qx, pf).

2. acc?.x.x
?
= acc.x.x+ β · qx.x.

3. acc?.x.CA
?
= acc.x.CA + β ·

qx.CA.
4. acc?.x.CB

?
= acc.x.CB + β ·

qx.CB .
5. acc?.x.CC

?
= acc.x.CC + β ·

qx.CC .
6. acc?.x.C◦

?
= acc.x.C◦ + β · pf +

β2 · qx.CC .

The efficiency of the split accumulation scheme can be summarized by the following
table:

accumulation prover time accumulation verifier time decider time accumulator size

O(M) G 4 G 5 O(M) G |acc.x| = 4 G+ n F
O(K) F O(n) F O(K) F |acc.w| = (N− n) F
1 RO 1 RO – –

The key efficiency feature is that the accumulation verifier only performs 1 call to the
random oracle, a constant number of group scalar multiplications, and field operations.
(More precisely, the verifier makes n field operations, but this does not grow with circuit

14

size and, more fundamentally, is inevitable because the accumulation verifier must
receive the R1CS instance x ∈ Fn as input.)
2.3.2 With zero knowledge
We explain how to add zero knowledge to the approach described in the previous section.

First, we extend the NARK to additionally achieve zero knowledge. For this we
construct a sigma protocol for R1CS based on Pedersen commitments, which is sum-
marized in Figure 3; then we apply the Fiat–Shamir transformation to it to obtain a
corresponding zkNARK for R1CS. Here the commitment key for the Pedersen com-
mitment is ck := (G1, . . . , GM, H) ∈ GM+1, as we need a spare group element for the
commitment randomness. The blue text in the figure represents the “diff” compared to
the non-zero-knowledge version, and indeed if all such text were removed the protocol
would collapse to the previous one.

Second, we extend the split accumulation scheme to accumulate the modified proto-
col for R1CS. Again the predicate being accumulated is the NARK verifier but now since
the NARK verifier has changed so does the predicate. A zkNARK proof π now can be
viewed as a pair (π1, π2) denoting the prover’s commitment and response in the sigma
protocol. Then the predicate Φ takes as input a predicate instance qx = (x, π1) ∈ Fn×G8

and a predicate witness qw = π2 ∈ FN−n+4, and then runs the NARK verifier with
R1CS instance x and proof π = (π1, π2).

An accumulator acc is split into an accumulator instance acc.x = (x,CA, CB, CC , C◦) ∈
Fn×G4 (the same as before) and an accumulator witness acc.w = (w, σA, σB, σC , σ◦) ∈
FN−n+4. The decider is essentially the same as in Section 2.3.1, except that now the four
commitments are computed using the corresponding randomness in acc.w.

The accumulation prover and accumulation verifier can be extended, in a straight-
forward way, to support the new zkSNARK protocol; we provide these in Figure 4,
with text in blue to denote the “diff” to accumulate the zero knowledge features of the
NARK and with text in red to denote the features to make accumulation itself zero
knowledge. There we use ρNARK to denote the oracle used for the zkNARK for R1CS,
which is obtained via the Fiat–Shamir transformation applied to a sigma protocol (as
mentioned above); for adaptive security, the Fiat–Shamir query includes, in addition to
π1, a hash τ := ρNARK(A,B,C, n) of the coefficient matrices and the R1CS input x ∈ Fn

(this means that the Fiat–Shamir query equals (τ, qx) = (τ, x, π1)).
Note that now the accumulation prover and accumulation verifier are each making

2 calls to the random oracle, rather than 1 as before, because they have to additionally
compute the sigma protocol’s challenge.
2.3.3 Towards general accumulation
The accumulation schemes described in Sections 2.3.1 and 2.3.2 are limited to a spe-
cial case, which we could call the “IVC setting”, where accumulation involves 1 old
accumulator and 1 predicate input. However, the definition of accumulation requires sup-
porting m old accumulators [accj]mj=1 = [(accj .x, accj .w)]mj=1 and n predicate inputs

5 The verifier performs 4 group scalar multiplication by computing β · qx.CC and then β · pf +
β2 ·qx.CC = β · (pf+β ·qx.CC) via another group scalar multiplication. Further it is possible
to combine CA and CB in one commitment in both the NARK and the accumulation scheme.
This reduces the group scalar multiplications in the verifier to 3, and the accumulator size to
3 G+ n F.

15

P
(
ck, (A,B,C), x, w

)
V
(
ck, (A,B,C), x

)
z := (x,w) r ← FN−n

zA := Az ωA ← F CA := Commit(ck, zA;ωA)
zB := Bz ωB ← F CB := Commit(ck, zB;ωB)
zC := Cz ωC ← F CC := Commit(ck, zC ;ωC)

rA := A · (0n, r) ω′A ← F C′A := Commit(ck, rA;ω
′
A)

rB := B · (0n, r) ω′B ← F C′B := Commit(ck, rB;ω
′
B)

rC := C · (0n, r) ω′C ← F C′C := Commit(ck, rC ;ω
′
C)

ω1 ← F C1 := Commit(ck, zA ◦ rB + zB ◦ rA;ω1)
ω2 ← F C2 := Commit(ck, rA ◦ rB;ω2)

s := w+γr ∈ FN−n

σA := ωA + γω′A ∈ F
σB := ωB + γω′B ∈ F
σC := ωC + γω′C ∈ F
σ◦ := ωC + γω1 + γ2ω2 ∈ F

CA, CB, CC

C′A, C
′
B, C

′
C , C1, C2

γ ∈ F

s, σA, σB, σC , σ◦
sA := A · (x, s) CA+γC

′
A

?
= Commit(ck, sA;σA)

sB := B · (x, s) CB+γC
′
B

?
= Commit(ck, sB;σB)

sC := C · (x, s) CC+γC
′
C

?
= Commit(ck, sC ;σC)

CC+γC1 + γ2C2
?
= Commit(ck, sA ◦ sB;σ◦)

Fig. 3: The sigma protocol for R1CS that underlies the zkNARK for R1CS.

PρAS((qx, qw), acc):
1. zA := A · (qx.x, qw.s), zB := B · (qx.x, qw.s).
2. z′A := A · (acc.x.x, acc.w.s), z′B := B · (acc.x.x, acc.w.s).
3. Sample x? ← Fn and s? ← FN−n and ω?2 ← F.
4. s?A := A · (x?, s?), s?B := B · (x?, s?), s?C := C · (x?, s?).
5. C?A := Commit(ck, s?A;ω

?
A) for ω?A ← F.

6. C?B := Commit(ck, s?B;ω
?
B) for ω?B ← F.

7. C?C := Commit(ck, s?C ;ω
?
C) for ω?C ← F.

8. pf1 := Commit(ck, zA ◦ s?B + s?A ◦ zB; 0).
9. pf2 := Commit(ck, s?A ◦ s?B+zA ◦ z′B + z′A ◦ zB;ω?2).

10. pf3 := Commit(ck, s?A ◦ z′B + z′A ◦ s?B; 0).
11. pf := (x?, C?A, C

?
B, C

?
C , pf1,pf2, pf3).

12. β := ρAS(τ, acc.x, qx, pf).
13. Compute γ := ρNARK(τ, qx).
14. acc?.x.x := acc.x.x+β · x? + β2 · qx.x.
15. acc?.x.CA := acc.x.CA+β · C?A + β2 · (qx.CA+γ · qx.C′A).
16. acc?.x.CB := acc.x.CB+β · C?B + β2 · (qx.CB+γ · qx.C′B).
17. acc?.x.CC := acc.x.CC+β · C?C + β2 · (qx.CC+γ · qx.C′C).
18. acc?.x.C◦ := acc.x.C◦+β · pf1 + β2 · pf2+β3 · pf3

+β4 · (qx.CC+γ · C1 + γ2 · C2).
19. acc?.w.s := acc.w.s+β · s? + β2 · qw.s.
20. acc?.w.σA := acc.w.σA+β · ω?A + β2 · qw.σA.
21. acc?.w.σB := acc.w.σB+β · ω?B + β2 · qw.σB .
22. acc?.w.σC := acc.w.σC+β · ω?C + β2 · qw.σC .
23. acc?.w.σ◦ := acc.w.σ◦+β

2 · ω?2 + β4 · qw.σ◦.
24. Output (acc?, pf).

VρAS(qx, acc.x, acc?.x, pf):
1. β := ρAS(τ, acc.x, qx, pf).
2. γ := ρNARK(τ, qx).

3. acc?.x.x
?
= acc.x.x+β · x? + β2 · qx.x.

4. acc?.x.CA
?
= acc.x.CA+β · C?A + β2 · (qx.CA+γ · qx.C′A).

5. acc?.x.CB
?
= acc.x.CB+β · C?B + β2 · (qx.CB+γ · qx.C′B).

6. acc?.x.CC
?
= acc.x.CC+β · C?C + β2 · (qx.CC+γ · qx.C′C).

7. acc?.x.C◦
?
= acc.x.C◦+β · pf1 + β2 · pf2+β3 · pf3

+β4 · (qx.CC+γ · C1 + γ2 · C2).

Fig. 4: Accumulation prover and accumulation verifier for the zkNARK for R1CS.

16

[(qxi, qwi)]
n
i=1, for any m and n. (E.g., to construct PCD we set both m and n equal to

the “arity” of the compliance predicate.) How can we extend the ideas described so far
to this more general case?

The zkNARK verifier performs two types of computations: linear checks and a
Hadamard product check. We describe how to accumulate each of these in the general
case.

– Linear checks. A split accumulator acc = (acc.x, acc.w) in Section 2.3.2 included
sub-accumulators for different linear checks: x,CA, CB, CC in acc.x andw, σA, σB, σC

in acc.w. We can keep these components and simply use more random coefficients or,
as we do, further powers of the element β. For example, in the accumulation prover P
a computation such as acc?.x.x := acc.x.x+ β · qx.x is replaced by a computation
such as acc?.x.x :=

∑m
j=1β

j−1 · accj .x.x+
∑n
i=1β

m+j−1 · qxi.x.
– Hadamard product check. A split accumulator acc = (acc.x, acc.w) in Section 2.3.2

also included a sub-accumulator for the Hadamard product check: C◦ in acc.x and
σ◦ in acc.w. Because a Hadamard product is a bilinear operation, combining two
Hadamard products via a random coefficient led to a quadratic polynomial whose
coefficients include the two original Hadamard products and a cross term. This is
indeed why we stored the cross term in the accumulation proof pf. However, if we
consider the cross terms that arise from combining more than two Hadamard products
(i.e., when m+ n > 2) then the corresponding polynomials do not lend themselves
to accumulation because the original Hadamard products appear together with other
cross terms. To handle this issue, we introduce in Section 2.5 a new subroutine that
accumulates Hadamard products via an additional round of interaction.

2.4 On proving knowledge soundness

In order to construct accumulation schemes that fulfill the type of knowledge soundness
that we ultimately need for PCD (see Section 2.2), we formulate a new expected-time
forking lemma in the random oracle model, which is informally stated below. In our
setting, (q, b, o) ∈ L if o = ([qxi]

n
i=1, acc, pf) is such that D(acc) = 1 and, given that

ρ(q) = b, the accumulation verifier accepts: Vρ([qxi]
n
i=1, acc.x, pf) = 1.

Lemma 1 (informal). Let L be an efficiently recognizable set. There exists an algorithm
Fork such that for every expected polynomial time algorithm A and integer N ∈ N the
following holds. With all but negligible probability over the choice of random oracle
ρ, randomness r of A, and randomness of Fork, if Aρ(r) outputs a tuple (q, b, o) ∈ L
with ρ(q) = b, then ForkA,ρ(1N , q, b, o, r) outputs [(bj , oj)]Nj=1 such that b1, . . . , bN
are pairwise distinct and for each j ∈ [N] it holds that (q, bj , oj) ∈ L.

This forking lemma differs from prior forking lemmas in three significant ways. First,
it is in the random oracle model rather than the interactive setting (unlike [BCC+16]).
Second, we can obtain any polynomial number of accepting transcripts in expected
polynomial time with only negligible loss in success probability (unlike forking lemmas
for signature schemes, which typically extract two transcripts in strict polynomial time
[BN06]). Finally, it holds even if the adversary itself runs in expected (as opposed to
strict) polynomial time. This is important for our application to PCD where the extractor

17

in one recursive step becomes the adversary in the next. This last feature requires some
care, since the running time of the adversary, and in particular the length of its random
tape, may not be bounded.

Moreover, in our security proofs we at times additionally rely on an expected-time
variant of the zero-finding game lemma from [BCMS20] to show that if a particular
polynomial equation holds at a point obtained from the random oracle via a “commitment”
to the equation, then it must with overwhelming probability be a polynomial identity.
For more details, see the full version.

2.5 Split accumulation for Hadamard products

We construct a split accumulation scheme for a predicateΦHP that considers the Hadamard
product of committed vectors. For a commitment key ck for messages in F`, the pred-
icate ΦHP takes as input a predicate instance qx = (C1, C2, C3) ∈ G3 consisting of
three Pedersen commitments, a predicate witness qw = (a, b, ω1, ω2, ω3) consisting
of two vectors a, b ∈ F` and three opening randomness elements ω1, ω2, ω3 ∈ F,
and checks that C1 = CM.Commit(ck, a;ω1), C2 = CM.Commit(ck, b;ω2), and
C3 = CM.Commit(ck, a ◦ b;ω3). In other words, C3 is a commitment to the Hadamard
product of the vectors committed in C1 and C2.

Theorem 3 (informal). The Hadamard product predicate ΦHP has a split accumulation
scheme ASHP that is secure in the random oracle model (and assuming the hardness of
the discrete logarithm problem) where verifying accumulation requires 5 group scalar
multiplications andO(1) field operations per claim, and results in an accumulator whose
instance part is 3 group elements and witness part is O(`) field elements. Moreover,
the accumulation scheme can be made zero knowledge at a sub-constant overhead per
claim.

Below we summarize the ideas behind this result. Our construction directly extends
to accumulate any bilinear function (see Remark 4).
A bivariate identity. The accumulation scheme is based on a bivariate polynomial
identity, and is the result of turning a public-coin two-round reduction into a non-
interactive scheme by using the random oracle. Given n pairs of vectors [(ai, bi)]ni=1,
consider the following two polynomials with coefficients in F`:

a(X,Y) :=
∑n
i=1X

i−1Y i−1ai and b(X) :=
∑n
i=1X

n−ibi .

The Hadamard product of the two polynomials can be written as

a(X,Y) ◦ b(X) =
∑2n−1
i=1 Xi−1ti(Y) where tn(Y) =

∑n
i=1Y

i−1ai ◦ bi .

The expression of the coefficient polynomials {ti(Y)}i 6=n is not important; instead,
the important aspect here is that a coefficient polynomial, namely tn(Y), includes the
Hadamard products of all n pairs of vectors as different coefficients. This identity is the
starting point of the accumulation scheme, which informally evaluates this expression at
random points to reduce the n Hadamard products to 1 Hadamard product. Similar ideas
are used to reduce several Hadamard products to a single inner product in [BCC+16;
BBB+18].

18

Batching Hadamard products. We describe a public-coin two-round reduction from
n Hadamard product claims to 1 Hadamard product claim. The verifier receives n
predicate instances [qxi]

n
i=1 = [(C1,i, C2,i, C3,i)]

n
i=1 each consisting of three Pedersen

commitments, and the prover receives corresponding predicate witnesses [qwi]
n
i=1 =

[(ai, bi, ω1,i, ω2,i, ω3,i)]
n
i=1 containing the corresponding openings.

– The verifier sends a first challenge µ ∈ F.
– The prover computes the product polynomial a(X,µ)◦ b(X) =

∑2n−1
i=1 Xi−1ti(µ) ∈

F`[X]; for each i ∈ [2n−1]\{n}, computes the commitmentCt,i :=CM.Commit(ck, ti; 0) ∈
G; and sends to the verifier an accumulation proof pf := [Ct,i, Ct,n+i]

n−1
i=1 .

– The verifier sends a second challenge ν ∈ F.
– The verifier computes and outputs a new predicate instance qx = (C1, C2, C3):

C1 =
∑n
i=1ν

i−1µi−1C1,i ,

C2 =
∑n
i=1ν

n−iC2,i ,

C3 =
∑n−1
i=1 ν

i−1Ct,i + νn−1
∑n
i=1µ

i−1C3,i +
∑n−1
i=1 ν

n+i−1Ct,n+i .

– The prover computes and outputs a corresponding predicate witness qw = (a, b, ω1, ω2, ω3):

a :=
∑n
i=1ν

i−1µi−1ai ω1 :=
∑n
i=1ν

i−1µi−1ω1,i ,

b :=
∑n
i=1ν

n−ibi ω2 :=
∑n
i=1ν

n−iω2,i ,

ω3 := νn−1
∑n
i=1µ

i−1ω3,i .

Observe that the new predicate instance qx = (C1, C2, C3) consists of commitments to
a(ν, µ), b(ν), a(ν, µ)◦b(ν) respectively, and the predicate witness qw = (a, b, ω1, ω2, ω3)
consists of corresponding opening information. The properties of low-degree poly-
nomials imply that if any of the n claims is incorrect (there is i ∈ [n] such that
ΦHP(qxi, qwi) = 0) then, with high probability, so is the output claim (ΦHP(qx, qw) = 0).
Split accumulation. The batching protocol described above yields a split accumulation
scheme for ΦHP in the random oracle model. An accumulator acc has the same form
as a predicate input (qx, qw): acc.x has the same form as a predicate instance qx, and
acc.w has the same form as a predicate witness qw. The accumulation decider D simply
equals ΦHP (this is well-defined due to the prior sentence). The accumulation prover and
accumulation verifier are as follows.

– The accumulation prover P runs the interactive reduction by relying on the random
oracle to generate the random verifier messages (i.e., it applies the Fiat–Shamir
transformation to the reduction), in order to produce an accumulation proof pf as well
as an accumulator acc = (qx, qw) whose instance part is computed like the verifier of
the reduction and witness part is computed like the prover of the reduction.

– The accumulation verifier V re-derives the challenges using the random oracle, and
checks that qx was correctly derived from [qxi]

n
i=1 (also via the help of the accumula-

tion proof pf).

The construction described above is not zero knowledge. One way to achieve zero
knowledge is for the accumulation prover to sample a random predicate input that

19

satisfies the predicate, accumulate it, and include it as part of the accumulation proof pf.
In our construction we opt for a more efficient solution, leveraging the fact that we are
not actually interested in accumulating the random predicate input.
Efficiency. The efficiency claimed in Theorem 3 is evident from the construction.
The (short) instance part of an accumulator consists of 3 group elements, while the
(long) witness part of an accumulator consists of O(`) field elements. The accumulator
verifier V performs 2 random oracle calls, 5 group scalar multiplication, and O(1) field
operations per accumulated claim.
Security. Given an adversary that produces Hadamard product claims [qxi]

n
i=1 =

[(C1,i, C2,i, C3,i)]
n
i=1, a single Hadamard product claim qx = (C1, C2, C3) and corre-

sponding witness qw = (a, b, ω1, ω2, ω3), and an accumulation proof pf that makes the
accumulation verifier accept, we need to extract witnesses [qwi]

n
i=1 = [(ai, bi, ω1,i, ω2,i, ω3,i)]

n
i=1

for the instances [qxi]
n
i=1. Our security proof works in the random oracle model, assum-

ing hardness of the discrete logarithm problem.
In the proof we apply our expected-time forking lemma twice (see Section 2.4 for

a discussion of this lemma and the full version for details including a corollary that
summarizes its double invocation). This lets us construct a two-level tree of transcripts
with branching factor n on the first challenge µ and branching factor 2n − 1 on the
second challenge ν. Given such a transcript tree, the extractor works as follows:

1. Using the transcripts corresponding to challenges {(µ1, ν1,k)}k∈[n] we extract `-
element vectors [ai]ni=1, [bi]

n
i=1 and field elements [ω1,i]

n
i=1, [ω2,i]

n
i=1 such that [ai]ni=1

and [bi]
n
i=1 are committed in [C1,i]

n
i=1 and [C2,i]

n
i=1 under randomness [ω1,i]

n
i=1 and

[ω2,i]
n
i=1, respectively.

2. Define a(X,Y) :=
∑n
i=1X

i−1Y i−1ai ∈ F`[X,Y] and b(X) :=
∑n
i=1X

n−ibi ∈
F`[X], using the vectors extracted above; then let ti(Y) be the coefficient of Xi−1

in a(X,Y) ◦ b(X). For each j ∈ [n], using the transcripts corresponding to chal-
lenges {(µj , νj,k)}k∈[2n−1], we extract field elements [τ (j)i]2n−1i=1 such that tn(µj) is
committed in

∑n−1
i=1 µ

i−1
j C3,i under randomness τ (j)n and [ti(µj), tn+i(µj)]

n−1
i=1 are

committed in pf(j) := [C
(j)
t,i , C

(j)
t,n+i]

n−1
i=1 under randomness [τ (j)i , τ

(j)
n+i]

n−1
i=1 respec-

tively.
3. Compute the solution [ω3,i]

n
i=1 to the linear system {τ (j)n =

∑n−1
i=1 µ

i−1
j ω3,i}j∈[n].

Together with the relation {tn(µj) =
∑n−1
i=1 µ

i−1
j ai ◦ bi}j∈[n], we deduce that C3,i

is a commitment to ai ◦ bi under randomness ω3,i for all i ∈ [n].
4. For each i ∈ [n], output qwi := (ai, bi, ω1,i, ω2,i, ω3,i).

Remark 4 (extension to any bilinear operation). The ideas described above extend, in a
straightforward way, to accumulating any bilinear operation of committed vectors. Let
f : F` × F` → Fm be a bilinear operation, i.e., such that: (a) f(a + a′, b) = f(a, b) +
f(a′, b); (b) f(a, b + b′) = f(a, b) + f(a, b′); (c) α · f(a, b) = f(αa, b) = f(a, αb).
Let Φf be the predicate that takes as input a predicate instance qx = (C1, C2, C3) ∈ G3

consisting of three Pedersen commitments, a predicate witness qw = (a, b, ω1, ω2, ω3)
consisting of two vectors a, b ∈ F` and three opening randomness elements ω1, ω2, ω3 ∈
F, and checks that C1 = CM.Commit(ck`, a;ω1), C2 = CM.Commit(ck`, b;ω2), and
C3 = CM.Commit(ckm, f(a, b);ω3). The Hadamard product ◦ : F` × F` → F` is a

20

bilinear operation, as is the scalar product 〈·, ·〉 : F`×F` → F. Our accumulation scheme
for Hadamard products works the same way, mutatis mutandis, for a general bilinear
map f .

2.6 Split accumulation for Pedersen polynomial commitments

We construct an efficient split accumulation scheme ASPC for a predicate ΦPC that checks
a polynomial evaluation claim for a “trivial” polynomial commitment scheme PCPed

based on Pedersen commitments (see Fig. 5). In more detail, for a Pedersen commitment
key ck for messages in Fd+1, the predicate ΦPC takes as input a predicate instance
qx = (C, z, v) ∈ G×F×F and a predicate witness qw = p ∈ F≤d[X], and checks that
C = CM.Commit(ck, p), p(z) = v, and deg(p) ≤ d. In other words, the predicate ΦPC

checks that the polynomial p of degree at most d committed in C evaluates to v at z.

– Setup: On input λ,D ∈ N, output ppCM ← CM.Setup(1λ, D + 1).
– Trim: On input ppCM and d ∈ N, check that d ≤ D, set ck := CM.Trim(ppCM, d+ 1),

and output (ck, rk := ck).
– Commit: On input ck and p ∈ F[X] of degree at most |ck| − 1, output C ←

CM.Commit(ck, p).
– Open: On input (ck, p, C, z), output π := p.
– Check: On input (rk, (C, z, v), π = p), check that C = CM.Commit(rk, p), p(z) = v,

and deg(p) < |rk|.
Completeness of PCPed follows from that of CM, while extractability follows from the
binding property of CM.

Fig. 5: PCPed is a trivial polynomial commitment scheme based on the Pedersen commitment
scheme CM.

Theorem 4 (informal). The (Pedersen) polynomial commitment predicate ΦPC has a
split accumulation scheme ASPC that is secure in the random oracle model (and assuming
the hardness of the discrete logarithm problem). Verifying accumulation requires 2 group
scalar multiplications and O(1) field additions/multiplications per claim, and results in
an accumulator whose instance part is 1 group element and 2 field elements and whose
witness part is d field elements. (See Table 1.)

One can use ASPC to obtain a split accumulation scheme for a different NARK; see
Remark 5 for details.

In Table 1 we compare the efficiency of our split accumulation scheme ASPC for the
predicate ΦPC with the efficiency of the atomic accumulation scheme ASIPA [BCMS20] for
the equivalent predicate defined by the check algorithm of the (succinct) PC scheme PCIPA

based on the inner-product argument on cyclic groups [BCC+16; BBB+18; WTS+18].
The takeaway is that the accumulation verifier for ASPC is significantly cheaper than the
accumulation verifier for ASIPA.

21

accumulation
type assumption

accumulation accumulation accumulation accumulator size
scheme prover (per claim) verifier (per claim) decider instance witness

ASIPA

[BCMS20]
atomic DLOG + RO †

O(log d) G
O(d) F

[+O(d) G per accumulation]

O(log d) G
O(log d) F
O(log d) RO

O(d) G
O(d) F

1 G
O(log d) F 0

ASPC

[this work]
split DLOG + RO

O(d) G
O(d) F

2 G
O(1) F
2 RO

O(d) G
O(d) F

1 G
2 F d F

Table 1: Efficiency comparison between the atomic accumulation scheme ASIPA for PCIPA

in [BCMS20] and the split accumulation scheme ASPC for PCPed in this work. Above G
denotes group scalar multiplications or group elements, and F denotes field operations
or field elements. (†: ASIPA relies on knowledge soundness of PCIPA, which results from
applying the Fiat–Shamir transformation to a logarithmic-round protocol. The security of
this protocol has only been proven via a superpolynomial-time extractor [BMM+19] or in
the algebraic group model [GT20].)

Technical details are in the full version; in the rest of this section we sketch the ideas
behind Theorem 4.

First we describe a simple public-coin interactive reduction for combining two
or more evaluation claims into a single evaluation claim, and then explain how this
interactive reduction gives rise to the split accumulation scheme. We prove security in
the random oracle model, using an expected-time extractor.

Batching evaluation claims. First consider two evaluation claims (C1, z, v1) and
(C2, z, v2) for the same evaluation point z (and degree d). We can use a random challenge
α ∈ F to combine these claims into one claim (C ′, z, v′) where C ′ := C1 + αC2 and
v′ := v1 + αv2. If either of the original claims does not hold then, with high probability
over the choice of α, neither does the new claim. This idea extends to any number of
claims for the same evaluation point, by taking C ′ :=

∑
i α

iCi and v′ :=
∑
i α

ivi.
Next consider two evaluation claims (C1, z1, v1) and (C2, z2, v2) at (possibly) dif-

ferent evaluation points z1 and z2. We explain how these can be combined into four
claims all at the same point. Below we use the fact that p(z) = v if and only if there
exists a polynomial w(X) such that p(X) = w(X) · (X − z) + v.

Let p1(X) and p2(X) be the polynomials “inside” C1 and C2, respectively, that are
known to the prover.

1. The prover computes the witness polynomials w1 :=
p1(X)−v1
X−z1 and w2 :=

p2(X)−v2
X−z2

and sends the commitments W1 := Commit(w1) and W2 := Commit(w2).
2. The verifier sends a random evaluation point z∗ ∈ F.
3. The prover computes and sends the evaluations y1 := p1(z

∗), y2 := p2(z
∗), y′1 :=w1(z

∗), y′2 :=w2(z
∗).

4. The verifier checks the relation between each witness polynomial and the original
polynomial at the random evaluation point z∗:

y1 = y′1 · (z∗ − z1) + y′1 and y2 = y′2 · (z∗ − z2) + y′2 .

22

Next, the verifier outputs four evaluation claims for p1(z∗) = y1, p2(z
∗) = y2, w1(z

∗) =
y′1, w2(z

∗) = y′2:

(C1, z
∗, y1) , (C2, z

∗, y2) , (W1, z
∗, y′1) , (W2, z

∗, y′2) .

More generally, we can reduce m evaluation claims at m points to 2m evaluation claims
all at the same point.

By combining the two techniques, one obtains a public-coin interactive reduction
from any number of evaluation claims (regardless of evaluation points) to a single
evaluation claim.

Split accumulation. The batching protocol described above yields a split accumulation
scheme for ΦPC in the random oracle model. An accumulator acc has the same form
as a predicate input: the instance part is an evaluation claim and the witness part is a
polynomial. Next we describe the algorithms of the accumulation scheme.

– The accumulation prover P runs the interactive reduction by relying on the random
oracle to generate the random verifier messages (i.e., it applies the Fiat–Shamir trans-
formation to the reduction), in order to combine the instance parts of old accumulators
and inputs to obtain the instance part of a new accumulator. Then P also combines
the committed polynomials using the same linear combinations in order to derive the
new committed polynomial, which is the witness part of the new accumulator. The
accumulation proof pf consists of the messages to the verifier in the reduction, which
includes the commitments to the witness polynomials Wi and the evaluations yi, y′i at
z∗ of pi, wi (that is, pf := [(Wi, yi, y

′
i)]
n
i=1).

– The accumulation verifier V checks that the challenges were correctly computed from
the random oracle, and performs the checks of the reduction (the claims were correctly
combined and that the proper relation between each yi, y′i, zi, z

∗ holds).
– The accumulation decider D reads the accumulator in its entirety and checks that the

polynomial (the witness part) satisfies the evaluation claim (the instance part). (Here
the random oracle is not used.)

Efficiency. The efficiency claimed in Theorem 4 (and Table 1) is evident from the
construction. The accumulation prover P computes n+m commitments to polynomials
when combining n old accumulators and m predicate inputs (all polynomials are for
degree at most d). The (short) instance part of an accumulator consists of 1 group element
and 2 field elements, while the (long) witness part of an accumulator consists of O(d)
field elements. The accumulator decider D computes 1 commitment (and 1 polynomial
evaluation at 1 point) in order to validate an accumulator. Finally, the cost of running
the accumulator verifier V is dominated by 2(n+m) scalar multiplication of the linear
commitments.

Security. Given an adversary that produces evaluation claims [qxi]
n
i=1 = [(Ci, zi, vi)]

n
i=1,

a single claim qx = (C, z, v) and polynomial qw = s(X) with s(z∗) = v to which C is
a commitment, and accumulation proof pf that makes the accumulation verifier accept,
we need to extract polynomials [qwi]

n
i=1 = [pi(X)]ni=1 with pi(zi) = vi to which Ci

is a commitment. Our security proof (in the full version) works in the random oracle
model, assuming hardness of the discrete logarithm problem.

23

In the proof, we apply our expected-time forking lemma (see Section 2.4) to obtain
2n polynomials [s(j)]2nj=1 for the same evaluation point z∗ but distinct challenges αj ,
where n is the number of evaluation claims. The checks in the reduction procedure
imply that s(j)(X) =

∑n
i=1 α

i
jpi(X)+

∑n
i=1 α

n+i
j wi(X), where wi(X) is the witness

corresponding to pi(X); hence we can recover the pi(X), wi(X) by solving a linear
system (given by the Vandermonde matrix in the challenges [αj]2nj=1). We then use an
expected-time variant of the zero-finding game lemma from [BCMS20] (see the full
version) to show that if a particular polynomial equation on pi(X), wi(X) holds at the
point z∗ obtained from the random oracle, it must with overwhelming probability be an
identity. Applying this to the equation induced by the reduction shows that, with high
probability, each extracted polynomial pi satisfies the corresponding evaluation claim
(Ci, zi, vi).

Remark 5 (from PCPed to an accumulatable NARK). If one replaced the (succinct) poly-
nomial commitment scheme that underlies the preprocessing zkSNARK in [CHM+20]
with the aforementioned (non-succinct) trivial Pedersen polynomial commitment scheme
then (after some adjustments and using our Theorem 4) one would obtain a zkNARK for
R1CS with a split accumulation scheme whose accumulation verifier is of constant size
but other asymptotics would be worse compared to Theorem 2.

First, the cryptographic costs and the quasilinear costs of the NARK and accumu-
lation scheme would also grow in the number K of non-zero entries in the coefficient
matrices, which can be much larger than M and N (asymptotically and concretely). Sec-
ond, the NARK prover would additionally use a quasilinear number of field operations
due to FFTs. Finally, in addition to poorer asymptotics, this approach would lead to a
concretely more expensive accumulation verifier and overall a more complex protocol.

Nevertheless, one can design a concretely efficient zkNARK for R1CS based on
the Pedersen PC scheme and our accumulation scheme for it. This naturally leads to an
alternative construction to the one in Section 2.3 (which is instead based on accumulation
of Hadamard products), and would lead to a slightly more expensive prover (which now
would use FFTs) and a slightly cheaper accumulation verifier (a smaller number of group
scalar multiplications). We leave this as an exercise for the interested reader.

2.7 Implementation and evaluation

We elaborate on our implementation and evaluation of accumulation schemes and their
application to PCD.

The case for a PCD framework. Different PCD constructions offer different trade-offs.
The tradeoffs are both about asymptotics (see Remark 3) and about practical concerns,
as we review below.

– PCD from sublinear verification [BCCT13; BCTV14; COS20] is typically instantiated
via preprocessing SNARKs based on pairings.6 This route offers excellent verifier
time (a few milliseconds regardless of the computation at a PCD node), but requires

6 Instantiations based on hashes are also possible [COS20] but are (post-quantum and) less
efficient.

24

a private-coin setup (which complicates deployment) and cycles of pairing-friendly
elliptic curves (which are costly in terms of group arithmetic and size).

– PCD from atomic accumulation [BCMS20] can, e.g., be instantiated via SNARKs
based on cyclic groups [BGH19]. This route offers a transparent setup (easy to
deploy) and logarithmic-size arguments (a few kilobytes even for large computations),
using cycles of standard elliptic curves (more efficient than their pairing-friendly
counterparts). On the other hand, this route yields linear verification times (expensive
for large computations) and logarithmic costs for accumulation (increasing the cost of
recursion).

– PCD from split accumulation (this work) can, e.g., be instantiated via NARKs based
on cyclic groups. This route still offers a transparent setup and allows using cycles of
standard elliptic curves. Moreover, it offers constant costs for accumulation, but at the
expense of argument size, which is now linear.

It would be desirable to have a single framework that supports different PCD construc-
tions via a modular composition of simpler building blocks. Such a framework would
enable a number of desirable features: (a) ease of replacing older building blocks with
new ones; (b) ease of prototyping different PCD constructions for different applications
(which may have different needs), thereby enabling practitioners to make informed
choices about which PCD construction is best for them; (c) simpler and more efficient
auditing of complex cryptographic systems with many intermixed layers. (Realizing even
a single PCD construction is a substantial implementation task.); and (d) separation of
“application” logic from the underlying recursion via a common PCD interface. Together,
these features would enable further industrial deployment of PCD, as well as making
future research and comparisons simpler.
Implementation . The above considerations motivated our implementation efforts for
PCD. Our code base has two main parts, one for realizing accumulation schemes and
another for realizing PCD from accumulation (the latter is integrated with PCD from
succinct verification under a unified PCD interface).

– Framework for accumulation. We designed a modular framework for (atomic and split)
accumulation schemes, and use it to implement, under a common interface, several
accumulation schemes: (a) the atomic accumulation scheme ASAGM in [BCMS20] for
the PC scheme PCAGM; (b) the atomic accumulation scheme ASIPA in [BCMS20] for
the PC scheme PCIPA; (c) the split accumulation scheme ASPC in this paper for the PC
scheme PCPed; (d) the split accumulation scheme ASHP in this paper for the Hadamard
product predicate ΦHP; (e) the split accumulation scheme for our NARK for R1CS.
Our framework also provides a generic method for defining R1CS constraints for
the verifiers of these accumulation schemes; we leverage this to implement R1CS
constraints for all of these accumulation schemes.

– PCD from accumulation. We use the foregoing framework to implement a generic con-
struction of PCD from accumulation. We support the PCD construction of [BCMS20]
(which uses atomic accumulation) and the PCD construction in this paper (which uses
split accumulation). Our code builds on, and extends, an existing PCD library.7 Our
implementation is modular: it takes as ingredients an implementation of any NARK,

7 https://github.com/arkworks-rs/pcd

25

https://github.com/arkworks-rs/pcd

an implementation of any accumulation scheme for that NARK, and constraints for
the accumulation verifier, and produces a concrete PCD construction. This allows us,
for example, to obtain a PCD instantiation based on our NARK for R1CS and its split
accumulation scheme.

Evaluation for DL setting . When realizing PCD in practice the main goal is to
“minimize the cost of recursion”, that is, to minimize the number of constraints that need
to be recursively proved in each PCD step (excluding the constraints for the application)
without hurting other parameters too much (prover time, argument size, and so on). We
evaluate our implementation with respect to this goal, with a focus on understanding the
trade-offs between atomic and split accumulation in the discrete logarithm setting.

The DL setting is of particular interest to practitioners, as it leads to systems with a
transparent (public-coin) setup that can be based on efficient cycles of (standard) elliptic
curves [BGH19; Hop20]; indeed, some projects are developing real-world systems
that use PCD in the DL setting [Halo20; Pickles20]. The main drawback of the DL
setting is that verification time (and sometimes argument size) is linear in a PCD node’s
computation. This inefficiency is, however, tolerable if a PCD node’s computation is
not too large, as is the case in the aforementioned projects. (Especially so when taking
into account the disadvantages of PCD based on pairings, which involves relying on a
private-coin setup and more expensive curve cycles.)

We evaluate our implementation to answer two questions: (a) how efficient is re-
cursion with split accumulation for our simple zkNARK for R1CS? (b) what is the
constraint cost of split accumulation for PCPed compared to atomic accumulation for
PCIPA? All our experiments are performed over the 255-bit Pallas curve in the Pasta cycle
of curves [Hop20], which is used by real-world deployments.

– Split accumulation for R1CS. Our evaluation demonstrates that the cost of recursion for
IVC with our split accumulation scheme for the simple NARK for R1CS is low, both
with zero knowledge (∼ 99× 103 constraints) and without (∼ 52× 103 constraints).
In fact, this cost is even lower than the cost of IVC based on highly efficient pairing-
based circuit-specific SNARKs. Furthermore, like in the pairing-based case, this cost
does not grow with the size of computation being checked. This is much better than
prior constructions of IVC based on atomic accumulation for PCIPA in the DL setting,
as we will see next.

– Comparison of accumulation for PC schemes. Several (S)NARKs are built from
PC schemes, and the primary cost of recursion for these is determined by the cost
of accumulation for the PC scheme. In light of this we compare the costs of two
accumulation schemes:
• the atomic accumulation scheme for the PC scheme PCIPA [BCMS20];
• the new split accumulation scheme for PCPed.
Our evaluation demonstrates that the constraint cost of the ASPC accumulation verifier
is 8 to 20 times cheaper than that of the ASIPA accumulation verifier. In Figure 6 we
report the asymptotic cost of |V| (the constraint cost of V) in ASIPA, ASPC, and ASR1CS.8

8 This comparison is meaningful because the cost of accumulating polynomial commitments
provides a lower bound on the cost accumulating SNARKs that rely on these PC schemes.

26

We note that the cost of all the aforementioned accumulation schemes is dominated by
the cost of many common subcomponents, and so improvements in these subcomponents
will preserve the relative cost. For example, applying existing techniques [Halo20;
Pickles20] for optimizing the constraint cost of elliptic curve scalar multiplications
should benefit all our schemes in a similar way.

0

50✕103

100✕103

150✕103

200✕103

250✕103

300✕103

350✕103

400✕103

450✕103

210 211 212 213 214 215 216 217 218 219 220

C
o
n
st

ra
in

t
co

st
 o

f
a
cc

u
m

u
la

ti
o
n
 v

e
ri
fi
e
r

Number of constraints/Degree

ASIPA

ASPC

ASR1CS w/o ZK

ASR1CS w/ ZK

Fig. 6: Comparison of the constraint cost of the accumulation verifier V in ASIPA, ASPC, and
ASR1CS when varying the number of constraints (for ASR1CS) or the degree of the accumulated
polynomial (for ASIPA and ASPC) from 210 to 220. Note that the cost of accumulating PCIPA

and PCPed is a lower bound on the cost of accumulating any SNARK built atop those, and
this enables comparing against the cost of ASR1CS.

Acknowledgements

This research was supported in part by the Ethereum Foundation, NSF, DARPA, a grant
from ONR, and the Simons Foundation. Nicholas Spooner was supported by DARPA
under Agreement No. HR00112020023.

References

[BBB+18] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell.
“Bulletproofs: Short Proofs for Confidential Transactions and More”. In:
S&P ’18.

[BCC+16] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. “Efficient Zero-
Knowledge Arguments for Arithmetic Circuits in the Discrete Log Set-
ting”. In: EUROCRYPT ’16.

27

[BCCT13] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. “Recursive Com-
position and Bootstrapping for SNARKs and Proof-Carrying Data”. In:
STOC ’13.

[BCL+20] B. Bünz, A. Chiesa, W. Lin, P. Mishra, and N. Spooner. “Proof-Carrying
Data without Succinct Arguments”. In: IACR Cryptol. ePrint Arch. (2020).
URL: https://eprint.iacr.org/2020/1618.

[BCMS20] B. Bünz, A. Chiesa, P. Mishra, and N. Spooner. “Proof-Carrying Data
from Accumulation Schemes”. In: TCC ’20.

[BCTV14] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. “Scalable Zero
Knowledge via Cycles of Elliptic Curves”. In: CRYPTO ’14.

[BDFG20] D. Boneh, J. Drake, B. Fisch, and A. Gabizon. “Halo Infinite: Recur-
sive zk-SNARKs from any Additive Polynomial Commitment Scheme”.
Cryptology ePrint Archive, Report 2020/1536.

[BGH19] S. Bowe, J. Grigg, and D. Hopwood. “Halo: Recursive Proof Composition
without a Trusted Setup”. Cryptology ePrint Archive, Report 2019/1021.

[BMM+19] B. Bünz, M. Maller, P. Mishra, N. Tyagi, and P. Vesely. “Proofs for Inner
Pairing Products and Applications”. Cryptology ePrint Archive, Report
2019/1177.

[BMRS20] J. Bonneau, I. Meckler, V. Rao, and E. Shapiro. “Coda: Decentralized
Cryptocurrency at Scale”. Cryptology ePrint Archive, Report 2020/352.

[BN06] M. Bellare and G. Neven. “Multi-signatures in the plain public-Key model
and a general forking lemma”. In: CCS ’06.

[CCDW20] W. Chen, A. Chiesa, E. Dauterman, and N. P. Ward. “Reducing Participa-
tion Costs via Incremental Verification for Ledger Systems”. Cryptology
ePrint Archive, Report 2020/1522.

[CHM+20] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward. “Mar-
lin: Preprocessing zkSNARKs with Universal and Updatable SRS”. In:
EUROCRYPT ’20.

[COS20] A. Chiesa, D. Ojha, and N. Spooner. “Fractal: Post-Quantum and Trans-
parent Recursive Proofs from Holography”. In: EUROCRYPT ’20.

[CT10] A. Chiesa and E. Tromer. “Proof-Carrying Data and Hearsay Arguments
from Signature Cards”. In: ICS ’10.

[CTV13] S. Chong, E. Tromer, and J. A. Vaughan. “Enforcing Language Semantics
Using Proof-Carrying Data”. Cryptology ePrint Archive, Report 2013/513.

[CTV15] A. Chiesa, E. Tromer, and M. Virza. “Cluster Computing in Zero Knowl-
edge”. In: EUROCRYPT ’15.

[Gro16] J. Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In:
EUROCRYPT ’16.

[GT20] A. Ghoshal and S. Tessaro. “Tight State-Restoration Soundness in the
Algebraic Group Model”. Cryptology ePrint Archive, Report 2020/1351.

[Halo20] S. Bowe, J. Grigg, and D. Hopwood. Halo2. 2020. URL: https://
github.com/zcash/halo2.

[Hop20] D. Hopwood. “The Pasta Curves for Halo 2 and Beyond”. https://
electriccoin.co/blog/the-pasta-curves-for-halo-
2-and-beyond/.

28

https://eprint.iacr.org/2020/1618
https://github.com/zcash/halo2
https://github.com/zcash/halo2
https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond/
https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond/
https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond/

[KB20] A. Kattis and J. Bonneau. “Proof of Necessary Work: Succinct State
Verification with Fairness Guarantees”. Cryptology ePrint Archive, Report
2020/190.

[Mina] O(1) Labs. “Mina Cryptocurrency”. https://minaprotocol.com/.
[NT16] A. Naveh and E. Tromer. “PhotoProof: Cryptographic Image Authentica-

tion for Any Set of Permissible Transformations”. In: S&P ’16.
[Pickles20] O(1) Labs. Pickles. URL: https://github.com/o1- labs/

marlin.
[Val08] P. Valiant. “Incrementally Verifiable Computation or Proofs of Knowledge

Imply Time/Space Efficiency”. In: TCC ’08.
[WTS+18] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish. “Doubly-

Efficient zkSNARKs Without Trusted Setup”. In: S&P ’18.

29

https://minaprotocol.com/
https://github.com/o1-labs/marlin
https://github.com/o1-labs/marlin

	Abstract
	1 Introduction
	1.1 Contributions

	2 Techniques
	2.1 Accumulation: atomic vs split
	2.2 PCD from split accumulation
	2.3 NARK with split accumulation based on DL
	2.4 On proving knowledge soundness
	2.5 Split accumulation for Hadamard products
	2.6 Split accumulation for Pedersen polynomial commitments
	2.7 Implementation and evaluation

	Acknowledgements
	References

