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Abstract. Learning parity with noise (LPN) is a notorious (average-
case) hard problem that has been well studied in learning theory, cod-
ing theory and cryptography since the early 90’s. It further inspires the
Learning with Errors (LWE) problem [Regev, STOC 2005], which has
become one of the central building blocks for post-quantum cryptog-
raphy and advanced cryptographic primitives. Unlike LWE whose hard-
ness can be reducible from worst-case lattice problems, no corresponding
worst-case hardness results were known for LPN until very recently. At
Eurocrypt 2019, Brakerski et al. [BLVW19] established the first feasi-
bility result that the worst-case hardness of nearest codeword problem

(NCP) (on balanced linear code) at the extremely low noise rate log2 n
n

implies the quasi-polynomial hardness of LPN at the high noise rate
1/2− 1/poly(n). It remained open whether a worst-case to average-case
reduction can be established for standard (constant-noise) LPN, ideally
with sub-exponential hardness.

We start with a simple observation that the hardness of high-noise LPN
over large fields is implied by that of the LWE of the same modulus, and
is thus reducible from worst-case hardness of lattice problems. We then
revisit [BLVW19], which is the main focus of this work. We first expand
the underlying binary linear codes (of the NCP) to not only the balanced
code considered in [BLVW19] but also to another code (with a minimum
dual distance). At the core of our reduction is a new variant of smoothing
lemma (for both binary codes) that circumvents the barriers (inherent
in the underlying worst-case randomness extraction) and admits trade-
offs for a wider spectrum of parameter choices. In addition to similar
worst-case hardness result obtained in [BLVW19], we show that for any

constant 0 < c < 1 the constant-noise LPN problem is (T = 2Ω(n1−c), ε =

2−Ω(nmin(c,1−c)), q = 2Ω(nmin(c,1−c)))-hard assuming that the NCP at the
low-noise rate τ = n−c is (T ′ = 2Ω(τn), ε′ = 2−Ω(τn),m = 2Ω(τn))-hard
in the worst case, where T , ε, q and m are time complexity, success rate,
sample complexity, and codeword length respectively. Moreover, refut-
ing the worst-case hardness assumption would imply arbitrary polyno-
mial speedups over the current state-of-the-art algorithms for solving the
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NCP (and LPN), which is a win-win result. Unfortunately, public-key en-
cryptions and collision resistant hash functions need constant-noise LPN
with (T = 2ω(

√
n), ε′ = 2−ω(

√
n),q = 2

√
n)-hardness (Yu et al., CRYPTO

2016 & ASIACRYPT 2019), which is almost (up to an arbitrary ω(1)
factor in the exponent) what is reducible from the worst-case NCP when
c = 0.5. We leave it as an open problem whether the gap can be closed
or there is a separation in place.

Keywords: Foundations of Cryptography · Worst-case to average-case
reduction · Learning Parity with Noise · Smoothing Lemma.

1 Introduction

1.1 Learning Parity with Noise

Learning parity with noise (LPN) [13] represents a noisy version of the “parity
learning problem” in machine learning as well as the “decoding random linear
codes” in coding theory. The conjectured hardness of the LPN problem implies
various cryptographic applications, such as symmetric encryption and authenti-
cation [4,20,23,34,39–41,44], zero-knowledge proof for commitment schemes [38],
oblivious transfer [22], public-key cryptography [1] and collision resistant hash
functions [19, 53]. Regev [47] introduced the problem of learning with errors
(LWE) by generalizing LPN to larger moduli and to a broader choice of noise
distributions. Both LPN and LWE are believed to be hard problems not suc-
cumbing to quantum algorithms and thus constitute promising candidates for
post-quantum cryptography. For the past fifteen years LWE has shown great
success in founding upon worst-case hard lattice problems [18, 46, 47] and as a
versatile building block for advanced cryptographic algorithms (such as fully ho-
momorphic encryption [29] and attribute-based encryption [15,33]). In contrast,
its twelve-year elder cousin LPN remains much less understood. For instance,
it was not until recently did we get the first feasibility result about its root of
worst-case hardness [19].

The computational version of the Learning Parity with Noise (LPN) problem
with secret size n ∈ N and noise rate 0 < µ < 1/2 asks to recover the random

secret x given (A, A · x + e), where x
$←− Fn2 , A is a random q×n Boolean

matrix, e follows the q-fold Bernoulli distribution with parameter µ (i.e., taking
the value 1 with probability µ and the value 0 with probability 1 − µ), ‘·’ and
‘+’ denote (matrix-vector) multiplication and addition modulo 2 respectively.1

The decisional version of LPN challenges to distinguish (A, A ·x + e) from uni-
form randomness. In terms of hardness, the two LPN versions are polynomially
equivalent [6, 28,40].

1 Another equivalent formulation is to find out s given as many (up to one’s resource
capacity) random noisy inner product 〈ai, s〉 + ei as possible. In this paper we use
the Ax + e representation that is consistent with that of the decoding problems.
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LPN has been extensively studied in learning theory, and it was shown in [27]
that an efficient algorithm for LPN would allow to learn several important func-
tion classes such as 2-DNF formulas, juntas, and any function with a sparse
Fourier spectrum. Typically, the noise rate µ of LPN is constant (i.e., indepen-
dent of secret size n). The BKW (Blum, Kalai and Wasserman) algorithm [14]
solves LPN in time/sample complexity 2O(n/ logn). Lyubashevsky [43] introduced
“sample amplification” trick to obtain a variant of the BKW attack with time
complexity 2O(n/ log logn) and sample complexity q = n1+ε. If further restricted
to linearly many samples (i.e., q = O(n)) then the best attacks run in exponential
time. Alekhnovich’s work [1] implies an interesting variant of LPN (referred to
as low-noise LPN) in the noise regime of µ = 1/

√
n (or more generally µ = n−c

for 1/2 ≤ c < 1) that can be used to construct public-key crypto-systems. More

recently, Brakerski et al. [19] shows that LPN for noise rate µ = log2 n
n (called

extremely low-noise LPN) implies collision resistant hash functions. Note that
the best solvers for low-noise LPN runs in time poly(n) · eµn [7, 11, 42], so the

LPN at noise rate µ = log2 n
n is still polynomially hard despite the existence of

quasi-polynomial attacks. Alternatively, public-key encryption [52] and collision
resistant hash functions [53] can be constructed under the assumption that the
constant-noise LPN problem is 2ω(

√
n)-hard given 2

√
n samples, known as the

sub-exponential LPN assumption.

1.2 Nearest Codeword Problem and Worst-case Hardness

Quite naturally, the worst-case decoding problem considered in [19] and this
work is the worst-case analogue of the LPN problem, known as the promise
version of the Nearest Codeword Problem (NCP). Informally, the problem is
about finding out sT ∈ Fn2 given a generator matrix C ∈ Fn×m2 for some [m,n]
binary linear code (m > n) and a noisy codeword tT = (sTC + xT) ∈ Fm2 with
the promise that the error vector x ∈ Fm2 has exact Hamming weight |x| = w,
as opposed to the general requirement |x| ≤ w. Note that the difference is not
substantial since having smaller weight can only make the problem easier (seen by
a simple reduction), and one can enumerate all possible values for w and invoke
the corresponding solver (for the exact weight). The non-promise version of the
NCP problem is known to be NP-hard even to approximate [8] and the promise
version is also NP-hard in the high-noise regime where the Hamming weight of
error vector |x| ≥ (1/2+ε)d for minimal distance d of the code and any arbitrarily
small constant ε [26]. As for the algorithms, Berman and Karpinski [10] showed
how to search for the O(n/ log n)-approximate nearest codeword in polynomial
time and Alon, Panigrahy and Yekhanin [2] gives a deterministic algorithm with
the same parameters, which is the current state-of-the-art for solving NCP.

1.3 Worst-case to Average-case Reductions for LPN

We start with the “sample amplification” technique [43] that bears some resem-
blance to the smoothing lemma in [19]. The idea is to use polynomially many
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LPN samples, say (C, tT = (sTC + xT)), as a basis to generate much more sam-
ples (with a higher noise), which enables meaningful tradeoff between sample
and time complexities for the BKW algorithm. In more details, a “sample am-
plification” oracle take as input (C, tT) and responds with (Cri, tTri = sTCri+
xTri) as the i-th re-randomized LPN sample, where ri ← R and (C, Cri, xTri)
is statically close to (C, Un, xTri) by the leftover hash lemma. Preferably dis-
tribution R should be maximized with min-entropy (of more than n bits) while
keeping as small Hamming weight as possible (to make xTri biased) at the same
time, so a natural candidate can be a random length-m-weight-d distribution or
similar (e.g., m-fold Bernoulli distribution for parameter d

m ), where d� m is a
tunable parameter. Döttling [24] used a computational version of this technique
which yields better parameters by relying on the dual-LPN assumption (in place
of the leftover hash lemma) for pseudorandomness generation.

In the context of reducing worst-case hard promise-NCP to average-case hard
LPN [19], let (C, tT = (sTC + xT)) be an NCP instance, where C ∈ Fn×m2 ,
s ∈ Fn2 , x ∈ Fm2 with |x| = w are all fixed values, and the goal to generate
randomized LPN sample (Cri, tTri+uTCri = (sT+uT)Cri+ xTri) with random

u
$←− Fn2 and each ri drawn from a random weight-d distribution2. The difference

is that C is a generator matrix for a specific code (instead of being sampled from
uniform), and s is masked by random u. Brakerski et al. [19] showed that if C
belongs to a β-balanced code for β = O(

√
n/m), i.e., the Hamming distance

lies in between (1/2− β)m and (1/2 + β)m, then (Cri, xTri) is 2
n
2 · ( 2w

m + β)d

close to (Un, xTri), where Pr[xTri = 1] = 1/2 − e−Θ( wmd) is noise rate of the
LPN. As a main result3, the worst-case hardness of the NCP on balanced code

of noise rate w
m = log2 n

n implies the average-case hardness of LPN of noise
rate µ = 1/2 − 1/poly(n). This was the only known result for basing LPN on
worst-case hardness assumptions. It mainly establishes the feasibility result, i.e.,
assuming polynomial hardness for extremely low-noise NCP (for which quasi-
polynomial attacks are known) only to reach the conservative conclusion that
extremely high-noise LPN is quasi-polynomially hard. Therefore, it remained
open whether worst-hardness guarantee can be secured for LPN of a lower noise,
such as constant-noise LPN with sub-exponential hardness shown in this paper.

Curiously, one can investigate existentially (using probabilistic method) the
possibility of extending the reduction to constant-noise LPN. Think of a uni-

formly random C
$←− Fn×m2 , and by the leftover hash lemma (C,Cr,xTr) is

2−n-close to (C,Un,x
Tr) provided that the random m-choose-d distribution r

has sufficient min-entropy d log(m/d) = Ω(n). It follows by Markov inequality
that there exists at least a (1−2−n/2)-fraction of “good” C satisfying (Cr,xTr)
is 2−n/2-close to (Un,x

Tr). Take into account that x has
(
m
w

)
possible values,

the fraction of “bad” C amounts up to
(
m
w

)
2−

n
2 . In terms of parameters, we set

w
md = Θ(1) for constant-noise LPN, noise rate w

m = ω( logn
n ) is necessary for the

2 Strictly speaking, ri is sampled from Rd,m whose definition is deferred to Section 2.1.
3 More generally, as an end result [19] proves the nO(λ)-hardness of LPN at noise rate

1/2− 2−Ω(λ) for tunable parameter λ = ω(1), see Remark 2 for discussions.
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hardness assumption to hold and recall the entropy condition d log(m/d) = Ω(n),
which implies d = o( n

logn ) and thus

log

(
m

w

)
≈ w log(m/w) = Ω(

m

d
log d) = 2Ω(n/d) log d = nω(1) .

This means the upper bound
(
m
w

)
2−O(n) on the fraction of “bad” C is useless (i.e.,

greater than 1). In other words, we don’t have a straightforward non-constructive
proof that the worst-case hardness of NCP problem (on any binary linear codes)
implies the hardness of constant-noise LPN, and solving this problem needs new
ideas to beat the union bound.

1.4 Our Contributions

Prior to our main work, we give a worst-case hardness result for LPN over large
fields, which was introduced in [36] and used in various works, e.g., [3, 5, 16,
17, 25, 30, 37, 51]. Informally, the large-field LPN extends the original LPN to
a prime field Fp with a generalized Bernoulli distribution Br,p, which samples
a random element from Fp with probability r and sets to 0 with probability
1− r. We show that the hardness of large-field LPN with noise r = 1−Ω(1/αp)
is implied by that of LWE with the same dimension n and modulus p and
parameter αp for the discrete Gaussian distribution. In composition with known
worst-case to average-case reductions for LWE, this ensures worst-case hardness
for LPN with field size p ≥ poly(n) and high noise rate r = 1 − Ω(1/

√
n). To

our best knowledge, this result doesn’t seem to be known previously despite a
simple proof. However, similar to the end result of [19], it establishes worst-case
hardness guarantee only for LPN whose noise is inversely polynomial (Ω(1/

√
n)

more precisely) close to uniform.
Next we start our investigation on the original LPN (over the binary field).

We consider the promise version of NCP on two classes of binary linear codes,
i.e., balanced code considered in [19] and (a relaxed form of) independent code.
Informally, a β-balanced [m,n] code is a strengthened form of [m,n,m(1/2−β)]
code with maximal distance m(1/2 + β), and a k-independent [m,n] code is
dual to a [m,m − n, k + 1] code. Instead of sampling r from a random weight-
d distribution, we let r follow Bernoulli distribution Bmd

m

(i.e., with expected

Hamming weight d). While this looks like a weakening of the distribution (r is
now only 2−Ω(d)-close to a random weight-roughly-d distribution), the condition
that all bits of r are independent is crucial for proving a tighter version of
smooth lemma that avoids the accumulative loss due to union bound. For proper
parameter choice that guarantees: (1) r is 2−Ω(d)-close to having min-entropy
d log(m/d) = Ω(n) and (2) the code exists in overwhelming abundance, we prove

for each code a corresponding smooth lemma that (Cr,xTr) is 2−Ω(d)

1−2µ -close to

(Un,x
Tr), where µ

def
= Pr[xTr = 1] = 1/2 − 2−Θ( wmd) is the noise rate of the

LPN. Compared to the unconditional case where (it can be shown that) Cr
is 2−Ω(d)-close to Un, the result is worsened by only a factor of 1

1−2µ , rather
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than suffering from the multiplicative factor
(
m
w

)
in the aforementioned non-

constructive analysis. The result of [19] falls into a corollary by setting w
m =

log2 n
n , m = poly(n), d = 2n/ log n such that µ = 1/2− 1/poly(n). Furthermore,

our smoothing lemma allows to transform sub-exponential worst-case hardness
of NCP into the sub-exponential average-case hardness for constant-LPN, where
the underlying NCP lies in the low-noise regime w

m = n−c (0 < c < 1). In
particular, we assume there exists some constant 0 < ε < 1 such that NCP
problem is 2ε

w
mn-hard on either code of codeword length, say4 m = 2

ε
8
w
mn. To

our best knowledge, the state-of-the-art algorithms [2, 10] solve the worst-case
NCP with complexity poly(n,m)e

w
mn, and we are not aware of any algorithms

with additional accelerations for the balanced/independent codes. In fact, we
don’t even know a much better algorithm for its average-case analogue, i.e., the
LPN problem of noise rate µ = n−c (0 < c < 1) needs time poly(n)eµn to solve
with overwhelming success [42, Appendix C]. Falsifying our assumption would
imply arbitrary polynomial speedups over the current state-of-the-art, i.e., for
every constant ε > 0 there exists an algorithm that runs in time 2ε

w
mn and solves

the problem in worst case (for at least infinitely many values of n), which is a
win-win situation.

Theorem 1 (main result, informal). Assume that the NCP problem at noise

rate w
m = n−c, on either balanced code or independent code, is (T = 2Ω(n1−c),m =

2Ω(n1−c))-hard. Then,

(1) for 0 < c < 1/2, the constant-noise LPN is (T = 2Ω(n1−c), ε = 2−Ω(nc), q =
2Ω(nc))-hard;

(2) for 1/2 ≤ c < 1, the constant-noise LPN is (T = 2Ω(n1−c), ε = 2−Ω(n1−c), q =

2Ω(n1−c))-hard.

Here the (T ,ε,q)-hardness of LPN refers to that no algorithm of time T can solve
LPN of q samples with probability better than ε. The constant-noise LPN with
sub-exponential hardness already implies efficient symmetric-key cryptographic
applications, and we further discuss possibilities of going beyond minicrypt5. Un-
fortunately, for whatever reason that could be interesting, public-key cryptog-
raphy and collision resistant hash functions require constant-noise LPN with
(T = 2ω(n0.5), ε = 2−ω(n0.5), q = 2n

0.5

)-hardness [52, 53], in contrast to the

(T = 2Ω(n0.5), ε = 2−Ω(n0.5), q = 2Ω(n0.5

)-hardness we established for LPN when
c = 0.5, where ω(·) omits a (arbitrarily small) super-constant (see more dis-
cussions in Section 3.7). One might try to set c = 0.5 − δ to obtain (T =

2Ω(n0.5+δ), ε = 2−Ω(n0.5−δ), q = 2Ω(n0.5−δ
)-hard LPN, and then rebalance T and

1/ε to be of the same order (as in a typical hardness assumption). However,
we don’t know if such a time/success-rate tradeoff for LPN can be obtained in

4 We just need T ≥ poly(m,n). One may replace m = 2
ε
8
w
m
n with m = 2δε

w
m
n for

any small constant δ. In general, the hardness of NCP (resp., LPN) is insensitive to
codeword length m (resp., sample complexity q).

5 minicrypt is Impagliazzo’s [35] hypothetical world where one-way functions exist but
public-key cryptography does not.
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general (without sacrificing q). We leave it as an open problem whether such a
gap can be closed with tighter proofs or there’s in a strict hierarchy in place.
On the other hand, the attempt to use our reduction for cryptanalysis, i.e., to
turn the BKW algorithm (for LPN) into a worst-case solver for constant-noise
NCP (i.e., w

m = O(1)), is not successful again due to some small gap. We refer
to Section 3.7 for further details.

2 Preliminaries

2.1 Notations, Definitions and Inequalities

Column vectors are represented by bold lower-case letters (e.g., s), row vectors
are denoted as their transpose (e.g., sT), and matrices are denoted by bold
capital letters (e.g., A). |s| refers to the Hamming weight of bit string s. We use
notations for sets and distributions as follows.

– Rmd : the uniform distribution over set Rmd
def
= {r ∈ Fm2 : |r| = d}.

– Rd,m: the distribution that first samples t1, · · · , tm uniformly and indepen-
dent from Rm1 and then produces as output their XOR sum

⊕m
i=1 ti.

– Bqµ
def
= Bµ × · · · × Bµ︸ ︷︷ ︸

q

, where Bµ is Bernoulli distribution with parameter µ.

We use e for the natural constant and log(·) for binary logarithm. x
$←− X

refers to drawing x from set X uniformly at random, and x← X means drawing
x according to distribution X. X ∼ Y denotes that X and Y are identically

distributed. The collision probability of Y is defined as Col(Y )
def
=
∑
y Pr[Y = y]2.

We denote by H∞(Y ) the min-entropy of random variable Y . poly(·) refers to
a certain polynomial. The statistical distance between X and Y , denoted by

SD(X,Y )
def
= 1

2

∑
x |Pr[X = x]− Pr[Y = x]| . We say that X and Y are ε-close

if SD(X,Y ) ≤ ε. We refer to Appendix A for proofs omitted in the main body
and Appendix B for the inequalities, lemmas and theorems used in this paper.

2.2 Binary Linear Codes

Coding theory terminology typically refers to a linear code as [n, k]-code or
[n, k, d]-code, but we choose to use [m,n]-code (m > n) in order to be more
compatible with the LPN problem and [19], where n is the size of message
(secret to be decoded) and m is codeword length.

Definition 1 (binary linear code). A binary (m,n)-code is a set of codewords
C ⊂ Fm2 with |C| = 2n (n < m), and a binary linear [m,n]-code C is a binary

(m,n)-code that is the row span of some generator matrix C ∈ Fn×m2 , i.e., C def
=

{sTC ∈ Fm2 |sT ∈ Fn2}.

Definition 2 (dual code/distance). The dual code of a binary linear [m,n]-

code C, denoted by C⊥, is a binary [m,m−n]-code C⊥ def
= {d ∈ Fm2 |∀c ∈ C : dTc =

0}. The dual distance of C, denoted by d⊥, is the minimum distance of C⊥.
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Definition 3 (minimum/maximum distance). The minimum (resp., max-
imum) distance of a binary linear code C refers to minx6=y∈C{|x − y|} (resp.,
maxx,y∈C{|x − y|}). A linear [m,n]-code with minimum distance d is called a
[m,n,d]-code.

A β-balanced code is a [m,n, 1
2 (1−β)m] code with maximal distance bounded

by 1
2 (1 + β)m. A binary linear code is k-independent if and only if its minimum

dual distance is at least k + 1 (i.e., its generator matrix has k-wise independent
columns). In the extreme case k = n, k-independent [m,n] code becomes a
maximum distance separable (MDS) code, but since binary MDS codes are trivial
we use k < n with further relaxed conditions.

Definition 4 (balanced code). A binary linear [m,n] code C ⊆ Fm2 is β-
balanced if its minimum distance is at least 1

2 (1 − β)m and maximum distance
is at most 1

2 (1 + β)m.

Definition 5 (independent code). For a binary linear [m,n] code C ⊆ Fm2 ,

– C is k-independent iff. every k columns of its generator matrix C are linearly
independent, i.e., ∀i ∈ [1, . . . , k] : Pr[Cr = 0 : r← Rmi ] = 0.

– C is (k,ζ)-independent iff. ∀i ∈ {k2 ,
k
2 + 1, . . . , k} : Pr[Cr = 0 : r ← Rmi ] ≤

2−n(1 + ζ).

The latter relaxes the independence condition by only enforcing it for i ∈ [k/2, k]
(instead of for all i ∈ (0, k]) and even for i ∈ [k/2, k] a slackness of ζ is allowed,
in the spirit of almost universal hash functions [49]. Note that there is nothing
special with the cut-off point k/2, which can be replaced with δk for any constant
0 < δ < 1 without affecting our results asymptotically.

The following lemmas assert that balanced code and independent code exist
in abundance and they both account for an overwhelming portion of linear code
(for the parameter choices of this paper). In other words, it is very likely that a
random matrix is both balanced and independent at the same time. The proof
of Lemma 1 follows a simple probabilistic argument (already given in [19]) while
as for the proof of Lemma 2 we exploit the pairwise independence in order to
apply the Chebyshev’s inequality. We refer interested readers to Appendix A
and Remark 3 for its proof and discussions. A similar result with k ≈ n/2 was
stated in [21, Theorem 6].

Lemma 1 (Existence of balanced code [19]). A random binary linear [n,m]-

code is β-balanced with probability at least 1−2n+1e−
β2m

4 . In particular, for β ≥
2
√
n/m the random binary linear code is β-balanced with probability 1−2−Ω(n).

Remark 1 (existence vs. abundance). Lemma 1 states that β ≥ 2
√
n/m ensures

the overwhelming abundance rather than the mere existence of balanced codes.
We remark that the difference is not substantial, e.g., for any arbitrarily small
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ε > 0 by setting β ≥
√

4(n+1+ε log(e))
(log e)m ≈ 1.66

√
n/m we derive a corollary of

Lemma 1 that β-balanced [n,m]-code exists with a fraction of at least

1− 2n+1e−
β2m

4 ≥ 1− e−ε ≈ ε .

The above is essentially the Gilbert-Varshamov bound that asserts the existence
of certain codes6, and it is almost tight for binary linear codes [12].

Lemma 2 (Existence of independent code). A random binary linear [m,n]

code C is (k, ζ)-independent with probability at least (1 − k2n+
logm

2
− k

2
log m

k

ζ2 ). In

particular, for k log(m/k) ≥ 16n and logm = o(n) the random binary linear
code is (k, 2−n)-independent with probability at least 1− 2−4n.

2.3 The NCP and LPN problem

Throughout, n is the main security parameter, and other parameters, e.g., µ =
µ(n), q = q(n), m = m(n) and T = T (n), can be seen as functions of n.

Definition 6 (Nearest Codeword Problem (NCP)). The nearest codeword
problem NCPn,m,w for n,m,w ∈ N refers to that given the input of a matrix
C ∈ Fn×m2 of a binary linear code C and a noisy codeword tT = sTC + xT for
some s ∈ Fn2 and x ∈ Rmw , and the challenge is to find out a solution s′ such
that sTC + xT = s′TC + x′T for some x′ ∈ Rmw . In particular, we consider the
NCP on the following codes:

– (Balanced NCP). The balanced nearest codeword problem, referred to as
balNCPn,m,w,β, is the NCPn,m,w on β-balanced linear [m,n]-code.

– (Independent NCP). The independent nearest codeword problem, denoted
by indNCPn,m,w,k,ζ , refers to the NCPn,m,w on (k, ζ)-independent linear [m,n]-
code.

Similar to one-way function, an instance of the NCP is considered solved as
long as a decoding algorithm comes up with any legitimate solution x′, which
does not necessarily equal the original x. In general, linear codes have unique
solutions except for a 2−m+n+2w logm fraction (see Lemma 3), which is super-
exponentially small for our parameter setting w logm = O(n) and m = Ω(n1+ε).
Moreover, balNCPn,m,w,β has unique solution for w < 1

4 (1 − β)m. Decisional
and computational LPN are polynomially equivalent even for the same sample
complexity [6].

6 Strictly speaking, Gilbert-Varshamov bound concerns with the existence of a code
with minimum distance m(1/2 − β) while the balanced code we consider requires
minimum/maximum distance m(1/2∓β) at the same time, where the difference can
be omitted due to the symmetry of binomial coefficient

(
m

m(1/2∓β)

)
centered on m/2.
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Definition 7 (Learning Parity with Noise (LPN)). The (computational)
LPN problem with secret length n, noise rate µ ∈ (0, 1/2) and sample complexity
q, denoted by LPNn,µ,q, asks to find out x given (A, A·x+e); and the decisional
LPN problem DLPNn,µ,q challenges to distinguish (A, A·x+e) and (A, Uq),

where matrix A
$←− Fq×n2 , x

$←− Fn2 , y
$←− Fq2, and e← Bqµ.

Computational hardness. We say that a computational/decisional problem
is (T ,ε)-hard, if every probabilistic algorithm running in time T solves it with
probability/advantage at most ε. We say that NCP (resp., LPN) is (T ,ε,q)-hard if
the problem is (T ,ε)-hard when the codeword length (resp., sample complexity)
does not exceed q. When the success-rate term ε = 1/T we often omit ε. Recall
that standard polynomial hardness requires that T > poly(n) and ε < 1/poly(n)
for every poly and all sufficiently large n’s.

Lemma 3 (Unique decoding of binary LPN). For w/m < 1/4,

Pr
C

$←−Fm×n
2

[
∃s1 6= s2 ∈ Fn2 ,∃x1,x2 ∈ Fm2 : |x1|, |x2| ≤ w∧

(
sT1 C+xT

1 = sT2 C+xT
2

)]
is upper bounded by 2−m+n+2w logm.

3 Worst-case to Average-case Reductions for LPN

3.1 Worst-case hardness for large-field LPN

Denote with LWEn,p,α and LPNn,r(Fp) the LWE problem and the large-field LPN
problem respectively, both of dimension n and over prime modulus p, where
the LWE’s noise follows the discrete Gaussian distribution DZ,αp of standard
deviation parameter αp, and the LPN’s noise distribution returns a random
element over Fp with probability r, and is set to 0 otherwise.

Lemma 4 (LWE implies high-noise LPN over Fp). Assume that LWEn,p,α
with prime p, α = o(1),αp = ω(log n) is hard, then LPNn,r(Fp) with r = 1 −
Ω( 1

αp ) is hard.

Proof. Every LWE sample (ai,〈ai, s〉 + ei) can be transformed into an LPN

sample (a′i,〈a′i, s〉+e′i) (over the same field) by multiplying with a random mi
$←−

Fp\{0}, where a′i is the scalar-vector product miai, and e′i = miei. For any ei 6= 0
we have (a′i,e

′
i) is uniformly distributed over Fnp × (Fp \ {0}), and for ei = 0 it is

uniform over Fnp × {0}. Thus, overall (a′i,e
′
i) is an LPNn,r(Fp) sample with

1− r = Pr[ei = 0]− 1− Pr[ei = 0]

p− 1
≥ Ω(1/αp)− 2

p
≥ Ω(1/αp) .

Lemma 4 puts no lower bounds on the size of p, and recall that the LPN problem
becomes a special case of LWE for p = 2 (for which no reductions are needed).
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However, in order for the LWE to be quantumly reducible from worst-case lattice
problems, we need q = poly(n) and αp = Ω(

√
n). The reduction can be made

classical at the cost of either a much larger modulus q ≥ 2n/2 or relying on a
non-standard variant of GapSVP [46].

Theorem 2 ( [47]). For any p ≤ poly(n), any αp ≥ 2
√
n and 0 < α < 1,

solving the (decisional) LWEn,p,α problem is at least as hard as quantumly solving

GapSVPγ and SIVPγ on arbitrary n-dimensional lattices, for some γ = Õ(n/α).

To summarize, based on the (quantum or even classical) worst-case hardness of
lattice problems, we establish up to 2O(n)-(average-case)-hardness of large-field
LPN for modulus p ≥ poly(n) and noise rate r = 1 − Ω(1/

√
n). Next, we will

revisit [19] and show worst-case to average-case reductions for constant-noise
LPN (over the binary field), which is the main focus of this work.

3.2 The worst-case to average-case reduction from [19]

Brakerski et al. [19] showed that the worst-case hardness of the extremely low-
noise NCP problem on balanced code implies the (average-case) hardness of
extremely high-noise LPN.

Theorem 3 ( [19]). Assume that balNCPn,m,w,β is hard in the worst case for

noise rate w
m = log2 n

n , m = 4n2, β = 1/
√
n then LPNn,µ,q is hard (in the average

case) for µ = 1/2− 1
nO(1) and any q = poly(n).

As detailed in Algorithm 1, the idea is to convert an NCP instance (C, tT) into
LPN samples. By Theorem 4, the conversion produces q LPN samples of noise
rate µ up to error qδ, where

µ =
1

2
− 1

2
(1− 2w

m
)d, qδ = O(q)2

n
2 · (2w

m
+ β)d .

Thus, the conclusion follows by setting w
m = log2 n

n , β = 2
√
n/m = 1/

√
n,

d = 2n/ log n such that µ = 1/2− 1/nO(1) and qδ = negl(n).

Remark 2 (possibilities and limitations). Other possible parameter choices are
also discussed in [19], e.g., assume that balNCPn,m,w,β is 2Ω(

√
n)-hard for w

m = 1√
n

(while keeping β = 1√
n

and d = 2n/ log n) then LPNn,µ,q is 2Ω(
√
n)-hard for

noise µ = 1/2 − 2−
√
n/ logn and q = 2Ω(

√
n). This result is non-trivial since

the noise rate µ (although quite close to uniform already) isn’t high enough for
the conclusion to hold statistically. However, it does not seem to yield efficient
(a.k.a. polynomial-time) cryptographic applications due to the high noise rate.
In fact, the barriers are inherent in its smoothing lemma Theorem 4. Informally,
assume that NCP at noise rate w

m = logn·λ
n is nO(λ)-hard7 on β-balanced code,

7 We recall the known attacks [2,10] of time complexity 2O( w
m
n) on NCP of noise rate

w
m

.
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then the LPN of noise rate µ = 1
2 −

1
2 (1− 2w

m )d is (at most) nO(λ)-hard provided

that ( 2w
m + β)d < 2−n/2. Therefore, we need to set λ = ω(1) for the worst-case

hardness assumption to hold. Further, regardless of the value of β it requires
d = Ω(n/ log n) to make ( 2w

m +β)d < 2−n/2. This lower bounds the noise rate of

LPN, i.e., µ = 1
2−

1
2 (1− 2w

m )d = 1/2−2−Ω(λ). Raising the value of λ brings better
hardness, but at the same time it makes the noise of LPN closer to uniform (and
hence renders the result less interesting). A reasonable compromise seems to let
λ = log n which was the main choice of [19].

Algorithm 1 Converting an NCP instance to LPN samples.

Input: (C, tT = sTC + xT), where C ∈ Fn×m2 , s ∈ Fn2 , x ∈ Rmw
u

$←− Fn2
Sample R

def
= [r1, . . . , rq] ∈ Fm×q2 , where every column ri ← Rd,m (1 ≤ i ≤ q)

Output: (CR, tTR + uTCR) = (CR, (sT + uT)CR + xTR)

Theorem 4 (W/A-case reduction via code smoothing [19]). Assume that
balNCPn,m,w,β is T -hard in the worst case, then LPNn,µ,q is (T−O(nmq), 1

T +qδ)-
hard (in the average case) for any w, d ≤ m, any q and

δ = max
x∈Rm,w

SD
(

(Cr,xTr) , (Un,x
Tr)

)
≤ 2

n+1
2 · (2w

m
+ β)d , (1)

µ = max
x∈Rm,w

Pr[xTr = 1] =
1

2
− 1

2
(1− 2w

m
)d . (2)

where r← Rd,m, C ∈ Fn×m2 is a generator matrix of any β-balanced [m,n] code
and O(mnq) accounts for the complexity of Algorithm 1.

The authors of [19] proved the above smoothing lemma using harmonic anal-
ysis. We give an alternative proof via Vazirani’s XOR lemma [31,50]. We stress
that the approach serves to simplify the presentation to readers by establishing
the proof under a well-known theorem. In other words, the proof below is not
essentially different from that in [19] after unrolling out the proof of the XOR
lemma.

Lemma 5 (Vazirani’s XOR lemma [31,50]). For any r.v. v ∈ Fn2 , we have

SD(v,Un) ≤
√ ∑

06=a∈Fn2

SD(aTv,U1)2 .

A simplified proof for Theorem 4. We denote with Cx ∈ Fn×(m−w)
2 and

rx ∈ Fm−w2 be the submatrix and substring of C and r respectively by keeping
columns and bits that correspond to the positions of 0’s in xT. Recall that r←
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Rd,m refers to r := ⊕di=1ti for random weight-1 strings t1, · · · , td ∈ Fm2 . Similarly,
let tx̄i denote ti’s w-bit substring corresponding to the positions of 1’s in xT.

Further, let Ej denote the event that the Hamming weight sum
∑d
i=1 |tx̄i | = j,

and thus rx conditioned on Ej , denoted by rx,j , follows distribution Rd−j,m−w.

SD
(

(Cr,xTr) , (Un,x
Tr)

)
≤ SD

(
(Cxrx, t

x̄
1 , . . . , t

x̄
d) , (Un, t

x̄
1 , . . . , t

x̄
d)
)

≤
d∑
j=0

Pr[Ej ] ·

√√√√ ∑
0 6=a∈Fn2

SD
(

aTCxrx,j , U1

)2

≤
d∑
j=0

Pr[Ej ] ·

√√√√2n ·

(
(
w + βm

m− w
)d−j

)2

= 2
n
2

d∑
j=0

(
d

j

)
(
w

m
)j(1− w

m
)d−j︸ ︷︷ ︸

Pr[Ej ]

·(w + βm

m− w
)d−j = 2

n
2 (β +

2w

m
)d ,

where the first inequality is due to that xTr is implied by tx̄1 , . . . , t
x̄
d (i.e., xTr

is the parity bit of ⊕di=1t
x̄
i ), the second inequality follows from Vazirani’s XOR

lemma and the third inequality is due to Piling-up lemma, in particular, aTC ∈
Fm2 is a balanced string with (1±β)m

2 1’s and thus its substring aTCx ∈ Fm−w2 has

(m−w2 ) ± (w+βm
2 ) 1’s and each bit 1 of rx,j hits the 1’s in aTCx with probability

1
2 ±

w+βm
2(m−w) . Finally, we compute noise rate µ by the following:

1− 2µ = Pr[xTr = 0]−Pr[xTr = 1] =

d∑
i=0

(
d

i

)
(
−w
m

)i(1− w

m
)d−i = (1− 2w

m
)d .

3.3 On the Non-triviality of Code Smoothing

As discussed in Remark 2, the worst-case to average-case reduction in [19] may
only give rise to the nO(λ)-hardness of LPN on noise rate µ = 1/2 − 2−Ω(λ).
Ideally, the dependency of µ on λ would be removed such that the noise rate
of LPN µ can be kept constant while assigning a large value to λ to enjoy sub-
exponential hardness for LPN. This will be goal of this paper.

Before we proceed, it is worth to repeat what we pointed out in the intro-
duction that a better smoothing lemma is non-trivial without new ideas. The
possibilities of smoothing linear binary codes can be investigated existentially
using a probabilistic argument. The code smoothing lemma, as stated in eq: 1,
can be seen as deterministic randomness extractor from Bernoulli-like distribu-
tions. Consider C to be uniform over ∈ Fn×m2 instead of a fixed one, then r has
average min-entropy roughly d log(m/d) even given the single bit leakage xTr,
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and thus by the leftover hash lemma SD
(

(C,Cr,xTr), (C,Un,x
Tr)
)
≤ 2−n for

d log(m/d) = 3n. It follows by Markov inequality that there exists at least a

(1− 2−n/2)-fraction of “good” C satisfying SD
(

(Cr,xTr), (Un,x
Tr)
)
≤ 2−n/2.

This seemingly opens new possibilities especially in the sub-exponential hardness
regime. For example, assume the NCP problem on a “good” code is 2Ω(

√
n)-hard

(in the worst case) for noise rate w
m = 1√

n
, d = O(

√
n), and m = 2O(

√
n) then

LPNn,µ,q is 2Ω(
√
n)-hard against constant noise (see eq: 2). However, so far we

only consider a specific value of x for which there is a 2−n/2 fraction of C that
fails the randomness extraction, and by summing over all the possible x ∈ Rmw
the fraction of “bad” C amounts up to

(
m
w

)
2−n/2, which is useless since

(
m
w

)
is

super-exponential for w = O(2
√
n/
√
n). To summarize, the existence of more

meaningful smoothing lemma for binary linear code crucially relies on tighter
proof techniques and better exploitation of the actual code/distribution in con-
sideration to beat the union bound (so that “bad” C for different values of x
mostly coincide and they jointly constitute only a negligible fraction).

3.4 Worst-case Sub-exponential Hardness for LPN

We obtain the following worst-case to average-case reductions for LPN, where
d log(m/d) = Ω(n) is a necessary entropy condition (which is implicit in eq: 1 of
Theorem 4) and the values of β, k, and ζ are chosen to ensure the existence of
respective codes (Lemma 1 and Lemma 2 ).

Theorem 5 (W/A-reduction for β-balanced codes). Assume that the balNCPn,m,w,β
is (T ,ε)-hard in the worst case for β = 2

√
n/m, then LPNn,µ,q is (T −O(nmq),

ε+ q·2−Ω(d)

1−2µ )-hard for µ = 1
2−

1
2 (1− 2d

m )w, any m and d satisfying d log(m/d) ≥ 4n.

Theorem 6 (W/A-reduction for independent codes). Assume that the
indNCPn,m,w,k,ζ is (T ,ε)-hard in the worst case for k = 16d

7 and ζ = 2−n, then

LPNn,µ,q is (T −O(nmq), ε+ q·2−Ω(d)

1−2µ )-hard for µ = 1
2 −

1
2 (1− 2d

m )w, any m and

d satisfying d log(m/d) ≥ 7n.

Proof sketch. The proofs of Theorem 5 and Theorem 6 use the NCP instance to
LPN sample conversion as described in Algorithm 1 except for sampling every
ri ← B d

m
instead of ri ← Rd,m. The conclusions follow from the respective

smoothing lemmas (Lemma 9 and Lemma 12). While replacing Rd,m with B d
m

seems equivalent in terms of the resulting noise rate µ (almost same as eq: 2
except that d and w are swapped), the fact that bits of ri are all independent
is crucial in obtaining more generic security bounds for δ that allow for a wider
range of parameter choices. �

A comparison with [19]. With appropriate parameter assignment to The-
orem 5, we obtain comparable results to [19] (see Theorem 3). Following [19],
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we consider balanced code with noise rate w/m = log2 n/n. As explained in Re-
mark 1, while β ≥ 2

√
n/m ensures the overwhelming abundance of the balanced

code, the existence condition does not impose much less, i.e., β ≥ 1.66
√
n/m. It

is convenient to fix β = 2
√
n/m as larger values for β can only lead to larger d

and renders LPN’s noise µ closer to uniform. We give the comparison in Table 1
with various values for m ≥ n1+ε. Note that the NCP is hard up to T = nO(logn)

due to known attacks, and the reduction requires T ′ = T −O(nmq) > 0, so here
we let m = poly(n), and q = poly(n). In [19] the constraint on d is implied by
eq: 1, i.e.,

2
n+1
2 · (2w

m
+ β)d = 2

n+1
2 · (2 log2 n

n
+ β)d = negl(n) (3)

while Theorem 5 explicitly sets d log(m/d) = 4n. Substituting d into the noise

rate of LPN, which is roughly µ ≈ 1/2− e− 2w
m d+O(1) in both cases, yields

µ ≈

{
1/2− n

−2.88 logn
(logm−logn) for n3

log4 n
> m ≥ n1+ε

1/2− n−1.44 for m ≥ n3

log4 n

for [19], and µ ≈ 1/2−n
−11.54 logm
(logm−logn) for m ≥ n1+ε in our case. As we can see from

Table 1, our result is slightly (by a factor of 4 in the exponent) worse than [19]
for m < n3, and the gap decreases from m ≥ n3. Our result starts to show its
advantage for m ≥ n9. In other words, [19] stays at µ ≈ 1/2− n−1.4 and ceases
to improve for m ≥ n3. This is because for m ≥ n3 it is 2 log2 n/n (instead of
β ≤ 2

√
n/m ≤ 2/n) that dominates the term in eq: 3, and thus one can no

longer trade β for better µ regardless how small β is.

Table 1. Restate Theorem 5 and its analogue in [19] as “T -wc-hardness of
“NCP(n,m, w

m
) on β-balanced code implies T ′-ac-hardness of LPN(n, q, µ)” for m ∈

{n1.2, n2, . . . , 100}, where w
m

= log2 n
n

, β = 2
√
n/m, T ′ = T −O(nmq), q = poly(n).

LPN’s noise rate µ from LPN’s noise rate µ

m [19] (see Theorem 3) from our Theorem 5

n1.2 1
2
− n−14 1

2
− n−58

n2 1
2
− n−3 1

2
− n−12

n3 1
2
− n−1.4 1

2
− n−6

n6 1
2
− n−1.4 1

2
− n−2.3

n9 1
2
− n−1.4 1

2
− n−1.4

n10 1
2
− n−1.4 1

2
− n−1.3

n100 1
2
− n−1.4 1

2
− n−0.1
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Our result admits a wider range of trade-offs between m and µ. More im-
portantly, when m goes beyond poly(n) it enables to guarantee sub-exponential
hardness for constant-noise LPN. In particular, we now assume that there exists
constant ε such that the NCP problem is is 2ε

w
mn-hard at noise rate w

m and
codeword length m = 2

ε
8
w
mn. Note that refuting this assumption means that we

can do arbitrary polynomial speedup over the current best known algorithms in
solving the respective NCPs, which is a win-win situation.

Theorem 7 (Sub-exponential hardness for LPN). Assume that either (1)
balNCPn,m,w,β with β = 2

√
n/m, or (2) indNCPn,m,w,k,ζ with k = 16d

7 and ζ =

2−n, is 2Ω(n1−c)-hard at noise rate w
m = n−c and codeword size m = 2Ω(n1−c),

then depending on the value of c we have

Case 0 < c < 1/2: LPNn,µ,q is (2Ω(n1−c), 2−Ω(nc))-hard for 0 < µ = O(1) < 1/2
and q = 2Ω(nc);

Case 1/2 ≤ c < 1: LPNn,µ,q is 2Ω(n1−c)-hard for 0 < µ = O(1) < 1/2 and

q = 2Ω(n1−c).

Proof sketch. This is a corollary of Theorem 5 and Theorem 6 (from the respec-
tive assumptions) for w

m = n−c, µ = O(1) (s.t. w
md = O(1)), d log(m/d) = O(n)

and T = Ω(n1−c). Note that 1/T +q2−Ω(d) = 2−Ω(n1−c) +2−Ω(nc), which is why
the value of c is considered. �

3.5 Smoothing balanced codes

Our smoothing lemma benefits from Lemma 7 which tightly relates the bound on

the conditional case SD
(

(Cr,xTr) , (Un,x
Tr)

)
to that of the unconditional case

SD(Cr,Un), regardless of which x is used. Note that this would not have been
possible if r were not sampled from the Bernoulli distribution that is coordinate-
wise independent. We first introduce Lemma 6 based on which Lemma 7 is built.

Lemma 6. Let p be a random variable over Fn2 , and let c be any constant vector
over Fn2 . Then, we have

SD(p⊕ (e1c),Un) ≥ (1− 2a) · SD(p,Un) ,

where e1
$←− Ba (0 ≤ a ≤ 1/2) and e1c denotes scalar vector multiplication

between e1 and c.

Proof. We use the shorthand px
def
= Pr[p = x] − 2−n for any x ∈ Fn2 . Observe

that any non-zero c divides Fn2 into two disjoint equal-size subsets S1, S2 ⊂ Fn2
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such that every p ∈ S1 implies (p + c) ∈ S2 and vice versa. Therefore,

SD
(
p⊕ (e1c),Un

)
=

1

2

∑
x∈Fn2

∣∣∣px(1− a) + px⊕ca
∣∣∣

≥ 1

2

∑
x∈Fn2

(
|px|(1− a)− |px⊕c|a

)
=

1

2

∑
x∈Fn2

(
|px|(1− 2a)

)
= (1− 2a) · SD(x,Un) .

Lemma 7. For any matrix C ∈ Fn×m2 , any x ∈ Rmw and any 0 ≤ a ≤ 1/2 we
have

SD(Cxrx,Un) ≤ SD(Cr,Un)

(1− 2a)w
,

where r← Bma , Cx ∈ Fn×(m−w)
2 (resp., rx ∈ Fm−w2 ) denotes the submatrix of C

(resp., subvector of r) by keeping only columns (resp., bits) corresponding to the
positions of bit-0 in x respectively.

Proof. We have Cr = Cxrx+
⊕w

i=1 eici where ei ← Ba and ci is the i-th column
vector of C\Cx (i.e., the columns of C that are excluded from Cx). By applying
Lemma 6 w times we get

SD(Cr,Un) ≥ (1− 2a)w · SD(Cxrx,Un) .

We need the following corollary of two-source extractors to prove the smooth-
ing lemma. Recall that two-source extractor distills almost uniform randomness
from pair-wise independent sources bT and r, while Corollary 1 shows that the
result holds even when bT is fixed (has no entropy at all) as long as certain
conditioned are met.

Lemma 8 (Two-source extraction via inner product). For independent
random variables bT, r ∈ Fm2 with H∞(bT) = kb and H∞(r) = kr we have

SD
(

(bT,bTr), (bT, U1)
)
≤ 2−(

kb+kr−m
2 +1) .

Corollary 1. For random variable r and distribution D defined over Fm2 and

F2 respectively, define set BD,r
def
= {bT : bTr ∼ D}, where H∞(r) = kr, and

|BD,r| ≥ 2kb . Then, for any bT ∈ BD,r it holds that

SD(bTr, U1) ≤ 2−(
kb+kr−m

2 +1) .

Proof. Fix an arbitrary bT ∈ BD,r, and let b′T be a random variable that is
uniform over BD,r, we have

SD(bTr, U1) = SD(D,U1) = SD
(

(b′T,b′Tr), (b′T, U1)
)
≤ 2−(

kb+kr−m
2 +1) ,

where the equalities are simply by the definitions of BD,r and b′T, and the
inequality follows from the two source extractor lemma below.
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Lemma 9 (Smoothing lemma for balanced codes). Let β ≤ 2
√
n/m,

d log(m/d) ≥ 4n, d = O(n), and let C ∈ Fn×m2 be any generator matrix for
a β-balanced [m,n]-linear code, then for every x ∈ Rmw and r ← Bmd

m

it holds

that µ = Pr[xTr = 1] = 1
2 −

1
2 (1− 2d

m )w and

δC,x = SD
(

(Cr,xTr) , (Un,x
Tr)

)
≤ 2−Ω(d)

1− 2µ
.

Proof. The noise rate µ directly follows from the Piling-up lemma.

SD(Cr,Un )

≤ SD(Cr′,Un) + 2−Ω(d)

≤

√√√√ ∑
06=a∈Fn2

SD
(

aTC︸︷︷︸
bT

r′, U1

)2

+ 2−Ω(d)

≤

√√√√ ∑
06=a∈Fn2

SD
(

(b′T,b′Tr′), (b′T,U1)
)2

+ 2−Ω(d)

≤ 2
n
2 · 2

(log e)β2

2
m+

logm
2

−d(1−δ) log( m
d(1−δ) )

2 + 2−Ω(d)

= 2−Ω(d)

where the first inequality follows from a Chernoff bound that r is 2−Ω(d)-close to
some r′ that is a convex combination of Rmd(1−δ), R

m
d(1−δ)+1, · · · , Rmd(1+δ) for any

small constant δ > 0, the second is due to Vazirani’s XOR lemma. By the defini-

tion of balanced code bT def
= aTC ∈ Fm2 satisfies (1−β)m

2 ≤ |bT| ≤ (1+β)m
2 and we

assume WLOG |bT| = (1−β)m
2 so that bTr′ is maximally biased. The third and

fourth inequalities follow from Corollary 1 based on two-source extractors. In
particular, let b′T be a random variable uniformly drawn from Rm(1−β)m

2

, i.e, the

set of all values with the same Hamming weight as bT. We observe that r′ ∼ Rmj
implies that every bT

1 and bT
2 with |bT

1 | = |bT
2 | must satisfy bT

1 r′ ∼ bT
2 r′ and

therefore SD(bTr′, U1) = SD
(

(b′T,b′Tr′), (b′T, U1)
)

. This allows to apply

the strong two-source extractor, where Fact 2 is used to estimate the entropy
of b′T, i.e., log

( m
(1−β)m

2

)
. Finally, we set β = 2

√
n/m, d log(m/d) = 4n and

sufficiently small δ to complete the proof. Following the proof of Theorem 4,

let Cx ∈ Fn×(m−w)
2 and Cx̄ ∈ Fn×w2 denote the submatrices of C by keeping

columns corresponding to the 0’s and 1’s in xT respectively, and let rx ∈ Fm−w2

and rx̄ ∈ Fw2 denote the subvectors of r that correspond to the positions of 0’s
and 1’s in xT respectively. This allows to complete the proof by

SD
(

(Cr,xTr) , (Un,x
Tr)

)
≤ SD

(
(Cxrx, rx̄) , (Un, rx̄)

)
= SD(Cxrx,Un) ≤ SD(Cr,Un)

(1− 2d
m )w

=
2−Ω(d)

(1− 2d
m )w

.
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where the first inequality is due to that (Cr,xTr) is implied by (Cxrx, rx̄), i.e.,
Cr = Cxrx + Cx̄rx̄ and xTr = 〈1w, rx̄〉, and so is (Un,x

Tr) by (Un, rx̄), the
equality is due to the independence of rx and rx̄, and the last inequality follows
from Lemma 7.

As stated in Lemma 10, it is not hard to see a lower bound on smoothing any
binary linear code (i.e., not just the balanced code considered above) with respect
to r← Bmd

m

. This means that our smoothing lemmas (Lemma 9 and Lemma 12)

are optimal (up to some constant factor in the exponent) for µ ≤ 1/2− 2−O(d).

Lemma 10 (Lower bound on code smoothing). For any C ∈ Fn×m2 , for
any x ∈ Fm2 and r← Bmd

m

with d
m = o(1) it holds that

SD
(

(Cr,xTr) , (Un,x
Tr)

)
≥ 2−O(d) .

Proof. Denote the first row of C by cT1

SD
(

(Cr,xTr) , (Un,x
Tr)

)
≥ SD(cT1 r,U1) =

(1− 2d
m )|c

T
1 |

2
≥ 2−O(d) ,

where the equality is the piling-up lemma, and the last inequality is due to
|cT1 | ≤ m and 1− x = 2−O(x) for x = o(1).

3.6 Smoothing Independent Codes

The proof of the smoothing lemma relies on following Lemma 11, which is ab-
stracted out from the leftover hash lemma (see Appendix A for its proof).

Lemma 11 (Generalized Hash Lemma). For any function h : Fm2 → Fn2
and any random variable r over Fm2 we have

SD
(
h(r), Un

)
≤ 1

2

√
2n · Col(h(r))− 1 .

Lemma 12 (Smoothing lemma for independent codes). Let d log(m/d) ≥
7n and logm = o(n), and let C ∈ Fn×m2 be any generator matrix for a (k = 16d

7 ,
2−n)-independent [m,n]-linear code C ∈ Fm2 , then for every x ∈ Rm,w and r ←
Bmd
m

it holds that

δC,x = SD
(

(Cr,xTr) , (Un,x
Tr)

)
≤ 2−Ω(d)

(1− 2d
m )w

,

µ = Pr[xTr = 1] =
1

2
− 1

2
(1− 2d

m
)w .
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Proof. For any constant 0 < δ < 1, r is 2−Ω(d)-close to some convex combination
of Rmd(1−δ), R

m
d(1−δ)+1, · · · , Rmd(1+δ), which is denoted by r′. By Lemma 11,

SD(Cr , Un) ≤ 2−Ω(d) +
√

2n · Col(Cr′)− 1 .

We assume WLOG r′ ← Rmd(1−δ) and consider i.i.d. r1, r2 ← Rmd(1−δ) such that

Col(Cr′) = Pr[Cr1 = Cr2] = Pr[Cr̈]

where for constant 0 < ∆ < 1 variable r̈
def
= r1− r2 follows a convex combination

of Rm2d(1−δ)(1−∆), R
m
2d(1−δ)(1−∆)+1, . . ., Rm2d(1−δ) whose weights lie in between8

k/2 = 2d(1− δ)(1−∆) ≤ weight ≤ 2d(1 + δ) = k

for δ = 1/7 and ∆ = 1/3 except with error

d(1−δ)∑
i=d(1−δ)∆

(
d(1−δ)

i

)(
m−d(1−δ)
d(1−δ)−i

)(
m

d(1−δ)
) ≤ 2d(1−δ)(1−∆) log m

d(1−δ)(1−∆)

2d(1−δ) log m
d(1−δ)

≤ 2−d(1−δ)∆ log m
d(1−δ) .

The error is upper bounded by 2−2n (for δ = 1/7 and ∆ = 1/3). Thus,√
2n · Col(Cr′)− 1 ≤

√
2n · (2−n(1 + 2−n) + 2−2n)− 1 = 2−Ω(n) .

and SD(Cr , Un) ≤ 2−Ω(d). The rest follow the same steps as in the proof of
Lemma 9.

3.7 Discussions

We conclude that the constant-noise LPN problem is (T = 2Ω(n1−c), ε = 2−Ω(nmin(c,1−c)),

q = 2Ω(nmin(c,1−c)))-hard assuming that the NCP (on the balanced/independent
code) at the low-noise rate τ = n−c is (T ′ = 2Ω(τn), ε′ = 2−Ω(τn),m = 2Ω(τn))-

hard in the worst case. Unfortunately, we need (T = 2ω(n0.5), ε = 2−ω(n0.5),

q = 2Ω(n0.5))-hardness for constructing collision resistant hash functions and
public-key encryptions [52, 53], where the super-constant omitted by ω(·) (rep-
resenting the gap between what we prove for c = 0.5 and what is needed for
PKE/CRH) can be arbitrarily small.9 We explain in details below.

Theorem 8 ( [53]). Let n be the security parameter, and let µ = µ(n), k =

k(n), q = q(n), t = t(n) and T = T (n) such that t2 ≤ q ≤ T = 2
8µt

ln 2(1−2µ) . For

8 For up limit on |r̈| we need to consider the other extreme case r′ ← Rmd(1+δ), where
the corresponding r̈ is a convex combination of Rm2d(1+δ)(1−∆), R

m
2d(1+δ)(1−∆)+1, . . .,

Rm2d(1+δ) up to small error.
9 The difference between decisional and computational LPN is omitted since 2p-hard
LPNn,µ,q implies 2Ω(p)-hard DLPNn,µ,q for any p = ω(logn), µ = O(1) and q ≥
poly(n) due to the sample-preserving reduction [6].
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each A ∈ Fn×q2 , define compressing function hA : Flog( qt )t
2 → Fn2 with log( qt )t > n

by hA(x) = A·Expand(x), where Expand expands any string of length log( qt )t into
one of length q with Hamming weight no greater than t, and hA is computable
in time O(q log q) (see [53, Construction 3.1] for concrete instantiation of hA).
Assume that the DLPNn,µ,q is T -hard, then for every probabilistic adversary A
of running time T ′ = 2

4µt
ln 2(1−2µ)

−1

Pr
A

$←−Fn×q
2

[ (y,y′)← A(A) : y 6= y′ ∧ hA(y) = hA(y′) ] ≤ 1

T ′
.

Note that the above theorem does not state “hA is a T ′-hard collision resis-
tant hash (CRH)” as it is computable in time O(q log q) while q = 2Ω(

√
n) is not

polynomial in the security parameter n. In particular, length requirement q ≤ T
(any adversary making q queries runs in time at least q) implies, by taking a
logarithm, log(q) = O(t) (recall that µ is constant). Since the compressing condi-
tion requires log( qt )t > n we need to set q and t to be at least 2Ω(

√
n) and Ω(

√
n)

respectively. The authors of [53] offers a remedy to solve this problem. Switch
to a new security parameter λ = q, and let t = log λ · ω(1) for any arbitrarily
small ω(1). This ensures that hA is computable in time poly(λ) while remain-

ing λω(1)-collision resistant. Therefore, we need (T = 2ω(n0.5), ε = 2−ω(n0.5),

q = 2Ω(n0.5))-hardness for constant-noise LPN to construct collision resistant
hash functions, where ω(·) omits an arbitrary super constant.

Neither can we construct public-key encryptions from (T = 2Ω(n0.5), ε =

2−Ω(n0.5), q = 2Ω(n0.5))-hard LPN due to the same ω(1) gap factor (see Theo-
rem 9). The reason is essentially similar to the case of CRH. In fact, in some
extent CRH and PKE are dual to each when being constructed from LPN. The
authors of [52] already minimized the hardness needed for LPN to construct
PKE, and also used the parameter switching technique. We restate the main
results of [52] below.

Theorem 9 ( [52]). Assume that DLPNn,µ,q is (T = 2ω(n0.5), ε = 2−ω(n0.5),

q = 2n
0.5

)-hard for any constant 0 < µ ≤ 1/10, there exist IND-CCA secure
public-key encryption schemes.

We also mention that our result fails to transform the BKW algorithm (for
LPN) into a worst-case solver for constant-noise NCP (i.e., w

m = O(1)) again
due to some small gap. In particular, we recall the variant of BKW algorithm
in Theorem 10 below, and we informally state our reduction results (Theorem 5
and Theorem 6) in Lemma 13. In order for Lemma 13 to compose with The-

orem 10, we need q = n1+ε and d = O(log n) to make q·2−Ω(d)

1−2µ < 1 and thus

µ = 1
2 − e

−O( wmd) = 1
2 − 2−O(logn), which does not meet the noise rate needed

by Theorem 10, i.e., µ = 1/2− 2−(logn)δ for any constant 0 < δ < 1.

Theorem 10 ( [43]). Let q = n1+ε and µ = 1/2− 2−(logn)δ for any constants
ε > 0 and 0 < δ < 1. LPNn,µ,q can be solved in time 2O(n/ log logn) with over-
whelming probability.
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Lemma 13 (Our reduction, informal). Any algorithm that solves LPNn,µ,q
in time T with success rate p, implies another worst-case algorithm (for the
NCP considered in Theorem 5 and Theorem 6) of running time T + O(nmq)

with success rate p− q·2−Ω(d)

1−2µ , where µ = 1
2 − e

−O( wmd).

4 Concluding Remarks

We first show that the hardness of high-noise large-field LPN is reducible from
the worst-case hardness of lattice problems via a simple reduction from LWE to
LPN over the same modulus. We then show that constant-noise LPN is (T =

2Ω(n1−c), ε = 2−Ω(nmin(c,1−c)), q = 2Ω(nmin(c,1−c)))-hard assuming that the NCP
(on the balanced/independent code) at the low-noise rate τ = n−c is (T ′ =
2Ω(τn), ε′ = 2−Ω(τn),m = 2Ω(τn))-hard in the worst case, improving upon the
work of [19]. However, the result is not strong enough to imply collision resistant
hash functions or public-key encryptions due to the ω(1) gap term. We leave it
as an open problem whether the gap can be closed.
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A Proofs Omitted

Proof of Lemma 2. For C
$←− Fn×m2 and every r ∈ Fm2 define

zC,r
def
=

{
1, if C · r = 0
0, otherwise C · r 6= 0
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For every r 6= 0, the expectation E
C

$←−Fn×m
2

[zC,r] = 2−n, and for every two

distinct r1 6= r2 variables zC,r1 and zC,r2 are pair-wise independent. For any
k/2 ≤ i ≤ k,

Pr
C

$←−Fn×m
2

[ ∑
r∈Rmi

zC,r ≥ N · 2−n(1 + ζ)

]

≤ Pr
C

$←−Fn×m
2

[ ∣∣∣ ∑
r∈Rmi

zC,r −N · 2−n
∣∣∣ ≥ N2−nζ

]

≤
V ar

[ ∑
r∈Rmi

zC,r

]
(N2−nζ)2

=
N2−n(1− 2−n)

(N2−nζ)2
≤ 1

N2−nζ2
≤ 2n+ logm

2 − k2 log(m/k)

ζ2
,

where N
def
= |Rmi | ≥

(
m
k/2

)
, the second inequality is by Chebyshev, and the

equality is due to the following: denote z =
∑

r∈Rmi
zC,r and µ = E[z] and

therefore

V ar[z] = E[(z − µ)2]

= E[z2]− 2µE[z] + µ2

= E[z2]− µ2

= E[z2]−N22−2n ,

E[z2] = E
[
(z1 + z2 + . . .+ zN )2

]
= E

[∑
u6=v

zu · zv
]

+ E
[∑

u

z2
u

]
=
∑
u6=v

E[zu] · E[zv] +
∑
u

2−n

= 2−2n(N2 −N) +N2−n = N22−2n +N2−n(1− 2−n) .

We complete the proof by a union bound on all possible values of i. �

Remark 3 (Why not i ∈ (0, k/2)). Note that the above considers only i ≥ k/2.
As we can see from the above proof, this is because logN = log |Rmi | = log

(
m
i

)
needs to be Ω(n) to make the bound meaningful. For small values of i, it is not
possible since m is only sub-exponential.

Proof of Lemma 3. Let s
def
= s1− s2 and x

def
= x1−x2. For any s 6= 0 the random

variable sTC is uniform over Fm2 and thus it hits {x ∈ Fm2 : |x| ≤ 2w} with

probability at most
∑2w
i=0

(
m
i

)
/2m. The conclusion follows by a union bound on

all possible s ∈ Fn2 . �
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Proof of Lemma 11. We denote S def
= Fn2 and ps = Pr[h(r) = s].

SD
(
h(r), Un

)
=

1

2

∑
s∈S
|ps −

1

|S|
|

=
1

2

∑
s∈S

√
1

|S|
·
(√
|S| ·

∣∣∣∣ps − 1

|S|

∣∣∣∣)
≤ 1

2

√∑
s∈S

(
1

|S|
) ·
∑
s∈S
|S|(ps −

1

|S|
)2

=
1

2

√
2n(
∑
s∈S

p2
s)− 1

=
1

2

√
2n · Col(h(r))− 1 ,

where the first inequality is Cauchy-Schwartz, i.e., |
∑
i aibi| ≤

√
(
∑
i a

2
i ) · (

∑
i b

2
i ).
�

B Inequalities, Theorems and Lemmas

Lemma 14 (Piling-up lemma). For 0 < µ < 1/2 and ` ∈ N+ we have

Pr
[⊕̀
i=1

Ei = 0 : E1, . . . , E` ← Bµ
]

=
1

2
(1 + (1− 2µ)`) .

Lemma 15 (Chebyshev’s inequality). Let Y be any random variable (taking
real values) with expectation µ and standard deviation σ (i.e., V ar[Y ] = σ2 =
E[(Y − µ)2]). Then, for any δ > 0 we have Pr[ |Y − µ| ≥ δσ] ≤ 1/δ2.

Lemma 16 (Chernoff bound). Let X1, . . ., Xn be independent random vari-
ables and let X̄ =

∑n
i=1Xi, where Pr[0≤Xi≤1] = 1 holds for every 1 ≤ i ≤ n.

Then, for any ∆1 > 0 and 0 < ∆2 < 1,

Pr[ X̄ > (1 +∆1) · E[X̄] ] < e−
min(∆1,∆

2
1)

3 E[X̄] ,

Pr[ X̄ < (1−∆2) · E[X̄] ] < e−
∆2

2
2 E[X̄] .

Fact 1 For any 0 ≤ x ≤ 1, log(1 + x) ≥ x; and for any x > −1 we have
log(1 + x) ≤ x/ ln 2.

Fact 2 For k = o(m) we have log
(
m
k

)
= (1 + o(1))k log m

k ; and for β = o(1),

log
(

m
m
2 (1−β)

)
= m(1− β2

2 (log e+ o(1)))− logm
2 +O(1).
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Proof of Fact 2. The first inequality follows from the approximation log(n!) =
log
(
O(
√
n(ne )n)

)
= 1

2 log n+ n log n− n log e+O(1) and for the second one we
have

log

(
m

m
2 (1− β)

)
= log

m!(
m
2 (1− β)

)
!
(
m
2 (1 + β)

)
!

= m logm− m

2
(1− β) log

(m
2

(1− β)
)

−m
2

(1 + β) log
(m

2
(1 + β)

)
− 1

2
logm+O(1)

= m
(

1− log e

2
(1− β)

(
− β − 1

2
β2 + o(β2)

)
− log e

2
(1 + β)

(
β − 1

2
β2 + o(β2)

))
− 1

2
logm+O(1)

= m(1− log e

2
β2 + o(β2))− 1

2
logm+O(1) ,

where we use the approximation of log(n!) and for x = o(1), log(1 + x) =
log e(x− 1

2x
2 + o(x2)). �

Lemma 17 (Sample-preserving reduction [6]). Any distinguisher D of run-
ning time T with

Pr
A

$←−Fq×n2 ,s←S,e←E
[D(A,As + e) = 1]− Pr[D(A,Un) = 1] ≥ ε

implies another algorithm D′ of running time T +O(nq) such that

Pr
A

$←−Fq×n2 ,s←S,e←E
[D′(A,As + e, rT) = rTs] ≥ 1

2
+
ε

2
,

where S and E are any distributions over Fn2 and Fq2 respectively.

Lemma 18 (Goldreich-Levin Theorem [32]). Any algorithm D of running
time T with

Pr[D(f(s), rT) = rTs] ≥ 1

2
+ ε

implies algorithm A of running time O(n
2

ε2 T ) such that Prs←S [A(f(s)) = f−1(f(s)))] =
Ω(ε3)
n , where f is any function on input s← S ∈ Fn2 and r

$←− Fn2 .


