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Abstract. A universal circuit (UC) is a general-purpose circuit that
can simulate arbitrary circuits (up to a certain size n). Valiant provides
a k-way recursive construction of UCs (STOC 1976), where k tunes the
complexity of the recursion. More concretely, Valiant gives theoretical
constructions of 2-way and 4-way UCs of asymptotic (multiplicative)
sizes 5n logn and 4.75n logn respectively, which matches the asymptotic
lower bound Ω(n logn) up to some constant factor.

Motivated by various privacy-preserving cryptographic applications, Kiss
et al. (Eurocrypt 2016) validated the practicality of 2-way universal cir-
cuits by giving example implementations for private function evaluation.
Günther et al. (Asiacrypt 2017) and Alhassan et al. (J. Cryptology 2020)
implemented the 2-way/4-way hybrid UCs with various optimizations in
place towards making universal circuits more practical. Zhao et al. (Asi-
acrypt 2019) optimized Valiant's 4-way UC to asymptotic size 4.5n logn
and proved a lower bound 3.64n logn for UCs under Valiant's framework.
As the scale of computation goes beyond 10-million-gate (n = 107) or
even billion-gate level (n = 109), the constant factor in UC's size plays an
increasingly important role in application performance. In this work, we
investigate Valiant's universal circuits and present an improved frame-
work for constructing universal circuits with the following advantages.

Simplicity. Parameterization is no longer needed. In contrast to those
previous implementations that resorted to a hybrid construction
combining k = 2 and k = 4 for a tradeo� between �ne granular-
ity and asymptotic size-e�ciency, our construction gets the best of
both worlds when con�gured at the lowest complexity (i.e., k = 2).

Compactness. Our universal circuits have asymptotic size 3n logn, im-
proving upon the best previously known 4.5n logn by 33% and beat-
ing the 3.64n logn lower bound for UCs constructed under Valiant's
framework (Zhao et al., Asiacrypt 2019).
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Tightness. We show that under our new framework the UC's size is
lower bounded by 2.95n logn, which almost matches the 3n logn
circuit size of our 2-way construction.

We implement the 2-way universal circuit and evaluate its performance
with other implementations, which con�rms our theoretical analysis.

Keywords: Universal Circuits · Private Function Evaluation · Multi-
party Computation.

1 Introduction

A universal circuit (UC) is a programmable circuit capable of simulating ar-
bitrary circuits (up to a certain scale), which is analogous to that a universal
Turing machine is con�gured to simulate an arbitrary Turing machine or that a
central processing unit (CPU) carries out computations speci�ed by a sequence
of instructions. More speci�cally, a universal circuit refers to a sequence of cir-
cuits, i.e., UC = {UCn}n∈N, such that every circuit C of size n can be (e�ciently)
encoded into a string of control bits pC to ful�ll the simulation, i.e., for every
valid input x: C(x) = UCn(pC, x). An explicit construction is an e�cient algo-
rithm that (on the input n) produces output UCn in time polynomial in n.

Universal model of computation. Valiant's universal circuits [53] gave in-
spiration to universal parallel computers [22,45]. Cook and Hoover [15] proposed
depth-optimal universal circuits, i.e., for any circuit of size n and depth d, they
constructed a universal circuit UC(n, d) of size O(n3d/ log n) and depth O(d)
that can simulate this circuit. Bera et al. [10] used the frameworks of universal
circuits from [15,53] in their design of universal quantum circuits.

1.1 Cryptographic applications

We sketch some cryptographic applications of universal circuits. The perfor-
mance of most applications crucially relies on the size e�ciency of universal
circuits. We refer the readers to the cited publications for full details.

Private function evaluation. A major cryptographic application of universal
circuits is private function evaluation (PFE)1 [1,11,32,35,39], which can be based
on the protocols for secure two-party/multiparty computation (2PC/MPC) [28,
55, 56]. Take the two-party setting as an example: a 2PC protocol enables two
parties, Alice and Bob, to securely compute a publicly known function f on their
respective private inputs x and y without revealing anything substantially more
than the output of the computation f(x,y), whereas in a PFE scenario Alice
(with private input x) and Bob (with private function f) engage in a protocol

1 Let us mention that there are other alternatives to PFE without using universal
circuits, of which the most e�cient one to date is the work by Katz and Malka [36].
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such that at the end Alice (resp., Bob) learns nothing about f (resp., x) beyond
what can be revealed from the output f(x). A PFE reduces to a 2PC with the aid
of a universal circuit: Alice and Bob invoke a 2PC to securely compute a publicly
known universal circuit UC on Alice's private input x and Bob's private input pf
(a string that encodes f), which yields UC(pf , x) = f(x). It is easy to see that
the PFE protocol is as secure as the underlying 2PC/MPC protocol against the
same type (semi-honest, covert or malicious) of adversaries, and the time/space
e�ciency of the PFE mainly depends on the size/depth of the UC. The take-
away is that one simply plugs a UC into an MPC framework (without changes to
the underlying infrastructure) to enjoy the corresponding bene�ts and additional
features, such as non-interactive PFE [41] and outsourced PFE [35] that are gen-
eralized from non-interactive and outsourced secure computation protocols [2]
respectively. As its name suggests, PFE [1] can be applied to scenarios where
some party wants to keep his function private but still hopes to evaluate it on oth-
ers' inputs. Depending on the concrete instantiations of the private function, ap-
plications include privacy-preserving checking of loanee's credit-worthiness [20],
protection of the code privacy of an autonomous mobile agent [14], oblivious
�ltering of remote streaming data [49], medical diagnostics [8], remote software
fault diagnosis [13], blinded policy evaluation protocols [19, 21], query-hiding
database management systems (DBMSs) [18, 50], private evaluation of branch-
ing programs [31,34,47] and privacy-preserving intrusion detection [47,48].

Applications beyond PFE. Universal circuits can be applied to various other
cryptographic scenarios. UCs were used to hide the functions in veri�able compu-
tation [17] and multi-hop homomorphic encryption [27], to reduce the veri�er's
preprocessing costs in the NIZK argument [26], and to build the attribute-based
encryption (ABE) scheme in [25]. Attrapadung [6] used UCs to transform the
ABE schemes for any polynomial-size circuits [24,29] into ciphertext-policy ABE.
Garg et al. [12, 23] used UCs to construct universal branching programs, which
were in turn used to build a candidate indistinguishability obfuscation (iO).
The iO scheme [23] was implemented in [7], whose e�ciency is closely related
to the size of UCs. Zimmerman [59] proposed a new scheme to obfuscate pro-
grams by viewing UC as a keyed program for circuit families. Lipmaa et al. [41]
suggested that UC can be used for e�cient batch execution of secure two-party
computation. The batch execution techniques [33,40] were originally intended for
amortizing the cost of maliciously secure garbled circuits for the same function,
and UCs can now enable batched execution for circuits of di�erent functions
(realized by the same UC). This protocol was made round-optimal in [46].

1.2 Valiant's universal circuits and subsequent works

Valiant [53] took a graph-theoretic approach to constructing universal circuits
that were followed by almost all size-e�cient universal circuits [3, 30, 37, 41, 57].
One may represent an arbitrary circuit by a direct acyclic graph (DAG) and
then see a universal circuit as a special DAG called edge universal graph (EUG).
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The construction is recursive and parameterized by k ≥ 2, which is the number
of sub-problems (of scale 1/k of the original problem) it reduces to during each
recursion. We typically refer to it as a k-way construction or a k-way UC. In
more details, to construct a UC, we need to construct the corresponding EUG
in a recursive manner: �an EUG simulating any DAG of size n�, denoted by
EUG(n), can be constructed based on k instances of EUG(nk ), and the recur-
sion repeats many times until a su�ciently small EUG to be built by hand.
Moreover, during each recursion, k instances of EUG(nk ) are connected to form a
EUG(n) using a matching algorithm, whose complexity increases with respect to
k. In the most desirable case k = 2, the matching algorithm is simply bipartite
matching. Valiant provided 2-way and 4-way (i.e., k = 2 and k = 4) theoretical
constructions of universal circuits of multiplicative sizes2 5n log n and 4.75n log n
respectively (omitting smaller terms), which match the lower bound Ω(n log n)
up to constant factors [53,54]. Therefore, as a theoretical problem, explicit con-
struction of size-e�cient universal circuits was mostly solved by Valiant [53]
more than forty years ago.

Valiant's universal circuit had long been recognized more as a feasibility re-
sult than a practical application. Kolesnikov and Schneider [39] turned to (and
implemented for the �rst time) a modular design of universal circuits of size
1.5n log2 n+2.5n log n. Despite not asymptotically size optimal, the UC [39] en-
ables e�cient simulation of small-scale circuits (e.g., for n < 106), thanks to the
smaller constant factor in circuit size. Further, they gave the �rst implementa-
tion of UC-based PFE under the Fairplay secure computation framework [44].
More recently, Kiss et al. [37] implemented a hybrid UC combining Valiant's
2-way UC [53] and the UC of Kolesnikov and Schneider [39] integrated with
various optimizations for many typical PFE applications. Günther et al. [30]
gave a generic edge embedding algorithm for Valiant's k-way construction and
implemented a hybrid of Valiant's 2-way and 4-way UCs. Concurrently, Lipmaa
et al. [41,51] gave a generic construction of the k-way supernode (an important
building block of Valiant's k-way universal circuit) and based on the method
they estimated that the k's optimal value for minimizing the size of UC was
k = 3.147 (i.e., k ∈ {3, 4} as an integer). In addition, Lipmaa et al. [41] brought
down the size of 4-way UC from 19n log n to 18n log n by optimizing out some
XOR gates. However, the number of AND gates remained the same as Valiant's
4-way UC [53] (i.e., 4.75n log n), and thus the improvement o�ers limited help to
PFE or other applications with free XOR optimizations [38]. Zhao et al. [57] gave
a more e�cient 4-way UC of multiplicative circuit size 4.5n log n (and circuit size
17.75n log n), which was the best size-e�cient construction prior to our work.
Alhassan et al. [3] designed an e�cient and scalable algorithm for UC generation
and programming, and implemented a hybrid construction of Valiant's 2-way UC

2 It is typically assumed that a circuit C consists of AND gates and XOR gates. The
size of C refers to the number of gates in C, and its multiplicative size is the number
of AND gates. As a major performance indicator for Valiant's (and our optimized)
framework, the multiplicative size of a UC is roughly a quarter of its total size.



Pushing the Limits of Valiant's Universal Circuits 5

and the 4-way UC by Zhao et al. [57]. We refer to Table 1 for asymptotic sizes
of existing theoretical constructions.

1.3 Our work

Outstanding issues. For e�ciency and granularity of the construction3, k
is desired to be the smallest possible, i.e., k = 2, but 2-way universal circuits
are less size-e�cient than UC tuned at other values, e.g., k = 4. Therefore,
the state-of-the-art implementations [3, 30] resort to a hybrid construction of
2-way and 4-way UCs for a tradeo� between granularity and size e�ciency. Fur-
ther, there remains a signi�cant gap between the 4.5n log n achieved by the best
size-e�cient UC and the 3.64n log n lower bound under Valiant's framework.
With the growing trend of secure computation exceeding 10-million-gate or even
billion-gate scale (e.g., [5,58]), the constant factor in asymptotic universal circuit
size becomes increasingly important and practically relevant. To summarize, it
is natural to raise the following question:

Can we build a UC with low(est) complexity and small(est) circuit size at the
same time, ideally matching (or even beating) the 3.64n log n lower bound?

Paper organization and our contributions. Section 2 gives the notations,
de�nitions, and graph-theoretic preliminaries about universal circuits. Section 3.1
carries out an in-depth review of Valiant's construction (see Theorem 2). Sec-
tion 3.2 then introduces an intermediate tweaked valiant of Valiant's construction
that is not even acyclic (i.e., contains cycles). Despite the cyclicity, we argue in
Corollary 1 that the intermediate construction preserves the �universal edge-
embedding� function, which is referred to as a weak EUG (≈ EUG without
acyclicity, see De�nition 3). Section 3.3 observes that the weak EUG contains
many redundant control nodes whose control options are predetermined, so they
can be removed while preserving the universal edge-embedding capability. The
removal of redundant nodes not only eliminates the cycles (brings back the EUG)
but also results in a compact design of the EUG, where the 1/3 size improve-
ment bene�ts from the removal of redundant control nodes. Section 3.4 proves a
2.95n log n lower bound on the size of UCs under our optimized framework, which
tightly complements our construction of size 3n log n. Section 4 implements, op-
timizes and evaluates (the performance of) our universal circuit, which con�rms
our theoretical analysis and validates its practicality. In summary, compared with
previous works (see Table 1), our construction has the following advantages:

3 The edge embedding algorithm for constructing 2-way UC is simply a bipartite
matching algorithm, while in contrast, a generic algorithm for k-way UC is much
more complex and less e�cient. Moreover, Valiant's construction only explicitly han-
dles the case n = Bkj for arbitrary j ∈ N+ (i.e., the number of recursions) and small
B ∈ N+ (i.e., EUG(B) is the initial EUG built from scratch). Optimization tech-
niques [3, 30] are helpful in adapting to arbitrary n, especially for k = 2.
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Simplicity. Our approach inherits Valiant's framework but removes the need
for parameter k. That is, always set k = 2 to obtain UCs that are most
e�cient to construct and o�er good size e�ciency simultaneously.

Compactness. Our universal circuits have asymptotic size 3n log n, improv-
ing upon the previous state-of-the-art 4.5n log n by 33% and beating the
3.64n log n lower bound in Valiant's framework [57].

Tightness. Our new framework bridges the gap between theory and practice of
universal circuits: the universal circuit size 3n log n achieved almost tightly
matches the 2.95n log n lower bound.

Note that the 2.95n log n lower bound we proved is incomparable to (and thus
not implied by) the 3.64n log n bound [57] obtained under Valiant's framework,
and it thus creates more room for e�ciency improvement.

Universal Circuit MUL size
(# of AND gates)

Lower Bound
on MUL size

Total Size

Kolesnikov et al.'s UC [39] 0.25n log2 n N/A n log2 n

Valiant's 2-way UC [53] 5n logn ≥ 3.64n logn 20n logn
Valiant's 3-way UC [30,53] 5.05n logn ���"��� 20.19n logn
Valiant's 4-way UC [53] 4.75n logn ���"��� 19n logn

Lipmaa et al.'s 4-way UC [41] 4.75n logn ���"��� 18n logn
Zhao et al.'s 4-way UC [57] 4.5n logn ���"��� 17.75n logn

Our 2-way UC 3n logn ≥ 2.95n logn 12n logn

Table 1. The sizes, multiplicative sizes and lower bounds for previous universal circuits
and ours, keeping only dominant terms.

On the presentation strategy. A straightforward presentation is to describe
and prove our main construction in Section 3.3 from scratch, which may take
more e�ort and con�dence to verify the correctness. Instead, we choose the
following somewhat hybrid argument

�Valiant's EUG�︸ ︷︷ ︸
Section 3.1

7→ �intermediate weak EUG�︸ ︷︷ ︸
Section 3.2

7→ ��nal EUG�︸ ︷︷ ︸
Section 3.3

from the known-to-be-correct Valiant's construction, to the intermediate one,
and then to the �nal construction, where we highlight the (minor) di�erence
between neighboring hybrids. Thus, the proof reduces to verifying that the minor
changes do not a�ect the correctness. Essentially, the weak EUG can be viewed
as a special variant of Valiant's EUG with quite some redundant control nodes,
which are thus removed to yield the �nal construction. This way of presentation
reproduces the process we discovered the construction, and helps to understand
how our improvement bene�ts from the redundancy of Valiant's original design.
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2 Preliminaries

Notations. We use [n] to denote the set of the �rst n positive integers, i.e., {1,
. . ., n}. |G| (resp., |C|) refers to the size of a graph G (resp., circuit C), namely,
the number of nodes (resp., inputs and gates) in G (resp., C). More speci�cally,
Cg
s,t denotes a circuit of s inputs, t outputs and g gates of fan-in and fan-out 2,

where circuit size n = s + t by de�nition. DAG2(n) refers to a Directed Acyclic
Graph (DAG) of fan-in and fan-out 2, and size n, and UCn denotes a UC of
fan-in and fan-out 2 that can simulate any Cg

s,t of size s+ g ≤ n.

De�nition 1 (Universal Circuits [41, 54,57]) A circuit UCn is a universal
circuit, if for any circuit Cg

s,t with s+g ≤ n, there exists a bit-string pC ∈ {0, 1}m
that con�gures UCn to simulate Cg

s,t, i.e., ∀x ∈ {0, 1}s,UC(n)(pC, x) = Cg
s,t(x).

Universality refers to the ability to simulate arbitrary circuits (up to a certain
scale), and the correctness of simulation requires that for every eligible circuit
Cg
s,t there exists a con�guration pC such that UCn(pC, ·) is functionally equivalent

to Cg
s,t(·). Following previous works, we consider circuits with fan-in and fan-out

bounded by 2 without loss of generality [3, 30,41,53,57].

Graph representation. A circuit Cg
s,t of fan-in and fan-out 2 can be repre-

sented by a DAG2(n) for n = s + g and vice versa, where circuit wires corre-
spond to graph edges, and inputs and gates become nodes on the corresponding
graph. As illustrated in Fig. 1, Valiant introduced a special DAG, referred to as
edge-universal graph (EUG), such that �a universal circuit simulates arbitrary
circuits� can be compared to that �an EUG2(n) edge-embeds arbitrary DAG2(n)�,
where subscript 2 indicates fan-in and fan-out of the DAG and n is the size of the
DAG. We provide an example of edge embedding for n = 4 in Fig. 2. Informally,
the DAG2(4) on the left-hand edge embeds into the EUG2(4) on the right-hand
in the sense that all nodes (i.e., the inputs x, y and the gates ⊕, ∧) in DAG2(4)
one-to-one map to the counterparts in EUG2(4) and all edges in DAG2(4) �nd
their respective edge-disjoint paths in EUG2(4), e.g., the edge e corresponds to
the path (e1,e2,e3) and the edge f maps to the path (f1, f2). The edge universal-
ity of EUG2(4) refers to that for every DAG2(4) such an edge embedding always
exists (and can be e�ciently identi�ed). We refer to De�nition 2 and De�nition 3
for formal statements about edge embedding and edge universal graphs.

UCn Cg
s,t

simulates

EUG2(n) DAG2(n)
edge-embeds

Fig. 1. �UCn simulates Cg
s,t� is equivalent to �EUG2(n) edge-embeds DAG2(n)�.
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De�nition 2 (Edge-Embedding [3, 41,53]) Edge-embedding is a mapping from
graph G = (V,E) into G′ = (V ′, E′), denoted by G G′, such that

1. V maps to V ′ one-to-one, but not necessarily surjective (i.e., |V | ≤ |V ′|).
2. Every edge e ∈ E maps to a directed path in E′ in an edge-disjoint manner,

i.e., any edge e′ ∈ E′ is found at most once (in the paths that are mapped
from the edges in E).

De�nition 3 (Edge-Universal Graph [3, 41,53]) A directed graph G′ is an
Edge-Universal Graph for DAGd(n), denoted by EUGd(n), if it satis�es the fol-
lowing conditions:

1. (acyclicity). G′ is a DAG.
2. (universality). Every G ∈ DAGd(n) can be edge-embedded into G′.
3. (bounded fan-in/fan-out). G′ has bounded fan-in/fan-out, typically bounded

by 2.

Further, G′ is a weak Edge-Universal Graph for DAGd(n), denoted by wEUGd(n),
if it satis�es conditions 2 and 3 above.

Remark 1. In the above de�nition, the condition that �G′ is a DAG of bounded
fan-in/fan-out� is decoupled into �acyclicity� (condition 1) and �bounded fan-
in/fan-out� (condition 3). This facilitates the de�nition of weak EUG. In general,
weak EUG is not a useful notion since it doesn't guarantee acyclicity, and thus
does not give rise to a universal circuit (not even a circuit). However, looking
ahead, we �nd the weak EUG notion simplifying our presentation when intro-
ducing our intermediate construction. Condition 3 is not strictly necessary for
universal circuits, but it was respected by almost all previous works of universal
circuits, and satisfying this condition makes comparison easy since the multi-
plicative size (resp., total size) of the resulting UC is roughly equal to (resp.,
four times) the size of the EUG.

Con�guring EUG. Still using Fig. 2, we explain how edge embedding trans-
lates to the simulation of circuits. First, input nodes (e.g., x and y) simply map
to the corresponding input poles in the EUG, and the gates (e.g., ⊕ and ∧)
are implemented by the universal gates in the EUG. As the name suggests, a
universal gate can be con�gured to simulate any binary gate (see the full ver-
sion of our paper [42, Appendix A] for more details). In addition to poles, there
are also control nodes in the EUG (i.e., the smaller ones in the right-hand of
Fig. 2), which can be further instantiated with X-switching gates, Y -switching
gates, and splitters. They are labelled in Fig. 2. A control node (with a single
incoming edge and two outgoing edges) is implemented by a splitter, where only
two wires (i.e., no gates) are needed as the two outputs simply copy the value
from the input. The control nodes with in-degree 2 and out-degree 2 (resp., 1)
are implemented by X-switching (resp., Y -switching) gates, which can be con�g-
ured in two di�erent ways (see Fig 3). In summary, the universal gates simulate
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x y

∧

e

f

⊕

g

h

z0 z1

x

input

Splitter

e1

Splitter

h1

y

input

X-switch

g1

e2

X-switch

f1
h2

∧
UGe3 f2

Y-switch

g2

Y-switch

h3

⊕
UG

g3 h4

⇒

Fig. 2. An example of edge-embedding, where the nodes and edges of the left-hand
DAG is mapped to corresponding poles and paths of the right-hand EUG respectively.

the corresponding gates in the original circuit, and the X/Y -switching gates are
con�gured such that every intermediate value is carried from the origin to the
destination (by following the route of edge embedding). For example in Fig. 2,
the input x goes all the way, following the path (e1, e2, e3), to the universal
gate that computes ∧, with a correct con�guration of the X/Y - switching gates
along the way. We refer to the full version [42, Appendix A] for details about
universal gates and switching gates and their implementations. Finally, the con-
trol bits of universal gates and switching gates make up the program bits pC for
the universal circuits.

x0 x1

x0 x1

c = 0
or

x0 x1

x1 x0

c = 1

(a) X-switching gate

x0 x1

x0

c = 0
or

x0 x1

x1

c = 1

(b) Y -switching gate

Fig. 3. The con�gurations of X-switching and Y -switching gates.

Therefore, Valiant reduces the problem of constructing universal circuits to
that of constructing edge-universal graphs. The size e�ciency of the universal
circuit mainly concerns total size and multiplicative size (the number of AND
gates), both of which are proportional to the size of the EUG.

|UCn| = 4nX + 3nY + 9n ≤ 4(nX + nY + n) + 5n = 4|EUG2(n)|+ 5n ,

#(AND) = nX + nY + 3n = (nX + nY + n) + 2n = |EUG2(n)|+ 2n ,

where nX , nY and n are the numbers of X-switching gates, Y -switching gates
and universal gates respectively. 4nX , 3nY and 9n further account for the num-
bers of basic gates needed to construct X-switching gates, Y -switching gates and
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universal gates respectively. Details about the implementations are provided in
the full version [42, Appendix A]. Recall that |EUG2(n)| = Ω(n log n) and thus

|EUG2(n)| ≈ #(AND) ≈ |UCn|/4

will be used as the major e�ciency indicator.

3 Simplifying Constructions of Universal Circuits

3.1 Valiant's universal circuits

Following Valiant's blueprint [53] (see Fig 4), the construction of universal cir-
cuits consists of the following steps:

1. Construct a UCn based on an EUG2(n);

2. Construct an EUG2(n) by merging two instances of EUG1(n);

3. Construct an EUG1(n) based on EUG1(dn/ke − 1), where the reduction is
enabled with a special graph referred to as a k-way supernode, abbreviated
as SN(k), for some small k (typically k ∈ {2, 3, 4});

4. Repeat Step 3 recursively until EUG1 is small enough to build by hand.

UCn EUG2(n) EUG1(n) EUG1(dn/ke − 1) . . .

Fig. 4. A high-level view of Valiant's framework for contructing universal circuits.

The construction of the universal circuit UCn from EUG2(n) was already
explained in the previous section. We proceed to the next steps.

Construct EUG2(n) from EUG1(n). We introduce Lemma 1 and Lemma 2
to show that the EUG2(n) can be based on two instances of the EUG1(n).

Theorem 1 (König's theorem [16,43]). If G is bipartite and its nodes have
at most k incoming and k outgoing edges, then the number of colors necessary
to color G is k.

Lemma 1 (Lemma 2.1 from [53]). For any DAGd(n) = (V,E), there exist
d disjoint sets E1, E2, . . ., Ed such that E = ∪di=1Ei and each (V,Ei) (for
1 ≤ i ≤ d) constitutes a DAG1(n).

Lemma 2 ( [53]). For any n ∈ N+ and any EUG1(n) of size T , there exists an
EUG2(n) of size 2T − n.
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We only sketch the proofs for completeness and to avoid redundancy. As
exempli�ed in Fig. 5, we simply construct an EUG2(n) based on two instances of
EUG1(n) by merging the corresponding poles and thus the size of the resulting
EUG2(n) is twice that of EUG1(n) minus n. We now argue that the merged
graph must be an EUG2(n). Any G = (V,E) ∈ DAG2(n) can be decomposed into
G1 = (V,E1), G2 = (V,E2) ∈ DAG1(n) by Lemma 1, for which there exist edge
embeddings ρ1 and ρ2 that map G1 and G2 into the two instances of EUG1(n)
respectively. It is not hard to see that ρ1 ∪ ρ2 is also an edge embedding (since
edge-disjointness is preserved) that maps this (arbitrarily chosen) G ∈ DAG2(n)
into the candidate EUG2(n), which is a merge of the two EUG1(n) instances.

x

splitter

h1

y

X-switch

f1
h2

∧
f2

Y-switch

h3

⊕
h4

+

x
e1

y
g1

e2

∧
e3

g2

⊕
g3

⇐

x

input

e1 h1

y

input

g1

e2

f1
h2

∧
UGe3 f2

g2 h3

⊕
UG

g3 h4

Fig. 5. An EUG2(n) based on two instances of EUG1(n).

DAG Augmentation. We introduce the notion of augmentation, as speci�ed
in De�nition 4. Informally, a DAG1(k) is augmented by adding k input nodes
and k output nodes, and connecting every source (resp., sink) with a single
edge from (resp., to) an input (resp., output) node. Each input/output node is
connected by at most one edge and thus the resulting augmented DAG remains
of fan-in/fan-out 1, namely, an augmented DAG1(k) is a DAG1(3k). Notice that
inputs/outputs always su�ce for augmentation since they are as many as the
nodes in the original DAG. We also de�ne k-way supernode, denoted by SN(k),
in De�nition 5 as a special EUG1(3k) that edge embeds any augmented DAG1(k),
much as that an EUG1(k) edge embeds any DAG1(k). We refer to Fig. 6 for an
example, where a DAG1(4) is augmented and then edge embedded into an SN(4).

De�nition 4 (Augmented DAG) For any k ∈ N+ and any G = (V,E) ∈
DAG1(k), we say that G′ = (V ′, E′) ∈ DAG1(3k) is an augmented DAG for G if

V ′ =
(
I = {in1, . . . , ink}

)
∪
(
V = (P1, . . . , Pk)

)
∪
(
O = {out1, . . . , outk}

)
and E′ = E ∪ Eaux satisfy
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1. (Soundness). Every e ∈ Eaux satis�es either e = (ini, Pj) or e = (Pj , outi);
2. (Completeness). For every source (resp., sink) Pj ∈ V , there exists exactly

one i ∈ [k] such that (ini, Pj) ∈ Eaux (resp., (Pj , outi) ∈ Eaux).

De�nition 5 (Supernode [41,57]) A k-way supernode, denoted by SN(k), is
a DAG that can edge embed any augmented DAG1(k).

Remark 2. To be in line with the augmented DAG1(k), an SN(k) needs k inputs,
k poles, k outputs and potentially more, say m, control nodes. We de�ne the size
of SN(k), denoted by |SN(k)|, to be m + k rather than m + 3k, i.e., excluding
inputs and outputs. This seems a slight abuse of the de�nition of graph size, but
it comes in handy when counting the size of Valiant's EUG construction (see
Fig. 7), where the input/output nodes coincide with the poles in the smaller
EUG (and hence their contribution to the graph size has already been counted).

Construct EUG1(n) based on EUG1(dnk e − 1) and SN(k). The core of
Valiant's construction is to reduce the problem of EUG1 to itself of a smaller size
(by a constant factor k), with the aid of the special gadget called supernode.

in1 in2 in3 in4

P1 P2 P3

a

P4

b

out1 out2 out3 out4
in1

in2

in3

in4

a1

b1

a2

b2

P1

a3

b3

a4
P2

b4 b5

a5 a6

b6

a7

b7

P3a8 a9

b8

P4
b9 b10

a10
a11

b11

a12

b12

out1

out2a13

out3

out4b13

Fig. 6. A DAG1(4) with edges a, b is augmented and then edge embedded to an SN(4).

Theorem 2 (Valiant's reduction [53]). There exists an explicit construction
of EUG1(n) based on k instances of EUG1(dnk e − 1) and dnk e instances of k-way
supernodes SN(k) such that

EUG1(n) = k · |EUG1(d
n

k
e − 1)|+ dn

k
e · |SN(k)| .

As visualized in Fig. 7, the n poles of the candidate EUG1(n) come from the
poles of n

k instances of SN(k), i.e., n = n
k · k. Merge the corresponding output

and input nodes of neighboring SN(k) (e.g., out11 and in
1
2 in Fig. 7), which results

in the merged nodes of in-degree and out-degree 1. Further, let the merged nodes
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coincide with the poles4 of EUG1(dnk e − 1) that are also of in-degree and out-
degree 1. Then, the eventually merged nodes are of in-degree/out-degree 2 and
are thus instantiated with X-switching nodes. The fact below states that as
long as one starts with an initial EUG1 and an SN(k) that are DAG2

5 with all
poles of in-degree/out-degree 1, then the condition will be preserved for the
recursively constructed EUG1 of arbitrary size. Note that G's all poles are of
in-degree/out-degree 1 doesn't con�ict G ∈ DAG2 since the control nodes have
in-degree/out-degree 2.

Fact 1 (degree preserving) Consider the recursive construction in Fig. 7 (or
Fig. 8). As long as the building block SN(k) and the initial EUG1 satisfy

1. Each graph is of fan-in/fan-out 2;
2. The poles of each graph are of in-degree and out-degree 1.

Then, the resulting EUG1 (or wEUG1) candidate satis�es the two conditions as
well.

Proof. The proof goes by an induction. During each iteration, the poles of
EUG1(dnk e − 1) are of in-degree and out-degree 1, and thus after merging with
SN(k)'s intput/output nodes, it yields nodes of in-degree and out-degree 2 (i.e.,
not violating condition 1). Further, the poles of the SN(k)'s now become the
poles of the new EUG1(n) candidate, and thus the �all poles are of in-degree and
out-degree 1� condition is preserved for EUG1(n) candidate.

SN(k)1
out11

in1
2

. . .

SN(k)2

. . .

...
...

...
...

...

. . .

SN(k)dn
k
e

EUG1(dnk e − 1)1 EUG1(dnk e − 1)k

Fig. 7. Valiant's construction of EUG1(n) based on k instances of EUG1(dnk e − 1) and
dn
k
e instances of SN(k).

4 Note that the poles of EUG1(dnk e − 1) do not constitute the poles of the EUG1(n),
but become X-switching nodes after merging with input/output nodes.

5 Recall that subscript 1 in EUG1(n) refers to its capability of edge embedding ar-
bitrary DAG1(n), instead of that EUG1(n) is of fan-in/fan-out 1. In fact, an EUG1

needs fan-in/fan-out 2 to cater for control nodes such as X/Y switching nodes.
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Proof sketch of Theorem 2. It su�ces to show any G = (V,E) ∈ DAG1(n)
can be edge embedded into the candidate EUG1(n). For concreteness we give a
working example (for n = 30 and k = 6) of how an arbitrary G ∈ DAG1(30) is
edge embedded into a candidate EUG1(30) in the full version [42, Appendix D].
Denote the topologically sorted nodes in G by V={p1, p2, . . ., pn}, and group
them such that every k successive nodes make up a set, i.e., for each i ∈ [dnk e]

Vi
def
= {p(i−1)k+1, p(i−1)k+2, . . . , p(i−1)k+k} ,

let Ei be the set of edges connecting the nodes in Vi

Ei
def
= {(pu, pv) ∈ E, | pu, pv ∈ Vi}

and let E\ be the rest edges (connecting nodes from di�erent sets)

E\
def
= E \ (E1 ∪ . . . ∪ Ednk e) .

First, augment (as per De�nition 4) each (Vi, Ei) ∈ DAG1(k) to a (V ′i , E
′
i) ∈

DAG1(3k) by adding input (resp., output) nodes, and connecting them to sources
(resp., from sinks) in (Vi, Ei). There are also edges connecting nodes between
di�erent Vi, i.e., (pu, pv) ∈ E\ with pu ∈ Vi and pv ∈ Vj (i < j), where pu (resp.,
pv) must be a sink (resp., source) within (Vi, Ei) (resp., (Vj , Ej)) because any
additional e ∈ E other than (pu, pv) from pu (resp., to pv) would contradict that
G is a DAG1. Therefore, pu will be connected to outti and in

t′

j will be linked to
pv when augmenting (Vi, Ei) and (Vj , Ej) respectively. In order to edge embed

(pu, pv) to the augmented graph, we connect outti to in
t′

j , and add (outti,in
t′

j ) to
Evert. Thus, we have the following edge embedding

G = (V,E) G′ =

( dnk e⋃
i=1

(Ii ∪ Vi ∪Oi),
( dnk e⋃

i=1

E′i

)
∪ Evert

)
,

where every node in V maps to itself, every edge in Ei maps to itself, and every
(pu, pv) ∈ E\ maps to path (pu, out

t
i, in

t′

j , pv). Thus, the edge embedding is not
unique but up to the choices of (t, t′). Lemma 3 below guarantees (V1, E1), . . .,
(Vdnk e, Ed

n
k e) can be jointly augmented such that every pair (outti,in

t′

j ) is aligned
vertically (i.e., t = t′).

Lemma 3. For every G = (V,E) ∈ DAG1(n) divided into (Vi, Ei) and E\ as
aforementioned, one can augment (V1, E1), . . ., (Vdnk e, Ed

n
k e) ∈ DAG1(k) to the

respective(
I1 ∪ V1 ∪O1, E

′
1

)
, . . . ,

(
Idnk e ∪ Vdnk e ∪Odnk e, E

′
dnk e

)
∈ DAG1(3k)

where Ii = {inti}t∈[k] and Oi = {outti}t∈[k], such that for every (pu, pv) ∈ E\
with pu ∈ Vi and pv ∈ Vj (i < j), the corresponding added edges (pu, out

t
i) ∈ E′i

and (int
′

j , pv) ∈ E′j satisfy t = t′.
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Lemma 3 falls into a corollary of Theorem 1. To see this, view each Ii/Oi as a
node (instead of a set of nodes) and consider the bipartite graph (O∪I, Ebp) with
disjoint node sets O={O1, . . ., Odnk e} and I={I1, . . ., Id

n
k e}, where (Oi, Ij) ∈ Ebp

if and only if there exists (pu, pv) ∈ E\ with pu ∈ Vi, pv ∈ Vj and i < j.6

By Theorem 1, the bipartite graph is of fan-in/fan-out k and thus can be k-
colored say with colors C-1 to C-k. Therefore, Lemma 3 follows by translating
the coloring to graph augmentation, i.e., for every (Oi, Ij) ∈ Ebp colored with
C-t we add edges (pu, out

t
i) and (intj , pv) to E′i and E′j respectively (and add

(outti,in
t
j) to Evert). ut

G can be edge embedded to G′, but G′ cannot be edge embedded into the
candidate EUG1(n) because after adding the input/output nodes G′ does not
even look like (a subgraph of) the candidate EUG1(n). To be compatible, we
merge every output-input pair from the neighboring Oi and Ii+1, i.e., merge
outti and inti+1 for every i ∈ [dnk e − 1] and t ∈ [k], and rename the merged

node from outti/in
t
i+1 to oiti. Let OIi

def
= {oiti}t∈[k], let E′′i and E′vert be the

counterparts of E′i and Evert respectively (by renaming outti/in
t
i+1 to oiti) and

eliminating self loops7. We denote the merged version of G′ by

G′′ =

(
I1 ∪

dnk e−1⋃
i=1

(Vi ∪OIi) ∪Odnk e,
( dnk e⋃

i=1

E′′i

)
∪ E′vert

)
,

and it remains to edge embed G′′ to the candidate EUG1(n). To achieve this,
we edge embed every (OIi−1 ∪ Vi ∪ OIi,E′′i ) into SN(k)i, where OI0 = I1 and
OIdnk e=Od

n
k e. The task then reduces to

( dnk e−1⋃
i=1

OIi =

k⋃
t=1

{oiti}i∈
[
dnk e−1

], E′vert) k⋃
t=1

EUG1(d
n

k
e − 1)t .

Thanks to Lemma 3, every (oiti,oi
t′

j )∈ E′vert satis�es t = t′, and thus the job
furthers reduces to do edge embedding independently, i.e., for every t ∈ [k](

V oi
t

def
= {oiti}i∈

[
dnk e−1

], Eoi
t

def
=
{
(oiti, oi

t
j) ∈ E′vert

})
 EUG1(d

n

k
e − 1)t ,

where ∪kt=1E
oi
t = E′vert. This is trivial since any DAG1(dnk e−1) such as (V

oi
t , Eoi

t )
can be edge embedded into an EUG1(dnk e − 1).

Theorem 3 (Valiant's universal circuits [53]). For any integer k ≥ 2, there
exist explicit k-way constructions of EUG2(n) and UCn with

|EUG2(n)| =
2|SN(k)|
k log k

n log n−Ω(n) and |UCn| ≤ 4|EUG2(n)|+O(n) .

6 No edge (pu, pv) ∈ Ei (i.e., i = j) is considered, and the case for i > j is not possible
as nodes are topologically sorted in the �rst place. Further, if there are multiple
edges from a node in Vi to one in Vj , then equally many copies of (Oi, Ij) are added.

7 After merging, edge (outti,in
t
i+1) becomes a self-loop which is not included in E′vert.
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The construction of EUG2(n) eventually reduces to that of EUG1(B) for small
B, whose optimal sizes were known for B ∈ {2, . . . , 8} [30, 41, 53] (see Table 2).
The size of EUG2(n) follows from Lemma 2 and Theorem 2, i.e.,

|EUG2(n)| = 2|EUG1(n)| − n , (1)

|EUG1(n)| = k|EUG1(d
n

k
e − 1)|+ dn

k
e|SN(k)| , (2)

where |EUG1(B)| is irrelevant to the dominant term of |EUG2(n)| but is re�ected
in (and absorbed by) the term Ω(n). Similarly, we get

|UCn| =
2|CircuitSN(k)|

k log k
n log n−Ω(n) ≤ 8|SN(k)|

k log k
n log n−Ω(n) , (3)

where CircuitSN(k) denotes the circuit counterpart of SN(k). Clearly, the size
of universal circuits monotonically depends on the k-way supernode size, and
thus constructing size-optimal universal circuits can be reduced to the search
for optimal size-e�cient supernodes. We know from the literature [30,53,57] the
minimum of |SN(k)| for practical values k = 2, 3, 4 along with the correspond-
ing sizes of edge universal graphs and universal circuits, as shown in the full
version [42, Appendix C] and Table 3.

n 2 3 4 5 6 7 8

|EUG1(n)| 2 4 6 10 13 19 23

Table 2. The concrete sizes of size-optimal EUG1(n) for n ∈ {2, · · · , 8} [30, 41,53].

Construction k |SN(k)| |EUG2(n)| |UCn|
Valiant's 2-way [53] 2 5 5n logn 20n logn

Günther et al.'s 3-way [30] 3 12 5.05n logn 20.19n logn
Valiant's 4-way [53] 4 19 4.75n logn 19n logn

Zhao et al.'s 4-way [57] 4 18 4.5n logn 17.75n logn

Table 3. Size-e�cient universal circuits for k ∈ {2, 3, 4} under Valiant' framework,
where graph and circuit sizes keep only dominant terms.

The supernode sizes in Table 3, i.e., |SN(k)| = 5, 12 and 18 for k ∈ {2, 3, 4}
respectively, were shown optimal by an exhaustive search that no candidate
graph of smaller sizes can constitute a k-way supernode [57]. However, size-
optimal supernodes, for k ≥ 5, are not known and even if they are found, the
corresponding universal circuits are not practical because the time/memory com-
plexity of the compiler (that involves EUG con�guration, edge embedding, etc.)
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blows up dramatically with respect to k. Further, Zhao et al. [57] showed that
under Valiant's framework, the |EUG2(n)| is lower bounded by 3.64n log n with
minimum achieved at k = 69 (and thus unattainable in practice). Therefore, it is
necessary to break the Valiant's framework to beat the 3.64n log n lower bound.

3.2 An intermediate wEUG1(n) construction

As concluded, improvement to Valiant's universal circuits seemingly relies on
better constructions of EUG1(n). As shown in Fig. 8, we give an intermediate
construction of a candidate wEUG1(n): for every row i (i.e., SN(k)i) we hori-
zontally (i.e., for t ∈ [k]) merge every input-output pair (inti,out

t
i) to the node

ioti of in-degree and out-degree 1, and we further merge the nodes vertically, for
every column t, let (iot1,io

t
2,. . . ,io

t
dnk e

) merge with the poles of the wEUG1(dnk e)t
component-wise. Prior to merging the poles of wEUG1(dnk e) are of in-degree
and out-degree 1 (see Fact 1), and therefore the merged nodes are X-switching
nodes of in-degree and out-degree 2. This construction seems to be a variant of
Valiant's construction in Fig. 7. The di�erence is that, instead of merging every
pair of outti and in

t
i+1 (1 ≤ t ≤ k) from the neighboring SN(k)i and SN(k)i+1,

one merges inti and outti for the same SN(k)i, for every i ∈ [dnk e] and t ∈ [k].
This introduces cycles to the graph and thus the best hope is to prove it to be
a wEUG1(n).

Corollary 1 (The intermediate wEUG1(n)). The graph constructed from k
instances of wEUG1(dnk e) and d

n
k e instances of SN(k), as in Fig. 8, is a wEUG1(n).

We sketch how the proof of Theorem 2 can be adapted to prove the above
corollary. Consider an arbitrary G = (V,E) ∈ DAG1(n) with topologically sorted
nodes V={p1, p2, . . ., pn}, and let Vi, Ei and E\ be de�ned the same way
(as in proof of Theorem 2). After augmenting every (Vi, Ei) ∈ DAG1(k) to a
(V ′i , E

′
i) ∈ DAG1(3k), we can (e�ciently) obtain such an edge embedding

G = (V,E) G′ =

( dnk e⋃
i=1

(Ii ∪ Vi ∪Oi),
( dnk e⋃

i=1

E′i

)
∪ Evert

)
,

where by Lemma 3 for every (pu, pv) ∈ E\ (i.e., pu ∈ Vi, pv ∈ Vj , i < j) there
exists t ∈ [k] such that edge (pu, pv) maps to path (pu, out

t
i, in

t
j , pv) in the edge

embedding. Notice that up till now the proof is exactly the same as that of
Theorem 2. Next, instead of merging every pair of outti and in

t
i+1 (t ∈ [k]) from

the neighboring Oi and Ii+1 (i ∈ [dnk e−1]), we merge inti and out
t
i for the same i,

and for every i ∈ [dnk e] and t ∈ [k], as shown in Fig. 8. Rename the merged node

inti/out
t
i to io

t
i, let IOi

def
= {ioti}t∈[k], and let E′′i and E′vert be the counterparts

of E′i and Evert respectively by renaming the nodes (from inti/out
t
i to io

t
i). This

simpli�es G′ to

G′′ =

( dnk e⋃
i=1

(IOi ∪ Vi),
( dnk e⋃

i=1

E′′i

)
∪ E′vert

)
,
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and it remains to show G′′ can be edge embedded into the candidate weak EUG.
Every (Ii ∪ Vi ∪Oi,E

′
i) can be edge embeded into SN(k)i and so can do it when

the corresponding inti and out
t
i are merged, which ensures that every edge in Ei

maps to a path in the candidate wEUG1(n). Further, by the de�nition of weak
EUG we have for every t ∈ [k](

V io
t

def
= {ioti}i∈[dnk e], E

io
t

def
=
{
(ioti, io

t
j) ∈ E′vert

})
 wEUG1(d

n

k
e)t ,

which ensures that every (pu, pv) ∈ E\ maps to a path in the candidate wEUG1(n).
Finally, it is important to note that the aforementioned mappings of edges in E
to the corresponding paths in the candidate wEUG1(n) are edge disjoint. ut
Note that wEUG1 is cyclic, and there are cycles that �rst leave a block and eventu-
ally returns to the same block. However, it is interesting to observe that such self-
feedback paths will never appear in the edge-disjoint paths for edge-embedding
any DAG1(n). This is because for any topologically sorted DAG1(n) and any edge
(u, v) ∈ DAG1(n) that belong to the same block we have 1 + (i− 1)k ≤ u < v ≤
k + (i− 1)k, and by the de�nition of supernode SN(k)i edge embeds (u, v) with
a path that never leaves the block. Otherwise said, the X-switching nodes re-
sulting from merging input/output nodes for every SN(k)i (see node a in Fig. 8)
are actually redundant, e.g., the self-feedback option (4, 2)/(1, 3) for node a is
never used. This motivates further optimizations in our �nal construction, and
thanks to the removal of the redundant nodes, the end construction results in a
DAG and we get an EUG in the end.

SN(k)1

out21

in2
1

a

2

4

out11

in1
1 1

3

. . .

outk−1
1

ink−1
1

5

6

outk1

ink
1

. . .

SN(k)2. . . . . .

...
...

...
...

...

SN(k)dn
k
e. . . . . .

wEUG1(dnk e)1 wEUG1(dnk e)k

Fig. 8. The intermediate wEUG1(n) based on k instances of wEUG1(dnk e) and dn
k
e

instances of SN(k).
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3.3 The �nal constructions of EUG1(n) and universal circuits

On optimizing the intermediate construction. At �rst glance, this con-
struction is nothing more than a weak version of Valiant's EUG, with roughly
the same (actually slightly worse) circuit size. However, it serves to exhibit the
redundancy of Valiant's construction. Our universal circuits use the EUG1 con-
struction in Fig. 9, which optimizes (di�ers from) Fig. 8 by avoiding merging
the nodes (and save X-switching nodes). That is, for every t ∈ [k] and i ∈ [dnk e],
let (inti, out

t
i) be the input-output pair from SN(k)i and let pti be the i-th pole

of wEUG1(dnk e)t, we remove inti, out
t
i and p

t
i (their associated edges) and add an

edge connecting pti's precursor node to in
t
i's successor node and another one link-

ing outti's precursor to p
t
i's successor. Here in

t
i's successor and out

t
i's precursor

refer to the respective successor/precursor in SN(k)i and p
t
i's precursor/successor

is with respect to wEUG1(dnk e)t. These precursors/successors are all guaranteed
to be unique by the de�nition of augmentation and Fact 1. It is important to
note that after removing the nodes (and their associated edges, and making nec-
essary adjustments), the candidate EUG1 in Fig. 9 now becomes a DAG2. We
can prove that it is an EUG1 by showing that the universality is preserved from
the wEUG1 in Fig. 8 (i.e., not a�ected by the optimization).

Our k-way UC SN(k) |EUG2(n)| |UCn|
2-way 5 3n logn 12n logn
3-way 12 3.79n logn 15.14n logn
4-way 18 3.5n logn 14n logn

Table 4. Our k-way universal circuits from Theorem 4 for k ∈ {2, 3, 4}.

Theorem 4 (Universal circuits). For any integer k ≥ 2, there exists explicit
k-way constructions of EUG2(n) and UCn with

|EUG2(n)| =
2(|SN(k)| − k)

k log k
n log n−Ω(n) and |UCn| ≤ 4|EUG2(n)|+O(n) .

In particular, for k = 2 we have |EUG2(n)| = 3n log n−Ω(n).

Proof. Now that Fig. 8 presents a correct wEUG1 construction by Corollary 1,
we further argue that Fig. 9 gives rise to an EUG1 as well. By comparing Fig. 9
with Fig. 8, the di�erence is all X-switching nodes ioti, that merges (inti, out

t
i)

from SN(k)i and pole p
t
i from wEUG1(dnk e)t, are now bypassed in Fig. 9. By right

the X-switch node ioti o�ers two switching options:

option 0: (pt,prei , ioti, in
t,suc
i ) & (outt,prei , ioti, p

t,suc
i )

option 1: (pt,prei , ioti, p
t,suc
i ) & (outt,prei , ioti, in

t,suc
i )
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where pt,prei and pt,suci denote the precursor and successor of pti within the
wEUG1(dnk e) respectively, and in

t,suc
i (resp., outt,prei ) denotes the successor (resp.,

precursor) of inti (resp., out
t
i) within the SN(k). In contrast, Fig. 9 simply hard-

wires the option-0 con�guration and short-circuits every node ioti as follows:

(pt,prei , int,suci ) & (outt,prei , pt,suci ) .

It su�ces to show that option 1 is redundant and is thus not needed. Recall the
main idea of the wEUG1(n) construction is that wEUG1(dnk e) edge-embeds inter-
group edges, i.e., (pu, pv) for pu ∈ Vi1 , pv ∈ Vi2 and i1 < i2, and SN(k) takes
care of intra-group edges, i.e., (pu, pv) for pu, pv ∈ Vi. In the former case, edges
(pu, out

t
i1
) and (inti2 , pv) will be added during augmentation, where two option-0

con�gurations are needed: for i = i1 we need (outt,prei , ioti, p
t,suc
i ) to make a path

that originates from pu's corresponding pole; and for i = i2 it is necessary to have
(pt,prei , ioti, in

t,suc
i ) for a path ending at pv's pole. Note that edge (out

t
i1
, inti2) will

be mapped to a path in wEUG1(dnk e)t. In the latter case, the edge embedding
of (pu, pv) is handled by SN(k)i internally and thus no switching con�gurations
are needed. Therefore, the wEUG1 after optimization (by removing the cycles)
becomes a DAG1 (and is therefore an EUG1). The optimized EUG1 construction
yields

|EUG1(n)| = k · |EUG1(d
n

k
e)|+ dn

k
e · |SN(k)| − n ,

where n accounts for the number of X-switching node ioti saved (cf. Eq 2). Based
on this optimized EUG1 construction, we follow Valiant's blueprint (see Fig 4)
to get an EUG2(n) of size

|EUG2(n)| = 2|EUG1(n)| − n =
2(|SN(k)| − k)

k log k
n log n−Ω(n) ,

where choosing k = 2, SN(2) = 5 yields e�cient 2-way construction of size
3n log n−Ω(n).

Remark 3 (Why not optimizing Valiant's EUG1?). One might ask why not di-
rectly optimize the Valiant's original construction in Fig 7 and instead introduce
the intermediate one in Fig. 8. This is because the merged nodes in Fig 7 are ac-
tually necessary and cannot be saved for free. To see this, for every i ∈ [dnk e− 1]
and t ∈ [k], merge outti, in

t
i+1 and the i-th pole pti of EUG1(dnk e − 1)t to an

X-switching node oiti, where the switching options are as follows

option 0: (pt,prei , oiti, in
t,suc
i+1 ) & (outt,prei , oiti, p

t,suc
i ) ,

option 1: (pt,prei , oiti, p
t,suc
i ) & (outt,prei , oiti, in

t,suc
i+1 ) .

We mention that both options are necessary. Option 0 is needed for edge em-
bedding (pu, pv) with either pu ∈ Vj , pv ∈ Vi+1 (j < i) or pu ∈ Vi, pv ∈ Vj+1

(j > i), whereas option 1 is required for the case that pu ∈ Vi and pv ∈ Vi+1.
Hence, we cannot save XOR switching node oiti by hardwiring either options. In
retrospect, the latter con�guration is only needed for handling edges connecting
neighboring node sets, which motivates us to use the variant in Fig 8 to eliminate
the need for option 1.
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. . .
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6
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1

. . .

SN(k)2. . . . . .

...
...

...
...

...

SN(k)dn
k
e. . . . . .

EUG1(dnk e)1 EUG1(dnk e)k

Fig. 9. The end EUG1(n) based on k instances of EUG1(dnk e) and dn
k
e instances of

k-way supernodes SN(k), where a− and a+ are the precursor and successor of pole a
within EUG2(dnk e)1 respectively, and dashed edges do not exist (cf. Fig. 8).

As explicitly stated in Theorem 4, our 2-way universal circuits already im-
prove upon the best previously known by reducing a third in circuit size. Curi-
ously, one may wonder if the advantage can be further increased by using a large
k. We list out the results in Table 4 for k up to 4 based on the corresponding
optimal-size k-way supernodes.

3.4 A lower bound on circuit size in our framework

We lower bound the size of the k-way EUG2(n) (and UC) in our framework based
on the techniques introduced in [57].

Theorem 5 (A lower bound on |EUG2(n)|). For any integer k ≥ 2, any
k-way EUG2(n) constructed via the following two steps

1. Recursively construct an EUG1(n) as in Fig. 9;
2. Use Valiant's EUG1-to-EUG2 transform (see Lemma 2) to get an EUG2(n).

must satisfy |EUG2(n)| ≥ 2.95n log n for all su�ciently large n's.

Proof. Recall that by Theorem 3 we have

|EUG2(n)| =
2(|SN(k)| − k)

k log k
n log n−Ω(n) ≥ 2dlog(Fk)e

k log k
n log n−Ω(n)
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where the inequality comes from [57], stated as Lemma 4, whose proof is repro-
duced in the full version [42, Appendix B] for completeness. It thus su�ces to

bound the factor g(k)
def
= 2dlog(Fk)e

k log k using Lemma 5.

k 2 3 4 . . . 8 9 10 . . . 29 30

g(k) 3 3.0158 2.9943 . . . 2.9547 2.9547 2.9565 . . . 3.0419 3.0449

Table 5. The values of g(k) for k ≤ 30.

Lemma 4 ( [57]). |SN(k)| ≥ dlog(Fk)+ ke, where Fk =
∑k

i=1(
k!

(k−i)! )
2Ai,k and

Ai,k in turn can be computed by dynamic programming with the following:

1. (Base case). A1,k = 1,∀k ∈ N+;

2. (Recursive formula). Ai,k =
∑k−i

j=0

(
k−1
j

)
Ai−1,k−j−1.

Fk is de�ned as the number of augmented DAG1(k) (as per De�nition 4), and
Ai,k denotes the number of ways to spread k di�erent balls into i (i ≤ k) identical
boxes with the condition that no boxes are empty.

Lemma 5. For any integer k ≥ 2, g(k)
def
= 2dlog(Fk)e

k log k > 2.95.

Proof. As a general closed-form expression for Fk seems di�cult, we use dynamic
programming to compute the values of Ai,k Fk and g(k) for k up to a few
hundred, and list only partial results (up to k = 30) in Table 5 due to lack of
space. Note that g(8) and g(9) are roughly the same and seemingly reach the
minimum in terms of the values we computed. It remains to show that �g(k) is
monotonically increasing for k ≥ 9� to complete the proof. We have

Fk =

k∑
i=1

(
k!

(k − i)!
)2Ai,k ≥

k∑
i=k−1

(
k!

(k − i)!
)2Ai,k = (Ak−1,k +Ak,k)(k!)

2 ,

and Ak,k = 1, Ak−1,k =
(
k
2

)
= (k−1)k

2 . Thus, Fk ≥ ( (k−1)k2 + 1)(k!)2. It follows

from Stirling's formula ∀k ∈ N+ k! ≥
√
2πk(ke )

k

Fk ≥ (2πk)
( (k − 1)k

2
+ 1
)(k

e

)2k

,

and therefore

g(k) ≥ 2 log(Fk)

k log k
≥

2 log(πk((k − 1)k + 2)(ke )
2k)

k log k

def
= h(k) ,

where by taking the derivative we know that h(k) in the right-hand is monoton-
ically increasing for k ≥ 2, and thus g(k) ≥ h(k) ≥ h(9) ≈ 2.95 for all k ≥ 9,
which completes the proof.
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On the (un)tightness of the 2.95n logn bound. The bound is obtained by
applying Lemma 4 and Lemma 5. The latter is tight as equality holds for k = 9
while the former is not. We observe that log(Fk) + k equals 5, 10.17 and 15.98
for k = 2, 3, 4 respectively, so |SN(k)|, as an integer, is no less than 5, 11, and
16 for the respective k = 2, 3, 4. However, as shown in Table 4, the minimum of
|SN(k)| equals 5, 12, 18 for k = 2, 3, 4 respectively. That is, the equality holds
only at k = 2 and the gap seems to increase over k, where the untightness is
attributed to the proof technique, i.e., that the number of possible con�gurations
is no less than that of the augmented k-way DAG1 is a loose argument due to the
existence of redundant con�gurations (not all control nodes are needed to edge
embed a speci�c DAG). To conclude, the lower bound 2.95n log n is very close to
3n log n achieved by our e�cient construction, and the loose steps for deriving
the lower bound suggests that the construction might already be optimal under
the framework we introduced.

4 Implementation and Performance Evaluation

In this section, we give more details about the implementation and optimization
of the universal circuits, and a performance comparison with the previous works.
The source code of our implementation and optimization is available at [4].

4.1 Implementing and optimizing the 2-way universal circuits

We brie�y describe how to implement and optimize our 2-way UC. Following
previous implementations [3, 30, 37], we use the Fairplay compiler [9, 44] with
the Fairplay extension [39] to transform any functionality described in a high-
level language into the standard circuit description written in SHDL (Secure
Hardware De�nition Language). The produced circuit description has fan-in 2,
but has no limit on its fan-out. As required by Valiant's universal circuits, the
fan-out of the circuit to be simulated must be bounded by 2 as well. Hence,
the next step is to convert the circuit to a functionality equivalent one with
fan-in/fan-out 2, which is achieved by using copying gates for those gates with
out-degree more than 2. We refer to [37] for implementation details and how the
conversion a�ects the size of practical circuits. Following the works [3,30,37], the
circuit description format of the generated UC numbers the wires in sequential
order and speci�es universal, X-switching and Y -switching gates as follows:

U in1 in2 out1

X in1 in2 out1 out2

Y in1 in2 out1

where a gate with type (U , X or Y ) and input wires in1 and in2 produces as
output(s) wire out1 (and possibly wire out2), and control bits for the gates are
not present in the above description but stored in the programming �le of UC.
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Our 2-way UC should be more e�cient to generate than the hybrid coun-
terparts in [3, 30, 37, 57] due to the simplicity. However, a straightforward im-
plementation of 2-way construction in Fig. 9 requires that n is a two's power
and therefore optimization is needed to adapt to arbitrary n. Similar to [30],
we de�ne in Fig. 10 sub-components of SN(2) called head block and tail blocks
by removing the respective input and output nodes (and their associated edges
and control nodes). This enables a more �ne-grained recursive construction of
EUG1(n) for arbitrary n ∈ N+ as follows:

1. If n is even, construct EUG1(n) as in Fig. 11(a) and invoke the two instances
of EUG1(

n
2 );

2. Otherwise (n is odd), construct EUG1(n) as in Fig. 11(b), and invoke EUG1(
n+1
2 )

and EUG1(
n−1
2 ).

3. Repeat until n is su�ciently small to build EUG1(n) by hand.

in1 in2

p2i+1

p2i+2

out1 out2

(a) Body Block B2

p1

p2

out1 out2

(b) Head Block H2

in1 in2

pn−1

pn

(c) Tail Block T 2
2

in1

pn

(d) Tail Block T 1
2

Fig. 10. (a) is Valiant's 2-way supernode, (b) is the head block that excludes input
nodes, (c) and (d) are the tail blocks for two poles and a single pole respectively.

The construction gives the recursive relation on the size of EUG1(n) as follows:

|EUG1(n)| = |head|+ (dn
2
e − 2) · |body|+ |tail(pn)|

+ |EUG1(d
n

2
e)|+ |EUG1(b

n

2
c)| − n ,

(4)

where pn = 2 if n is even, or pn = 1 otherwise, |head| = 4 and |body| = 5 are
the sizes of the head and standard body blocks respectively, and |tail(1)| = 1
and |tail(2)| = 4 are the sizes of di�erent tail blocks determined by the parity
of n as shown in Fig. 10. The above relation is more precise but it yields the
same asymptotic sizes about EUG2(n) and UCn as stated in Theorem 4, which
are obtained in the simpli�ed scenario n = 2j ·B.

4.2 Performance evaluation

We evaluate the multiplicative circuit sizes of our UC in simulating a set of
typical circuits such as AES-128 with key expansion, MD5 and SHA-256 from [52]
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(b) Construction of
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Fig. 11. A more �ne-grained construction of EUG1(n) for arbitrary n (cf. Fig. 9), which
starts with a head block, followed by dn

2
− 2e standard blocks of SN(2), and ends with

a tail block with one or two poles depending on the parity of n.

and compare the results with those from previous ones [3, 30, 37, 57] in Table 6.
We also run the experiments for a wider range of (fan-in/fan-out 2) circuits of
size 15 ≤ n ≤ 108, in particular, for every range n ∈ {10i, . . . , 10i+1} pick 100
equidistant points for n (or evaluate all if the number of points is less than 100).
The comparison with previous implementations is visualized in Fig. 12. Both
comparisons con�rm that our 2-way universal circuits achieve roughly 33%, 37%
and 40% reductions in circuit size over Zhao et al.'s UC, Valiant's 2-way and
4-way UCs respectively.

Functionality n Valiant's
2-way
UC [3,
53]

Valiant's 2-
way&4-way
hybrid
UC [30]

Zhao et
al.'s
4-way
UC [57]

Valiant's
2-way & Zhao
et al.'s 4-way
hybrid UC [3]

Our
2-way
UC

Credit Checking 82 1.50 · 103 1.49 · 103 1.43 · 103 1.43 · 103 1.16 · 103
Mobile Code 160 3.65 · 103 3.61 · 103 3.58 · 103 3.46 · 103 2.73 · 103
ADD-32 342 9.58 · 103 9.44 · 103 9.00 · 103 9.00 · 103 6.93 · 103
ADD-64 674 2.21 · 104 2.17 · 104 2.14 · 104 2.07 · 104 1.57 · 104

MULT-32×32 12202 6.54 · 105 6.35 · 105 6.12 · 105 6.02 · 105 4.39 · 105
AES-exp 38518 2.39 · 106 2.31 · 106 2.19 · 106 2.19 · 106 1.58 · 106
MD5 66497 4.42 · 106 4.26 · 106 4.05 · 106 4.02 · 106 2.90 · 106

SHA-256 201206 1.49 · 107 1.44 · 107 1.38 · 107 1.36 · 107 9.65 · 106

Table 6. A comparison (in terms of the sizes) of the Valiant's 2-way UCs [37], two
hybrid UCs [3, 30], Zhao et al.'s 4-way [57] and our 2-way UC implementations to
simulate sample circuits from [52].

Admittedly, our implementation only veri�es the correctness of the construc-
tion and its size advantages over previous constructions. Further engineering
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Fig. 12. Improvement in size of our 2-way UCs, two hybrid UCs [3, 30] and Valiant's
4-way UCs [57] over Valiant's 2-way UCs [30] for 15 ≤ n ≤ 108 with logarithmic x axis.

e�orts are needed to optimize UC generation and programming process for prac-
tical use, and in this respect the scalable UC generation algorithm from [3] that
reduces memory consumption from O(n log n) to O(n) serves as a good refer-
ence. We also refer to [32, Appendix B] for a recent performance evaluation of
universal circuits in the context of linear-complexity private function evaluation,
where our UC exhibits a roughly 1/3 improvement over [3] in terms of the com-
munication and runtime of the PFE protocols, and is thus recognized as the
current state-of-the-art of universal circuits (e.g., [31,32]).
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