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Abstract. We introduce a class of interactive protocols, which we call sumcheck
arguments, that establishes a novel connection between the sumcheck protocol
(Lund et al. JACM 1992) and folding techniques for Pedersen commitments
(Bootle et al. EUROCRYPT 2016).
We define a class of sumcheck-friendly commitment schemes over modules that
captures many examples of interest, and show that the sumcheck protocol ap-
plied to a polynomial associated with the commitment scheme yields a succinct
argument of knowledge for openings of the commitment. Building on this, we
additionally obtain succinct arguments for the NP-complete language R1CS over
certain rings.
Sumcheck arguments enable us to recover as a special case numerous prior works
in disparate cryptographic settings (discrete logarithms, pairings, groups of un-
known order, lattices), providing one framework to understand them all. Further,
we answer open questions raised in prior works, such as obtaining a lattice-based
succinct argument from the SIS assumption for satisfiability problems over rings.
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1 Introduction

Sumcheck protocols. The sumcheck protocol is an interactive proof introduced in
[LFKN92] that has played a fundamental role in the theory of probabilistic proofs in
complexity theory (e.g., [BFL91; BFLS91; GKR08]) and, more recently, in cryptography.
The sumcheck protocol has been used widely in a line of works on succinct arguments
[CMT12; VSBW13; Wah+17; ZGKPP17; WTSTW18; XZZPS19; Set20]. One of the
main benefits of the sumcheck protocol is that, in certain settings, the prover can be
implemented in a linear number of operations [Tha13] or as a streaming algorithm
[CMT12]; this avoids operations such as the Fast Fourier Transform (common in other
succinct arguments) that are costly in time and in memory. The sumcheck protocol also
satisfies strong soundness properties that facilitate arguing the security of the Fiat–Shamir
transformation in the plain model [CCHLRR18], which is notoriously hard to analyze
for other interactive proofs. Moreover, variants of the sumcheck protocol have spawned
lines of research: the univariate sumcheck [BCRSVW19] was used in numerous succinct
? The full version of this paper is available at https://eprint.iacr.org/2021/333.
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arguments [BCGGRS19; ZXZS20; CHMMVW20; COS20; CFFQR20; BFHVXZ20];
and the sumcheck protocol for tensor codes [Mei13] was used to obtain probabilistic
proofs with linear-size proofs [BCGRS17; RR20] and linear-time provers [BCG20;
BCL20].

Folding techniques. Separately, a line of works starting with [BCCGP16] constructs
succinct arguments based on folding techniques for Pedersen commitments in the discrete
logarithm setting. Informally, to prove knowledge of a long message opening a given
Pedersen commitment, the prover engages with the verifier in a reduction that halves
the message length by folding the message “around” a verifier challenge. This can
be repeatedly applied until the message length is small enough to send the message
directly. Beyond commitment openings, [BCCGP16] give protocols for scalar-product
relations, which lead to succinct arguments for NP languages such as arithmetic circuit
satisfiability. These succinct arguments can be realized via a linear number of group
scalar multiplications, or alternatively as streaming algorithms [BHRRS20].

Folding techniques, subsequently improved in [BBBPWM18], have been deployed in
cryptocurrencies (Monero [Mon] and PIVX [Piv]) and are widely used thanks to popular
open-source libraries [dalek18; Adj]. These practical applications have motivated careful
analyses of concrete security [JT20], which facilitates setting security parameters in
applications.

Folding techniques have been adapted to work in other cryptographic settings, such
as bilinear groups [LMR19], unknown-order groups [BFS20], and lattices [BLNS20].
They have also been formulated in more abstract settings: [BMMTV19] study sufficient
properties of commitment schemes that enable folding techniques; and [AC20; ACF20;
ACR20; BDFG20] study folding techniques for general group homomorphisms.

Folding techniques for Pedersen (and related) commitments are arguably not fully
understood, despite the numerous works and applications mentioned above. For example,
they are typically used as non-interactive arguments after the Fiat–Shamir transformation
is applied to the (public-coin) interactive argument. Yet the security of this non-interactive
argument, even in the random oracle model, has only been proven via a superpolynomial-
time extractor [BMMTV19] or in the algebraic group model [GT20]. Moreover, almost
all succinct arguments are obtained via some type of probabilistic proof (and there are
settings where this is inherent [RV09; CY20]) but no such probabilistic proof is evident
in folding techniques.

A connection? The sumcheck protocol and folding techniques seem rather different
protocols but they share several common features. Both protocols have a prover that can
be realized via a linear number of operations [Tha13; BCCGP16], or alternatively as a
streaming algorithm [CMT12; BHRRS20]; moreover, both protocols satisfy similar no-
tions of strong soundness [CCHLRR18; GT20], which facilitate proving useful security
properties. Are these similarities mere coincidences?

1.1 Our results

We introduce a class of interactive protocols, sumcheck arguments, that establishes a
novel connection between the sumcheck protocol and folding techniques for Pedersen
commitments. This provides a single framework to understand numerous prior works in
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disparate cryptographic settings (prime-order groups, bilinear groups, unknown-order
groups, lattices) and also enables us to answer open questions raised in prior works. We
elaborate on these contributions below, and summarize the underlying technical ideas in
Section 2.
(1) Sumcheck arguments. Recall that the sumcheck protocol is an interactive proof
for statements of the form

∑
ω∈H` p(ω) = τ for a given summation domain H , `-variate

polynomial p, and claimed sum τ . While typically stated for polynomials over finite
fields, the sumcheck protocol works for polynomials over any module M over a ring R
(given certain mild conditions).Let Σ[R,M,H, `, τ, C, p] denote the sumcheck protocol
for the statement

∑
ω∈H` p(ω) = τ when H ⊆ R, τ ∈ M , and p ∈ M [X1, . . . , X`],

and the verifier uses the challenge set C ⊆ R to sample each round’s challenge. (We
explain later on in Section 2.1 why the sumncheck protocol over modules involves a
given challenge set for the verifier.)

A sumcheck argument is, informally, a sumcheck protocol used to succinctly prove
knowledge of openings for certain commitments (you run the sumcheck reduction fol-
lowed by a cryptographic analogue of the consistency check). We say that a commitment
scheme CM is sumcheck-friendly if the statement “I know m of length n such that
CM.Commit (ck,m) = cm” can be rewritten as the statement “I know m of length n
such that

∑
ω∈{−1,1}log n fCM(pm(ω), pck(ω)) = cm” where the message polynomial

pm(X) is over an R-module M, the key polynomial pck(X) is over an R-module K,
and the combiner function fCM maps M × K to an R-module C (and is such that
fCM(pm(X), pck(X)) is a polynomial over C). We observe that commitment schemes
of interest are sumcheck-friendly, including various forms of Pedersen commitments
(we elaborate on this later). Our main result is to construct a knowledge extractor for
the sumcheck protocol applied to such statements, provided CM is invertible (a certain
property that we discuss later on).

Theorem 1 (informal). Let CM be a sumcheck-friendly commitment scheme that is
invertible. Let cm be a commitment to a message m using a commitment key ck. Then (a
straightforward extension of)

Σ
[
R,M = C, H = {−1, 1}, ` = log n, τ = cm, C, p = fCM(pm, pck)

]
is an interactive argument of knowledge for an opening to cm with respect to ck with
knowledge error O( logn

|C| ), where the polynomial in the numerator depends on CM. The
round complexity is O(log n) and the communication complexity is O(log n) elements
in C. Moreover, if fCM is a bilinear function, then the prover and verifier complexity is
dominated by O(n) operations in C.

The above informal statement omits many technical details, such as commitment
randomness and relaxed notions of commitment opening necessary to express settings
over lattices. Moreover, the informal statement fixes certain choices (such as choosing
the summation domain H = {−1, 1} and ` = log n variables).

As we demonstrate in the full version of this paper, well-known folding techniques
from prior works can be viewed, perhaps surprisingly, as special cases of a sumcheck
argument. We remark that while the usual security notion of the sumcheck protocol is an
unconditional soundness guarantee, the security notion that we establish for a sumcheck
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argument is a knowledge guarantee, proved from CM’s invertibility. In turn invertibility
may hold unconditionally or under certain hardness assumptions (we give examples of
this in Section 2.3.2).3

(2) Succinct arguments for R1CS over rings. Building on sumcheck arguments,
we obtain zero-knowledge succinct arguments for satisfiability problems defined over
rings. This is in contrast to most prior succinct arguments, which support satisfiability
problems defined over prime-order fields (which are the “scalar fields” associated to
underlying cryptographic prime-order groups). This extension is motivated by the fact
that certain computations are more efficiently expressed over certain rings (e.g., approxi-
mate arithmetic [CCKP19]), and parallels prior lines of work for secret-sharing schemes
and multiparty computation protocols [CFIK03; CDESX18; ACDEY19; Abs+20] for
supporting computations defined over rings.

We focus on the ring variant of the NP-complete problem known as rank-1 con-
straint satisfiability (R1CS), which is a widely used generalization of arithmetic circuit
satisfiability. We obtain a zero-knowledge succinct argument for R1CS over any ring
R• with suitable algebraic properties, assuming the hardness of the bilinear relation
assumption over a related ring, which is a natural generalization of assumptions such as
the DL assumption, the SIS assumption, and others.

Definition 1 (informal). The R1CS problem asks: given a ring R•, coefficient matrices
A,B,C ∈ Rn×n• each containing at most m = Ω(n) non-zero entries, and an instance
vector x over R•, is there a witness vector w over R• such that z := (x,w) ∈ Rn• and
Az ◦Bz = Cz? (Here “◦” denotes the entry-wise product of vectors over R•.)

Theorem 2 (informal). Let R be a ring, M be an R-module, C ⊆ R a challenge
space, and I ⊆ R an ideal. If pairwise differences in C have suitable pseudoinverses
in R• := R/I and the bilinear relation assumption holds over M , then there is a zero-
knowledge succinct argument of knowledge for the R1CS problem over R•. For n× n
coefficient matrices with at most m non-zero entries, the argument has knowledge error
O( logn

|C| ), round complexity O(log n), communication complexity O(log n) elements of
M and O(1) elements of R, and prover and verifier complexity dominated by O(m)
operations in R and O(n) operations in M .

One immediate application of our result is to lattice cryptography. Prior work used
folding techniques to obtain (zero-knowledge) succinct arguments of knowledge for lat-
tice commitments [BLNS20], but left open the question of obtaining succinct arguments
for NP-complete problems relevant to lattices.4

Our Theorem 2 directly implies a solution to this open question. This may be
surprising because the knowledge extractor for a sumcheck argument over lattices
finds only a relaxed opening of a (sumcheck-friendly and invertible) commitment; this
relaxed extraction occurs in many other lattice-based arguments of knowledge. This
notwithstanding we still derive from it a knowledge extractor for the R1CS problem.

3 Thus sumcheck arguments are distinct from direct algebraic generalizations of the sumcheck
protocol to rings [CCKP19].

4 This differs from using lattices to instantiate the collision-resistant hash function in Kilian’s PCP-
based protocol [Kil92], because this would not lead to a succinct argument for computations
expressed over relevant rings.
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Corollary 1 (informal). Let R := Z[X]/〈Xd + 1〉 for d a power of 2. Let p and
q be primes with q sufficiently larger than p. Assuming hardness of the SIS problem
over R/qR, there is an argument of knowledge for R1CS over R• := R/pR with
knowledge-soundness error O( logn

d ), round complexity O(log n), communication com-
plexity dominated by O(log n) elements of R/qR, and prover and verifier complexity
dominated by O(m) operations in R• and O(n) operations in R/qR.

Our new lattice-based argument system shows that one can succinctly prove general
relations over rings pertinent to lattice cryptography, despite the fact that most lattice-
based proofs of knowledge suffer from relaxed soundness properties. This allows users to
prove statements about lattice-based encryption and signature schemes directly over their
native rings rather than having to convert them into statements tractable for other proof
systems, which often leads to computational overheads in practical schemes [BCOS20].

Moreover, Corollary 1 contributes a new succinct argument that is plausibly post-
quantum, adding to a surprisingly short list of such candidates. (Prior constructions of
post-quantum succinct arguments are from hash functions [CMS19; CMSZ21] or lattice
knowledge assumptions [BISW17; BISW18; GMNO18].) An intriguing question left
open by our work is whether the security reduction of the construction in Corollary 1
can be carried out against an efficient quantum adversary.

Finally, returning to Theorem 2, having a single construction of a zero-knowledge
succinct argument over general rings may simplify future practical applications. Our
theorem enables having a single abstract implementation that can be debugged and
audited once and for all, and can then be instantiated over disparate algebraic settings
depending on an application’s needs, by simply specifying the desired ring.

(3) On instantiations. By instantiating the sumcheck-friendly commitment CM in
Theorem 1 we obtain succinct arguments of knowledge for different relations of interest,
as we now explain.

As a simple example, the Pedersen commitment scheme can be formulated in an
abstract setting where messages and group generators are replaced by elements of
appropriate rings or modules. This generalized Pedersen commitment scheme satisfies
the conditions in Theorem 1, either unconditionally or under the same assumptions
that imply its binding properties. Our sumcheck argument for the generalized Pedersen
commitment scheme thus yields succinct protocols for opening Pedersen commitments
in different settings, such as prime-order groups, bilinear groups, unknown-order groups,
and lattices.

We also study instantiations that capture richer functionalities.

– Linear-function commitments: the commitment includes a commitment to the scalar
product of a public (query) message and a secret message. This draws inspiration
from [AC20] which considers linear-function commitments in the prime-order group
setting, bilinear group setting, and strong RSA setting.

– Scalar-product commitments: the commitment includes a commitment to the scalar
product of two secret parts of the message. This draws inspiration from [BCCGP16;
BBBPWM18; BMMTV19] which consider bilinear commitment schemes for prime-
order or bilinear groups. Proving knowledge of an opening implies that the commit-
ment was correctly computed, and therefore in this case that a scalar-product relation
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is satisfied. These scalar-product commitments in fact underlie our proof of Theorem 2
based on Theorem 1.

In Figure 1 we provide a comparison between succinct arguments with comparable
efficiency in prior works, classified by type of relation and algebraic setting. The table
demonstrates that our sumcheck arguments recover all prior types of relations and all
algebraic settings as special cases, and additionally contribute new combinations that
were not achieved before.

prime-order groups bilinear groups unknown-order groups ideal lattices
(DL assumption) (double-pairing assumption) (order assumption) (SIS assumption)

basic commitment [BLNS20]
linear-function commitment
or polynomial commitment

[ACR20; AC20] [BFS20] previously open

scalar-product commitment [BCCGP16] [LMR19] previously open
bilinear commitment [BMMTV19] previously open

sumcheck-friendly commitment sumcheck arguments from this work

Fig. 1. Comparison of prior works that use folding techniques to achieve succinct arguments of
knowledge, and also our sumcheck arguments. The rows from top to bottom indicate increasingly
more general types of commitment (and so a result in a row directly implies a result in all rows
above it). The columns indicate different cryptographic settings in which the commitments are
constructed (along with corresponding sufficient cryptographic assumptions). Results spanning
multiple columns indicate an abstraction that simultaneously captures all those settings. We see that
our work captures all prior settings and types of commitments, and also achieves functionalities
and settings that were left open by prior works.

1.2 New connections and new opportunities

The novel connection between folding techniques and the sumcheck protocol, captured
by our sumcheck arguments, casts many aspects of prior works in a new light. Below we
provide several examples.

– [BCCGP16] describes folding techniques for splitting a long vector into more than
two pieces before folding, to allow trading argument size for round complexity. This
corresponds to running a sumcheck argument using polynomials of fewer variables
and higher individual degree.

– [BBBPWM18] improves the efficiency of folding techniques via a more complicated
use of verifier challenges. This corresponds to running a sumcheck argument using
a different evaluation domain, and where the sumcheck prover sends polynomials
expressed in a different monomial basis.

– [CHJKS20] gives weighted inner-product arguments to improve concrete efficiency.
This corresponds to a sumcheck argument for weighted-sums of polynomial evalua-
tions (see the full version of the paper for details).
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– [PLS19] gives a zero-knowledge version of folding techniques that achieves better
concrete efficiency by using less prover randomness. This relates to derandomizing a
zero-knowledge sumcheck argument.

– [BMMTV19; BFS20] consider subprotocols for delegating expensive verifier compu-
tation to the prover. This corresponds to delegating polynomial evaluation, to help the
verifier outsource evaluating the commitment key polynomial. Sumcheck arguments
neatly conceptualize the role of polynomials in folding protocols and simplify the
task of applying delegation protocols in other settings (see discussed further in the
full version).

– Like [BMMTV19; ACF20; BDFG20], sumcheck arguments capture optimizations of
folding techniques that compress several target commitment values into one (e.g., the
optimization from [BCCGP16] to [BBBPWM18]) as sumcheck arguments applied to
alternative commitment schemes.

We expect that other folding techniques such as [ACR20; Lee20] can also be viewed as
sumcheck arguments.

Looking ahead, the new perspective offered by sumcheck arguments, with the sum-
check protocol at their core, makes it easier to explore new design options and optimiza-
tions for succinct arguments, especially so for those that have already been studied for
the (information-theoretic) sumcheck protocol.

Existing analyses of the sumcheck protocol may also inspire analogous ones for
sumcheck arguments. For example, the sumcheck protocol can be made non-interactive
via the Fiat–Shamir transformation, where the verifier’s messages are replaced by the
outputs of a hash function. Jawale et al. [JKKZ20] show that the result is a non-interactive
argument provided the hash function is lossy correlation-intractable (and construct such
hash functions based on the LWE assumption). This seems to provide a starting point for
studying the security of sumcheck arguments under the Fiat–Shamir transformation.

1.3 Related work

Folding techniques. Figure 1 summarizes the main relationship between sumcheck ar-
guments for sumcheck-friendly commitments and prior work that uses folding techniques.
Below we additionally discuss the prior works that have studied folding techniques for
abstract commitment schemes and homomorphisms.

Bünz et al. [BMMTV19] present folding techniques for doubly-homomorphic com-
mitments over prime-order groups, which are both key-homomorphic and message
homomorphic. These can capture non-linear relations such as scalar-product relations
under computational assumptions.

Attema, Cramer, and Fehr [ACF20] present folding techniques for pre-images of
general group homomorphisms over prime-order groups. These were extended from
prime-order groups to Z-modules in [BDFG20], who also noted that a Z-module homo-
morphism could be phrased as a Pedersen-like function. These techniques give proofs
for homomorphisms and linear relations, without using computational assumptions.

Both general group homomorphisms and doubly-homomorphic commitment schemes
are special cases of sumcheck-friendly commitment schemes. Our work also finds
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the same distinction between proofs and arguments: our sumcheck argument for “lin-
ear” commitment schemes such as the generalized Pedersen commitment scheme (and
linear-function commitments) do not require computational assumptions, whereas our
sumcheck argument for “quadratic” commitment schemes require computational as-
sumptions.

Reductions from NP-complete problems. Attema and Cramer [AC20] construct zero-
knowledge succinct arguments for NP-complete relations by (i) using secret-sharing
techniques to interactively reduce NP statements to linear relations (under computational
assumptions), and then (ii) relying on succinct arguments for linear relations. This
“linearization” requires the prover to perform polynomial arithmetic on high-degree
polynomials, and hence an efficient realization would likely rely on FFTs. FFTs require
linear space-complexity for the prover, and prevent the prover from being implemented
in logarithmic space as in the sumcheck protocol [CMT12] or other succinct arguments
based on folding protocols [BHRRS20]. In contrast, we reduce NP statements to bilinear
relations such as scalar-product relations, and then rely on succinct arguments for
scalar products; this reduction can be performed via a linear number of cryptographic
operations, and without relying on FFTs.

1.4 Concurrent work

Attema, Cramer, and Kohl [ACK21] construct zero-knowledge succinct arguments for
NP based on the SIS assumption, using folding techniques for lattices. As with [AC20],
their construction uses secret-sharing techniques which are likely to rely on FFTs and
lead to a prover with large space complexity. Moreover, the techniques in [ACK21]
are for lattices, while our techniques based on sumcheck arguments provide a general
framework in which lattices are a special case. Additionally, [ACK21] give a detailed
analysis of the knowledge error of their lattice-based folding techniques, which was
not present in [BLNS20], and establish that the knowledge error can be reduced using
parallel repetition.

Albrecht and Lai [AL21] study a variant of the folding techniques in [BLNS20],
instantiated in a different choice of ring which offers exact proofs (rather than proofs
with relaxed knowledge extraction) and various efficiency advantages. Like [ACK21],
they also analyze the knowledge error of their folding techniques, and prove results
relating relaxed extraction to ring structure. We are optimistic that their ideas can be
incorporated into our sumcheck-based framework.

Ganesh, Nitulescu, and Soria-Vazquez [GNS21] model NP relations over rings
and give a generic construction of designated-verifier zero-knowledge SNARKs using
techniques related to prior lattice-based SNARK constructions [BISW17; BISW18;
GMNO18].

Block et al. [BHRRS21] study a variant of the commitment scheme of [BFS20]
in groups of unknown order that is compatible with a streaming formalism, and give
space-efficient arguments for NP languages. We are optimistic that their ideas can be
incorporated into our sumcheck-based framework.
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2 Techniques

We summarize the main ideas behind our results. The first few subsections are dedicated
to explaining sumcheck arguments (Theorem 1) in several steps of progressive generality.
In Section 2.1 we describe the sumcheck protocol for polynomials over modules. Then in
Section 2.2 we present a succinct zero-knowledge argument for Pedersen commitments
based on the sumcheck protocol. In Section 2.3 we show how to lift this protocol to
any “sumcheck-friendly” commitment, but still in the setting of prime-order groups.
Finally in Section 2.4 we explain the main considerations in generalizing further to
commitments over rings, and in Section 2.5 we give an example of how commitments
can be formulated in this framework. After that we turn our attention to our other
contributions. In Section 2.6 we discuss a generic scalar-product protocol built from
sumcheck arguments, and then in Section 2.7 we explain how it enables us to obtain
zero-knowledge succinct arguments for R1CS over rings (Theorem 2 and in particular
Corollary 1). In the full version, we also discuss how we obtain polynomial commitment
schemes over rings from sumcheck arguments.

2.1 Sumcheck protocol over modules

The sumcheck protocol [LFKN92] directly extends to work with polynomials over mod-
ules. The proverPSC and verifier VSC receive a sumcheck instance xSC = (R,M,H, `, τ, C),
where R is a ring, M is a module over R, H is a subset of R, ` is a number of vari-
ables, τ ∈ M is a claimed sum, and C ⊆ R is a sampling set (more about this be-
low). The prover PSC additionally receives a polynomial p ∈M [X1, . . . , X`] such that∑
ω∈H` p(ω) = τ . The protocol has ` rounds and works as follows.

1. For i = 1, . . . , `:
(a) PSC sends to VSC the polynomial qi(X) :=

∑
ωi+1,...,ω`∈H p(r1, . . . , ri−1, X, ωi+1, . . . , ω`) ∈

M [X];
(b) VSC sends to PSC a random challenge ri ← C.

2. VSC checks that
∑
ω1∈H q1(ω1) = τ and, for i ∈ {2, . . . , `}, that

∑
ωi∈H qi(ωi) =

qi−1(ri−1).
3. If the checks pass then VSC sets v := q`(r`) ∈M and outputs the tuple ((r1, . . . , r`), v).

The security guarantee of the sumcheck protocol, which requires C to be a sampling set,
is given below.

Definition 1. We say that C ⊆ R is a sampling set for the R-module M if for every
distinct c1, c2 ∈ C the map that sends m ∈M to (c1 − c2) ·m ∈M is injective.

Lemma 1. Let xSC = (R,M,H, `, τ, C) be a sumcheck instance and a polynomial
p ∈ M [X1, . . . , X`] of total degree d. If C is a sampling set for M then the following
holds.
– Completeness. If

∑
ω∈H` p(ω) = τ then Prr←C` [〈PSC(xSC, p), VSC(xSC; r)〉 = (r, p(r))] =

1.
– Soundness. If

∑
ω∈H` p(ω) 6= τ then, for every P̃SC, Prr←C` [〈P̃SC, VSC(xSC; r)〉 =

(r, p(r))] < `d
|C| .
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Above 〈A, VSC(xSC; r)〉 is the output of VSC(xSC) when interacting with algorithm A
using randomness r.

The lemma directly follows from a generalization of the Schwartz–Zippel lemma
over modules.

Lemma 2. Let R be a ring, M an R-module, and f ∈ M [X1, . . . , X`] a non-zero
polynomial of total degree D. If C is a sampling set for M then Prr←C` [f(r) = 0] ≤ D

|C| .

The proof of Lemma 2 follows the same approach as the usual inductive proof of
the standard Schwartz–Zippel lemma. The properties of C are used to establish that a
polynomial f ∈ M [X] of degree D has at most D roots in C, which in turn is used in
the base case and in the inductive step.

The sumcheck protocol in the special case when M = R has been used before, e.g.,
in [CCKP19].

2.2 Sumcheck argument for Pedersen commitments

We describe a cryptographic protocol for proving knowledge of an opening of a Pedersen
commitment, whose main subroutine is the sumcheck protocol. We refer to such a proto-
col as a sumcheck argument. Note that for now we ignore the goal of zero knowledge,
and instead focus on achieving communication complexity that is much smaller than
(indeed, logarithmic in) the message whose knowledge is being proved.

Definition 2. We index the entries of a vector v of length n = 2` via binary strings
(i1, . . . , i`) ∈ {0, 1}`, and define the corresponding polynomial pv(X1, . . . , X`) :=∑

i1,...,i`∈{0,1} vi1,...,i`X
i1
1 · · ·X

i`
` .

Protocol 1: sumcheck argument for Pedersen commitments

For n = 2`, the prover and verifier receive as input a commitment key G ∈ Gn
and commitment C ∈ G. The prover also receives as input an opening a ∈ Fn
such that C = 〈a,G〉.

The prover and verifier engage in a sumcheck protocol for the instance

xSC := (R = F, M = G, H = {−1, 1}, ` = log n, τ = 2`C, C = F)

where the prover uses the polynomial p(X) := pa(X)·pG(X). After the end of the
sumcheck protocol, the prover learns r ∈ F` and the verifier learns (r, v) ∈ F`×G.
Then the prover computes and sends pa(r) ∈ F to the verifier, and the verifier
computes pG(r) ∈ G and checks that pa(r) · pG(r) = v.

We begin by explaining why Protocol 1 is mathematically well-defined. The “multipli-
cation” operation implicit in the expression pa(X)·pG(X), which maps F[X1, . . . , X`]×
G[X1, . . . , X`] → G[X1, . . . , X`], is a natural extension of the scalar multiplication
operation a · G which maps F × G → G. For example, consider the polynomials
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p1(X) = a + a′ · X ∈ F[X] and p2(X) = G + X · G′ ∈ G[X], and let r ∈ F. The
product of p1(r) and p2(r) can be written as follows:

p1(r) · p2(r) = (a+ a′r) · (G + r · G′) = a · (G + r · G′) + a′r · (G + r · G′)
= a · G + ar · G′ + a′r · G + a′r2 · G′

= a · G + r · (a · G′ + a′ · G) + r2 · (a′ · G′) ,

where the second and third equalities follow from the bilinear properties of scalar
multiplication.5 This holds for any r ∈ F, and so it makes sense to define the “scalar
multiplication” of p1(X) and p2(X):

p1(X) ·p2(X) = (a+a′X) · (G+X ·G′) := a ·G+X · (a ·G′+a′ ·G)+X2 · (a′ ·G′) .

The polynomial pa(X) · pG(X), whose coefficients lie in G, is defined this way.
Completeness of Protocol 1 follows from the fact that

∑
ω∈{−1,1}n pa(ω) · pG(ω) =

2`〈a,G〉. Indeed, each contribution to
∑
ω∈{−1,1}` pa(ω) · pG(ω) corresponds to the

monomials of pa(X)·pG(X) of the formX2i1
1 · · ·X2i`

` . The coefficient ofX2i1
1 · · ·X2i`

`

in pa(X)·pG(X) arises from a multiplication of the monomials in the terms ai1,...,i`X
i1
1 · · ·X

i`
`

and Gi1,...,i`X
i1
1 · · ·X

i`
` , which multiply to give ai1,...,i` ·Gi1,...,i` ·X

2i1
1 · · ·X2i`

` . Thus,∑
ω∈{−1,1}` pa(ω) · pG(ω) = 2`〈a,G〉.
The security guarantee of Protocol 1 is different from that of the sumcheck protocol.

The sumcheck protocol has a soundness guarantee: if the polynomial p does not have the
claimed sum τ then the verifier accepts with small probability. In contrast, Protocol 1
has a knowledge soundness guarantee: there exists an extractor that, given a suitable
collection of accepting transcripts for a given commitment key G and commitment C,
efficiently finds an opening a such that C = 〈a,G〉.

This difference makes sense: any given Pedersen commitment C can always be
expressed as a scalar product of some opening a and the commitment key generators G;
in fact, there are many different possible openings a for which this is true! Therefore,
soundness is not a meaningful notion for Protocol 1.

The security guarantee is summarized by the following lemma, whose proof we
sketch in Section 2.2.1.

Lemma 3 (informal). Protocol 1 satisfies the following for every key G ∈ Gn and
commitment C ∈ G.
– Completeness. For every a ∈ Fn such that C = 〈a,G〉, Pr[〈P(G,C, a),V(G,C)〉 =

1] = 1.
– Knowledge soundness. Given a suitable tree of accepting transcripts for V(G,C),

one can efficiently extract an opening a ∈ Fn such that C = 〈a,G〉.

Perhaps surprisingly, Protocol 1 is equivalent to the “split-and-fold” knowledge pro-
tocol for Pedersen commitments introduced in [BCCGP16] (we describe this equivalence
in the full version of the paper). Moreover, knowledge soundness can be established
without relying on any computational assumptions, a fact that was noted for the “split-
and-fold” knowledge protocol in [ACF20; BDFG20].

5 For any a, a′ ∈ F and G,G′ ∈ G we have (a+a′)·G = a·G+a′·G and a·(G+G′) = a·G+a·G′.
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2.2.1 Proof sketch of Lemma 3
We discuss knowledge soundness. The extractor takes as input 3` accepting transcripts
arranged in a 3-ary tree of depth `, with each path from the root to the leaf iden-
tified by a choice of verifier randomness r1, . . . , r` ∈ F. For i ∈ [`], the node at
layer i − 1 corresponding to path r1, . . . , ri−1 ∈ F is labeled with the message sent
by the prover given challenges r1, . . . , ri−1 and has three children nodes each cor-
responding to a distinct challenge r(j)i ∈ F. For i ∈ [`], a prover message for the
layer i − 1 is a quadratic polynomial qi[r1, . . . , ri−1] ∈ G[X] sent by the prover
in the sumcheck protocol given challenges r1, . . . , ri−1; and a prover message for
the layer ` is an opening w[r1, . . . , r`] ∈ F sent by the prover after the sumcheck
protocol. Since transcripts are accepting, we know that:

∑
ω1∈{−1,1} q1(ω1) = 2`C;

for i ∈ {2, . . . , `},
∑
ω∈{−1,1} qi[r1, . . . , ri−1](ω) = qi−1[r1, . . . , ri−2](ri−1); and

w[r1, . . . , r`] · pG(r1, . . . , r`) = q`[r1, . . . , r`−1](r`).
The extractor works inductively, processing each layer of the tree starting from the

`-th layer and moving upwards towards the root. For i = `, . . . , 1 and for every path
(r1, . . . , ri−1) ∈ Fi−1 in the transcript tree with children {r(j)i }j∈[3], the extractor works
as follows.

1. Let G[r1, . . . , ri−1] ∈ Gn/2i−1

be the coefficients of pG(r1, . . . , ri−1, Xi, . . . , X`),
and let G0[r1, . . . , ri−1] and G1[r1, . . . , ri−1] be the coefficients for monomials
without Xi and with Xi respectively. For j ∈ [3], let G′[r1, . . . , ri−1, r

(j)
i ] :=

G[r1, . . . , ri−1]+r
(j)
i ·G1[r1, . . . , ri−1] ∈ Gn/2i be the coefficients of pG(r1, . . . , ri−1, r

(j)
i , Xi+1, . . . , X`).

2. We inductively know, for each j ∈ [3], an opening w[r1, . . . , ri−1, r
(j)
i ] ∈ Fn/2i to

the commitment qi[r1, . . . , ri−1](r
(j)
i ) ∈ G with respect to the key G′[r1, . . . , ri−1, r

(j)
i ]:

〈w[r1, . . . , ri−1, r
(1)
i ],G′[r1, . . . , ri−1, r

(1)
i ]〉 = qi[r1, . . . , ri−1](r

(1)
i ) ,

〈w[r1, . . . , ri−1, r
(2)
i ],G′[r1, . . . , ri−1, r

(2)
i ]〉 = qi[r1, . . . , ri−1](r

(2)
i ) ,

〈w[r1, . . . , ri−1, r
(3)
i ],G′[r1, . . . , ri−1, r

(3)
i ]〉 = qi[r1, . . . , ri−1](r

(3)
i ) .

3. Since the polynomial qi[r1, . . . , ri−1] is quadratic, we can use linear algebra on
the above three equations to compute a quadratic polynomial π[r1, . . . , ri−1] ∈
Fn/2i−1

[X] such that 〈π[r1, . . . , ri−1](X),G[r1, . . . , ri−1]〉 = qi[r1, . . . , ri−1](X).
Then we can obtain an openingw[r1, . . . , ri−1] ∈ Fn/2i−1

such that 〈w[r1, . . . , ri−1],G[r1, . . . , ri−1]〉 =∑
ω∈{−1,1}qi[r1, . . . , ri−1](ω). Observe that:

– If i > 1, the verifier’s checks imply that
∑
ω∈{−1,1} qi[r1, . . . , ri−1](ω) = qi−1[r1, . . . , ri−2](ri−1),

and so w[r1, . . . , ri−1] is an opening to the commitment qi−1[r1, . . . , ri−2](ri−1)
under the key G[r1, . . . , ri−1].

– If i = 1 (this is the last iteration) then the verifier’s checks imply that
∑
ω1∈{−1,1} q1(ω1) =

2`C, and so w is an opening to the commitment 2`C under the key G. Dividing by
2` yields the desired opening.

A key ingredient of the knowledge extractor is the ability to double the length of
known openings by manipulating multiple transcripts for a given recursion round. The
Pedersen commitment, being a homomorphism into G, allows this unconditionally.
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Jumping ahead, this property of a commitment scheme, which we call invertibility,
may require computational assumptions, and is a central component of our sumcheck
argument for the general setting of sumcheck-friendly commitments (see Sections 2.3
and 2.4).

2.3 Sumcheck argument for sumcheck-friendly commitments

We explain how to formulate a sumcheck argument for proving knowledge of an opening
for any commitment scheme that satisfies certain functionality and security properties.
We proceed in two steps: in Section 2.3.1 we focus on the special case of scalar product
protocols under Pedersen commitments to gain intuition, and then in Section 2.3.2 we
extend this to apply to a sumcheck-friendly commitment.

2.3.1 Scalar-products under Pedersen commitments

In Section 2.2 we have seen how to construct a sumcheck argument for Pedersen
commitments. We now write a sumcheck argument that proves knowledge of openings
of two Pedersen commitments such that the scalar product of the two openings is a
publicly-known value. That is, we obtain a knowledge protocol for the commitment
scheme CM that, given a commitment key (G,H), maps a message (a, b) to

CM.Commit
(

(G,H), (a, b)
)

:= (〈a,G〉, 〈b,H〉, 〈a, b〉) .

Protocol 2: sumcheck argument for scalar-products under Pedersen commit-
ments

For n = 2`, the prover and verifier receive as input commitment keys G,H ∈ Gn,
commitments Ca,Cb ∈ G and target value t ∈ F. The prover also receives as input
openings a, b ∈ Fn such that Ca = 〈a,G〉, Cb = 〈b,H〉 and t = 〈a, b〉. (I.e., such
that CM.Commit

(
(G,H), (a, b)

)
= (Ca,Cb, t).)

The prover and verifier engage in a sumcheck protocol for the instance xSC :=
(R = F,M = G × G × F, H = {−1, 1}, ` = log n, τ = (2`Ca, 2

`Cb, 2
`t), C =

F) where the prover uses the polynomial p(X) :=
(
pa(X) · pG(X), pb(X) ·

pH(X), pa(X) · pb(X)
)
∈ (G×G× F)[X1, . . . , X`].

After the end of the sumcheck protocol, the prover learns r ∈ F` and the
verifier learns (r, v) ∈ F` × (G×G× F). Then the prover computes and sends
pa(r), pb(r) ∈ F to the verifier, and the verifier computes pG(r), pH(r) ∈ G and
checks that (pa(r) · pG(r), pb(r) · pH(r), pa(r) · pb(r)) = v.

Similarly to Section 2.2, the first and second components of the polynomial p(X)
are well-defined because of the bilinearity of scalar multiplication from F × G to G;
moreover, the third component of p(X) is well-defined because it involves the product
of two polynomials over F.
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Protocol 2 is complete because∑
ω∈{−1,1}`

pa(ω)pG(ω) = 2`〈a,G〉 ,
∑

ω∈{−1,1}`
pb(ω)pH(ω) = 2`〈b,H〉 ,

∑
ω∈{−1,1}`

pa(ω)pb(ω) = 2`〈a, b〉 .

Moreover, one can show that Protocol 2 satisfies the following knowledge-soundness
property: there exists an extractor that, given a suitable collection of accepting transcripts
for a given commitment key (G,H) and commitment C = (Ca,Cb, t), efficiently finds
an opening (a, b) such that C = CM.Commit((G,H), (a, b)), assuming that the discrete
logarithm problem is hard over G. Proving knowledge soundness follows a similar
approach to that for Protocol 1 sketched in Section 2.2.1. The main difference is that
“inverting” from a level to the previous one involves not only solving linear equations
to find openings of commitments corresponding to the first two components of the
polynomial p(X), but also arguing that the scalar-product of these openings equals
the third component of the polynomial p(X). This step relies on the hardness of the
discrete logarithm problem over G (which one may have assumed anyway to make the
commitment binding). This is different from Protocol 1, where no assumptions were
necessary to establish knowledge soundness, and intuitively is because the commitment
scheme involves a quadratic, rather than linear, computation on the message.

2.3.2 Extending to any sumcheck-friendly commitment
The commitments used in Protocols 1 and 2 are examples of a sumcheck-friendly
commitment scheme. Below we give an informal definition (which omits technicalities
such as how commitment randomness is handled).

Definition 3 (informal). Let F be a prime-order field and let M,K,C be F-linear
spaces. A commitment scheme CM is sumcheck-friendly if there exists an efficient
function fCM : M × K → C such that for every commitment key ck and message m
it holds that CM.Commit (ck,m) =

∑
ω∈H` fCM(pm(ω), pck(ω)) where: (i) H ⊆ F is

a domain and ` ∈ N a number of variables; (ii) pm(X) ∈ M[X] can be efficiently
obtained from the message m (and, conversely, m can be efficiently obtained from
pm(X)); (iii) pck(X) ∈ K[X] can be efficiently obtained from the commitment key ck;
(iv) fCM(pm(X), pck(X)) ∈ C[X] is a polynomial.

We can obtain an opening protocol for CM via a sumcheck argument.

Protocol 3: sumcheck argument for sumcheck-friendly commitments

For n = 2`, the prover and verifier receive as input commitment key ck and
commitment cm. The prover also receives as input an opening m such that cm =
CM.Commit (ck,m).

The prover and verifier engage in a sumcheck protocol for the instance

xSC := (R = F,M = C, H, `, τ = cm, C = F)

where the prover uses the polynomial pm,ck(X) := fCM(pm(X), pck(X)). At the
end of the sumcheck protocol, the prover learns r ∈ F` and the verifier learns
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(r, v) ∈ F` × C. Then the prover computes and sends pm(r) to the verifier, and
the verifier computes pck(r) and checks that fCM(pm(r), pck(r)) = v.

The above opening protocol for the sumcheck-friendly commitment scheme CM has
perfect completeness, and also has knowledge soundness if CM is invertible (a property
that we discuss shortly).

Theorem 3 (informal). Let CM be a sumcheck-friendly commitment scheme. If CM is
invertible then Protocol 3 is an opening protocol for CM: there exists an extractor that
given a key ck, commitment cm, and a suitable tree of accepting transcripts for (ck, cm),
finds an opening m such that cm = CM.Commit (ck,m).

Completeness. The sumcheck-friendly property tells us that cm =
∑
ω∈H` fCM(pm(ω), pck(ω)),

so the completeness of Protocol 3 follows from the completeness of the sumcheck proto-
col.
Knowledge soundness. Since m can be efficiently obtained from pm(X), it suffices
for the extractor to recover, from the tree of transcripts, a polynomial pm(X) such that
cm =

∑
ω∈H` fCM(pm(ω), pck(ω)).

The proof strategy is similar to the one described in Section 2.2.1: the extractor pro-
ceeds layer by layer, starting from the leaf layer of the tree of transcripts and continuing
to the root; for each node in a particular layer, the extractor computes a polynomial
obtained from the polynomials associated to the node’s children. The desired polynomial
pm(X) is the polynomial associated to the root of the tree.

The invertibility property facilitates progress from children to parents, and states
that given enough openings for a commitment of a layer one can find an opening of a
commitment of the previous layer.

Definition 2 (informal). CM is K-invertible if there exists an efficient algorithm I sat-
isfying the following. Suppose that I receives i ∈ [`], challenge vector (r1, . . . , ri−1) ∈
Fi−1, distinct challenges r(1)i , . . . , r

(K)
i ∈ F, opening polynomials p1, . . . , pK ∈M[Xi+1, . . . , X`],

and commitment polynomial q(X) ∈ C[X] such that

∀ j ∈ [K] , q(r
(j)
i ) =

∑
ωi+1,...,ω`∈H

fCM

(
pj(ωi+1, . . . , ω`), pck(r1, . . . , ri−1, r

(j)
i , ωi+1, . . . , ω`)

)
.

(1)
Then I outputs an opening polynomial p ∈M[Xi, . . . , X`] such that∑

ωi∈H
q(ωi) =

∑
ωi,...,ω`∈H

fCM

(
p(ωi, . . . , ω`), pck(r1, . . . , ri−1, ωi, . . . , ω`)

)
. (2)

The above definition omits technicalities such as the fact that the inputs to the inverter
should be restricted to be efficiently generated by an adversary (given the commitment
key ck) and the fact that input and output opening polynomials should be restricted to be
“admissible” (partial evaluations of pm for some m).

The extractor receives a K-ary tree of accepting transcripts for (ck, cm). In more
detail, for every i ∈ [`] and (r1, . . . , ri−1) ∈ Fi−1, qi[r1, . . . , ri−1] ∈ C[X] is the
polynomial corresponding to the path (r1, . . . , ri−1) in the transcript tree (the prover’s
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polynomial in the i-th round of the sumcheck protocol for these challenges); moreover,
for every (r1, . . . , r`) ∈ F`, w[r1, . . . , r`] ∈ C is the opening corresponding to the path
(r1, . . . , r`) in the transcript tree (sent by the prover after the sumcheck protocol for these
challenges). Every transcript is accepting, so we know that for every (r1, . . . , r`) ∈ F` it
holds that∑
ω1∈H

q1(ω1) = cm ,

{∑
ω∈H

qi[r1, . . . , ri−1](ω) = qi−1[r1, . . . , ri−2](ri−1)

}
i∈{2,...,`}

,

and fCM(w[r1, . . . , r`], pck(r1, . . . , r`), 1) = q`(r`) .

The extractor iterates over the whole tree, proceeding with i = `, . . . , 1. In the itera-
tion for a path (r1, . . . , ri−1) ∈ Ci−1 with children {r(j)i }j∈[K], the extractor uses the
inverter I to transform polynomials {p[r1, . . . , ri−1, r(j)i ]}j∈[K] in M[Xi+1, . . . , X`]
that satisfy Equation (1) into a new polynomial p[r1, . . . , ri−1] in M[Xi, . . . , X`] that
satisfies Equation (2). The initial polynomials {p[r1, . . . , r`]}(r1,...,r`)∈C` are the con-
stant polynomials corresponding to the opening values {w[r1, . . . , r`]}(r1,...,r`)∈C` . The
fact that transcripts are accepting ensures that the initial polynomials satisfy the required
condition, and that each produced polynomial satisfies the invertibility condition for the
prior layer.

After all these iterations the extractor has found a polynomial p in M[X1, . . . , X`]
such that

∑
ω1∈H q1(ω1) =

∑
ω∈H` fCM(p(ω), pck(ω)); again by the accepting condition

we know that
∑
ω1∈H q1(ω1) = cm so we deduce that cm =

∑
ω∈H` fCM(p(ω), pck(ω)),

and the desired polynomial is p.
Whence invertibility? Invertibility is incomparable to the commitment’s binding
property. For example, the Pedersen commitment scheme is unconditionally invertible
(see Section 2.2.1), whereas invertibility for the scalar-product commitment scheme in
Protocol 2 relies on the hardness of the discrete logarithm problem. In Section 2.5 we
elaborate on how to establish invertibility for different choices of commitment schemes.
Examples. Protocol 3 captures sumcheck arguments for several commitment schemes.

– The Pedersen commitment scheme (used in Protocol 1) is sumcheck-friendly because,
for the function fCM(a,G) := 2−`a·G, for every commitment key G ∈ Gn and message
a ∈ Fn it holds that CM.Commit(G, a) =

∑
ω∈H` fCM(pa(ω), pG(ω)), where H :=

{−1, 1}, ` := log n, and pa(X), pG(X) are the multilinear polynomials induced by
a,G respectively. (See Definition 2.)

– The scalar-product commitment scheme (used in Protocol 2) is sumcheck-friendly
because, for the function fCM((a, b), (G,H)) := 2−`(a · G, b · H, a · b), for every
commitment key (G,H) ∈ Gn × Gn and message (a, b) ∈ Fn × Fn it holds
that CM.Commit((G,H), (a, b)) =

∑
ω∈H` fCM((pa(ω), pb(ω)), (pG(ω), pH(ω))),

where H := {−1, 1}, ` := log n, and pa(X), pb(X), pG(X), pH0
(X) are the multi-

linear polynomials induced by a, b,G,H respectively. (See Definition 2.)

More generally, all inner-product commitments in [BMMTV19] are sumcheck-friendly;
this includes pairing-based commitment schemes appearing in works such as [LMR19].
Below we describe inner-product commitments via the notion of sum-bilinear commit-
ments, which is easier to work with in our setting.
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Definition 4. A commitment scheme CM is sum-bilinear over a finite field F if the key,
message, and commitment spaces are F-linear spaces and the following properties hold
for all commitment keys ckL, ckR ∈ Kn, and messages mL,mR ∈Mn:

CM.Commit (ckL + ckR,mL + mR) = CM.Commit (ckL,mL) + CM.Commit (ckR,mL)

+ CM.Commit (ckL,mR) + CM.Commit (ckR,mR) and

CM.Commit (ckL‖ckR,mL‖mR) = CM.Commit (ckL,mL) + CM.Commit (ckR,mR) .

Claim (informal). If CM is sum-bilinear then CM is sumcheck-friendly.

Proof sketch. The first property allows us to “lift” the commitment function to a poly-
nomial. For the function fCM(a,G) = 2−`CM.Commit(G; a), it holds that for every
message a ∈Mn and commitment key G ∈ Kn

fCM(pa(X), pG(X)) = 2−`CM.Commit
(
pG(X), pa(X)

)
= 2−`

∑
i,j∈{0,1}`

CM.Commit
(
Gj , ai

)
·Xi1+j1

1 · · ·Xi`+j`
`

where ` := log n, and pa(X), pG(X) are the multilinear polynomials induced by
a,G via Definition 2. The second property implies that

∑
ω∈H` fCM(pa(ω), pG(ω)) =

CM.Commit (ck,m) for H = {−1, 1}.

2.4 Extending sumcheck arguments to modules

We have so far discussed sumcheck arguments for sumcheck-friendly commitment
schemes involving a prime-order group and its scalar field. Yet sumcheck arguments
can be formulated more generally to capture commitments in other settings, such as
groups of unknown order [BFS20] and lattices [BLNS20]. We explain the changes for
this generalization, and how they affect completeness and knowledge soundness.
Modules, norms, slackness. To motivate the considerations that arise, we find it
helpful to first recall the Pedersen commitment scheme in other cryptographic settings
(ignoring for now randomness for hiding).

– Pedersen over groups of unknown order. Let G be a group of unknown order and
let q, p > 2 be primes that satisfy certain conditions (determined by the type of
instantiation of G). A Pedersen commitment is computed as CM.Commit(G, a) =
〈a,G〉 ∈ G where the commitment key G equals (1 · G, q · G, . . . , qn−1 · G) for a
random group element G ∈ G and the message a is a vector in

(
(−p−12 , p−12 ) ∩ Z

)n
.

– Pedersen over lattices. Let R be a normed ring and let BSIS be a norm bound of “short”
ring elements; a popular choice is R = Zq[X]/〈Xd + 1〉 and short ring elements in
R(BSIS), i.e. elements of R with norm at most BSIS, for a suitable BSIS. A Pedersen
commitment is computed as CM.Commit(G, a) = 〈a,G〉 where G is a matrix of
random ring elements and a is a vector of short ring elements.

These examples suggest that we need to consider algebraic structures that are not
necessarily rings but whose scalars are over a ring, and so we rely on the notion of
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modules over a ring. Moreover, we need to take into account the norms of openings.
Finally, we will only be able to extract a “relaxed” opening for a given commitment,
which differs from a regular opening in two ways: (i) the opening might have larger norm
than an honestly committed value; (ii) the opening might not satisfy the commitment
equation but only a related equation parametrized by a slackness c, which we model via
an opening algorithm CM.Open that additionally takes c as input. This is similar to what
happens for Schnorr protocols in these settings, as we explain in Section 2.5.

Extending the sumcheck-friendly property. We extend the definition of a sumcheck-
friendly commitment scheme (Definition 3) as follows: (i) the spaces M,K,C are
modules over the same ring R; (ii) the summation domain is a subset H of R; (iii) a
message polynomial pm(X) is over the module M; (iv) a key polynomial pck(X) is over
the module K; (v) the combiner function fCM maps M×K (and a slackness factor) to
the module C; (vi) the summation condition now involves an efficient predicate φsc and
is as follows:

CM.Commit (ck,m) =
∑
ω∈H`fCM(pm(ω), pck(ω), 1) and for every slackness c

CM.Open (ck,m, cm, c) = 1 ⇔ φsc

(
cm,

∑
ω∈H`fCM(pm(ω), pck(ω), c), c

)
= 1 .

(Thus Definition 3 is the special case where M,K,C are F-linear, R = F, φsc checks
equality of cm and the sum, and there are no slackness factors.)

Extending sumcheck arguments. In the sumcheck argument for a commitment
scheme that is sumcheck-friendly according to the extended definition, we must ad-
ditionally ensure that: (i) we use a challenge set C ⊆ R for the sumcheck protocol that
satisfies certain properties (discussed further below) that facilitate proving knowledge
soundness; (ii) we use norm bounds for commitment openings, so the underlying ring R
and the module M must be equipped with a norm. With these in mind, we now rewrite
Protocol 3 for the more general setting (differences in blue), which will allow us to
capture the different cryptographic settings.

Protocol 4: sumcheck argument for sumcheck-friendly commitments (over
modules)

For n = 2`, the prover and verifier receive as input commitment key ck and commit-
ment cm. The prover also receives as input an opening m such that ‖pm(X)‖ ≤ BC

and cm = CM.Commit (ck,m).
The prover and verifier engage in a sumcheck protocol for the instance

xSC := (R,M = C, H, `, τ = cm, C)

where the prover uses the polynomial pm,ck(X) := fCM(pm(X), pck(X), 1). At
the end of the sumcheck protocol, the prover learns r ∈ R` and the verifier learns
(r, v) ∈ R` × C. Then the prover computes and sends w := pm(r) to the verifier.
Finally the verifier computes pck(r), checks that ‖w‖ ≤ BSA (for BSA discussed
in the completeness property below), and checks that fCM(w, pck(r), 1) = v.
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Completeness. This follows similarly as in the special case considered in Section 2.3.2,
with the main difference that the norm bounds must be set so that they hold for any valid
execution of the protocol. We need that for any message m (in the message space of
the given commitment key ck) such that ‖pm(X)‖ ≤ BC and challenge vector r ∈ C`
it holds that ‖pm(r)‖ ≤ BSA. An explicit expression for BSA can be computed in
a straightforward way from the maximum norm of a challenge in C, the number of
variables ` of pm(X), the degree of pm(X), and BC (a bound on the maximum norm of
a coefficient in pm(X)).

Knowledge soundness. We wish to prove that Protocol 4 is an opening protocol for
CM: given a tree of accepting transcripts for the commitment key ck and commitment
cm, we can extract a corresponding (relaxed) opening m. Similarly to Section 2.3.2, we
argue knowledge soundness based on an invertibility property that generalizes the prior
one (Definition 2); the challenge set C is now part of the property.

Definition 3 (informal). CM is (K,N, ξ)-invertible if there exists an efficient algo-
rithm I satisfying the following. Suppose that I receives i ∈ [`], challenge vector
(r1, . . . , ri−1) ∈ Ci−1, distinct challenges r(1)i , . . . , r

(K)
i ∈ C, opening polynomials

p1, . . . , pK ∈M[Xi+1, . . . , X`], commitment polynomial q(X) ∈ C[X], and slackness
c such that ∀ j ∈ [K],

φsc

q(r(j)i ),
∑

ωi+1,...,ω`∈H
fCM

(
pj(ωi+1, . . . , ω`), pck(r1, . . . , ri−1, r

(j)
i , ωi+1, . . . , ω`), c

) = 1 .

Then I outputs an opening polynomial p ∈ M[Xi, . . . , X`] of norm at most N ·
maxj∈[K] ‖pj‖ such that

φsc

∑
ωi∈H

q(ωi),
∑

ωi,...,ω`∈H
fCM

(
p(ωi, . . . , ω`), pck(r1, . . . , ri−1, ωi, . . . , ω`), ξ · c

) = 1 .

Theorem 4. If the sumcheck-friendly commitment scheme CM is (K,N, ξ)-invertible
then Protocol 4 is an opening protocol for CM: there exists an extractor that given a
commitment key ck, commitment cm for a message with norm bound BC, and a K-ary
tree of accepting transcripts for (ck, cm), finds an opening m with norm ‖pm(X)‖ ≤
N `BSA such that CM.Open

(
ck, cm,m, ξ`

)
= 1.

Note that since the extractor works over a tree of depth `, the final loss in norm and
slackness involves ` factors of N and ξ respectively. Technical details for our sumcheck
argument are given in the full version of the paper. The final definition of invertibility
that we use (related to Definition 2) has an extra parameter BINV, which is an absolute
upper bound on the norm of a relaxed opening for which invertibility can hold.

The slackness loss ξ depends on the cryptographic setting, and in the settings that
we consider, ξ 6= 1 in the lattice and in the GUO setting.
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2.5 Instantiations of sumcheck-friendly commitments

Our main theorem on sumcheck arguments (Theorem 1) applies to any sumcheck-
friendly commitment that is invertible. Below, we summarize how to construct such
commitment schemes; details are provided in the full version of the paper.

– In Section 2.5.1 we introduce secure bilinear modules.
– In Section 2.5.2 we explain how to construct a (generalized) Pedersen commitment

scheme from a secure bilinear module, and give intuition for why it is sumcheck-
friendly and invertible. In the technical sections, we also discuss other commitment
schemes, which capture linear functions and scalar products.

– In the full version of the paper,we outline how to instantiate secure bilinear mod-
ules in different cryptographic settings: (i) prime-order groups; (ii) bilinear groups;
(iii) unknown-order groups; and (iv) lattices.

2.5.1 Secure bilinear modules
A bilinear module M = (R,ML,MR,MT, e) consists of a ring R, three modules
ML,MR,MT overR, and a non-degenerate bilinear map e : ML×MR →MT; moreover,
R andML are equipped with norms. For notational simplicity we denote e(a,G) as 〈a,G〉
and define M(B) := {m ∈M such that ‖m‖ ≤ B}.

A bilinear-module generator is a tuple BM = (Setup,KeyGen) where: BM.Setup
(given a security parameter and length parameter n) samples a bilinear module M,
integer h ∈ N, and auxiliary string aux; and BM.KeyGen (given BM.Setup’s output)
samples a vector G = (G0,G1) in Mn+h

R .
A bilinear-module generator BM is secure if it satisfies the following.

– It satisfies the bilinear relation assumption: for a norm bound BBRA specified in aux
and given G← BM.KeyGen, it is hard to find a non-zero a ∈Mn+h

L (BBRA) such that
〈a,G〉 = 0. (This is a natural generalization of the discrete logarithm assumption, the
SIS assumption, and others.)

– The integer h is hiding: there is a distribution UML
onMh

L such that, for every a ∈Mn
L ,

the following two random variables are statistically close:{
(G, 〈a,G0〉+ 〈r,G1〉)

∣∣∣∣G← BM.KeyGen
r ← UML

}
and

{
(G, 〈r,G1〉)

∣∣∣∣G← BM.KeyGen
r ← UML

}
.

– The string aux specifies a norm bound BC such that BC ≤ BBRA.
– The string aux specifies pseudoinverse parameters (C, ξ,N) for (R,MT): for every
m,m∗ ∈MT, a ∈ R, and distinct c1, c2 ∈ C, if (c1 − c2)m = am∗ then there exists
(and one can efficiently find) r ∈ R such that ξm = rm∗ and ‖r‖ ≤ N‖a‖.

2.5.2 Sumcheck-friendly commitments over bilinear modules
We use secure bilinear-module generators to construct several sumcheck-friendly com-
mitment schemes that are invertible: a generalized Pedersen commitment scheme , as
well as commitment schemes that capture linear functions and scalar products . Below
we restrict our technical overview to the Pedersen commitment scheme. Details of the
other commitment schemes can be found in the full version of the paper.

20



Definition 4 (informal). Let BM = (Setup,KeyGen) be a secure bilinear-module
generator and consider an output (M, h, aux) of BM.Setup (for a message length
n) and an output G = (G0,G1) ∈ Mn

R × Mh
R of BM.KeyGen. The (generalized)

Pedersen commitment scheme for messages of length n has messages of the form
a ∈ Mn

L (BC), and a commitment is computed as C := 〈a,G0〉 + 〈ρ,G1〉, where
ρ is sampled appropriately from Mh

L (BC). An opening with slackness c ∈ R for a
commitment C ∈ MT under the commitment key (G0,G1) ∈ Mn

R ×Mh
R is a vector

(a, ρ) ∈Mn
L (BBRA)×Mh

L (BBRA) such that c · C = 〈a,G0〉+ c · 〈ρ,G1〉.

The Pedersen commitment scheme is binding under the bilinear relation assumption
(which holds because BM is secure) and is hiding by the property of h (which also holds
because BM is secure). Moreover, the Pedersen commitment scheme is (uncondition-
ally) sumcheck-friendly; this can be argued in a similar way as for the usual Pedersen
commitment scheme (over prime-order groups).

Establishing invertibility, however, is more challenging. Rather than specifically
discussing invertibility of the Pedersen commitment, in this informal overview we
describe how the fact that BM is secure enables us to (straightforwardly) obtain an
extraction algorithm for the (suitably generalized) Schnorr protocol. This protocol is a
simple zero-knowledge argument of knowledge for a commitment opening of a given
Pedersen commitment, and the extractor is asked to produce a (possibly relaxed) opening
for the commitment given two accepting transcripts sharing the same first message. The
considerations that arise when establishing knowledge soundness of the (non-succinct)
Schnorr protocol are loosely related to, though technically simpler than, those that arise
when establishing invertibility for the Pedersen commitment scheme (which in turns
leads to succinct arguments of knowledge via our sumcheck arguments).

Definition 5 (informal). In the Schnorr protocol for the (generalized) Pedersen com-
mitment scheme, the prover and verifier receive a key G = (G0,G1) ∈Mn+h

R , commit-
ment C ∈ MT and norm bound BC; and the prover additionally receives as witness a
message a ∈Mn

L (BC) and randomness ρ ∈Mh
L (BC) such that 〈a,G0〉+ 〈ρ,G1〉 = C.

The prover and verifier interact as follows:
– the prover samples b ∈ Mn+h

L (κ‖C‖BC), where ‖C‖ := maxr∈C ‖r‖, and sends
t := 〈b,G〉 ∈MT;

– the verifier sends a random challenge r ∈ C;
– the prover sends the response s := r · (a, ρ) + b ∈ Mn+h

L if ‖s‖ ≤ (κ − 1)‖C‖BC

(otherwise aborts);
– the verifier accepts if 〈s,G〉 = r · C + t and ‖s‖ ≤ (κ− 1)‖C‖BC.

The parameter κ is chosen such that b “masks” (a, ρ). We discuss how to choose
κ in Section 2.6, where similar considerations arise in other protocols; here, instead,
we focus on discussing knowledge extraction. The extractor recovers an opening of C
from two accepting transcripts (t, r1, s1) and (t, r2, s2) sharing the same first message
t but with distinct challenges r1 and r2. First, subtracting the verification equation for
one transcript from that of the other transcript shows that 〈s1 − s2,G〉 = (r1 − r2) · C.
The fact that BM is secure implies that (C, ξ,N) are pseudoinverse parameters for
(R,MT), so we can compute an r ∈ R such that ξ · C = r〈s1 − s2,G〉 with ‖r‖ ≤ N .
Therefore, the extractor has found a relaxed opening (a′, ρ′) := r(s1 − s2) such that
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〈a′,G0〉 + 〈ρ′,G1〉 = ξ · C with ‖(a′, ρ′)‖ ≤ N2(κ − 1)‖C‖BC. (And we see that the
norm BC must satisfy N2(κ− 1)‖C‖BC ≤ BBRA.)

The norm computations above ignore expansion factors that appear when computing
the norms of expressions that involve the multiplication of ring and module elements
(see the full version of the paper for details).

2.6 Succinct argument for scalar products over rings

We explain how to use sumcheck arguments to obtain zero-knowledge succinct argu-
ments of knowledge for scalar-product relations over rings. This involves choosing a
specific sumcheck-friendly commitment to plug in to Theorem 1, and also carefully
using randomness to achieve zero knowledge (which is not a guarantee of Theorem 1).
Afterwards, in Section 2.7 we explain how to build on this to prove Theorem 2.

We first introduce the notion of protocol-friendly bilinear-module generator. A
bilinear-module generator BM is protocol-friendly if it satisfies the following.

– BM is secure (see Section 2.5.1).
– ML is not merely an R-module but also a ring itself (so that scalar products over ML

are defined).6

– The string aux specifies κ ∈ N such that BM is masking-friendly (i.e., for every
B ∈ N with BC ≤ B ≤ BBRA/κ and a ∈ Mn

L (B), {a + b}b←Mn
L (κB) is close to

uniform).
– The string aux specifies an ideal I such that multiplication by ξ (which is part of the

pseudoinverse parameters (C, ξ,N) also in aux) is invertible modulo I .

The instantiations of bilinear-module generators given in the full version of this
paper are also protocol-friendly.

– Prime-order groups: BM.Setup additionally outputs κ := ∞ and I := {0}. This
means that the argument supports scalar products over ML/I = Fq , the scalar field of
a prime-order group G.

– Bilinear groups: BM.Setup additionally outputs κ :=∞ and I := {0}. This means
that the argument supports scalar products over ML/I = G1 (alternatively, G2), a
source group in the bilinear group.

– GUO setting: BM.Setup additionally outputs κ := O(2λ) and I := nZ for n ∈ Z
whose prime factors are greater than or equal to p. This means that the argument
supports scalar products over ML/I = Z/nZ for any n satisfying these conditions.

– Lattice setting: BM.Setup additionally outputs κ := O(dn) and I := nZ for odd n 6=
−1, 1. This means that the argument supports scalar products over ML/I = Z/nZ for
any n satisfying these conditions.

The commitment scheme that we consider has two-part messages and includes a com-
mitment to their scalar-product; it is the extension of the scalar-product commitment
from Section 2.3.1 to bilinear modules.

6 In the pairing setting where ML is not a ring, we define scalar-product commitments differently.
See the full version for details.
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Definition 6 (informal). Let BM = (Setup,KeyGen) be a protocol-friendly bilinear-
module generator. The (generalized) scalar-product commitment scheme for mes-
sages of length n has messages of the form (a, b) ∈Mn

L ×Mn
L such that ‖a‖, ‖b‖ ≤ BC,

and commitment keys of the form (G0,G1,H0,H1,U0,U1) ∈Mn+h
R ×Mn+h

R ×M1+h
R .

A commitment is computed by sampling ρa, ρb, ρt ∈Mh
L (BC) and computing(

〈a,G0〉+ 〈ρa,G1〉, 〈b,H0〉+ 〈ρb,H1〉, 〈a, b〉 · U0 + 〈ρt,U1〉
)

In other words, a commitment is the tuple consisting of three generalized Pedersen
commitments: for the first part of the message a, for the second part of the message b,
and for their scalar product 〈a, b〉 ∈ML.

A valid opening for a commitment (Ca,Cb,Ct) ∈M3
T with keys (G0,G1,H0,H1U0,U1) ∈

Mn+h
R ×Mn+h

R ×M1+h
R and slackness c ∈ R is a vector (a, b, ρa, ρb, ρt) ∈Mn

L (BBRA)×
Mn

L (BBRA)×M3h
L (BBRA) such that

c2·C =
(
c · 〈a,G0〉+ c2 · 〈ρa,G1〉, c · 〈b,H0〉+ c2 · 〈ρb,H1〉, 〈a, b〉 · U0 + c2〈ρt,U1〉

)
.

The generalized scalar-product commitment scheme is binding under the bilinear
relation assumption. Moreover, it is sumcheck-friendly (unconditionally). The proof of
invertibility follows from algebraic manipulations analogous to the case of generalized
Pedersen commitments discussed in Section 2.5; though note that establishing invert-
ibility in this case requires computational assumptions (even in the discrete logarithm
setting as discussed in Section 2.3.1).

We give a zero-knowledge succinct argument of knowledge for the following relation
related to the scalar-product of committed messages, which we denote byRCMSP.

Definition 7 (informal). The committed scalar-product relationRCMSP(c,BC) are the
pairs (x,w) where:

– The instance x contains
• a protocol-friendly bilinear-module generator BM;
• commitment keys (G0,G1,H0,H1,U0,U1) ∈Mn

R ×Mh
R ×Mn

R ×Mh
R ×MR×Mh

R ;
• commitments Ca,Cb,Ct ∈MT.

– The witnessw = (a, ρa, b, ρb, t, ρt) ∈M2n+1+3h
L is such that ‖a‖, ‖ρa‖, ‖b‖, ‖ρb‖, ‖t‖, ‖ρ‖ ≤

BC and
• (a, ρa) is a valid opening of the Pedersen commitments Ca with slackness c;
• (b, ρb) is a valid opening of the Pedersen commitments Cb with slackness c;
• (t, ρt) is a valid opening of the Pedersen commitment Ct with slackness c2 and
t = 〈a, b〉 mod I .

The relation reasons about scalar-product relations over the quotient ringR• = ML/I
(ML modulo I) for the ideal I ⊆ ML specified in aux. In certain settings, such as the
lattice and GUO setting, we only extract openings to commitments with slackness
c 6= 1, we choose I so that we can “cancel out” the slackness c modulo I as part of
knowledge extraction algorithms and prove exact scalar-product relations over R•. We
now summarize the scalar-product argument; details can be found in the full version.

The prover begins by computing a commitment C ∈ MT to 〈a, b〉 ∈ ML, which
may not be equal to t ∈ ML. Then the prover and verifier engage in the these sub-
protocols: (i) an interactive reduction masking the three Pedersen commitments to a, b, t,
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converting them into a single scalar-product commitment; (ii) a sumcheck argument to
prove knowledge of an opening to the scalar-product commitment; and (iii) a consistency
check that the committed values 〈a, b〉 and t equal modulo I .

Reduction to a sumcheck argument. The prover samples masking values ya and yb
to rerandomize the commitments to a, b, 〈a, b〉: the prover sends commitments to ya
and yb, and also to v1 := 〈a, yb〉 + 〈b, ya〉 and v0 := 〈ya, yb〉 (which depend only on
a, b, ya, yb). Then the verifier sends to the prover a random challenge α ∈ C. Then the
prover computes ea := αa + ya, eb := αb + yb, and 〈ea, eb〉 = α2〈a, b〉 + αv1 + v0.
The openings of the rerandomized commitments do not leak any information about
a or b, and so the prover can safely send the corresponding commitment randomness
to the verifier. Finally, the prover and verifier engage in a sumcheck argument on the
scalar-product commitment consisting of the commitments to ea, eb, and 〈ea, eb〉. Since
the sumcheck argument is invoked on inputs that have been masked, zero knowledge is
ensured (i.e., no information about the witness w = (a, ρa, b, ρb, t, ρt) is revealed) even
though the sumcheck argument itself is not zero knowledge.

Checking consistency modulo I . The sumcheck argument merely convinces the
verifier that the prover knows a witness for the scalar-product commitment (Ca,Cb,C),
while the verifier additionally wants to know that the openings of C and Ct are equal
modulo I . For this, we rely on a protocol on the commitments to 〈a, b〉 and t to check
that they are equivalent modulo I . First, before receiving the verifier’s challenge α, the
prover samples a masking value ζ, and sends to the verifier its Pedersen commitment
Cζ and its reduction ζ mod I (in the clear); after receiving α the prover sends to the
verifier the value v̄ := α · (〈a, b〉 − t) + ζ. The verifier then checks that v̄ = ζ mod I ,
and that v̄ is a valid opening for the commitment to α · (〈a, b〉 − t) + ζ (for appropriate
commitment randomness). Intuitively, if v̄ = α · (〈a, b〉 − t) + ζ for two distinct values
of α, then one can solve linear equations to deduce that ξ · (〈a, b〉− t) = 0 mod I . Then,
since multiplication by the constant ξ from the pseudoinverse parameters (C, ξ,N) is
invertible modulo I (this is required by the protocol-friendly property), we conclude that
〈a, b〉 = t mod I .

2.7 Succinct argument for R1CS over rings

We explain the main ideas behind Theorem 2, which provides a zero-knowledge succinct
argument of knowledge for R1CS over rings. Recall that the R1CS problem over a ring
R• asks: given coefficient matrices A,B,C ∈ Rn×n• and an instance vector x over R•,
is there a witness vector w over R• such that z := (x,w) ∈ Rn• satisfies Az ◦Bz = Cz?
To a first order, Theorem 2 is proved by reducing the R1CS problem over R• to several
scalar-product sub-problems over R•, and then relying on the zero-knowledge succinct
argument for scalar products in Section 2.6. This implies that we support R1CS over
the rings supported in that section: R• = ML/I , where ML is the left module of a
protocol-friendly bilinear module, and I ⊆ML is an ideal. As with our scalar-product
arguments, I is used to cancel out slackness factors and prove exact relations. Below we
summarize the reduction from R1CS to scalar products.

The prover P sends commitments to the full assignment z ∈ Rn• and to its linear
combinations zA, zB ∈ Rn• . Then P is left to convince the verifier V that the committed
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information satisfies these conditions:

zA = Az , zB = Bz , zA ◦ zB = Cz , x is a prefix of z .

To reduce the first three conditions, the verifier V sends a structured challenge vector
r. Multiplying on the left by rᵀ reduces the first three conditions to 〈r, zA〉 = 〈rA, z〉,
〈r, zB〉 = 〈rB , z〉, 〈r ◦ zA, zB〉 = 〈rC , z〉; here we defined rA := rᵀA, rB := rᵀB,
and rC := rᵀC. Moreover, to reduce the last condition, the verifier V sends a random
challenge vector s of the same length as x; padding s with zeroes to get s′ of the
same length as z, we have 〈s′, z〉 = 〈s, x〉. Note that both parties can each individually
compute rA, rB , rC by right-multiplying r byA,B,C respectively, and also both parties
can each individually compute 〈s, x〉.

Next, the prover P sends a commitment to z′A := r ◦ zA, and also commitments to
α := 〈rA, z〉, β := 〈rB , z〉, and γ := 〈rC , z〉. Then the prover and verifier engage in
scalar-product sub-protocols (described in Section 2.6) to verify these 7 scalar products
(recall each party can compute 〈s, x〉):

〈r, zA〉 = α
〈rA, z〉 = α

,
〈r, zB〉 = β
〈rB , z〉 = β

,
〈z′A, zB〉 = γ
〈rC , z〉 = γ

, 〈s′, z〉 = 〈s, x〉 .

The prover and verifier use an additional challenge vector y and 2 further scalar-product
sub-protocols to check that 〈z′A, y〉 = 〈zA, r ◦ y〉, which shows that z′A was correctly
computed from zA and r.

All commitments in the protocol are hiding, and hence do not leak any information
about the witness vector w. Hence the zero-knowledge property of the above protocol
directly reduces to the zero-knowledge property of the scalar-product sub-protocols.

We conclude by noting that if we instantiate the bilinear module with lattices then
Theorem 2 gives Corollary 1: a zero-knowledge succinct argument of knowledge for
R1CS based on the SIS assumption.

Technical details can be found in the full version of the paper.
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