
No Time to Hash:
On Super-Efficient Entropy Accumulation

Yevgeniy Dodis1, Siyao Guo2(�), Noah Stephens-Davidowitz3, and Zhiye Xie2

1 New York University, NY, USA
dodis@cs.nyu.edu

2 New York University Shanghai, China
siyao.guo@nyu.edu, zx572@nyu.edu
3 Cornell University, Ithaca, NY, USA

noahsd@gmail.com

Abstract. Real-world random number generators (RNGs) cannot af-
ford to use (slow) cryptographic hashing every time they refresh their
state R with a new entropic input X. Instead, they use “superefficient”
simple entropy-accumulation procedures, such as

R← rotα,n(R)⊕X,

where rotα,n rotates an n-bit state R by some fixed number α. For ex-
ample, Microsoft’s RNG uses α = 5 for n = 32 and α = 19 for n = 64.
Where do these numbers come from? Are they good choices? Should
rotation be replaced by a better permutation π of the input bits?
In this work we initiate a rigorous study of these pragmatic questions,
by modeling the sequence of successive entropic inputs X1, X2, . . . as
independent (but otherwise adversarial) samples from some natural dis-
tribution family D. Our contribution is as follows.
– We define 2-monotone distributions as a rich family D that includes

relevant real-world distributions (Gaussian, exponential, etc.), but
avoids trivial impossibility results.

– For any α with gcd(α, n) = 1, we show that rotation accumulates
Ω(n) bits of entropy from n independent samples X1, . . . , Xn from
any (unknown) 2-monotone distribution with entropy k > 1.

– However, we also show some choices of α perform much better than
others for a given n. E.g., we show α = 19 is one of the best choices
for n = 64; in contrast, α = 5 is good, but generally worse than
α = 7, for n = 32.

– More generally, given a permutation π and k ≥ 1, we define a simple
parameter, the covering number Cπ,k, and show that it characterizes
the number of steps before the rule

(R1, . . . , Rn)← (Rπ(1), . . . , Rπ(n))⊕X

accumulates nearly n bits of entropy from independent, 2-monotone
samples of min-entropy k each.

– We build a simple permutation π∗, which achieves nearly optimal
Cπ∗,k ≈ n/k for all values of k simultaneously, and experimentally
validate that it compares favorably with all rotations rotα,n.

Keywords: Randomness extractors · Entropy accumulation · RNGs.

2 Y. Dodis et al.

1 Introduction

Good random number generation is essential for cryptography and beyond. In
practice, this difficult task is solved by a primitive called a Random Number
Generator (RNG, or RNG with input), whose aim is to quickly accumulate en-
tropy from various physical entropic sources in the environment with unknown
distributions (such as timing of interrupts, etc.). The RNG then converts this
high-entropy state into the (pseudo)random bits that are needed for applica-
tions. In this work we focus on the first step: entropy accumulation. This is
usually achieved by a procedure S ← Refresh(S,X), where S is the state of the
RNG, and X is the entropic input whose entropy we are trying to “accumulate”
into the the fixed-length RNG state S.4 Intuitively, we wish to design Refresh
so that S converges to a high-entropy, and eventually (almost) uniform dis-
tribution, provided that the input samples X1, X2, . . . collectively have enough
entropy, without too many additional assumptions about the Xi.

In the context of RNGs, the requirement of entropy accumulation was for-
malized by Dodis et al. [9] (building on prior influential work of [3]), and there
has been much follow-up work [10,14,16,7]. Most of these works consider a very
powerful adversary, who tries to choose the worst possible entropy source for the
Refresh subject to satisfying the overall entropy constraints. As such, all existing
Refresh procedures in the literature are relatively expensive, using either a cryp-
tographic hash function Hash which simply sets S ← Hash(S,X) for the new
input X, or, under some additional assumptions [9], a full field multiplication
over a finite field GF[2N] for large values of N (on the order of 500-1000).

Unfortunately, the Refresh procedures from these theoretical works appear to
miss the following critical consideration, making them insufficient for real-world
RNG design. Many practical entropy sources — such as interrupt timings —
come at a very rapid pace (but possibly with relatively low entropy per sample).
Hence, running a cryptographically secure hash function (or doing a very large
finite field multiplication) every time we receive such an input X would be not
only be prohibitively expensive, but completely infeasible for an operating system
RNG, for example.

As a result, practitioners use the following elegant compromise, not yet mod-
eled by the theory of RNGs (prior to our work), but found in every major
operating system including /dev/random [23] for Linux, Yarrow [19] for Ma-
cOs/iOS/FreeBSD, and Fortuna [13] for Windows [11,12]. The state of the RNG
will consist of two pieces: a relatively long state S for the “slow” entropy accu-
mulation procedure we denote by Slow-Refresh, and a small array of very short
states R — sometimes called registers — for the “superefficient” entropy accu-
mulation procedure Fast-Refresh. On every single interrupt timing X, one always

4 Equivalently, one can think of the refresh procedure as a randomness con-
denser [21,22], which condenses |S| + |X| bits back to |S| bits, while trying not
to lose the overall entropy in both S and X (and therefore “accumulating” the fresh
entropy brought by X back into the state S).

No Time to Hash 3

updates one of the registers R (usually in some round-robin manner):

R← Fast-Refresh(R,X)

Since interrupts could happen very frequently, the mandatory requirement for
the fast refresh operation is extreme speed and simplicity. We comment on this
below, but first complete the refresh procedure description. Less frequently, one
would accumulate the state of all the registers {R} into the long RNG state S:

S ← Slow-Refresh(S, {R})

The latter function is typically implemented as a cryptographic hash function
Hash, and can afford to be much slower. It is then this longer state S that will
be used to generate (pseudo)random bits. This in particular means that the
registers R do not need to achieve the same guarantees as the larger state S.

All existing theoretical modelings of RNGs with input only focused on the
slow accumulation procedure Slow-Refresh. As such, it completely abstracted
away a key question concerning the design of all practical RNGs:

What is the best way to design extremely fast and practical refresh procedures
Fast-Refresh to accumulate entropy as fast as possible?

The goal of this work is to model these super-efficient entropy accumulators, and
to build the theoretical foundations for this very important primitive. Hence, for
much of this work (with the exception of Section 8), we will completely ignore
Slow-Refresh (and all other details of RNGs), and focus exclusively on the clear
question of understanding the design of super-efficient entropy accumulation.

Existing Designs: Cyclic Rotation. To dig into our question a bit deeper,
it is helpful to see what is typically done in practice. As we said, the fast-
refresh procedure has to be blazing fast, and can realistically involve just a few
simple bit-level operations applied to the entropic input and the register. In fact,
most RNGs we know, such as the one used by Windows 10 [12], implement the
following “rotate-then-xor” procedure. The register R is typically an n = 32
or n = 64-bit value. The raw input X—such as the timing of the previous
interrupt—is also an n-bit string. To refresh the register (quickly!), one simply
cyclically rotates the bits of the register by some fixed constant α (e.g., rotation
by two would map the bit string (1, 1, 0, 1, 0, 1) to (0, 1, 1, 1, 0, 1)), and then XORs
the input X to the result:

R← rotα,n(R)⊕X

Concretely, Microsoft uses α = 5 for n = 32 and α = 19 for n = 64. [12].

Our Questions. While this design appears reasonable, it raises a lot of questions
that we would like to answer.

– How were these (seemingly mysterious) rotation numbers α selected?

4 Y. Dodis et al.

– Is there some rigorous metric/model that can help compare different rotation
amounts to each other, either practically, or theoretically, or both?

– In particular, are Microsoft’s choices of α = 5 for n = 32 and α = 19 for
n = 64 “good”?

– How should one model the distributions of the entropic inputs X to properly
study these refresh procedures?

– Is rotation really the best way to permute the bits of the state for entropy
accumulation?

– In particular, can rotation be replaced by a “better” permutation π of the
n register positions: (R1, . . . , Rn)← (Rπ(1), . . . , Rπ(n))⊕X?

To start answering these questions informally, let us make some simple obser-
vations to get some intuition for why Microsoft might have chosen these seem-
ingly mysterious numbers, 5 and 19. First, it seems clear that we should take
the rotation amount α relatively prime to n, to make sure every bit eventually
affects every other bit. Second, we claim that it is unwise to take α very small
(e.g., α = 1), since practical sources will tend to “have most of their entropy in
the lower-order bits,” so that small values of α will take a lot of time to affect
all the bits of the register. For example, even if every sample of X is uniform
in its n/2 least significant bits, rotation by 1 will only accumulate n/2 + ` − 1
bits after ` steps. For a similar reason, one should avoid values of α where a
small multiple of α is very close to n; such as α = 11 for n = 32, or α = 21
for n = 64. For example, after three such steps with α = 11 for n = 32, a fresh
sample which is uniform in its 5 least-significant bits will contribute only one
fresh bit of entropy, just as if we had α = 1.

Choosing between the remaining possibilities of, e.g., α = 5, 7, 9, . . . , yields
subtle tradeoffs. Indeed, while it is clear that there is something interesting going
on here, it is not immediately clear how to formalize this.

1.1 Our model

In this work, we use the tools of modern information theory and cryptography to
make the the above ad-hoc arguments more systematic and theoretically sound,
so that we have higher confidence in the quality of our answers. In the process,
we will uncover some interesting theory.

Syntax and Efficiency. First, we restrict our attention to entropy accumulation
of the form

(R1, . . . , Rn)← (Rπ(1), . . . , Rπ(n))⊕X

for some permutation π : [n]→ [n] of the n-bit register R, as this model is quite
natural in our context of super-efficient constructions. For conciseness, we let
Aπ(R) = (Rπ(1), . . . , Rπ(n)), with cyclic rotation rotα,n(R) being of most imme-
diate interest to us.

Modeling of Entropic Inputs X. Given the extreme simplicity of our accumu-
lation procedure, it is clear that we will not be able to withstand the same level

No Time to Hash 5

of generality and “malicious” attacks that are modeled in prior work addressing
the complementary question of “slow refresh”. For example, even if the marginal
distributions of Xi are completely uniform in {0, 1}n, we will fail to accumulate
a single bit of entropy if, for example, the Xi satisfy Aπ(X2i−1) = X2i. (The
state will be zero after every even number of steps when starting from R = 0n!)

Hence, as the first modeling assumption we will assume that the inputs Xi

are independent. This is a common abstraction in the randomness extraction
literature dating back to [6].5 While it might not be entirely accurate in practice,
we believe that it captures some of what is useful about natural sources such as
interrupt timings, which do not appear fully adversarial.

Second, to minimize the number of parameters, and also to focus on the
high-level picture, in our analyses we will assume that the entropy of each (in-
dependent) sample is lower bounded by some parameter k. (Once again, this
is standard in the randomness extraction literature; with very few exceptions,
such as [17].) The key point is that our refresh procedure does not know/use
anything about k, and a “good” result should yield quick entropy accumulation
for all values of k; presumably in roughly n/k steps, which is the best possible.
Thus, even if the quality of source is unknown, a “good” result of this type will
tell us that our entropy accumulation always works to the best extent possible.

Finally, we will further restrict each sample to come from some (natural)
family of distributions D. (This is also common in the literature. E.g., [2] did so
in the context of slow refresh.) Indeed, it is easy to see that our refresh procedure
is too simple to work for arbitrary (even independent) distributions of entropy
k. For example, if only k bits of X0 have entropy, it is trivial to see where these
k bits “travel” after i mixing steps given by π. Say, for rotation by 1, after i such
rotations the first k bits (1, . . . , k) go to locations (1+ i mod n, . . . , k+ i mod n).
Thus, in this example (which is easy to generalize to any π) one can define Xi to
be uniform over positions (1 + i mod n, . . . , i+ k mod n). This gives k indepen-
dent bits of entropy, but this entropy is repeatedly added to the same place (just
shifted over and over). Hence, we can never accumulate any entropy beyond the
first k bits in this example.

Two-Monotone Distributions. Of course, the example above seems rather
artificial, and unlikely to occur in the actual distributions encountered by these
RNGs. (E.g., it seems implausible that the distribution of interrupt timings could
have, say, the 10th bit uniformly random but the least significant bit fixed.) Thus,
we must choose an appropriate family of distributions. We need some restriction
on our sources to avoid the counterexamples above, but we would of course like
to work with the most general class of distributions possible.

As our first main contribution, we provide a definition that is quite general
but sufficient for our purposes. Indeed, as we will discuss more below, for this
class of distributions, we are able to formalize the intuitive requirement that
“natural distributions have most of their entropy in the lower-order bits.”

5 See also [4,17,5] for some exciting advances in the area of randomness extraction
from independent sources.

6 Y. Dodis et al.

Specifically, we define a very wide class of distribution, which we call 2-
monotone. These are n-bit distributions such that the probability mass function
over {0, . . . , 2n− 1} (i.e., interpreting the n bits as an integer written in binary)
“has at most one peak.” (Formally, the distribution is 2-monotone if we can di-
vide Z2n into two intervals such that the probability mass function is monotone
on the two intervals. See Section 3.) This is a large class, and it includes, e.g.,
Gaussians over Z2n , exponential distributions over Z2n , and uniform distribu-
tions over an interval — three natural distributions that one might use to model,
e.g., the timing of interrupts.

We then show that any such distribution does in fact “have most of its en-
tropy in the lower order bits.” (The precise statement is Fourier analytic. See
Lemma 1.) This will help us overcome the impossibility result sketched above,
while maintaining a (surprisingly!) large level of generality. To summarize, we
will instantiate our family of distributions to be Dk,n — all two-monotone distri-
butions on n bits having entropy at least k, and will allow arbitrary independent
(but not necessarily identical) choices of entropic inputs X1, X2, . . . ∈ Dk,n.

Goal: Entropy Accumulation. We must also select the notion of entropy for
the register R for our goal of entropy accumulation. As our default choice, we will
use the standard notion of min-entropy, Hmin(R). This is a conservative notion
of entropy which is enough to be composed with any Slow-Refresh procedure
(or any other randomness extractor [20]) from the literature. However, some
RNGs [9,7],6 and all randomness extractors based on the famous leftover hash
lemma [15], can work for a less conservative notion of entropy, called collision
entropy H2(R). Hence, in our results we will keep track of both the min- and the
collision entropy of R.7 Indeed, our collision entropy results will be, as expected,
slightly better than the min-entropy bounds.

Putting everything together, we arrive at the following clean question:

Main Question: For given n, k, permutation π, and number of iterations `,
what is the min-/collision entropy of R`, where R0 = 0n, Ri = AπRi−1⊕Xi,
and X1, X2, . . . , X` are independent two-monotone distributions from Dk,n?

Bigger Picture. We stress once again that our question is largely complemen-
tary and incomparable to the analyses of “slow refresh” procedures from all
the prior work [9,10,14,16,7]. Slow refresh operates on much larger block size
N � n, is concerned with randomness extraction rather than accumulation, and
attempts to defend against much more powerful attacks. In order to achieve this,

6 This is not stated in the results of [9,7], but is implicit from the technical analysis.
7 Our results will eventually give standard randomness extractors, when R accumu-

lates nearly a full n bits of entropy because SD(D,U) ≤ 1
2
·
√

2n−H2(D) − 1, and

SD(D,U) ≤ 2n−Hmin(D) − 1. However, we choose to focus on entropy accumulation,
as (1) this is the use of superefficient entropy accumulators in real-world applica-
tions; (2) the restrictive format of our accumulators—while sufficient to quickly get
to nearly n bits of entropy (which is our goal!)—will be wasteful in “squeezing the
last few bits” of entropy needed for extraction.

No Time to Hash 7

the slow-refresh procedure must necessarily be much slower than our fast-refresh
procedure. In particular, the two procedures are used in different, complemen-
tary places in the overall RNG design: the array or registers becomes an input to
the slow-refresh procedure after many fast-refresh calls. In Section 8, we briefly
discuss how our results might start filling the “missing link” in the prior RNG
work, but stress once again that they cannot be meaningfully compared to each
other.

1.2 Our contributions

Rotation performs reasonably well. Recall that we show a key property
of 2-monotone distributions: they “have most of its entropy in the lower order
bits.” (The precise statement is Fourier analytic. See Lemma 1.) Using this
characterization, we can then relatively easily show that any rotation on n bits
(with α coprime to n, or, indeed, any cyclic permutation) can accumulate nearly
a full n bits of entropy in n steps.

Theorem 1 (Informal, see Theorem 8). Any rotation on n bits (with rota-
tion number α coprime to n) will accumulate (approximately) n(1−2−2k+2) bits
of collision entropy and (approximately) n(1− 2−k+1) bits of min-entropy from
any n independent sources in Dk,n, for k > 1.

Comparing different rotations using covering number. Theorem 1 jus-
tifies the use of rotation, but only if we are willing to wait n steps (regardless
of how large k is) and fails to distinguish between different rotation numbers α.
Indeed, as we discussed above, when α = 1, we do in fact need roughly n steps in
order to accumulate nearly n bits of entropy, even if the input already has very
high entropy. So, if we wish to do better, we must somehow distinguish between
different rotation numbers.8

To do this, we introduce a simple, efficiently computable quantity Cα,k,
which we call the covering number. Intuitively, Cα,k is the number of steps
needed for rotation by α to accumulate full entropy when the input is uni-
form on {0, . . . , 2k − 1}. Equivalently, Cα,k is the minimal number m such that
{i + αj mod n : 0 ≤ i < k, 0 ≤ j < m} = [n], i.e., the minimal m such that
“m rotations of the first k bits are sufficient to cover all bits.” It is easy to see
that the covering number is at least n/k and at most n− k + 1.

Notice that the covering number is exactly the number of steps needed to
accumulate full entropy from the (two-monotone) distribution in which the first
k bits are uniform and independent, while the remaining n − k bits are fixed.
We show (using Fourier-analytic techniques) that the covering number actually
characterizes the performance of rotation by α on all 2-monotone distributions
with entropy k, up to a factor of 2 in k. In other words, up to this factor of 2
in k (and ignoring the specific notion of “accumulating enough entropy”), the
uniform distribution on {0, . . . , 2k − 1} is “the worst case”.

8 It is easy to see that all rotations perform identically if we wait exactly n steps. So,
this question is essentially only interesting for fewer than n steps.

8 Y. Dodis et al.

Theorem 2 (Informal, see Theorem 10). Let m := Cα,bk/2c and k ≥ 2.

After m steps, rotation by α accumulates at least n · (1 − 2−k) bits of collision
entropy and n · (1 − 2−k/2) bits of min-entropy from any distribution in Dk,n.
Alternatively, it accumulates at least n− 1 bits of collision entropy after m(1 +
log(n/k)/k) steps, and n−1 bits of min-entropy after m(1+2 log(n/k)/k) steps.

Theorem 2 suggests comparing rotations according to their covering numbers
Cα,k, effectively reducing a seemingly very difficult problem to a simple calcu-
lation. Therefore, we compute these covering numbers for different rotations.
While there is no unambiguous ranking of the different rotations,9 we show that
some rotations perform well in general, while others do not. (E.g., C11,k > n−3k
for n = 32.) In particular, Microsoft’s choice of α = 19 when n = 64 is quite rea-
sonable (though α ∈ {15, 23, 27} also seem like reasonable choices). Microsoft’s
choice of α = 5 for n = 32 is also reasonable, though we observe that certain
other choices, particularly α = 7 and α = 9, also perform reasonably well for all
k and perform noticeably better when the input has high entropy. See Figures 3
and 4 for the data. (See [1] for a table with all covering numbers for n = 32 and
n = 64.)

Other Permutations and Tightness. Our analysis of the covering number
above extends immediately to any cyclic permutation π : [n]→ [n]. Specifically,
the covering number Cπ,k of π essentially characterizes its behavior as an entropy
accumulator when its input is a 2-monotone source with entropy k (up to a factor
of 2 in k). In fact, in Theorem 11 we show that this generalization of Theorem 2
is quite tight. In particular, there exists a distribution D ∈ Dk,n (in fact, the
same distribution that we use for our empirical results discussed below) such that
no permutation π (including all rotations and the new permutation we discuss
below) accumulates more than n − 1 bits of collision entropy from D in fewer
than n log(n)/(k2 + 4) steps. Similarly, it takes at least 2n log(n)/(k2 + 4) steps
to accumulate n− 1 bits of min-entropy from this distribution.

Notice, in particular, that our upper and lower bounds nearly match when
one sets m ≈ n/k. (While m = Cπ,bk/2c cannot be smaller than 2n/k, as we
describe below in more detail, we expect that this factor of two is an artifact of
our proof and that taking m ≈ Cπ,k is a good heuristic. Since Cπ,k can be as
small as dn/ke, this suggests taking m ≈ n/k.)

A different permutation: bit-reversed rotation. Our characterization of
condensing in terms of Cπ,k motivates us to find a permutation π whose covering
number Cπ,k is small for all k; ideally, Cπ,k ≈ n/k, which is the minimal possible
covering number. Indeed, in this regime, our condensing is provably the best
possible: we accumulate almost all k bits of input entropy for each of the first
nearly n/k steps.

9 Some rotations will perform very well for some k, and others will perform well for
other k. E.g., for α = k, Cα,k = dn/ke is always minimal. So every rotation has an
optimal covering number for at least one choice of k.

No Time to Hash 9

To that end, we construct a permutation that we call bit-reversed rotation.
This is the permutation obtained by (1) associating the ith bit with the (log2 n+
1)-bit string i written in binary; (2) setting σ(i) to be the number obtained by
reversing this bit string; and (3) sending the ith bit to the unique position j with
σ(j)+1 = σ(i) mod 2n. This permutation actually arises naturally from a simple
greedy construction in this context,10 and it satisfies Cπ,k = n/k whenever n
and k are both powers of two. I.e., it has optimal covering number Cπ,k for all
powers of two k simultaneously! (For general k, the covering number is always
bounded by 2n/k; see Theorem 14.)

In Figure 5, we compare covering numbers of bit-reversed rotation against
covering numbers of rotation-by-5 for n = 32 and rotation-by-19 for n = 64
used by Microsoft (and the optimal value n/k). We see that bit-reversed rota-
tion seems to perform at least as well as rotation, and better in several regions.
Thus, while we leave it to practitioners to determine whether implementing our
new permutation would be preferable in the context of their RNGs, our study
suggests that it seems to be the most natural choice from a theoretical perspec-
tive. (More on this in our experimental results below.)

Experimental results to compute the exact number of samples needed.
Theorem 2 (and its generalization in Theorem 10) gives strong theoretical jus-
tification for using a cyclic permutation with low covering numbers. However,
this loss of a factor of 2 in k (i.e., the fact that the theorem requires Cπ,bk/2c
samples instead of Cπ,k steps) is unfortunate—especially for the practical case
that interests us most, in which n is a small constant like n = 32 or n = 64. For
practical applications, we care about the fine-grained detail of the performance,
and we expect that Cπ,k is in fact the right answer, as in the following heuristic.

We expect that (just slightly more than) Cπ,k steps should be sufficient to
accumulate nearly full entropy from 2-monotone sources with entropy at least k.

This is of course true—essentially by definition—for the special case of the uni-
form distribution over {0, . . . , 2k − 1}, and also gives us a lower bound for the
general class Dk,n.

To that end, in Theorem 16 we use the Fourier-analytic theoretical machinery
that we used to prove Theorem 2 in order to derive a closed form expression
for the exact (min- or collision) entropy accumulated by any permutation when
the input source is an exponential distribution. (In other words, the distribution
in which the probability that an interrupt happens at time t is proportional to
e−t/σ for some σ > 0.) This is a natural example of a 2-monotone distribution
(and far less trivial than the uniform distribution), and this closed form lets us
compute exactly the number of samples needed to accumulate, say, (n− 1) bits
of min-/collision entropy.11

10 It also arises naturally in other contexts, such as in the fast Fourier transform (in
the form of the bit-reversed involution, which we call σ above).

11 As we see from both our theoretical and our experimental results, our accumulators
quickly collect almost n bits of entropy, at nearly optimal pace of k bits per sample,

10 Y. Dodis et al.

These exact calculations allow us to answer three interesting questions, at
least for the clean and natural case of exponential distributions:

1. Exactly how close is Cπ,k to the actual number of samples to accumulate
nearly n (say, (n− 1)) bits of entropy close?

2. Does bit-reversed rotation perform at least as well as any rotation by α?
3. How much faster does collision entropy accumulate compared to min-entropy?

� �� �� �� �� ��

�

�

�

�

�

��

��

��

��
�

�

��
��
��
	�

��
��

n=32, k≥ 4

rot32, 5(Hmin)

rot32, 5(H2)

tor32(Hmin)

tor32(H2)

(n− 1)/k

� �� �� �� �� �� ��

�

�

�

��

��

��

��

��

��

��
�

�

��
��
��
	�

��
��

n=64, k≥ 4

rot64, 19(Hmin)

rot64, 19(H2)

tor64(Hmin)

tor64(H2)

(n− 1)/k

Fig. 1. Comparison between the exact number of samples needed to condense to 31 bits
of collision/min- entropy (or 63 bits) from the exponential distribution, for bit-reversed
rotation and the rotations used by Microsoft with input entropy k.

Our empirical results show that (at least for this natural distribution), (1) the
true number of samples needed to accumulate from k bits of entropy to nearly
n bits of entropy is very close to Cπ,k; (2) bit-reversed rotation compares quite
favorably with rotation by α; and (3) collision entropy accumulates slightly but
notably faster than min-entropy. There are some subtleties, though. (See Fig-
ure 1 for the high-level picture.) For more detailed discussion, we refer readers
to the full version of the paper [8].

Summary. Overall, we believe that our work provides both theoretical and prac-
tical results to shed light on a previously unexplored, but significant aspect of all
practical RNGs: the design of “superefficient” entropy accumulation functions.

2 Preliminaries

For an integer n ≥ 1, we write [n] := {0, . . . , n − 1}. For a distribution D over
{0, 1}n and x ∈ {0, 1}n, we write D(x) := PrX∼D[X = x] for the probability
that D assigns to x.

but squeezing the last couple of bits (i.e., becoming an extractor) takes many more
samples. This is why we stop our experiments at (n− 1) bits of entropy.

No Time to Hash 11

The min-entropy and collision entropy of D are

Hmin(D) := min
x∈{0,1}n

log2(1/D(x)) and H2(D) := log2(1/
∑
x

D(x)2) .

We will consider the problem of converting independent samples from a distribu-
tion D with some min-entropy into a new distribution with large min-/collision
entropy.

For a distribution D over {0, 1}n and w ∈ {0, 1}n, we define the Fourier
coefficient of D at w as

D̂(w) := E
X∼D

[(−1)〈X,w〉] = Pr
X∼D

[〈X,w〉 = 0 mod 2]− Pr
X∼D

[〈X,w〉 = 1 mod 2] .

Fact 3. For any distribution D over {0, 1}n, and x in {0, 1}n,

D(x) =
1

2n

∑
w∈{0,1}n

D̂(w)(−1)〈x,w〉 .

Theorem 4 (Parseval’s theorem). For any distribution D over {0, 1}n,∑
x∈{0,1}n

D(x)2 = 2−n
∑

w∈{0,1}n
D̂(w)2 .

Corollary 1. For any distribution D over {0, 1}n,

H2(D) = n− log2

(∑
w∈{0,1}n

D̂(w)2
)
,

and
Hmin(D) ≥ n− log2

(∑
w∈{0,1}n

|D̂(w)|
)
.

Corollary 1 shows that the sum of the squares of Fourier coefficients char-
acterizes the collision entropy, and the sum of the absolute values of Fourier
coefficients is useful for bounding min-entropy.

Proof. By Parseval’s theorem, we have

H2(D) = log2(1/
∑
x

D2(x)) = log2(2n/
∑

w∈{0,1}n
D̂2(w)) ,

which implies the desired conclusion. By Fact 3,

Hmin(D) = min
x∈{0,1}n

log2(1/D(x))

= min
x∈{0,1}n

log2(2n/
∑

w∈{0,1}n
D̂(w)(−1)〈x,w〉)

≥ log2(2n/
∑

w∈{0,1}n
|D̂(w)|)

as desired. ut

12 Y. Dodis et al.

The Fourier coefficients arise naturally in our context because they interact
nicely with both convolution and linear transformations, as this next well-known
claim shows.

Claim 5. For distributions D1, . . . , Dm over {0, 1}n and linear transformations
A1, . . . , Am ∈ Fn×n2 , let D be the distribution given by

Pr
X∼D

[X = x] = Pr
X1∼D1,...,Xm∼Dm

[A1X1 ⊕ · · · ⊕AmXm = x] ,

where the Xi are independent. Then,

D̂(w) = D̂1(AT1 w) · · · D̂m(ATmw) .

for any w ∈ {0, 1}n.

Proof. We have

E[(−1)〈w,X〉] = E[(−1)〈w,A1X1⊕···⊕AmXm〉]

= E[(−1)〈w,A1X1〉] · · ·E[(−1)〈w,AmXm〉]

= E[(−1)〈A
T
1 w,X1〉] · · ·E[(−1)〈A

T
mw,Xm〉]

= D̂1(AT1 w) · · · D̂m(ATmw) .

ut

For a distribution D over {0, 1}n, integer ` ≥ 1, and linear transformation A :

Fn2 → Fn2 , we write D
(`)
A for the distribution obtained by sampling X1, . . . ,X`

independently and returning X1 ⊕AX2 ⊕ · · · ⊕A`−1X`.

3 Capturing natural distributions

In this section, we consider natural distributions over the integers (e.g., the kinds
of distributions that one might expect for interrupt timings). We associate with
each integer 0 ≤ x < 2n the vector x = (x0, . . . , xn−1) ∈ {0, 1}n given by its
binary representation. In other words, the xi ∈ {0, 1} are the unique bits that
satisfy x =

∑
2ixi. For example, x might correspond to the timing of a keystroke.

We observe that many natural distributions are captured by the general class
of 2-monotone distributions, which we define below. See Section 7 for examples
of natural distributions that are 2-monotone.

Definition 1 (2-monotone distributions over Z2n). A function p : [2n] →
[0, 1] is monotone over an interval {i1, i1 + 1, . . . , i2} if

p[i1 mod 2n] ≤ · · · ≤ p[i2 mod 2n] or p[i1 mod 2n] ≥ · · · ≥ p[i2 mod 2n] .

We say that p is 2-monotone over Z2n , if there exist 0 ≤ i1 < i2 ≤ 2n − 1 such
that p is monotone on the interval {i1, . . . , i2} and on the interval {i2, . . . , 2n −
1, 2n, . . . , 2n + i1 − 1}.

We say that a distribution D over {0, 1}n is 2-monotone over Z2n if it is
obtained by sampling an integer 0 ≤ X ≤ 2n − 1 (interpreted as a bit string as
above) according to a 2-monotone probability mass function.

No Time to Hash 13

Fig. 2. A depiction of a 2-monotone distribution over Z2n

Intuitively, 2-monotone distributions “change direction at most twice” when
viewed as functions on the cycle Z2n , so that they have “at most one peak”
(and “at most one trough”). (For example, all unimodal distributions are 2-
monotone.)

A very nice feature of 2-monotone distributions D is that |D̂(w)| is small
if wi = 1 for some small index i. This formally captures the intuition that the
lower-order bits of “natural distributions” should have high entropy.

Lemma 1. For any 2-monotone distribution D over {0, 1}n with min-entropy
k, and w ∈ {0, 1}n with wi = 1,

∣∣D̂(w)
∣∣ ≤ min{1, 2i+1−k} .

The lemma follows immediately from the following two claims.

Claim 6. If
∑2n−1
j=1 |D(j)−D(j − 1)| ≤ ε, then for any w with wi = 1,

|D̂(w)| ≤ min{1, 2i · ε} .

14 Y. Dodis et al.

Proof. We have

|D̂(w)| =
∣∣∣ E
X∼D

[(−1)〈X,w〉]
∣∣∣

=
∣∣∣ ∑
X:Xi=0

(−1)〈X,w〉(D(X)−D(X + ei))
∣∣∣

≤
∑

X:Xi=0

|D(X)−D(X + ei)|

=
∑

X:Xi=0

|D(X)−D(X + 2i)|

≤
∑

X:Xi=0

2i∑
j=1

|D(X + j)−D(X + j − 1)|

≤ 2i ·
2n−1∑
j=1

|D(j)−D(j − 1)|.

ut

Claim 7. If D is 2-monotone over Z2n with min-entropy k, then

2n−1∑
j=1

|D(j)−D(j − 1)| ≤ 21−k .

Proof. Suppose p is monotone on {0, . . . , i} and {i, . . . , 2n−1} for 0 < i < 2n−1.

2n−1∑
j=1

|D(j)−D(j − 1)| =
i∑

j=1

|D(j)−D(j − 1)|+
2n−1∑
j=i

|D(j)−D(j − 1)|

= |D(i)−D(0)|+ |D(2n−1)−D(i)|
≤ 21−k

where the second inequality is by monotonicity of p, and the last inequality is
because D has min-entropy k, so |D(x) − D(y)| ≤ 2−k for every 0 ≤ x, y ≤
2n − 1. Similarly, if p is monotone on {i1, . . . , i2} and {i2, . . . , 2n − 1, 0, . . . , i1}
for 0 < i1 < i2 < 2n − 1, we have

2n−1∑
j=1

|D(j)−D(j − 1)| ≤ 2|D(i1)−D(i2)| ≤ 21−k.

The desired conclusion follows. ut

4 Rotation condensers

In this section, we set out to understand the power of rotation condensers gener-
ically. For integers 0 < α < n, we write rotα,n for the linear transformation over

No Time to Hash 15

{0, 1}n defined by

rotα,n((x1, . . . , xn)) := (x1+α, x2+α, . . . , xn, x1, . . . , xα) .

I.e., rotα,n rotates the coordinates of a vector x by α. Notice that rotTα,n =

rotn−α,n and rotkα,n = rotkα mod n,n.

Theorem 8. For any 1 ≤ α < n with gcd(α, n) = 1, and any 2-monotone
distribution D over {0, 1}n with min-entropy k > 1, it holds that

H2(D
(n)
rotα,n) ≥ n(1− log2(1 + 2−2k+2)) ≈ n(1− 2−2k+2) ,

Hmin(D
(n)
rotα,n) ≥ n(1− log2(1 + 2−k+1)) ≈ n(1− 2−k+1) .

Theorem 8 provides some basic theoretical justification for the use of rotα,n
as a condenser. It shows rotation provably condenses to Ω(n) bits entropy within
n steps.

Note that the theorem works for any rotation with gcd(α, n) = 1, which
means it also works for rotation whose rotation number is α = 1. Although we
typically think of rotation by 1 as the worst condenser (and we will show this in
the next section), our result shows it can still condense 2-monotone distributions
to linear entropy within n steps. What’s more, the proof of Theorem 8 imme-
diately generalizes to any cyclic permutation,12 so that any cyclic permutation
can condense to Ω(n) bits of entropy within n steps. (In particular, this can be
applied to the cyclic permutation torn that we define in Section 6.)

Proof. Let A := rotα,n. For w ∈ {0, 1}n, we say that w hits e0 if w0 = 1,
and say that (w, ATw, . . . , (AT)n−1w) hits e0 j times if there are j choices of
i such that (AT)iw hits e0. By Lemma 1, for every w hitting e0, it holds that

|D̂(w)| ≤ 2−k+1.

Claim 9. For w ∈ {0, 1}n, (w, ATw, . . . , (AT)n−1w) hits e0 exactly |w| times.

Proof. It suffices to notice that for every i, there exists a distinct 0 ≤ j < n
such that (AT)jei = e0 since A = rotα,n and gcd(α, n) = 1. For such an i and
j, (AT)jw hits e0 if and only if wi = 1. Therefore, the total number of hits is
exactly the number of non-zero coordinates in w. ut

Given the claim, we note that

|D̂(n)
A (w)| =

∣∣∣ n−1∏
i=0

D̂((AT)iw))
∣∣∣ ≤ ∏

i:(AT)iw hits e0

|D̂((AT)iw))| ≤ (2−k+1)|w|

12 A cyclic permutation is a permutation σ : [n] → [n] such that for all x ∈ [n],
σi(x) = x if and only if n divides i.

16 Y. Dodis et al.

where the equality is by Claim 5, and the last inequality is by the claim and
Lemma 1. Therefore,∑
w∈{0,1}n

|D̂(n)
A (w)|2 ≤

∑
w∈{0,1}n

(2−k+1)2|w| =

n∑
j=0

(
n

j

)
(2−k+1)2j = (1+2−2k+2)n ,

∑
w∈{0,1}n

|D̂(n)
A (w)| ≤

∑
w∈{0,1}n

(2−k+1)|w| =

n∑
j=0

(
n

j

)
(2−k+1)j = (1 + 2−k+1)n .

Finally, by Corollary 1, we have

H2(D
(n)
A) = n− log(

∑
w∈{0,1}n

|D̂(n)
A (w)|2) ≥ n− log(1 + 2−2k+2)n

Hmin(D
(n)
A) ≥ n− log(

∑
w∈{0,1}n

|D̂(n)
A (w)|) ≥ n− log(1 + 2−k+1)n

which imply the desired conclusion. ut

5 Comparing different rotations and permutations

In this section, we show how to compare the performance of different permuta-
tions on two-monotone distributions. For a permutation π : [n] → [n], we write
Aπ for the linear transformation over {0, 1}n defined by

Aπ(x1, . . . , xn) := (xπ(1), . . . , xπ(n)) .

I.e., Aπ permutes coordinates of a vector x by π. We slightly abuse notation and

write D
(`)
π to denote D

(`)
Aπ

.
We show that the rate of convergence of the condenser associated with a

permutation π when run on two-monotone distributions with min-entropy k is
governed by what we call the covering number Cπ,k.

To get some intuition behind the covering number, consider the simple case
when we want to extract from the distribution D that is uniform on [2k] (or,

in terms of bit strings, uniform on {0, 1}k × {0}n−k). Notice that D
(m)
π is the

distribution that is uniform over the space spanned by {ei : ∃0 ≤ j < k, 0 ≤
` < m, π`(j) = i}.

In particular, the distribution D
(m)
π has full entropy n if and only if {π`(j) :

0 ≤ j < k, 0 ≤ ` < m} is the full set of coordinates [n]. We call the minimal
such m the covering number of π, and the above discussion shows that it arises
naturally in this context.

Definition 2 (Covering number). For a permutation π : [n] → [n], and an
integer 1 ≤ k ≤ n, the covering number Cπ,k is the smallest natural number m
such that

{π`(j) : 0 ≤ j < k, 0 ≤ ` < m} = [n]

No Time to Hash 17

where πi = π ◦ πi−1 for i ≥ 1, π0 is the identity function. (If no such m exists,
we say Cπ,k =∞.)

To get some intuition for the covering number, first notice that we must have
Cπ,k ≥ dn/ke. (This corresponds to the fact that we need at least dn/ke sources
with k bits of entropy each in order to have any hope of extracting n bits of
entropy.) Of course, the covering number can be much worse than this, e.g.,
Crot1,n,k = n− k + 1, which is the worst possible.

Also, notice that Crotk,n,k = dn/ke. In other words, the optimal covering
number dn/ke is always achieved for fixed k by rotation by exactly k bits. (This
suggests that, if your input is “nice enough,” e.g., 2-monotone, and you happen
to know it has k bits of entropy, then rotating by α = k is a good idea. And,
indeed, this is the case.) So, every choice of α has an optimal covering number
for at least one choice of k, and we will not be able to unambiguously say that
one choice of α is the “best”. Still, the performance of different choices of α over
all 1 ≤ k ≤ n does vary considerably.

As we explained above, the covering number arises naturally when consider-
ing how quickly we can extract from the uniform distribution on [2k], which is
perhaps the simplest 2-monotone distribution.

The following theorem shows that the covering number actually characterizes
how quickly we converge to a high-entropy distribution for any 2-monotone
distribution. In the proof, “we lose a factor of two in k,” so that we need to take
at least Cπ,k/2 steps, rather than Cπ,k steps. And, we are of course only able
to condense, not to extract. But, otherwise the result is tight. In Section 7.2,
we show empirically that roughly Cπ,k steps is already enough for very strong
condensing for natural distributions, suggesting that the factor of two loss is
an artifact of the proof. Put together, the empirical data and the theoretical
justification below strongly suggest that

The covering number Cπ,k is the right measure of how well a permutation π
condenses for natural real-world distributions.

Theorem 10. Let D be a two-monotone distribution with min-entropy at least
k for some integer k ≥ 2. Let π : [n] → [n] be a permutation with covering
number m := Cπ,k′ , where k′ := bk/2c. Then for any ` ≥ m,

H2(D(`)
π) ≥ n− (bn/k′c+ 1) · log2(1 + 2k

′−kb`/mc) ≈ n(1− 2k/2−k`/m) ,

Hmin(D(`)
π) ≥ n− (bn/k′c+ 1) · log2(1 + 2k

′−(k/2)b`/mc) ≈ n(1− 2k/2−k`/(2m)) .

Furthermore, there exists a two-monotone distribution D with min-entropy k
such that for all 1 ≤ ` < Cπ,k

Hmin(D(`)
π) = H2(D(`)

π) ≤ n− (Cπ,k − `) .

In [8], we prove the following better lower bound on condensing (using the
techniques developed in Section 7), showing that the results in Theorem 10 are

18 Y. Dodis et al.

quite tight. In fact, the distribution that we use to prove the theorem is exactly
the same as the distribution that we use in our empirical results in Section 7.2.
(This distribution arises naturally in this context.)

Theorem 11. For every integer 1 ≤ s ≤ n, there is a 2-monotone distribution
D (in fact, a monotone distribution) with min-entropy k > s − 1 + 1/2s such
that

H2(D(`)
π) ≤ n · (1− 2−s

2`/n−4`/n) ≈ n(1− 2−k
2`/n−4`/n)

Hmin(D(`)
π) ≤ n · (1− 2−s

2`/(2n)−2`/n) ≈ n(1− 2−k
2`/(2n)−2`/n) .

Notice how close these bounds are to the bounds in Theorem 10 with m := n/k.

5.1 Proof of Theorem 10

Proof. The “furthermore” part of the theorem is trivial. Indeed, it holds for the
uniform distribution over [2k], which is clearly 2-monotone with min-entropy k.
So, it remains only to prove the first statement.

Let k′ = bk/2c and let B0, B1, . . . , Bm−1 be a partition of [n] such that
Bi ⊆ πi([k′]) . Observe that 0 ≤ |Bi| ≤ k′. We use wS to denote the projection
of w onto S ⊆ [n]. Let b be either 1 or 2.

Claim 12.
∑

w |D̂
(`)
π (w)|b ≤

∑
w |D̂

(m)
π (w)|bb`/mc .

Proof.

∑
w

|D̂(`)
π (w)|b =

∑
w

`−1∏
i=0

|D̂((ATπ)iw)|b

≤
∑
w

b`/mc−1∏
j=0

m−1∏
i=0

|D̂((ATπ)jm+iw)|b

=
∑
w

b`/mc−1∏
j=0

|D̂(m)
π ((ATπ)jmw)|b

≤
b`/mc−1∏
j=0

(∑
w

|D̂(m)
π ((ATπ)jmw)|bb`/mc

)1/b`/mc

=

b`/mc−1∏
j=0

(∑
w′

|D̂(m)
π (w′)|bb`/mc

)1/b`/mc
=
∑
w

|D̂(m)
π (w)|bb`/mc

where the first line is by Claim 5, the fourth line is by a claim proved in [8] and
the fifth line is because (ATπ)jm is a permutation over {0, 1}n. ut

No Time to Hash 19

Claim 13. |D̂(m)
π (w)|bb`/mc ≤ 2−aw·(bk/2)b`/mc, where aw := |{i : wBi 6= 0}|.

Proof. We say that w hits [k′] if there exists an i ∈ [k′] such that wi = 1. By
Lemma 1, for any 2-monotone distribution with min-entropy at least k, and any
w which hits [k′], it holds that

|D̂(w)| ≤ 2(k
′−1)+1−k ≤ 2−k/2 .

For w, let Sw := {i ∈ [m] : (ATπ)iw hits [k′]}. Observe that, if wBi 6= 0,
because Bi ⊆ πi([k′]), then(

(ATπ)iw
)
[k′]

= wπi([k′]) 6= 0

where πi([k′]) := {πi(j) : j ∈ [k′]}. I.e., (ATπ)iw hits [k′]. Therefore, |Sw| ≥ aw.
Moreover,

|D̂(m)
π (w)|bb`/mc =

m−1∏
i=0

|D̂((ATπ)i(w))|bb`/mc

≤
∏
i∈Sw

|D̂((ATπ)iw)|bb`/mc

≤ 2−|Sw|·(bk/2)b`/mc

≤ 2−aw·(bk/2)b`/mc

as needed. ut
We then prove Theorem 10 given above claims.∑

w

|D̂(`)
π (w)|b ≤

∑
w

|D̂(m)
π (w)|bb`/mc

≤
∑
w

2−aw·(bk/2)b`/mc

=
∑
S⊆[m]

(
m

|S|

) ∑
w:{i:wBi

6=0}=S

2−|S|·(bk/2)b`/mc

=
∑
S⊆[m]

(
m

|S|

)
2−|S|·(bk/2)b`/mc

∏
i∈S

(2|Bi| − 1)

=
∑
S⊆[m]

(
m

|S|

)∏
i∈S

(
(2|Bi| − 1)2−(bk/2)b`/mc

)
=

m−1∏
i=0

(
1 + (2|Bi| − 1) · 2−(bk/2)·b`/mc

)
where the first inequality is by Claim 12, and the second inequality is by Claim 13.
Furthermore, by a claim proved in [8], when 0 ≤ |Bi| ≤ k′ and

∑m−1
i=0 |Bi| = n,

m−1∏
i=0

(
1 + (2|Bi| − 1) · 2−(bk/2)·b`/mc

)
≤ (1 + (2k

′
− 1) · 2−(bk/2)·b`/mc)bn/k

′c+1.

20 Y. Dodis et al.

Finally, by Corollary 1, we have

H2(D(`)
π) ≥ n− log

(∑
w

|D̂(`)
π (w)|2

)
≥ n− (b n

k′
c+ 1) · log

(
1 + 2k

′−kb`/mc) ,
Hmin(D(`)

π) ≥ n− log
(∑

w

|D̂(`)
π (w)|

)
≥ n− (b n

k′
c+ 1) · log

(
1 + 2k

′−(k/2)b`/mc) .
as needed. ut

5.2 Covering numbers of different rotations when n = 32, 64

In Figures 3 and 4, we show the covering numbers of rotations with different
rotation number α when n = 32, 64. In both cases, we compare the rotation
numbers α chosen by Microsoft (α = 5 for n = 32 and α = 19 for n = 64)
with other rotations that also perform well. (In Section 6, we show a different
cyclic permutation, which is not a rotation, but has optimal covering number
Cn,k = n/k when both n and k are powers of two.) We also compare the covering
numbers with the natural lower bound of dn/ke.

� � �� �� �� �� ��

�

�

�

�

��

��

��

��

��

��

�
��
�
��
��
��

	�
�

n=32, α=5,Microsoft′s choice
n/k

Cπ, k

� � �� �� �� �� ��

�

�

�

�

��

��

��

��

��

��

�
��
�
��
��
��

	�
�

n=32, α=7

n/k

Cπ, k

� � �� �� �� �� ��

�

�

�

�

��

��

��

��

��

��

�
��
�
��
��
��

	�
�

n=32, α=9

n/k

Cπ, k

� � �� �� �� �� ��

�

�

�

�

��

��

��

��

��

��

�
��
�
��
��
��

	�
�

n=32, α=13

n/k

Cπ, k

Fig. 3. Covering numbers of different rotations when n = 32

No Time to Hash 21

� �� �� �� �� �� ��

�

�

�

��

��

��

��

��

��

��

�
��
�
��
��
��

	�
�

n=64, α=15

n/k

Cπ, k

� �� �� �� �� �� ��

�

�

�

��

��

��

��

��

��

��

�
��
�
��
��
��

	�
�

n=64, α=19,Microsoft′s choice
n/k

Cπ, k

� �� �� �� �� �� ��

�

�

�

��

��

��

��

��

��

��

�
��
�
��
��
��

	�
�

n=64, α=23

n/k

Cπ, k

� �� �� �� �� �� ��

�

�

�

��

��

��

��

��

��

��

�
��
�
��
��
��

	�
�

n=64, α=27

n/k

Cπ, k

Fig. 4. Covering number of different rotations when n = 64

6 A new recommendation: bit-reversed rotation

Our characterization in terms of the covering number suggests the following
“greedy” construction of a permutation with small covering number. Recall that
we can write a cyclic permutation π in cycle notation as

a0 := 0→ a1 := π(0)→ a2 := π(π(0))→ · · · → an−1 := πn−1(0)→ an := 0 .

So, suppose that n is a power of two, and suppose that we want to build some
permutation π : [n] → [n] such that Cπ,2 = n/2 is as small as possible. Notice
that this holds if and only if an/2 = 1. I.e., “0 and 1 should be maximally far
apart on the cycle”:

a0 = 0→ a1 → · · · → an/2−1 → an/2 = 1→ an/2+1 → · · · → an−1 → an = 0 .

Similarly, Cπ,4 = n/4 if and only if {an/4, an/2, a3n/4} = {1, 2, 3}, i.e., if and
only if “0, 1, 2, and 3 are maximally far apart on the cycle” so that no two
of them are within distance less than n/4. Therefore if we simultaneously have
Cπ,2 = n/2 and Cπ,4 = n/4, then the permutation must have either the form

a0 = 0→ · · · → an/4 = 2→ · · · → an/2 = 1→ · · · → a3n/4 = 3→ · · · → 0, (1)

22 Y. Dodis et al.

or

a0 = 0→ · · · → an/4 = 3→ · · · → an/2 = 1→ · · · → a3n/4 = 2→ · · · → 0. (2)

Continuing in this way, we see that we can build a cyclic permutation π : [n]→
[n] such that Cπ,2a = n/2a for all integers 0 ≤ a ≤ log2 n. In fact, we get a
family of permutations (where the different members of the family vary as in
Eqs. (1) and (2)), which represents all permutations that satisfy Cπ,2a = n/2a

for all a. And, it is not hard to see that every such permutation has covering
numbers given by Cπ,k = n/k′, where k′ := 2blog2 kc is the largest power of two
smaller than k. (We prove this carefully below for one particular member of the
family.)

Since all such permutations are essentially identical from our perspective, we
choose one with a particularly elegant description. This elegant description might
also help with efficient implementations. In particular, our choice, which we call
bit-reversed rotation, is obtained by conjugating rot1,n with the well-studied and
very efficient bit-reversal permutation.

Definition 3 (Bit-reversed rotation). For a power of two n = 2a, the bit-
reversal permutation σn : [n]→ [n] is defined by

σn

(
b0 + 2b1 + · · ·+ 2a−1ba−1

)
= ba−1 + 2ba−2 + · · ·+ 2a−1b0

for bi ∈ {0, 1}. (E.g., σ8(3) = 6, and σ16(10) = 5.) Notice that σn is an invo-
lution, i.e., σ−1n = σn. We nevertheless sometimes write σ−1n when this seems
more natural.

Then, the bit-reversed rotation torn : [n]→ [n] (tor is rot “reversed”) is given
by torn := σ−1n ◦ rot1,n ◦ σn. E.g., in cyclic notation, tor8 is

0→ 4→ 2→ 6→ 1→ 5→ 3→ 7→ 0 .

Equivalently, torn can be defined recursively via the recurrence tor2n(i + n) =
torn(i) for i < n together with the identity tor2n(i) = i + n. (These two rules
as simply describe binary addition, except with the bits reversed. I.e., “if the
highest-order bit is 0, set it to 1; if it is 1, then set it to 0 and perform the same
operation on the remaining bits.”)

Theorem 14. For a power of two n and 1 ≤ k ≤ n,

Ctorn,k = n/k′ ≤ 2n/k ,

where k′ := 2blog2 kc is the largest power of two that is no larger than k.

Proof. The result follows from the recurrence relation Ctor2n,k = 2Ctorn,k for
k ≤ n, together with two base cases, Ctorn,n = 1 and Ctorn,` = 2 for n/2 ≤ ` < n.

The first base case, Ctorn,n = 1 is trivial. The second base case Ctorn,` = 2 for
n/2 ≤ ` < n follows the simple observation that for all i < n/2, torn(i) ≥ n/2.

No Time to Hash 23

This in particular implies that Ctorn,n/2 = 2, and since 1 < Ctorn,` ≤ Ctorn,n/2

for n/2 ≤ ` < n, we must have Ctorn,` = 2 for all such `.

To see the recurrence relation, notice that the recursive formula for torn
implies that tor22n(i) = torn(i) for i < n. Applying this identity repeatedly
gives tor2`2n(i) = tor`n(i). Similarly, tor2`+1

2n (i) = tor`n(i) + n. It follows that
i ∈ {tor`n(0), . . . , tor`n(k − 1)} if and only if i, i + n ∈ {tor2`2n(0), . . . , tor2`2n(k −
1), tor2`+1

2n (0), . . . , tor2`+1
2n (k − 1)}, which immediately implies the recurrence re-

lation.

Applying Theorem 10 immediately yields the following corollary, which shows
that the bit-reversed rotation yields quite a good condenser. (In Section 7.2, we
show empirical results that suggest even better performance, suggesting that the
factor of 2 loss in k′ is unnecessary.)

Corollary 2. For any power of two n, and any 2-monotone distribution D with
min-entropy at least k ≥ 2, then for any ` ≥ m

H2(D
(`)
torn) ≥ n− (bn/k′c+ 1) · log2(1 + 2k

′−kb`/mc) ≈ n · (1− 2−k
2`/(2n)) ,

Hmin(D
(`)
torn) ≥ n− (bn/k′c+ 1) · log2(1 + 2k

′−(k/2)b`/mc) ≈ n · (1− 2−k
2`/(4n)) ,

where k′ := bk/2c, and m := n/2blog2 k
′c is the smallest power of two that is no

smaller than n/k′.

In Figure 5, we plot the covering numbers Ctorn,k together with Crotα,n,k for
comparison.

� � �� �� �� �� ��

�

�

�

�

��

��

��

��

��

��

�
��
�
��
��
��

	�
�

n=32

n/k

rot5, 32

tor32

� �� �� �� �� �� ��

�

�

�

��

��

��

��

��

��

��

�
��
�
��
��
��

	�
�

n=64

n/k

rot19, 64

tor64

Fig. 5. The covering numbers of bit-reversed rotation and the two rotations rot5,32 and
rot19,64 used by Microsoft. The n/k line represents the best possible value of dn/ke.

24 Y. Dodis et al.

6.1 A brief note on efficient implementation

We leave it to practitioners to determine whether bit-reversed rotation can be
implemented efficiently enough for their applications. However, we do note two
things. First, we note that the bit-reversal permutation σn on which bit-reversed
rotation is based is well-studied (in part because of its relationship with algo-
rithms for the Fast Fourier Transform), with many fast implementations known
(see, e.g., [18]).

Second, recall that we have defined our extractor according to the state
update procedure Si+1 ← torn(Si) ⊕ X = σn(rot1,n(σn(Si))) ⊕ X, where σn is
the bit-reversal permutation. (Here, we have used the fact that σn = σ−1n , to
replace σ−1n ◦ rot1,n ◦ σn with simply σn ◦ rot1,n ◦ σn, since for implementation
it seems quite useful to observe that these are the same map.) However, we
note that one can equivalently use the rule S′i+1 ← rot1,n(S′i)⊕ σn(X). I.e., one
can simply perform the bit-reversal permutation on the input X and rotate the
state S′ by one. It is then easy to see that this rule maintains the invariant
Si = σn(S′i), and in particular, that Si and S′i have the same entropy. Therefore,
one can use the second rule instead of the first, which could improve efficiency
by replacing two applications of σn with a single application.13

7 Examples of natural distributions and some
computational results

Here, we list some natural distributions, all of which are 2-monotone. We then
compute exactly the number of steps necessary to condense for the special case
of the exponential distribution, which has a particularly nice form that makes
such exact computation feasible.

Discrete Gaussian. For s > 0, we write DZ,s for the discrete Gaussian distri-
bution over the integers with parameter s, i.e., defined by

Pr
X∼DZ,s

[X = z] =
exp(−πz2/s2)∑∞

z′=−∞ exp(−π(z′)2/s2)

for all integers z ∈ Z.
Similarly, for σ > 0, the exponential distribution EZ,σ with parameter σ is

the distribution over Z≥0 defined by

Pr
X∼Dσ

[X = z] =
exp(−z/σ)∑∞

z′=0 exp(−z′/σ)

for all integers z ≥ 0.

13 More generally, for any invertible linear transformations A,B, one can replace the
rule Si+1 ← B−1AB(Si) ⊕ X with the equivalent rule S′i+1 ← AS′i ⊕ BX. This
maintains the invariant Si = B−1S′i.

No Time to Hash 25

Uniform distribution over an interval. For 0 ≤ N1 < N2 ≤ 2n, let UN1,N2

be the distribution over {0, 1}n obtained by sampling an integer N1 ≤ X < N2

uniformly at random (interpreted as a bit string as above).
Shifted exponential distribution. For any σ ≥ 1 and any integer 0 ≤
N < 2n, let Eσ,N be the distribution over {0, 1}n obtained by sampling an
integer Y from an exponential distribution with parameter σ and setting X :=
N + Y mod 2n (and interpreting this as a bit string).
Shifted discrete Gaussian distribution. For any s ≥ 1 and any integer
0 ≤ N < 2n, let Ds,N be the distribution over {0, 1}n obtained by sampling an
integer Y from the discrete Gaussian distribution DZ,s with parameter σ and
setting X := N + Y mod 2n (and interpreting this as a bit string).

Claim 15. UN1,N2
, Eσ,N , and Ds,N are all 2-monotone.

Proof. This fact is immediate for the uniform distribution UN1,N2
, by taking the

monotone intervals {N1, . . . , N2−1} and {N2−1, . . . , . . . , 2n+N1−1}. Similarly,
for Eσ,N , we can take the intervals {N −1, N} and {N, . . . , 2n+N −1}. For the

Gaussian Ds,N , this follows from the fact that the function t 7→
∑
z∈Z e

−π(z−t)2

has maxima at t ∈ Z, minima at t ∈ Z + 1/2 and no other critical points, which
one can verify, e.g., using the Poisson summation formula. ut

7.1 Entropy of product distributions under permutations

Below, we show an exact formula for the min-/collision entropy resulting from
applying our permutation-based condensers to a product distribution. This exact
formula is of course very useful, as it allows us to easily compute the min-
/collision entropy of the state of our extractor, without directly computing the
sum of 2n Fourier coefficients. Indeed, in Section 7.2, we use this formula to
show empirically that our extractor performs similarly as well with the unshifted
exponential distribution—a product distribution.

Theorem 16. Let D be a product distribution over {0, 1}n with Prx∼D[Xi =
0] = (1 + εi)/2 for εi ≥ 0. Then, for any cyclic permutation π : [n]→ [n],

H2(D(`)
π) = n−

n−1∑
i=0

log2

(
1 +

`−1∏
j=0

ε2πj(i)

)
,

Hmin(D(`)
π) = n−

n−1∑
i=0

log2

(
1 +

`−1∏
j=0

επj(i)

)
.

Proof. We have

D̂
(`)
π (w) =

`−1∏
j=0

D̂(πj(w)) =

`−1∏
j=0

∏
wi=1

D̂(eπj(i)) =

`−1∏
j=0

∏
wi=1

επj(i) ≥ 0

26 Y. Dodis et al.

where the second equality is because D is a product distribution. Therefore,

D(`)
π (x) =

1

2n

∑
w∈{0,1}n

D̂
(`)
π (w)(−1)〈x,w〉 ≤ 1

2n

∑
w∈{0,1}n

D̂
(`)
π (w) = D(`)

π (0) .

Moreover,∑
w

|D̂(`)
π (w)|2 =

n−1∏
i=0

(
1 +

`−1∏
j=0

|D̂(eπj(i))|2
)

=

n−1∏
i=0

(
1 +

`−1∏
j=0

ε2πj(i)

)
,

∑
w

D̂
(`)
π (w) =

n−1∏
i=0

(
1 +

`−1∏
j=0

D̂(eπj(i))
)

=

n−1∏
i=0

(
1 +

`−1∏
j=0

επj(i)

)
.

The equality forH2(D
(`)
π) follows from Corollary 1, and the equality forHmin(D

(`)
π)

follows from

Hmin(D(`)
π) = log2(1/D(`)

π (0)) = log2(2n/
∑

w∈{0,1}n
D̂

(`)
π (w)) .

ut

Corollary 3. For any σ ≥ 1, let D := Eσ be the distribution over {0, 1}n ob-
tained by sampling an integer Y from an exponential distribution with parameter
σ and setting X := Y mod 2n (and interpreting this as a bit string), as described
above. Then, for any cyclic permutation π : [n]→ [n],

H2(D(`)
π) = n−

n−1∑
i=0

log2

(
1 +

(`−1∏
j=0

1− exp(−2π
j(i)/σ)

1 + exp(−2πj(i)/σ)

)2)

Hmin(D(`)
π) = n−

n−1∑
i=0

log2

(
1 +

`−1∏
j=0

1− exp(−2π
j(i)/σ)

1 + exp(−2πj(i)/σ)

)
.

Proof. For any 0 ≤ x < 2n,

Pr
X∼D

[X = x] =

∑
z≥0 exp(−(x+ 2nz)/σ)∑

z≥0 exp(−z/σ)
= Cσ ·

∏
i

exp(−2ixi/σ) ,

where

Cσ :=

∑
z≥0 exp(−2nz/σ)∑
z≥0 exp(−z/σ)

.

I.e., D is a product distribution. From the above expression, we see that

Pr
X∼D

[Xi = 0] = exp(2i/σ) · Pr
X∼D

[Xi = 1] .

The desired conclusion then follows from Theorem 16 with

εi =
1− exp(−2i/σ)

1 + exp(−2i/σ)
.

ut

No Time to Hash 27

7.2 Computational results for n = 32 and n = 64

Finally, we use the formula from Corollary 3 to directly compute the number of
samples needed to condense to nearly full entropy from the exponential distribu-
tion with different starting entropy and different permutations. At a high level,
these results confirm that the covering number Cπ,k provides a good estimate for
the number of steps needed to condense. We display a more detailed discussion
in the full version [8].

8 Bigger picture

In this work we abstracted out and analysed the fast entropy accumulation
procedures found in modern RNGs. We can now combine our results with prior
RNG literature [9,10,14,16,7] to get a better big picture guarantee of the resulting
RNG, but we start with some observations.

First, every RNG so far used a different (and often incompatible) modeling
of the security of the slow refresh procedure. So, it’s not clear what is the “right”
model for slow refresh—let alone a hybrid fast/slow model. The good news is
that all of the slow refresh models share one thing in common—their rate of
convergence depends only on either the overall collision/min-entropy that they
received. So, the fact that our work guarantees entropic output from a fast refresh
seems like a good start in trying to unify the two models.

Indeed, our results do (trivially) combine with every prior RNG work, and
for concreteness we state one such combination below (focusing on the slow re-
fresh RNG work of [10], but other combinations are done analogously). The
main issue with such naive combinations is that they appear to only work with
a relatively weak RNG adversary, which must output independent (but not nec-
essarily identical) samples from the family of two-monotone distributions Dk,n,
for (fixed but unknown) min-entropy k per sample. We show a concrete example
of a combined slow-refresh and fast-refresh procedure in the full version[8], but
we stress that this is meant only as a proof of concept and that we do not claim
that the model used in [8] is the “right” model.

As a positive, this is already a highly non-trivial and quite interesting model.
For example, very related “constant entropy rate” adversaries were mentioned
by Fergusson and Schneier [13]—and later formalized by [10]—in their design
and analysis of Fortuna, which directly led to the Windows 10 RNG [12]. On
the negative side, prior work on slow refresh [9,10,14,16]
[7] worked hard to give a lot of power to the RNG attacker, including the ability
to output correlated samples, and drastically change the entropy of each sample
(subject only to providing enough entropy overall). Thus, it is unfortunate that
the naive composition that follows from using our work did not use all these
powerful security guarantees of the slow-refresh procedures, and resulted in a
much weaker overall attacker.

We note that, while the naive composition currently does not capture the
ability of the distribution sampler to change its entropy parameter k, it is clear

28 Y. Dodis et al.

that the final RNG is at least somewhat resilient and easily adaptable to this
change, as the RNG design does not use the knowledge of k, and simultaneously
provides good guarantees for all k. So it feels the actual hybrid slow-/fast-refresh
RNG is much more robust that the current composition states. If nothing else,
the resulting RNGs are basically what is used in the real world, and these RNGs
appear to work well against practical entropy sources. In particular, while it is
great that the standards for the slow refresh procedure in the literature are very
high, the existing entropy sources (e.g., modeling timing of interrupts) appear to
be much less adversarial, and likely lie somewhere in between the independent
2-monotone sources modeled in this paper and the very general classes handled
in the literature on slow refresh procedures.

In summary, we view our current work as only the starting point in trying
to understand and model the overall security of the composed RNG, and believe
that finding the “right” model to combine fast refresh with slow refresh is a great
avenue for future work.

Acknowledgments. Yevgeniy Dodis — Partially supported by gifts from VMware
Labs, Facebook and Google, and NSF grants 1314568, 1619158, 1815546.

Siyao Guo — Supported by Shanghai Eastern Young Scholar Program SMEC-
0920000169. Parts of this work were done while visiting the Centre for Quantum
Technologies, National University of Singapore.

Noah Stephens-Davidowitz — Some of this work was done at MIT supported
in part by NSF Grants CNS-1350619, CNS-1414119 and CNS1718161, Microsoft
Faculty Fellowship and an MIT/IBM grant. Some of this work was done at the
Simons Institute in Berkeley.

References

1. Supplementary material: covering numbers for all rotations with n = 32 and n =
64. http://noahsd.com/rotation_extractor_supplement.zip

2. Bar-Yossef, Z., Trevisan, L., Reingold, O., Shaltiel, R.: Streaming computation
of combinatorial objects. In: Proceedings of the 17th Annual IEEE Conference on
Computational Complexity, Montréal, Québec, Canada, May 21-24, 2002. pp. 165–
174. IEEE Computer Society (2002). https://doi.org/10.1109/CCC.2002.1004352,
https://doi.org/10.1109/CCC.2002.1004352

3. Barak, B., Halevi, S.: A model and architecture for pseudo-random generation with
applications to /dev/random. In: Atluri, V., Meadows, C.A., Juels, A. (eds.) Pro-
ceedings of the 12th ACM Conference on Computer and Communications Security,
CCS 2005, Alexandria, VA, USA, November 7-11, 2005. pp. 203–212. ACM (2005).
https://doi.org/10.1145/1102120.1102148, https://doi.org/10.1145/1102120.

1102148

4. Barak, B., Impagliazzo, R., Wigderson, A.: Extracting randomness using few inde-
pendent sources. In: 45th Symposium on Foundations of Computer Science (FOCS
2004), 17-19 October 2004, Rome, Italy, Proceedings. pp. 384–393. IEEE Com-
puter Society (2004). https://doi.org/10.1109/FOCS.2004.29, https://doi.org/

10.1109/FOCS.2004.29

http://noahsd.com/rotation_extractor_supplement.zip
https://doi.org/10.1109/CCC.2002.1004352
https://doi.org/10.1109/CCC.2002.1004352
https://doi.org/10.1145/1102120.1102148
https://doi.org/10.1145/1102120.1102148
https://doi.org/10.1145/1102120.1102148
https://doi.org/10.1109/FOCS.2004.29
https://doi.org/10.1109/FOCS.2004.29
https://doi.org/10.1109/FOCS.2004.29

No Time to Hash 29

5. Chattopadhyay, E., Zuckerman, D.: Explicit two-source extractors and re-
silient functions. In: Wichs, D., Mansour, Y. (eds.) Proceedings of the
48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016. pp. 670–683. ACM (2016).
https://doi.org/10.1145/2897518.2897528, https://doi.org/10.1145/2897518.

2897528

6. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM J. Comput. 17(2), 230–261 (1988).
https://doi.org/10.1137/0217015, https://doi.org/10.1137/0217015

7. Coretti, S., Dodis, Y., Karthikeyan, H., Tessaro, S.: Seedless fruit is the sweet-
est: Random number generation, revisited. In: Boldyreva, A., Micciancio, D.
(eds.) Advances in Cryptology - CRYPTO 2019 - 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Pro-
ceedings, Part I. Lecture Notes in Computer Science, vol. 11692, pp. 205–234.
Springer (2019). https://doi.org/10.1007/978-3-030-26948-7 8, https://doi.or

g/10.1007/978-3-030-26948-7_8

8. Dodis, Y., Guo, S., Stephens-Davidowitz, N., Xie, Z.: No time to hash: On super-
efficient entropy accumulation (full version). Cryptology ePrint Archive, Report
2021/523 (2021), https://eprint.iacr.org/2021/523

9. Dodis, Y., Pointcheval, D., Ruhault, S., Vergnaud, D., Wichs, D.: Security anal-
ysis of pseudo-random number generators with input: /dev/random is not ro-
bust. In: CCS (2013). https://doi.org/10.1145/2508859.2516653, https://doi.

org/10.1145/2508859.2516653

10. Dodis, Y., Shamir, A., Stephens-Davidowitz, N., Wichs, D.: How to eat your
entropy and have it too: Optimal recovery strategies for compromised rngs. Al-
gorithmica 79(4), 1196–1232 (2017). https://doi.org/10.1007/s00453-016-0239-3,
https://doi.org/10.1007/s00453-016-0239-3

11. Ferguson, N.: Private communication (2013)

12. Ferguson, N.: The windows 10 random number generation infrastructure.
https://www.microsoft.com/security/blog/2019/11/25/going-in-depth

-on-the-windows-10-random-number-generation-infrastructure/ (2019),
[Online; posted October 2019]

13. Ferguson, N., Schneier, B.: Practical cryptography. Wiley (2003)

14. Gazi, P., Tessaro, S.: Provably robust sponge-based prngs and kdfs. In: Eu-
rocrypt (2016). https://doi.org/10.1007/978-3-662-49890-3 4, https://doi.org/

10.1007/978-3-662-49890-3_4

15. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom
generator from any one-way function. SIAM J. Comput. 28(4), 1364–
1396 (1999). https://doi.org/10.1137/S0097539793244708, https://doi.org/10.

1137/S0097539793244708

16. Hutchinson, D.: A robust and sponge-like PRNG with improved efficiency. In:
SAC (2016). https://doi.org/10.1007/978-3-319-69453-5 21, https://doi.org/

10.1007/978-3-319-69453-5_21

17. Kamp, J., Rao, A., Vadhan, S.P., Zuckerman, D.: Deterministic ex-
tractors for small-space sources. J. Comput. Syst. Sci. 77(1), 191–220
(2011). https://doi.org/10.1016/j.jcss.2010.06.014, https://doi.org/10.1016/

j.jcss.2010.06.014

18. Karp, A.H.: Bit reversal on uniprocessors. SIAM Rev. 38(1), 1–26 (1996).
https://doi.org/10.1137/1038001, https://doi.org/10.1137/1038001

https://doi.org/10.1145/2897518.2897528
https://doi.org/10.1145/2897518.2897528
https://doi.org/10.1145/2897518.2897528
https://doi.org/10.1137/0217015
https://doi.org/10.1137/0217015
https://doi.org/10.1007/978-3-030-26948-7_8
https://doi.org/10.1007/978-3-030-26948-7_8
https://doi.org/10.1007/978-3-030-26948-7_8
https://eprint.iacr.org/2021/523
https://doi.org/10.1145/2508859.2516653
https://doi.org/10.1145/2508859.2516653
https://doi.org/10.1145/2508859.2516653
https://doi.org/10.1007/s00453-016-0239-3
https://doi.org/10.1007/s00453-016-0239-3
https://doi.org/10.1007/s00453-016-0239-3
https://www.microsoft.com/security/blog/2019/11/25/going-in-depth-on-the-windows-10-random-number-generation-infrastructure/
https://www.microsoft.com/security/blog/2019/11/25/going-in-depth-on-the-windows-10-random-number-generation-infrastructure/
https://doi.org/10.1007/978-3-662-49890-3_4
https://doi.org/10.1007/978-3-662-49890-3_4
https://doi.org/10.1007/978-3-662-49890-3_4
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1007/978-3-319-69453-5_21
https://doi.org/10.1007/978-3-319-69453-5_21
https://doi.org/10.1007/978-3-319-69453-5_21
https://doi.org/10.1016/j.jcss.2010.06.014
https://doi.org/10.1016/j.jcss.2010.06.014
https://doi.org/10.1016/j.jcss.2010.06.014
https://doi.org/10.1137/1038001
https://doi.org/10.1137/1038001

30 Y. Dodis et al.

19. Kelsey, J., Schneier, B., Ferguson, N.: Yarrow-160: Notes on the design
and analysis of the yarrow cryptographic pseudorandom number generator.
In: SAC (1999). https://doi.org/10.1007/3-540-46513-8 2, https://doi.org/10.

1007/3-540-46513-8_2

20. Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci.
52(1), 43–52 (1996). https://doi.org/10.1006/jcss.1996.0004, https://doi.org/

10.1006/jcss.1996.0004

21. Raz, R., Reingold, O.: On recycling the randomness of states in space
bounded computation. In: Vitter, J.S., Larmore, L.L., Leighton, F.T.
(eds.) Proceedings of the Thirty-First Annual ACM Symposium on The-
ory of Computing, May 1-4, 1999, Atlanta, Georgia, USA. pp. 159–168.
ACM (1999). https://doi.org/10.1145/301250.301294, https://doi.org/10.

1145/301250.301294

22. Reingold, O., Shaltiel, R., Wigderson, A.: Extracting randomness via repeated
condensing. In: 41st Annual Symposium on Foundations of Computer Science,
FOCS 2000, 12-14 November 2000, Redondo Beach, California, USA. pp. 22–31.
IEEE Computer Society (2000). https://doi.org/10.1109/SFCS.2000.892008, ht

tps://doi.org/10.1109/SFCS.2000.892008

23. Wikipedia: /dev/random. http://en.wikipedia.org/wiki//dev/random (2004),
[Online; accessed 09-February-2014]

https://doi.org/10.1007/3-540-46513-8_2
https://doi.org/10.1007/3-540-46513-8_2
https://doi.org/10.1007/3-540-46513-8_2
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.1145/301250.301294
https://doi.org/10.1145/301250.301294
https://doi.org/10.1145/301250.301294
https://doi.org/10.1109/SFCS.2000.892008
https://doi.org/10.1109/SFCS.2000.892008
https://doi.org/10.1109/SFCS.2000.892008
http://en.wikipedia.org/wiki//dev/random

	No Time to Hash:On Super-Efficient Entropy Accumulation

