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Abstract. Fine-grained cryptography is constructing cryptosystems in
a setting where an adversary’s resource is a-prior bounded and an honest
party has less resource than an adversary. Currently, only simple form
of encryption schemes, such as secret-key and public-key encryption, are
constructed in this setting.

In this paper, we enrich the available tools in fine-grained cryptography
by proposing the first fine-grained secure attribute-based encryption
(ABE) scheme. Our construction is adaptively secure under the widely
accepted worst-case assumption, NC1 ( ⊕L/poly, and it is presented in a
generic manner using the notion of predicate encodings (Wee, TCC’14).
By properly instantiating the underlying encoding, we can obtain different
types of ABE schemes, including identity-based encryption. Previously,
all of these schemes were unknown in fine-grained cryptography. Our
main technical contribution is constructing ABE schemes without using
pairing or the Diffie-Hellman assumption. Hence, our results show that,
even if one-way functions do not exist, we still have ABE schemes with
meaningful security. For more application of our techniques, we construct
an efficient (quasi-adaptive) non-interactive zero-knowledge (QA-NIZK)
proof system.
Keywords. Fine-grained cryptography, identity-based encryption, attr-
ibute-based encryption, quasi-adaptive non-interactive zero-knowledge
proof.

1 Introduction

1.1 Motivation

Modern cryptography bases the security of schemes on assumptions, including
the basic ones (such as the existence of one-way functions (OWFs)), the more
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advanced ones (such as the hardness of factoring, discrete logarithms, and some
lattice problems), and the much more exotic ones (such as the existence of generic
groups [29,25] or algebraic groups [17]). Although there is some analysis on these
assumptions, it is less desirable. We are interested in how to construct cryptogra-
phy based on much mild assumptions or which form of security cryptography
can be achieved if all classical assumptions (such as the existence of OWFs) do
not hold.

Fine-grained cryptography is a direction in approaching the aforementioned
problems. It aims at cryptography with weaker security in a setting where
adversaries have only bounded resources and honest users have less resources
than the adversaries. Under this setting it is possible to make the underlying
assumption extremely mild, for instance, assuming NC1 ( ⊕L/poly. This is a
widely accepted worst-case assumption. As ⊕L/poly is the class of languages with
polynomial-sized branching programs and all languages in NC1 have polynomial-
sized branching programs of constant width [3], this assumption holds if there
exists one language having only polynomial-sized branching programs of non-
constant width. This is different to assuming the existence of OWFs which is
an average-case assumption. It requires that the OWF be hard to invert on a
random input. Hence, NC1 ( ⊕L/poly is more likely to be true.

The study on fine-grained cryptography was initialized by Merkle [26]. In the
recent years, we are interested in which kind of cryptosystems can be constructed
in this setting. We highlight the recent constructions of OWFs [8], symmetric-key
and (additively homomorphic) public-key encryption [13,9], hash proof systems
(HPS) [14], and non-interactive zero-knowledge (NIZK) proof systems [2]. However,
due to the restriction on running resources, many important primitives remain
unknown. Surprisingly, digital signature schemes are among them, although they
are implied by OWFs in the classical setting.

Our goal: fine-grained secure ABEs. We focus on constructing attribute-
based encryption (ABE) schemes [19] with fine-grained security, since it has many
applications and implies important primitives, including digital signatures. In
an ABE scheme, messages are encrypted under descriptive values x, secret keys
are associated with values y, and a secret key decrypts the ciphertext if and only
if p(x, y) = 1 for some Boolean predicate p. Here the predicate p may express
arbitrary access policy. This is in contrast to traditional public-key encryption
(PKE) schemes without access control on data. Identity-based encryption [28,6,12]
is a simplified version of ABE, where p is the equality predicate, and it implies
signatures in a natural manner (even in the fine-grained setting).

In general, it is challenging to construct ABEs. For instance, in the classical
setting, it is shown that IBEs cannot be constructed using trapdoor permutations
(TDP) or CCA-secure PKE schemes in a black-box manner [7]. Moreover, many
pairing-based constructions of ABE and IBE (for instance, [10,5]) heavily rely
on the algebraic structures of pairing groups. These necessary structures are not
available in fine-grained cryptography. Thus, in this paper, we will transform
the state of the art of fine-grained cryptography, which only provides primitives
related to TDP and CCA-secure PKE, and develop new tools to achieve our goal.
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1.2 Our Contributions

We construct the first fine-grained secure ABE scheme. In particular, our scheme
is computable in AC0[2] and secure against adversaries in NC1. Note that AC0[2] (
NC1 [27,30]. Similar to several existing NC1 fine-grained primitives [13,9,14], the
security of our scheme is based on the same worst-case assumption NC1 ( ⊕L/poly.
This is a widely accepted, weak assumption. For simplicity, we consider fine-
grained cryptography as schemes with NC1 honest users and adversaries and
security based on NC1 ( ⊕L/poly in the rest of this paper.

Previously, fine-grained cryptography can only achieve symmetric-key and
public-key encryption and HPS. Our work enriches its available tools and brings
fine-grained cryptography closer to classical cryptography in terms of functional-
ity.

In particular, our construction is presented in a generic manner using predicate
encodings [32,10]. Hence, by suitably instantiating the underlying encoding, we
directly obtain a fine-grained IBE scheme (which in turn implies a fine-grained
signature scheme), fine-grained ABEs for inner-product encryption, non-zero
inner-product encryption, spatial encryption, doubly spatial encryption, boolean
span programs, and arithmetic span programs, and also fine-grained broadcast
encryption and fuzzy IBE schemes. Prior to this work, it was unknown whether
these primitives can be constructed in NC1 based on a worst-case complexity
assumption.

Finally, we use our technique to construct an efficient quasi-adaptive NIZK [23]
with fine-grained security. Here “quasi-adaptive” means that common reference
strings may depend on the language of the NIZK system.

1.3 Technique Overview

We borrow the frameworks of the pairing-based constructions of IBEs in [5] and
ABEs in [10] to upgrade the available fine-grained techniques [22,1,14] in achieving
our goal. At a high-level point of view, the main idea in [5,10] is to find a suitable
symmetric-key primitive and transform it to the corresponding public-key scheme
using pairings and the Matrix Decisional Diffie-Hellman (MDDH) assumption [16].
More precisely, the Blazy-Kiltz-Pan (BKP) framework [5] transforms message
authentication codes (MAC) to IBEs, and the Chen-Gay-Wee (CGW) framework
[10] transforms predicate encodings to ABEs.

However, the goal of fine-grained cryptography is to construct schemes with
mild assumptions other than the MDDH assumption. Our work develops tech-
niques to build ABEs without pairings or the MDDH assumption, but only under
the mild assumption that NC1 ( ⊕L/poly. For simplicity, we mostly focus on our
techniques in the context of IBE here, and give some ideas about how they can be
extended to construct ABEs. In this paper, we consider adaptive security where
adversaries can adaptively request user secret keys and a challenge ciphertext.
The approach of BKP and its limitations in NC1. The “MAC→IBE” trans-
formation of BKP [5] is an abstraction of the Chen-Wee (CW) IBE scheme [11],
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and it also generalizes the “PRF→Signature” framework by Bellare and Gold-
wasser (BG) [4] in the IBE context. The BKP transformation requires an “affine
MAC”, namely, a MAC whose verification is done by checking a particular system
of affine equations. Variables in these affine equations are included in the MAC
secret key, and the (public) coefficients are derived from the message (which will
be the identity of the resulting IBE scheme) to be signed. Such a MAC scheme
can be constructed based on the Diffie-Hellman assumption which is generalized
as the MDDH assumption.

We give some ideas about how an affine MAC can be turned into an IBE
scheme. The master public key of an IBE scheme, pk = Com(skMAC), is a com-
mitment of the MAC secret key, skMAC. A user secret key usk[id] of an identity
id consists of a BG signature, namely, a MAC tag τid on the message id and a
NIZK proof of the validity of τid w.r.t. the secret key committed in pk.

Since the MAC verification consists of only affine equations, after implementing
the aforementioned commitments and NIZK proofs with the (tuned) Groth-Sahai
(GS) proof system [20], the BKP IBE ciphertext ctid can be viewed as a randomized
linear combination of pk w.r.t. id. This is the key observation of BKP. The BKP
framework can be further improved and extended to construct ABEs using
predicate encodings [32] as in the CGW framework [10].

The MDDH assumption and the pairing-based GS proofs are two key ingredi-
ents for the BKP framework which are not available in fine-grained cryptography.
One direction to resolve this is to develop a fine-grained GS proof system, but it
is not clear what the counterpart of “pairing-product equations” will be. Instead,
we achieve our goal with a simpler and more direct approach.
A hard subset membership problem for NC1 circuits. We first need to find
a counterpart of the MDDH assumption in NC1, since the separation assumption
NC1 ( ⊕L/poly does not directly give us tools in constructing cryptographic
schemes. In the work of [22,1], it is shown that, if NC1 ( ⊕L/poly holds, then
the following two distributions are identical for NC1 circuits:

{M0 ∈ {0, 1}n×n : M0
$← ZeroSamp(n)}︸ ︷︷ ︸

=D0

and {M1 ∈ {0, 1}n×n : M1
$← OneSamp(n)}︸ ︷︷ ︸

=D1

where n = n(λ) is some polynomial in security parameter λ, and the randomized
sampling algorithms ZeroSamp and OneSamp output matrices with rank n− 1
and full rank, respectively. Concrete definitions of these algorithms are given in
Section 2.2, and they are not relevant in this section.

This indistinguishability implies a hard subset membership problem in NC1

implicitly given by Egashira, Wang, and Tanaka [15] for their HPS: Given a
matrix M from D0 and a random vector t in two specific distributions represented
by M, the task of the problem is to tell whether t is in the span of M.
Our IBE in NC1. Our main technical contribution is a new approach of using
the subset membership problem to transform an affine MAC to IBEs in the
fine-grained setting. Our starting point is constructing a secure affine MAC in
NC1. We prove that, if the subset membership problem is hard in NC1, then our
MAC is secure for NC1 adversaries.
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Next, we propose a generic construction of IBE based on affine MACs, follow-
ing the BKP framework. In stark contrast to the BKP, our construction does not
require pairings. Essentially, we develop a Groth-Sahai-like proof system in NC1

to prove the validity of our affine MAC. This proof system allows us to show that
if our affine MAC is secure then our resulting IBE is secure in NC1. At the core
of our proof system is a new commitment scheme in NC1, for which we achieve
the hiding property by exploiting the concrete structure of matrices in D0.

We give more details about the security proof. Firstly, the zero-knowledge
property allows us to generate user secret keys for adversaries without knowing the
MAC secret key. Secondly, we show that if an adversary can break the adaptive
security of our IBE, then we can construct a reduction to break the security of
our affine MAC. This is a crucial step, and we require some extractability of the
proof system to extract the MAC forgery from the IBE adversary. In the BKP
framework, this extractability can be achieved by computing the inversion of some
matrix A ∈ Zk×k

q for some positive integer k. However, in our setting, inverting a
matrix in {0, 1}n×n is impossible, otherwise, this will lead to a distinguisher for
the subset membership problem in NC1. Also, there is no known way to sample
a matrix with its inverse efficiently [14]. To solve it, our proof system develop a
new method in achieving this extractability without inverting any matrix. Our
core idea is to prove that with a fresh random string r $← {0} × {0, 1}n−1, it
is possible to extract the forgery from our NC1-commitments by switching the
distribution of the public parameter A ∈ D0 twice (from D0 to D1 and then
back to D0) and changing the distribution of r during the switching procedure.
Dual system methodology in NC1 and ABE. Our techniques for IBE can
also be viewed as the dual system encryption methodology [31] in NC1, which
is an alternative interpretation of our approach. In our proof, there are two
important technical steps, switching ciphertexts to invalid and randomizing MAC
tags in the user secret keys. These correspond to switching ciphertexts and user
secret keys from functional to semi-functional in the dual system encryption
methodology [31,24,5,10]. Dual system methodology is very useful in constructing
predicate encryption and it was only known with pairings. Our work is for the
first time implementing the dual system methodology without pairings.

Similar to the extension from BKP-IBE [5] to CGW-ABE [10], we further
extend our techniques in constructing ABEs. We first use predicate encodings
[32,10] to generalize the notion of affine MAC and make it useful for constructing
ABEs. After that, we upgrade our IBE techniques, and transform the generalized
affine MAC to an adaptively secure ABE in NC1.
More extension and open problem. We are optimistic that our approach
can yield many more new public-key schemes in fine-grained cryptography. In
particular, we show that our techniques can also be used to construct an efficient
QA-NIZK in NC1 with adaptive soundness in the full paper. Roughly, we use the
technique for proving the hiding property of the underlying commitment scheme
in our IBE scheme to achieve adaptive soundness.

Also, we are optimistic that our approach can be used to construct hierarchical
IBE [18,21]. We leave a detailed treatment of it as an open problem.
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2 Preliminaries

Notations. We note that all arithmetic computations are over GF (2) in this
work. Namely, all arithmetic computations are performed with a modulus of
2. We write a $← A(b) (respectively, a = A(b)) to denote the random variable
outputted by a probabilistic (respectively, deterministic) algorithm A on input
b. By x $← S we denote the process of sampling an element x from a set or
distribution S uniformly at random. By x ∈ {0, 1}n we denote a column vector
with size n and by, say, x ∈ {1} × {0, 1}n−1 we mean that the first element of
x is 1. By [n] we denote the set {1, · · · , n}. By xi (respectively, xi) we denote
the ith element of a vector x (respectively, x). By negl we denote an unspecified
negligible function.

For a matrix A ∈ {0, 1}n×t with rank t′ < n, we denote the sets {y|∃x s.t. y =
Ax} and {x |Ax = 0} by Im(A) (i.e., the span of A) and Ker(A) respectively.
By A⊥ ∈ {0, 1}n×(n−t′) we denote a matrix consisting of n− t′ linear indepen-
dent column vectors in the kernel of A>. Note that for any y /∈ Im(A), we

have y>A⊥ 6= 0. By (aij)i∈[l],j∈[m] we denote the matrix

a11 · · · a1m

...
. . .

...
al1 · · · alm

. Let

A = (aij)i∈[l],j∈[m] be an l×m matrix and B = (Bij)i∈[m],j∈[n] be a large matrix
consisting of m× n matrices Bij for all i ∈ [m] and j ∈ [n]. By h�A we denote
(h · aij)i∈[l],j∈[m] and by A�B we denote

(
m∑

k=1
aik �Bkj)i∈[l],j∈[n].

By Mn
0 , Mn

1 , and Nn, we denote the following n× n matrices:

Mn
0 =



0 · · · 0 0
1 0 0

0 1
. . .

...
...

...
. . . 0

0 · · · 0 1 0

 , Mn
1 =



0 · · · 0 1
1 0 0

0 1
. . .

...
...

...
. . . 0

0 · · · 0 1 0

 , Nn =


0 · · · 0
... 0 · · · 0

0
. . .

...
1 0 · · · 0

 ,

and by 0 we denote a zero vector (0, · · · , 0)>.
Games. We follow [5] to use code-based games for defining and proving security.
A game G contains procedures Init and Finalize, and some additional proce-
dures P1, . . . ,Pn, which are defined in pseudo-code. All variables in a game are
initialized as 0, and all sets are empty (denote by ∅). An adversary A = {aλ}λ∈N
is executed in game G w.r.t. the security parameter λ (denote by Gaλ) if aλ

first calls Init, obtaining its output. Next, it may make arbitrary queries to Pi

(according to their specification) and obtain their output. Finally, it makes one
single call to Finalize(·) and stops. We use Gaλ ⇒ d to denote that G outputs d
after interacting with aλ, and d is the output of Finalize.
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2.1 Function Families

In this section, we recall the definitions of function families, NC1 circuits, AC0[2]
circuits, and ⊕L/poly. Note that AC0[2] ( NC1 [27,30].

Definition 1 (Function Family). A function family is a family of (possibly
randomized) functions F = {fλ}λ∈N, where for each λ, fλ has a domain Df

λ and
a range Rf

λ.

Definition 2 (NC1). The class of (non-uniform) NC1 function families is the
set of all function families F = {fλ}λ∈N for which there is a polynomial p(·) and
constant c such that for each λ, fλ can be computed by a (randomized) circuit of
size p(λ), depth c log(λ), and fan-in 2 using AND, OR, and NOT gates.

Definition 3 (AC0[2]). The class of (non-uniform) AC0[2] function families is
the set of all function families F = {fλ}λ∈N for which there is a polynomial p(·)
and constant c such that for each λ, fλ can be computed by a (randomized) circuit
of size p(λ), depth c, and unbounded fan-in using AND, OR, NOT, and PARITY
gates.

One can see that multiplication of a constant number of matrices can be performed
in AC0[2], since it can be done in constant depth with PARITY gates.

Definition 4 (⊕L/poly). ⊕L/poly is the set of all boolean function families
F = {fλ}λ∈N for which there is a constant c such that for each λ, there is a
non-deterministic Turing machine Mλ such that for each input x with length
λ, Mλ(x) uses at most c log(λ) space, and fλ(x) is equal to the parity of the
number of accepting paths of Mλ(x).

2.2 Sampling Procedure

We now recall the definitions of four sampling procedures LSamp, RSamp,
ZeroSamp, and OneSamp in Figure 1. Note that the output of ZeroSamp(n) is
always a matrix of rank n− 1 and the output of OneSamp(n) is always a matrix
of full rank [13].

We now recall several assumptions and lemmata on ZeroSamp and OneSamp
given in [13].

Definition 5 (Fine-grained matrix linear assumption [13]). There exists
a polynomial n = n(λ) in the security parameter λ such that for any family
A = {aλ}λ∈N in NC1, we have

|Pr[aλ(M) = 1 |M $← ZeroSamp(n)]−
Pr[aλ(M′) = 1 |M′ $← OneSamp(n)]| ≤ negl(λ).

Lemma 1 (Lemma 4.3 in [13]). If NC1 ( ⊕L/poly, then the fine-grained
matrix linear assumption holds.
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LSamp(n):
For all i, j ∈ [n] and i < j:

ri,j
$← {0, 1}

Return
1 r1,2 · · · r1,n−1 r1,n

0 1 r2,3 · · · r2,n

0 0
. . .

...
...

...
. . . 1 rn−1,n

0 · · · 0 0 1



RSamp(n):
For i = 1, · · · , n− 1

ri
$← {0, 1}

Return
1 · · · 0 r1
0 1 r2

0 0
. . .

...
...

...
. . . 1 rn−1

0 · · · 0 0 1



ZeroSamp(n):
R0

$← LSamp(n) ∈ {0, 1}n×n

R1
$← RSamp(n) ∈ {0, 1}n×n

Return R0Mn
0 R1 ∈ {0, 1}n×n

OneSamp(n):
R0

$← LSamp(n)
R1

$← RSamp(n)
Return R0Mn

1 R1 ∈ {0, 1}n×n

Fig. 1. Definitions of LSamp, RSamp, ZeroSamp, and OneSamp. n = n(λ) is a polynomial
in the security parameter λ.

Remark. Notice that for any polynomial n = n(λ), we have {fn}λ∈N ∈ NC1 iff
{fλ}λ∈N ∈ NC1 since O(log(n(λ))) = O(log(λ)). Hence, in the above lemma, we
can also set n(·) as an identity function, i.e., n = λ. For simplicity, in the rest of
the paper, we always let ZeroSamp(·) and OneSamp(·) take as input λ.

The following lemma implies that for a matrix M> sampled by ZeroSamp(λ),
there is a unique non-zero vector with the first (respectively, last) element being
1 in the kernel of M (respectively, M>).

Lemma 2 (Lemma 3 in [15]). For all λ ∈ N and all M> ∈ ZeroSamp(λ), it
holds that Ker(M>) = {0, k} where k is a vector such that k ∈ {0, 1}λ−1 × {1}.

Lemma 3 (Lemma 4 in [15]). For all λ ∈ N and all M> ∈ ZeroSamp(λ), it
holds that Ker(M) = {0, k} where k is a vector such that k ∈ {1} × {0, 1}λ−1,
i.e., there must exist M⊥ ∈ {1} × {0, 1}λ−1.

The following lemma indicates a simple relation between the distributions of
the outputs of ZeroSamp(λ) and OneSamp(λ).

Lemma 4 (Lemma 7 in [15]). For all λ ∈ N, the distributions of M + Nλ

and M′ are identical, where M> $← ZeroSamp(λ) and M′> $← OneSamp(λ).

We now give two lemmata showing that when sampling a random vector w
from {0, 1}λ, the first element of w does not affect the distribution of Mw for
M> ∈ ZeroSamp(λ).

Lemma 5 (Lemma 5 in [15]). For all λ ∈ N and all M> ∈ ZeroSamp(λ), it
holds that

Im(M) = {x|w ∈ {0}×{0, 1}λ−1, x = Mw} = {x|w ∈ {1}×{0, 1}λ−1, x = Mw}.

Lemma 6. For all λ ∈ N and all M> ∈ ZeroSamp(λ), the distributions of x and
x′ are identical, where w $← {0} × {0, 1}λ−1, w′ $← {1} × {0, 1}λ−1, x = Mw,
and x′ = Mw′.
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Proof. According to Lemma 3, for any M> ∈ ZeroSamp(λ), there exists k ∈
Ker(M) such that k ∈ {1} × {0, 1}λ−1. Therefore, the distributions of (w + k),
where w $← {0}×{0, 1}λ−1, and w′ $← {1}×{0, 1}λ−1 are identical. Moreover, we
have Mw = M(w + k). Hence, the distributions of Mw and Mw′ are identical.
completing the proof of Lemma 6. ut

Below we recall the a theorem implicitly given in [15] as the subset membership
problem for an HPS. Roughly, it shows that for M> $← ZeroSamp(λ), a vector
sampled from the span of M is indistinguishable from one sampled outside the
span of M for any adversary in NC1. We refer the reader to the full paper for
the proof.

Definition 6 (Fine-grained subset membership problem [15]). Let SY =
{SampYesλ}λ∈N and SN = {SampNoλ}λ∈N be function families described in Fig-
ure 2. For all λ ∈ N, all M> ∈ ZeroSamp(λ), and all x ∈ SampNoλ(M), we
have x ∈ {0, 1}λ \ Im(M), then for M> $← ZeroSamp(λ) and any adversary
A = {aλ}λ∈N ∈ NC1, we have

|Pr[aλ(x) = 1 | x $← SampYesλ(M)]−
Pr[aλ(x) = 1 | x $← SampNoλ(M)]| ≤ negl(λ).

SampYesλ(M ∈ {0, 1}λ×λ):
w $← {1} × {0, 1}λ−1

Return x = Mw

SampNoλ(M) ∈ {0, 1}λ×λ):
w $← {1} × {0, 1}λ−1

Return x = (M + Nλ)w.

Fig. 2. Definitions of SY and SN. Note that SY, SN ∈ AC0[2], since they only involve
operations including sampling random bits and multiplication of a matrix and a vector.

Theorem 1 ([15]). If NC1 ( ⊕L/poly, then the fine-grained subset membership
problem (see Definition 6) holds.

Remark. Note that the subset membership problem in [15] gives a stronger
result additionally showing that the output distributions of SampYesλ(M) and
SampNoλ(M) are identical to the uniform distributions over Im(M) and {0, 1}λ \
Im(M) respectively. We only need a weak form of it in this work.

2.3 Predicate Encodings

We now recall the definition of predicate encodings. As in [10], our resulting
construction of ABE is generally based on a predicate encoding. By exploiting
various types of encodings, we can achieve a broad class of ABEs.

Our definitions are slightly different from the original definition in [10], in
that our definition is over GF (2) rather than GF (p), and we require that the
encodings are performed in a circuit class C1.
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Definition 7 (Predicate Encoding [10]). Let P = {pλ}λ∈N with pλ : X ×
Y → {0, 1} be a predicate, where X and Y are polynomial-sized spaces associated
with λ. An C1-predicate encoding for P is a function family PE = {rEλ, kEλ, sEλ,
sDλ, rDλ}λ∈N ∈ C1 with

– rEλ : Y × {0, 1}` → {0, 1}η,
– kEλ : Y × {0, 1} → {0, 1}η,
– sEλ : X × {0, 1}` → {0, 1}ζ ,
– sDλ : X × Y × {0, 1}ζ → {0, 1},
– rDλ : X × Y × {0, 1}η → {0, 1},

where ` = `(λ), η = η(λ), and ζ = ζ(λ) are polynomials in λ.
Linearity is satisfied is for all λ ∈ N and all (x, y) ∈ X × Y, rEλ(y, ·),

kEλ(y, ·), sEλ(x, ·), sDλ(x, y, ·), and rDλ(x, y, ·) are {0, 1}-linear. Namely, for any
y ∈ Y, any w0, w1 ∈ {0, 1}`, and any c ∈ {0, 1}, we have rEλ(y, w0 + w1 · c) =
rEλ(y, w0) + rEλ(w1) · c, and the same argument can be made for kEλ, sEλ, sDλ,
and rDλ.

Restricted α-reconstruction is satisfied if for all λ ∈ N, all (x, y) ∈ X × Y
such that pλ(x, y) = 1, all w ∈ {0, 1}`, and all α ∈ {0, 1}, we have

rDλ(x, y, rEλ(y, w)) = sDλ(x, y, sEλ(x, w)) and rDλ(x, y, kEλ(y, α)) = α.

α-privacy is satisfied if for all λ ∈ N, all (x, y) ∈ X ×Y such that pλ(x, y) = 0,
and all α ∈ {0, 1}, the following distributions are identical:

(x, y, α, sEλ(x, w), rEλ(y, w) + kEλ(y, α)) and (x, y, α, sEλ(x, w), rEλ(y, w)),

where w $← {0, 1}`.

Remark on notions for predicate encodings. Similar to [10], we abuse the
notion

rEλ(x, W) where W = (wij)i∈[l],j∈[m] and wij ∈ {0, 1}`

for all i, j to denote the matrix

(rEλ(x, wij))i∈[l],j∈[m].

The same argument is made for (kEλ, sEλ, sDλ, rDλ).
Encoding for equality. We now give an example of predicate encoding PEeq for
equality Peq in Figure 3. By instantiating our ABKEM given later in Section 5 with
this encoding, we immediately achieve an IBKEM. Linearity is straightforward.
Restricted α-reconstruction follows from the fact that u + x>w = u + y>w when
x = y, and α-privacy follows from the fact that u + x>w and u + y>w are
pairwise independent if x 6= y.

2.4 Attribute-based Key Encapsulation

We now give the definition of fine-grained ABKEM, the instantiation of which
can be easily converted into ABEs by using a one-time symmetric cypher.
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X = {0, 1}n, Y = {0, 1}n

` = (1 + n), η = 1, ζ = 1

pλ(x, y):
Return 1 iff x = y

sEλ(x, (u, w>)>) = u + x>w
rEλ(y, (u, w>)>) = u + y>w
kEλ(y, α) = α
sDλ(x, y, c) = c
rDλ(x, y, d) = d

Fig. 3. Definitions of Peq = {pλ}λ∈N and PEeq = {rEλ, kEλ, sEλ, sDλ, rDλ}.

Definition 8 (Attribute-based Key Encapsulation). A C1-attribute-bas-
ed key encapsulation (ABKEM) scheme for a predicate P = {pλ}λ is a function
family ABKEM = {Genλ, USKGenλ, Encλ, Decλ}λ∈N ∈ C1 with the following prop-
erties.

– Genλ returns the (master) public/secret key (pk, sk). We assume that pk
implicitly defines value spaces X and Y, a key space K, and a ciphertext space
C.

– USKGenλ(sk, y) returns a user secret-key usk[y] for a value y ∈ Y.
– Encλ(pk, x) returns a symmetric key K ∈ K together with a ciphertext ct ∈ C

w.r.t. x ∈ X .
– Decλ(usk[y], x, ct) deterministically returns a decapsulated key K ∈ K or the

reject symbol ⊥.
Perfect correctness is satisfied if for all λ ∈ N, all (pk, sk) ∈ Genλ, all

y ∈ Y, all x ∈ X , all usk[y] ∈ USKGenλ(sk, y), and all (K, ct) ∈ Encλ(pk, x), if
pλ(x, y) = 1, we have

Pr[Decλ(pk, usk[y], ct) = K] = 1.

The security requirement we consider is indistinguishability against chosen plain-
text and attribute attacks (PR-AT-CPA) defined as follows.

Definition 9 (PR-AT-CPA Security for ABKEM). Let k(·) and l(·) be func-
tions in λ. ABKEM is C2-(k, l)-PR-AT-CPA secure if for any A = {aλ}λ∈N ∈ C2,
where aλ is allowed to make k rounds of adaptive queries to USKGen(·) and
each round it query l inputs, we have

|Pr[PR-AT-CPAaλ

real ⇒ 1]− Pr[PR-AT-CPAaλ

rand ⇒ 1]| ≤ negl(λ),

where the experiments are defined in Figure 4.

3 Generalized Affine MAC

In this section, we give the definition of generalized affine MAC, which generalizes
the notion of standard affine MAC [5] by using predicate encodings, and show how
to construct it in the fine-grained setting under the assumption NC1 ( ⊕L/poly.
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Init:
(pk, sk) $← Genλ

Return pk

USKGen(y):
//k(λ)× l(λ) queries
Qy

$← Qy ∪ {y}
Return usk[id] $← USKGenλ(sk, y)

Enc(x):
//one query
(K∗, ct∗) $← Encλ(pk, x)
K∗ $← K

Return (K∗, ct∗)

Finalize(β):
If (pλ(x, y) 6= 1 for all y ∈ Qy, return β
Else return 0

Fig. 4. Security Games PR-AT-CPAreal and PR-AT-CPArand for defining PR-AT-CPA
security for ABKEM. The boxed statement redefining K∗ is only executed in game
PR-AT-CPArand.

3.1 Definitions

The definition of generalized affine MAC is as follows.

Definition 10 (Generalized Affine MAC). Let PE = {sEλ, rEλ, kEλ, sDλ,
rDλ}λ∈N ∈ C1 be a predicate encoding for P = {pλ}λ∈N, where rEλ : Y×{0, 1}` →
{0, 1}η, kEλ : Y × {0, 1} → {0, 1}η, and sEλ : X × {0, 1}` → {0, 1}ζ .

A C1-generalized affine message authentication code for PE is a function
family MACGA = {GenMACλ, Tagλ, VerMACλ}λ∈N ∈ C1.
1. GenMACλ returns skMAC containing (B, X, x′), where B ∈ ZeroSamp(λ), X ∈
{0, 1}λ×`, and x′ ∈ {0, 1}.

2. Tagλ(skMAC, m ∈ Y) returns a tag τ = (t, u) ∈ {0, 1}λ ×{0, 1}η, computed as

t $← SampYesλ(B) (1)
u = rEλ(m, X>t) + kEλ(m, x′) ∈ {0, 1}η. (2)

3. VerMACλ(skMAC, m, τ = (t, u)) verifies if equation (2) holds.
Correctness is satisfied if for any skMAC ∈ GenMACλ, m ∈ Y, and τ ∈

Tagλ(skMAC, m), we have 1 = VerMACλ(skMAC, m, τ).

The security requirement we consider is psedorandomness against chosen message
attacks (PR-CMA) defined as follows.

Definition 11 (PR-CMA Security). Let k = k(λ) and l = l(λ) be polynomials
in λ. MACGA is C2-(k, l)-PR-CMA secure if for any A = {aλ}λ∈N ∈ C2, where aλ

is allowed to make k rounds of adaptive queries to Eval(·) and each round it
queries l inputs, we have

Pr[PR-CMAaλ

real ⇒ 1]− Pr[PR-CMAaλ

rand ⇒ 1] ≤ negl(λ),

where the experiments are defined in Figure 5.
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Init:
skMAC = (B, X, x′) $← GenMACλ(par)
Return ε

Eval(m): // k(λ)× `(λ) queries
Qm = Qm ∪ {m}
Return (t, u) $← Tagλ(skMAC, m)

Chal(m∗): //one query
h0 = sEλ(m∗, X>) ∈ {0, 1}ζ×λ

h1 = x′ ∈ {0, 1}
h1

$← {0, 1}
Return (h, h0, h1)

Finalize(β ∈ {0, 1}):
If pλ(m∗, m) 6= 1 for all m ∈ Qm, return β
Else return 0

Fig. 5. Games PR-CMAreal and PR-CMArand for defining PR-CMA security. The boxed
statement redefining h1 is only executed in game PR-CMArand.

Roughly, the PR-CMA security says that in the presence of many tags and a
challenge token (h, h0, h1), an adversary cannot tell whether the h1 is honestly
generated or randomness.
Standard Affine MAC. Let X = (x0, x1, · · · , xn) $← {0, 1}λ×(n+1). When
pλ(·) is an identity function, u is computed as

u = x>
0 t +

n∑
i=1

mix>
i t + x′ ∈ {0, 1} (3)

in Equation (2), and h0 is computed as

h0 = h · (x>
0 +

n∑
i=1

mix>
i ) ∈ {0, 1}1×λ (4)

in Figure 5, i.e., the predicate encoding is the one for equality (see Figure 3), the
above definition become exactly the same as that of affine MAC given in [5] for
the HPS based IBKEM, except that we only consider computations over GF (2)
and t is sampled by SampYesλ. We give the definition as below.
Definition 12 (Affine MAC [5]). A Generalized affine MAC for the predicate
Peq and encoding PEeq defined as in Figure 3 is said to be an affine MAC.

3.2 Construction

In this section, we give our construction of AC0[2]-generalized affine MAC based
on NC1 ( ⊕L/poly. It is a natural extension of the standard affine MAC from an
HPS in [5].
Theorem 2. If NC1 ( ⊕L/poly and PE = {sEλ, rEλ, kEλ, sDλ, rDλ}λ∈N ∈ AC0[2]
is a predicate encoding, where rEλ : Y × {0, 1}` → {0, 1}η, kEλ : Y × {0, 1} →
{0, 1}η, and sEλ : X × {0, 1}` → {0, 1}ζ , then MACGA is an AC0[2]-generalized
affine MAC that is NC1-(k, l)-PR-CMA secure, where k is any constant and
l = l(λ) is any polynomial in λ.
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GenMACλ(par):
B> $← ZeroSamp(λ)
X $← {0, 1}λ×`

x′ $← {0, 1}
Return skMAC = (B, X, x′)

Tagλ(skMAC, m ∈ Y):
t $← SampYesλ(B)
u = rEλ(m, X>t) + kEλ(m, x′) ∈ {0, 1}η

Return τ = (t, u)

VerMACλ(skMAC, m ∈ Y, τ):
If u = rEλ(m, X>t) + kEλ(m, x′) return 1
Else return 0

Fig. 6. Definition of MACGA = {GenMACλ, Tagλ, VerMACλ}λ∈N.

Proof. First, we note that ({GenMACλ}λ∈N, {Tagλ}λ∈N, {VerMACλ}λ∈N) are com-
putable in AC0[2], since they only involve operations including sampling random
bits and multiplication of a constant number of matrices, which can be done
in constant depth with PARITY gates. Also, it is straightforward that MACGA
satisfies correctness.

We now prove that MACGA is NC1-(k, l)-PR-CMA secure by defining a sequence
of intermediate games as in Figure 7.

Let A = {aλ}λ∈N ∈ NC1 be any adversary against the PR-CMA-security of
MACGA. Game G0 is the real attack game. In games G1,i, the first i− 1 queries
to the Eval oracle are answered with (t, u), where t $← SampNoλ(B) and u
contains no information on kEλ(m, x′), and the remaining are answered as in the
real scheme. To interpolate between G1,i and G1,i+1, we also define G′

1,i, which
answers the i-th query to Eval by picking t $← SampNoλ(B). By definition, we
have G0 = G1,1.
Lemma 7. Pr[PR-CMAaλ

real ⇒ 1] = Pr[Gaλ
0 ⇒ 1] = Pr[Gaλ

1,1 ⇒ 1].

Lemma 8. There exists an adversary B1,i = {b1,i
λ }λ∈N ∈ NC1 such that b1,i

λ

breaks the fine-grained subset membership problem (see Definition 6), which holds
under NC1 ( ⊕L/poly according to Theorem 1, with probability

|Pr[G′aλ
1,i ⇒ 1]− Pr[Gaλ

1,i ⇒ 1]|.

Proof. Games G1,i and G′
1,i only differ in the distribution of t returned by the

Eval oracle for its i-th query. We build b1,i
λ as follows.

The distinguisher b1,i
λ runs in exactly the same way as the challenger in G1,i

except that for its i-th query, it obtains t which is sampled as t $← SampYesλ(B)
or t $← SampNoλ(B). When aλ outputs β ∈ {0, 1}, bλ outputs β if no m such
that pλ(m∗, m) = 1 was queried to Eval. Otherwise, bλ outputs 0.

Since aλ only makes constant rounds of queries, all the operations in bλ are
performed in NC1. Hence, we have B1,i ∈ NC1.

When t is sampled as t $← SampYesλ(B) (respectively, t $← SampNoλ(B)),
the view of aλ is exactly the same as its view in G1,i (respectively, G′

1,i). Thus
the advantage of b1,i

λ in breaking the subset membership problem is |Pr[G′aλ
1,i ⇒

1]− Pr[Gaλ
1,i ⇒ 1]|, completing this part of proof. ut
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Init: // Games G0-G2

B> $← ZeroSamp(λ), x′ $← {0, 1}
For X $← {0, 1}λ×`

Return ε

Chal(m∗ ∈ X ): //Games G0-G1,Q+1,
G2

h0 = sEλ(m∗, X>) ∈ {0, 1}ζ×λ

h1 = x′ ∈ {0, 1}
h1

$← {0, 1}
Return (h0, h1)

Finalize(β ∈ {0, 1}): // Games G0-G2

If pλ(m∗, m) 6= 1 for all m ∈ Qm
return β

Else return 0

Eval(m): //Game G2

Qm = Qm ∪ {m}
t $← SampNoλ(B)
u = rEλ(m, X>t) ∈ {0, 1}η

Return (t, u)

Eval(m): // Game G0

Qm = Qm ∪ {m}
t $← SampYesλ(B)
u = rEλ(m, X>t) + kEλ(m, x′) ∈ {0, 1}η

Return (t, u)

Eval(m): // Games G1,i, G′
1,i

Qm = Qm ∪ {m} // Let m be the c-th
query (1 ≤ c ≤ k · l)
If c < i then

t $← SampNoλ(B)
u = rEλ(m, X>t) ∈ {0, 1}η

If c > i then
t $← SampYesλ(B)
u = rEλ(m, X>t) + kEλ(m, x′) ∈ {0, 1}η

If c = i then
t $← SampYesλ(B)
t $← SampNoλ(B)

u = rEλ(m, X>t) + kEλ(m, x′) ∈ {0, 1}η

Return (t, u)

Fig. 7. Games G0, (G1,i, G′
1,i)1≤i≤k·l, G1,k·l+1, G2 for the proof of Theorem 2.

Lemma 9. Pr[Gaλ
1,i+1 ⇒ 1] = Pr[G′aλ

1,i ⇒ 1].

Proof. Let m be the i-th query to Eval such that pλ(m∗, m) 6= 1 and let (t, u)
be its tag. We have t /∈ Im(B) due to Theorem 1. We use an information-
theoretic argument to show that in G′

1,i, u does not reveal any information on x′.
Information-theoretically, aλ may learn B>X from each c-th query with c > i.
Thus, for X $← {0, 1}λ×` and w $← {0, 1}`×1, aλ information-theoretically obtains
the distribution of X>B

h0 = h� sEλ(m∗, X>)
u = rEλ(m, X>t) + kEλ(m, x′)


=

 (X> + wB⊥>)B
h0 = sEλ(m∗, X> + wB⊥>)

u = rEλ(m, (X> + wB⊥>)t) + kEλ(m, x′)


=

 X>B
h0 = sEλ(m∗, X>) + sEλ(m∗, wB⊥>)

u = rEλ(m, X>t) + rEλ(m, w) + kEλ(m, x′)

 (∵ t /∈ Im(B)).
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This distribution is identical to the distribution of X>B
h0 = sEλ(m∗, X>) + sEλ(m∗, wB⊥>)

u = rEλ(m, X>t) + rEλ(m, w)

 ,

since the distribution of

(m∗, m, x′, sEλ(m∗, w), rEλ(m, w) + kEλ(m, x′)

and
(m∗, m, x′, sEλ(m∗, w), rEλ(m, w)),

are identical due to the α-privacy of PE, completing this part of proof. ut

Lemma 10. Pr[Gaλ
2 ⇒ 1] = Pr[Gaλ

1,k·l+1 ⇒ 1].

Proof. Note that aλ can ask at most k · l-many Eval queries. In both G1,k·l+1
and G2, all the answers of Eval are independent of x′. Hence, h1 from G1,k·l+1
is uniform in the view of aλ. ut

We now do all the previous steps in the reverse order as in Figure 8. Then,
by using the above arguments in a reverse order, we have the following lemma.

Lemma 11. There exists an adversary B2 = {b2
λ}λ∈N ∈ NC1 such that b2

λ breaks
the fine-grained subset membership problem with probability at least

(|Pr[PR-CMAaλ

rand ⇒ 1]− Pr[Gaλ
2 ⇒ 1]|)/(k · l).

Putting all above together, Theorem 2 immediately follows. ut
An affine MAC. By instantiating the underlying predicate encoding in Figure 6
with the encoding for equality (see Figure 3), we immediately obtain an affine
MAC MAC = {GenMACλ, Tagλ, VerMACλ}λ∈N as in Figure 9 for message space
{0, 1}`, which will be used to construct an IBE scheme in NC1 later. Formally,
we have the following corollary derived from Theorem 2.

Corollary 1. If NC1 ( ⊕L/poly, then MAC is an AC0[2]-affine MAC that is
NC1-(k, l)-PR-CMA secure, where k is any constant and l = l(λ) is any polynomial
in λ.

4 Fine-grained Secure Identity-based Encryption

In this section, we present our fine-grained IBE scheme, which captures the core
techniques of our ABE scheme given later in Section 5.



Fine-grained Secure Attribute-based Encryption 17

Init: // Games H0-H2

B> $← ZeroSamp(λ); x′ $← {0, 1}
X $← {0, 1}λ×`

Return ε

Chal(m∗): //Games H0-H2

h0 = sEλ(m∗, X>) ∈ {0, 1}ζ×λ

h1
$← {0, 1}

Return (h0, h1)

Finalize(β ∈ {0, 1}): // Games H0-H2

If pλ(m∗, m) 6= 1 for all y ∈ Qm
return β

Else return 0

Eval(m): //Game H0

Qm = Qm ∪ {m}
t $← SampNoλ(B)
u = rEλ(m, X>t) ∈ {0, 1}η

Return (t, u)

Eval(m): // Games H1,i, H′
1,i

Qm = Qm ∪ {m} // Let m be the c-th
query (1 ≤ c ≤ k · l)
If c > i then

t $← SampNoλ(B)
u = rEλ(m, X>t) ∈ {0, 1}η

If c < i then
t $← SampYesλ(B)
u = rEλ(m, X>t) + kEλ(m, x′) ∈ {0, 1}η

If c = i then
t $← SampNoλ(B)
t $← SampYesλ(B)

u = rEλ(m)X>t + kEλ(m, x′) ∈ {0, 1}η

Return (t, u)

Eval(m): // Game H2

Qm = Qm ∪ {m}
t $← SampYesλ(B)
u = rEλ(m, X>t) + kEλ(m, x′) ∈ {0, 1}η

Return (t, u)

Fig. 8. Games H0, (H1,i, H′
1,i)1≤i≤k·l, H1,k·l+1, H2 for the proof of Lemma 11.

GenMACλ(par):
B> $← ZeroSamp(λ)
x0, . . . , x`

$← {0, 1}λ

x′ $← {0, 1}
Return skMAC = (B, x0, . . . , x`, x′

0)

Tagλ(skMAC, m ∈ {0, 1}`):
t $← SampYesλ(B)
u = (x>

0 +
∑`

i=1 mi · x>
i )t + x′ ∈ {0, 1}

Return τ = (t, u)

VerMACλ(skMAC, τ, m):
If u = (x>

0 +
∑`

i=1 mi · x>
i )t + x′ return 1

Else return 0

Fig. 9. Definition of MAC = {GenMACλ, Tagλ, VerMACλ}λ∈N.

4.1 Definition

We now give the definition of fine-grained IBKEM, which is a special case of
fine-grained ABKEM (see Definition 8) where the boolean predicate is restricted
to be the equality predicate.

Definition 13 (Identity-based Key Encapsulation). A C1-identity key
encapsulation (IBKEM) scheme is a function family IBKEM = {Genλ, USKGenλ,
Encλ, Decλ}λ∈N ∈ C1 with the following properties.
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– Genλ returns the (master) public/secret key (pk, sk). We assume that pk
implicitly defines an identity space ID, a key space K, and a ciphertext space
C.

– USKGenλ(sk, id) returns a user secret-key usk[id] for an identity id ∈ ID.
– Encλ(pk, id) returns a symmetric key K ∈ K together with a ciphertext ct ∈ C

w.r.t. id ∈ ID.
– Decλ(usk[id], id, ct) deterministically returns a decapsulated key K ∈ K or the

reject symbol ⊥.
Perfect correctness is satisfied if for all λ ∈ N, all (pk, sk) ∈ Genλ, all id ∈ ID,

all usk[id] ∈ USKGenλ(sk, id), and all (K, ct) ∈ Encλ(pk, id), we have

Pr[Decλ(pk, usk[id], ct) = K] = 1.

The security requirement we consider is indistinguishability against chosen plain-
text and identity attacks (PR-ID-CPA) defined as follows.

Definition 14 (PR-ID-CPA Security for IBKEM). Let k(·) and l(·) be func-
tions in λ. IBKEM is C2-(k, l)-PR-ID-CPA secure if for any A = {aλ}λ∈N ∈ C2,
where aλ is allowed to make k rounds of adaptive queries to USKGen(·) and
each round it query l inputs, we have

|Pr[PR-ID-CPAaλ

real ⇒ 1]− Pr[PR-ID-CPAaλ

rand ⇒ 1]| ≤ negl(λ),

where the experiments are defined in Figure 10.

Procedure Init:
(pk, sk) $← Genλ

Return pk

Procedure USKGen(id):
//k(λ)× l(λ) queries
Qid

$← Qid ∪ {id}
Return usk[id] $← USKGenλ(sk, id)

Procedure Enc(id∗):
//one query
(K∗, ct∗) $← Encλ(pk, id∗)
K∗ $← K

Return (K∗, ct∗)

Procedure Finalize(β):
Return (id∗ 6∈ Qid) ∧ β

Fig. 10. Security Games PR-ID-CPAreal and PR-ID-CPArand for defining PR-ID-CPA-
security for IBKEM. The boxed statement redefining K∗ is only executed in game
PR-ID-CPArand.

4.2 Construction

Let MAC = {GenMACλ, Tagλ, VerMACλ}λ∈N ∈ NC1 be an affine MAC over {0, 1}λ

with message space ID in Figure 9. Our IBKEM IBKEM = {Genλ, USKGenλ,
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Encλ, Decλ}λ∈N for key-space K = {0, 1} and identity space {0, 1}` is defined as
in Figure 11. 6

Genλ:
A> $← ZeroSamp(λ)
skMAC = (B, x0, . . . , x`, x′) $← GenMACλ(par)
For i = 0, . . . , ` :

Yi
$← {0, 1}(λ−1)×λ

Zi = (Y>
i ||xi)A ∈ {0, 1}λ×λ

y′ $← {0, 1}λ−1

z′ = (y′>||x′)A ∈ {0, 1}1×λ

pk = (A, (Zi)0≤i≤`, z′)
sk = (skMAC, (Yi)0≤i≤`, y′)
Return (pk, sk)

USKGenλ(sk, id ∈ {0, 1}`):
(t, u) $← Tagλ(skMAC, id)
v = t>(Y>

0 +
∑`

i=1 idi � Y>
i ) + y′> ∈

{0, 1}1×(λ−1)

Return usk[id] = (t, u, v)

Encλ(pk, id):
r $← {0} × {0, 1}λ−1

c0 = Ar ∈ {0, 1}λ

c1 = (Z0+
∑`

i=1 idi�Zi)r ∈ {0, 1}λ

K = z′ · r ∈ {0, 1}.
Return K and ct = (c0, c1)

Decλ(usk[id], id, ct):
Parse usk[id] = (t, u, v)
Parse ct = (c0, c1) ∈
{0, 1}λ × {0, 1}λ

K = (v|u)c0 − t>c1
Return K

Fig. 11. Definition of our IBKEM = {Genλ, USKGenλ, Encλ, Decλ}λ∈N with identity
space {0, 1}` and key space {0, 1}. idi denotes the ith bit of id for all i ∈ [`].

Theorem 3. Under the assumption NC1 ( ⊕L/poly and the NC1-(k, l)-PR-CMA
security of MAC, where k is any constant and l = l(λ) is any polynomial in λ,
IBKEM is an AC0[2]-IBKEM that is NC1-(k, l)-PR-ID-CPA secure against NC1.

Due to the page limit, we refer the reader to the full paper for the proof of
Theorem 3.
Extension to IBKEM with large key space. The key space of the above
IBKEM is {0, 1}, while by running it in parallel, we can easily extend it to an
IBKEM with large key space. The resulting scheme can still be performed in
AC0[2] since running in parallel does not increase the circuit depth. The same
extension can be also made for our fine-grained secure ABKEM given later in
Section 5.
Extension to QA-NIZK. Our techniques for proving the hiding property of
the underlying commitment scheme in our IBKEM can also be used to construct
an efficient fine-grained QA-NIZK in NC1 with adaptive soundness. We refer the
reader to the full paper for details.
6 The IBKEM can be straightforwardly extended to one with large key space as we

will discuss later in this section.
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5 Fine-grained Secure Attribute-Based Encryption

In this section, we generalize our IBE scheme as a fine-grained ABE scheme by
using predicate encodings [32,10]. By instantiating the underlying encodings in
different ways, we can achieve ABEs for inner product, non-zero inner product,
spatial encryption, doubly spatial encryption, boolean span programs, and arith-
metic span programs, and also broadcast encryption and fuzzy IBE schemes,
which are computable in AC0[2] and secure against NC1 under NC1 ( ⊕L/poly.
We refer the reader to the full paper for several instances of the encodings and
also to [10] for more instances. We note that the encodings in [10] are defined over
GF (p), while the ours are over GF (2). However, the proofs for encodings in [10]
can be adopted in our case, since the linearity and α-reconstruction properties
hold in GF (p) also hold in GF (2) and by the standard linear-independence
arguments in GF (2), the α-privacy also holds in our case.

Let PE = {rEλ, kEλ, sEλ, sDλ, rDλ}λ∈N ∈ AC0[2] be a predicate encoding for
P = {pλ}λ∈N with rEλ : Y × {0, 1}` → {0, 1}η, kEλ : Y × {0, 1} → {0, 1}η,
sEλ : X × {0, 1}` → {0, 1}ζ , sDλ : X × Y × {0, 1}ζ → {0, 1}, and rDλ : X ×
Y × {0, 1}η → {0, 1}. Let MACGA = {GenMACλ, Tagλ, VerMACλ}λ∈N ∈ AC0[2] be
a PE-generalized affine MAC over {0, 1}λ with message space Y. Our ABKEM
ABKEM = {Genλ, USKGenλ, Encλ, Decλ}λ∈N is defined as in Figure 12.

Genλ:
A> $← ZeroSamp(λ)
skMAC = (B, X, x′) $← GenMACλ(par)
For X = (x1, · · · , x`) and i = 1, . . . , ` :

Yi
$← {0, 1}(λ−1)×λ

Zi = (Y>
i ||xi)A ∈ {0, 1}λ×λ

y′ $← {0, 1}(λ−1)

z′ = (y′>||x′)A ∈ {0, 1}1×λ

pk = (A, (Zi)1≤i≤`, z′)
sk = (skMAC, (Yi)1≤i≤`, y′)
Return (pk, sk)

USKGenλ(sk, y ∈ Y):
(t, u) $← Tagλ(skMAC, y)

v = rEλ(y,

t>Y>
1

...
t>Y>

`

)

+ kEλ(y, y′>) ∈ {0, 1}η×(λ−1)

Return usk[y] = (t, u, v)

Encλ(pk, x ∈ X ):
r $← {0} × {0, 1}λ−1

c0 = Ar ∈ {0, 1}λ

C1 = sEλ(x,

r>Z>
1

...
r>Z>

`

) ∈ {0, 1}ζ×λ

K = z′ · r ∈ {0, 1}.
Return K and ct = (c0, C1)

Decλ(pk, usk[y], ct):
Parse usk[y] = (t, u, v)
Parse ct = (c0, C1)
K = rDλ(x, y, v||u)c0

− sDλ(x, y, C1t) ∈ {0, 1}
Return K

Fig. 12. Construction of ABKEM = {Genλ, USKGenλ, Encλ, Decλ}λ∈N.
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Theorem 4. Under the assumption NC1 ( ⊕L/poly and the NC1-(k, l)-sEλ-PR-CMA-
security of MACGA, where k is any constant and l = l(λ) is any polynomial in λ,
ABKEM is an AC0[2]-ABKEM that is NC1-(k, l)-PR-AT-CPA secure against NC1.

Proof. First, we note that {Genλ}λ∈N, {USKGenλ}λ∈N, {Encλ}λ∈N, and {Decλ}λ∈N
are computable in AC0[2], since they only involve operations including multipli-
cation of a constant number of matrices, sampling random bits, and running
MACGA ∈ AC0[2].

By Equation (2) in Section 3.1, we have

rDλ(x, y, v||u)c0

=rDλ(x, y, rEλ

y,

t>Y>
1

...
t>Y>

`

 + kEλ(y, y′>)||

t>x1
...

t>x`

 + kEλ(y, x′)

 Ar

and

sDλ(x, y, C1t) = sDλ(x, y, sEλ

x,

t>(Y>
1 ||x1)
...

t>(Y>
` ||x`)


)Ar.

Then, due to restricted α-reconstruction (see Definition 7), the difference of the
above equations yields K = (y′>||x′)Ar = z′ · r, i.e., correctness is satisfied.

Let A = {aλ}λ∈N be any adversary against the NC1-(k, l)-PR-AT-CPA security
of ABKEM. We now prove the NC1-(k, l)-PR-AT-CPA security by defining a
sequence of games G0-G6 as in Figure 13. Roughly, in the first four games, we
show how to extract a challenge token for MACGA from the challenge session
key and ciphertext by switching the distribution of A twice and changing the
distribution of the randomness r during the switching procedure. In the last two
games, we show that the commitments Zi and z′ perfectly hide the secrets, and
the answers of queries made by aλ reveal no useful information other than the
tags and token for MAC.

Lemma 12. Pr[PR-AT-CPAaλ

real ⇒ 1] = Pr[Gaλ
1 ⇒ 1] = Pr[Gaλ

0 ⇒ 1].

Proof. G0 is the real attack game. In game G1, we change the simulation of c∗
0,

C∗
1 and K∗ in Enc(x) by substituting Zi and z′ with their respective definitions

and substituting A with A + Nλ. Since we have

Nλr=


0 · · · 0
... 0 · · · 0

0
. . .

...
1 0 · · · 0




0
r2
...

rλ

 = 0,

the view of aλ in G1 is identical to its view in G0, completing this part of proof. ut
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Init: //Games G0-G1, G2-G3 , G4 , G5-G6

A> $← ZeroSamp(λ), A> $← OneSamp(λ) , A> $← ZeroSamp(λ)

R1 =
(

Iλ−1 0
r̃> 1

)>
$← RSamp(λ), R0

$← LSamp(λ), A> = R0Mλ
0 R1

skMAC = (B, X, x′) $← GenMACλ(G)
For X = (x1, · · · , x`) and i = 1, . . . , `:

Yi
$← {0, 1}(λ−1)×λ, Zi = (Y>

i ||xi)A ∈ {0, 1}λ×λ

Di = Y>
i + xi · r̃> ∈ {0, 1}λ×(λ−1), Zi = (0||Di)R>

0 ∈ {0, 1}λ×λ

y′ $← {0, 1}λ−1, z′ = (y′>||x′)A ∈ {0, 1}1×λ

d′ = y′> + x′ · r̃> ∈ {0, 1}1×(λ−1), z′ = (0||d′)R>
0 ∈ {0, 1}1×λ

pk = (A, (Zi)1≤i≤`, z′), sk = (skMAC, (Yi)1≤i≤`, y′)
Return pk

Finalize(β): //Games G0-G6

If (pλ(x, y) 6= 1 for all y ∈ Qy, return β
Else return 0

USKGen(y): //Games G0-G4, G5-G6

Qy = Qy ∪ {y}, (t, u) $← Tagλ(skMAC, y)

v = rEλ(y,

t>Y>
1

...
t>Y>

`

) + kEλ(y, y′>) ∈ {0, 1}η×(λ−1)

v = rEλ(y, (D>
1 t, · · · , D>

` t)>) + kEλ(y, d′)− u · r̃> ∈ {0, 1}η×(λ−1)

usk[y] = (t, u, v)
Return usk[y]

Enc(x): //Games G0 G1-G4 , G3-G4 , G5 , G6

r $← {0} × {0, 1}λ−1, r $← {1} × {0, 1}λ−1

c∗
0 = Ar ∈ {0, 1}λ, c∗

0 = (A + Nλ)r

C∗
1 = sEλ(x,

r>Z>
1

...
r>Z>

`

) ∈ {0, 1}ζ·λ

C∗
1 = sEλ(x, ((Y>

1 ||x1)(A + Nλ)r, · · · , (Y>
` ||x`)(A + Nλ)r)>)

C∗
1 = sEλ(x, (Z1r, · · · , Z`r)>) + sEλ(x, (x1, · · · , x`)>)

K∗ = z′ · r ∈ {0, 1}, K∗ = (y′> | x′)(A + Nλ)r , K∗ = z′ · r + x′

K∗ $← {0, 1}

Return K∗ and ct∗ = (c∗
0, C∗

1)

Fig. 13. Games G0-G6 for the proof of Theorem 4.
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Lemma 13. There exists an adversary B1 = {b1
λ}λ∈N ∈ NC1 such that b1

λ breaks
the fine-grained matrix linear assumption (see Definition 5), which holds under
NC1 ( ⊕L/poly according to Theorem 1, with advantage

|Pr[Gaλ
2 ⇒ 1]− Pr[Gaλ

1 ⇒ 1]|.

Proof. G1 and G2 only differ in the distribution of A, namely, A> $← ZeroSamp(λ)
or A> $← OneSamp(λ), and we build the distinguisher b1

λ as follows.
b1

λ runs in exactly the same way as the challenger of G1 except that in
Init, instead of generating A by itself, it takes as input A> generated as
A> $← ZeroSamp(λ) or A> $← OneSamp(λ) from its own challenger. When aλ

outputs β, b1
λ outputs β as well if no y such that pλ(x, y) = 1 was queried to

USKGen. Otherwise, b1
λ outputs 0.

If A is generated as A> $← ZeroSamp(λ) (respectively, A> $← OneSamp(λ)),
the view of aλ is the same as its view in G1 (respectively, G2). Hence, the
probability that b1

λ breaks the fine-grained matrix linear assumption is

|Pr[Gaλ
2 ⇒ 1]− Pr[Gaλ

1 ⇒ 1]|.

Moreover, since aλ only makes constant rounds of queries, all operations in
b1

λ are performed in NC1. Hence, we have B1 = {b1
λ}λ∈N ∈ NC1, completing this

part of proof. ut

Lemma 14. Pr[Gaλ
3 ⇒ 1] = Pr[Gaλ

2 ⇒ 1].

Proof. In this game, we sample r in Enc(x) as r $← {0, 1}λ instead of r $←
{0} × {0, 1}λ−1. According to Lemma 4, the distributions of A + Nλ in both
G2 and G3 are identical to that of a matrix sampled from ZeroSamp. Then this
lemma follows from Lemma 6 immediately. ut

Lemma 15. There exists an adversary B2 = {b2
λ}λ∈N ∈ NC1 such that b2

λ breaks
the fine-grained matrix linear assumption with advantage

|Pr[Gaλ
4 ⇒ 1]− Pr[Gaλ

3 ⇒ 1]|.

Proof. G1 and G2 only differ in the distribution of A, namely, A> $← OneSamp(λ)
or A> $← ZeroSamp(λ), and we build the distinguisher b2

λ against Lemma 1 as
follows.

b2
λ runs in exactly the same way as the challenger of G3 except that in

Init, instead of generating A by itself, it takes as input A> generated as
A> $← ZeroSamp(λ) or A> $← OneSamp(λ) from its own challenger. When aλ

outputs β, b2
λ outputs β as well if no y such that pλ(x, y) = 1 was queried to

USKGen. Otherwise, b2
λ outputs 0.

If A is generated as A> $← OneSamp(λ) (respectively, A> $← ZeroSamp(λ)),
the view of aλ is the same as its view in G3 (respectively, G4). Hence, the
probability that b2

λ breaks the fine-grained matrix linear assumption is

|Pr[Gaλ
4 ⇒ 1]− Pr[Gaλ

3 ⇒ 1]|.
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Moreover, since aλ only makes constant rounds of queries, all operations in
b2

λ are performed in NC1. Hence, we have B2 = {b2
λ}λ∈N ∈ NC1, completing this

part of proof. ut

Lemma 16. Pr[Gaλ
5 ⇒ 1] = Pr[Gaλ

4 ⇒ 1].

Proof. In G5, we do not use (Yi)`
i=1 and y′ in USKGen(y) or Enc(x) any

more. We give the sampling procedure for A in an explicit way and change the
simulation of Zi, z′, v, C∗

1, and K∗ as in Figure 13. We now show that all the
changes are purely conceptual.

In G5, we generate A by sampling R1 =
(

Iλ−1 0
r̃> 1

)>
$← RSamp(λ) and

R0
$← LSamp(λ), and setting A> = R0Mλ

0 R1. This is exactly the “zero-sampling”
procedure, in which case, we have

Zi = (Y>
i ||xi)A = (Y>

i ||xi)R>
1 Mλ

0
>R>

0

= (Y>
i ||xi)

(
Iλ−1 0
r̃> 1

)


0 1 0 · · · 0

0 0 1
. . .

...
...

...
...

. . .
0 · · · 0 1
0 · · · 0

 R>
0

= (Y>
i + xi · r̃>||xi)



0 1 0 · · · 0

0 0 1
. . .

...
...

...
...

. . .
0 · · · 0 1
0 · · · 0

 R>
0

= (0||Y>
i + xi · r̃>)R>

0 = (0||Di)R>
0

and

C∗
1 =sEλ(x, ((Y>

1 | x1)(A + Nλ)r, · · · , (Y>
` | x`)(A + Nλ)r)>)

=sEλ(x, (Z1r + x1, · · · , Z`r + x`)>)
=sEλ(x, (Z1r, · · · , Z`r)>) + sEλ(x, (x1, · · · , x`)>).

Hence, the distributions of Zi in G5 remain the same, and the distributions of z′

and K∗ can be analyzed in the same way. The distribution of v does not change
as well since

v = rEλ(y, (Y1t, · · · , Y`t)>) + kEλ(y, y′>)
= rEλ(y, ((Y1 + r̃ · x>

1 )t, · · · , (Y>
` + r̃ · x>

` )t)>) + kEλ(y, y′> + x′ · r̃>)
− (rEλ(y, (r̃ · x>

1 · t, · · · , r̃ · x>
1 · t)>) + kEλ(y, x′ · r̃>))

= rEλ(y, (D>
1 t, · · · , D>

` t)>) + kEλ(y, d′)− u · r̃>.

Putting all above together, Lemma 16 immediately follows. ut
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Lemma 17. There exists an adversary B3 = {b3
λ}λ∈N ∈ NC1 such that b3

λ breaks
the NC1-(k, l)-PR-CMA security of MACGA with advantage

|Pr[Gaλ
6 ⇒ 1]− Pr[Gaλ

5 ⇒ 1]|.

Proof. The challenger of G6 answers the Enc(x) query by choosing random K∗.
We build b3

λ as in Figure 14 to show that the differences between G6 and G5 can
be bounded by its advantage of breaking the PR-CMA security of MACGA.

b3
λ runs in the same way as the challenger of G5 except that it samples Di

and d′ uniformly at random from {0, 1}λ×(λ−1) and {0, 1}1×(λ−1) respectively.
This does not change the view of aλ since Yi and y′ were uniformly sampled
in G5. Moreover, every time on receiving a query y to USKGen, b3

λ forwards
y to its evaluation oracle Eval to obtain the answer (t, u), and on receiving
the query x to Enc, b3

λ forwards x to its challenge oracle Chal and uses the
answer (h, h0, h1) to simulate r, C∗

1, and K∗ as in Figure 14. When aλ outputs
β, b3

λ outputs β as well if no y such that pλ(x, y) = 1 was queried to USKGen.
Otherwise, b3

λ outputs 0.

Init:

R1 =
(

Iλ−1 0
r̃> 1

)>
$← RSamp(λ),

R0
$← LSamp(λ), A> = R0Mλ

0 R1
For i = 1, . . . , ` :

Di
$← {0, 1}λ×(λ−1)

Zi = (0||Di)R>
0 ∈ {0, 1}λ×λ

d′ $← {0, 1}1×(λ−1), z′ = (0||d′)R>
0 ∈ {0, 1}1×λ

pk = (A, (Zi)1≤i≤`, z′)
Return pk

USKGen(y):
Qy = Qy ∪ {y}
(t, u) $← Eval(y)
v = rEλ(y, (D>

1 t, · · · , D>
` t)>) + kEλ(y, d′) − u ·

r̃> ∈ {0, 1}η×(λ−1)

usk[y] = (t, u, v)
Return usk[y]

Enc(x): //one query
(h0, h1) $← Chal(x)
r2, · · · , rn

$← {0, 1}
r = (1, r2, · · · , rn)>

c∗
0 = (A + Nλ)r ∈ {0, 1}λ

C∗
1 = sEλ(x,

r>Z>
1

...
r>Z>

`

) + h0 ∈

{0, 1}ζ×λ

K∗ = z′ · r + h1 ∈ {0, 1}
Return K∗ and ct∗ = (c∗

0, C∗
1)

Finalize(β):
If (pλ(x, y) 6= 1 for all y ∈ Qy

return β
Else return 0

Fig. 14. Description of B3 = {b3
λ}λ∈N (having access to the oracles

InitMAC,Eval,Chal,FinalizeMAC of the PR-CMAreal/PR-CMArand games of Figure 5)
for the proof of Lemma 17.

If h1 is uniform (i.e., b3
λ is in Game PR-CMArand) then the view of aλ is

identical to its view in G6. If h1 is real (i.e., b3
λ is in Game PR-CMAreal) then the

view of A is identical to its view in G5. Hence, the advantage of b3
λ in breaking
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the PR-CMA security is

|Pr[Gaλ
6 ⇒ 1]− Pr[Gaλ

5 ⇒ 1]|.

Moreover, since aλ only makes constant rounds of queries, all operations in
b3

λ are performed in NC1. Hence, we have B3 = {b3
λ}λ∈N ∈ NC1, completing this

part of proof.
We now do all the previous steps in the reverse order as in Figure 15. Note

that the view of the adversary in H0 (respectively, H4) is identical to its view
in G6 (respectively, PR-AT-CPArand). By using the above arguments in a reverse
order, we have the following lemma.

Lemma 18. There exists an adversary B4 = {b4
λ}λ∈N ∈ NC1 such that b4

λ breaks
the fine-grained matrix linear assumption with advantage

(|Pr[Haλ
4 ⇒ 1]− Pr[Haλ

0 ⇒ 1]|)/2.

ut
Putting all above together, Theorem 4 immediately follows. ut
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