
Subquadratic SNARGs
in the Random Oracle Model

Alessandro Chiesa1 and Eylon Yogev2

1 UC Berkeley
2 BU and TAU

Abstract. In a seminal work, Micali (FOCS 1994) gave the first succinct
non-interactive argument (SNARG) in the random oracle model (ROM).
The construction combines a PCP and a cryptographic commitment,
and has several attractive features: it is plausibly post-quantum; it can
be heuristically instantiated via lightweight cryptography; and it has
a transparent (public-coin) parameter setup. However, it also has a
significant drawback: a large argument size.
In this work, we provide a new construction that achieves a smaller
argument size. This is the first progress on the Micali construction since
it was introduced over 25 years ago.
A SNARG in the ROM is (t, ε)-secure if every t-query malicious prover
can convince the verifier of a false statement with probability at most
ε. For (t, ε)-security, the argument size of all known SNARGs in the
ROM (including Micali’s) is Õ((log(t/ε))2) bits, even if one were to
rely on conjectured probabilistic proofs well beyond current techniques.
In practice, these costs lead to SNARGs that are much larger than
constructions based on other (pre-quantum and costly) tools. This has
led many to believe that SNARGs in the ROM are inherently quadratic.
We show that this is not the case. We present a SNARG in the ROM with
a sub-quadratic argument size: Õ(log(t/ε) · log t). Our construction relies
on a strong soundness notion for PCPs and a weak binding notion for
commitments. We hope that our work paves the way for understanding if
a linear argument size, that is O(log(t/ε)), is achievable in the ROM.

Keywords: succinct arguments; random oracle; probabilistically check-
able proofs

1 Introduction

A succinct non-interactive argument (SNARG) is a cryptographic proof system
for non-deterministic languages whose communication complexity is “succinct”
in the sense that it is sublinear in the witness size (or even in the size of the
computation that checks the witness). In the last decade, SNARGs have drawn
the attention of researchers from multiple communities, being a fundamental
cryptographic primitive that has found applications in the real world.

A central goal in the study of SNARGs is improving their efficiency, which
may include improving prover time, argument size, or verifier time. For example,

achieving small argument size is crucial in real-world applications where SNARGs
are broadcast in a peer-to-peer network and redundantly stored at every network
node (as in privacy-preserving digital currencies [BCG+14; Zc14]).
SNARGs in the ROM. The goal of this paper is to improve the argument
size of SNARGs in the random oracle model (ROM). A SNARG in the ROM
is (t, ε)-secure if every malicious prover that makes at most t queries to the
random oracle can convince the verifier of a false statement with probability at
most ε (over the choice of random oracle). There are two known approaches to
construct SNARGs in the ROM: the Micali transformation [Mic00] (building on
[Kil92; FS86]), which uses probabilistically checkable proofs (PCPs); and the
BCS transformation [BCS16], which uses public-coin interactive oracle proofs
(IOPs). Both approaches adopt the same paradigm:[

information-theoretic
proof

]
+

[
cryptographic commitment

with local opening

]
=⇒ SNARG .

Informally, they compile an information-theoretic proof system (PCP or IOP)
into a SNARG by relying on a cryptographic commitment scheme that supports
local openings. The commitment scheme is a Merkle tree, and each local opening
is a path from the desired leaf to the root.
Quadratic argument size. In both approaches, the argument size is quadratic
in the desired security. If the random oracle has output length λ, then compiling
a PCP/IOP with proof length l over alphabet Σ and query complexity q leads
to an argument of size that is (up to constants):

q · log |Σ|︸ ︷︷ ︸
information-theoretic proof

+ q · λ · log l︸ ︷︷ ︸
cryptographic commitment

.

The term q · log |Σ| is the cost of the information-theoretic proof, and the term
q · λ · log l is the cost of the cryptographic commitment (q authentication paths
each consisting of log l digests of size λ). To achieve (t, ε) security, the oracle
output size is set to λ = O(log(t/ε)), and the soundness error of the PCP/IOP
must be O(ε/t). For example, a PCP with this soundness error can be obtained by
repeating O(log(t/ε)) times the verifier of any constant-query constant-soundness
base PCP. This leads to a PCP with query complexity q = O(log(t/ε)), and in
turn to a quadratic argument size: Õ((log(t/ε))2). The quadratic complexity is
due to the cost of the cryptographic commitment (while, for a small enough
alphabet, the cost of the information-theoretic proof is linear).

One might hope to reduce the number of queries of the PCP/IOP to overcome
this “quadratic barrier”, at the expense of a larger alphabet (even an alphabet of
size 2O(λ) would have a negligible effect on the argument size). However, using
state-of-the-art PCPs (e.g., [DHK15]) or even conjectured PCPs (e.g., fulfilling
the sliding scale conjecture [BGLR93]) would only shave off a log l factor in the
number of queries. Any PCP/IOP that has fewer queries would violate standard
complexity-theoretic assumptions, e.g., the exponential-time hypothesis [GH98;
CY20].

2

If one relies on cryptography with “more structure” then better argument sizes
are possible. Known SNARGs based on bilinear groups (e.g., [Gro10; GGPR13;
BCI+13]) have optimal size: O(log(t/ε)), which translates to a few hundred bytes
in practice. Similarly, known SNARGs based on cyclic groups or unknown-order
groups (e.g., [BCC+16; BBB+18; BFS20]) are almost as short: O(log(t/ε) · log n)
(here n is the size of the computation being proved), which translates to just a
few kilobytes in practice. This has led to the belief that SNARGs that solely rely
on a random function (the random oracle) are fundamentally long.

While the inferior asymptotics of argument sizes of SNARGs in the ROM
have not prevented useful applications,3 they do lead to relatively large concrete
sizes (tens to hundreds of kilobytes in practice), which makes them undesirable
for many other applications.

This state of affairs is unfortunate because SNARGs in the ROM have
several attractive features. First, SNARGs in the ROM are to date the most
efficient approach for post-quantum security, and so achieving post-quantum
SNARGs with (public verification and) optimal argument size remains an open
problem.4 Moreover, by heuristically instantiating the random oracle with a
suitable cryptographic hash function, one obtains SNARGs that are lightweight
(no public-key cryptography is used) and easy to deploy (users only need to
agree on which hash function to use without having to rely on a trusted party to
sample a structured reference string).

1.1 Breaking the quadratic barrier

Since it seems implausible to improve the query complexity of the PCP/IOP, how
could we reduce the argument size? One way would be to reduce the overhead
of the commitment scheme. This would be an amazing achievement on its own
but currently seems out of reach (and, in fact, many believe that improving the
commitment scheme is impossible). Another way would be to completely deviate
from the paradigm of constructing SNARGs from PCPs/IOPs. However, [CY20]
tells us that any SNARG in the ROM inherently contains an IOP with closely
related parameters. In light of this, the motivating question of our work is: is
the quadratic barrier of SNARGs in the ROM inherent or, instead, one can do
better by achieving subquadratic, or even linear, argument size?
A new paradigm. In this work, we show how to go beyond the quadratic
barrier by changing the interplay between the information-theoretic proof and the
cryptographic compiler. Instead of asking for better soundness with fewer queries,
we rely on a stronger soundness notion of the PCP with the same number of
queries: we compile these strong PCPs into SNARGs without using a commitment.
The commitment is relaxed with a weak notion of binding that is coupled with
3 E.g., to increase throughput in peer-to-peer systems such as Ethereum via “roll-up”
architectures [zkr].

4 Known approaches based on lattices achieve privately-verifiable SNARGs with optimal
size [BISW17; BISW18] or publicly-verifiable SNARGs with square-root communica-
tion complexity [BBC+18].

3

our strong soundness notion for the PCP. In particular, the SNARG prover might
not be committed to any location of a proof string. Informally, our approach can
be summarized as follows:[

strong information
theoretic proof

]
+

[
weak cryptographic

commitment

]
=⇒ subquadratic

SNARG .

Results. We use this paradigm to construct the first SNARGs in the ROM of
subquadratic size.

Theorem 1. There exists a SNARG for NP in the random oracle model that
achieves argument size Õ(log(t/ε) · log t) with soundness error ε against t-query
adversaries.

Our construction is the first progress on the Micali construction since it was
introduced over 25 years ago. Our construction relies solely on a random oracle
and so is plausibly post-quantum secure. Previous SNARGs in the ROM have
been proven to be secure in the quantum random oracle model [CMS19], and we
leave it for future work to adapt these technique to our construction.

The argument size that we achieve, while better than quadratic, is still far
from the lower bound of Ω(log(t/ε)). In particular, our work leaves open the
intriguing question:

Are there SNARGs in the ROM that have argument size O(log(t/ε))?

We hope that our work will lead to a better understanding of this fundamental
question, where a positive answer is likely to have significant practical benefits.

1.2 Concrete efficiency

Our new construction achieves argument sizes that are not only asymptotically
smaller but also concretely smaller: we obtain up to 2× improvement in argument
size over Micali’s construction for an illustrative instantiation across different
values of t and ε. Moreover, the running times of the verifier and the prover of
our construction are essentially the same as in Micali’s construction.

In more detail, Micali’s construction is typically instantiated with a PCP
whose verifier is repeated many times to reduce soundness error to O(ε/t). Looking
ahead, our construction requires PCPs that satisfy a stronger notion of soundness
that (as we will prove) is satisfied by repeated PCPs. Thus, conveniently, we can
instantiate both the Micali construction and our construction via the same class
(repeated PCPs), and in particular we can directly compare their argument sizes.

For example, in Table 1 we demonstrate the arguments sizes for various values
of t and ε. We instantiate both constructions with the same repetition of a “base”
PCP with soundness error 1/2, query complexity 3, and proof length 230 over a
binary alphabet. By repeating the PCP verifier log 1

2
t
ε times, the amplified PCP

has soundness error εPCP ≤ ε/t and 3 log 1
2
t
ε queries.

4

log t

− log ε 64 96 128 160

64
180KB

131KB
≈ 1.37× 257KB

164KB
≈ 1.57× 346KB

188KB
≈ 1.84× 448KB

219KB
≈ 2.05×

96
293KB

237KB
≈ 1.24× 389KB

272KB
≈ 1.43× 498KB

317KB
≈ 1.57× 618KB

361KB
≈ 1.71×

128
432KB

357KB
≈ 1.21× 547KB

415KB
≈ 1.32× 674KB

473KB
≈ 1.42× 814KB

533KB
≈ 1.53×

160
597KB

513KB
≈ 1.16× 730KB

585KB
≈ 1.25× 876KB

659KB
≈ 1.33× 1032KB

730KB
≈ 1.41×

Table 1. Comparison of argument sizes between the Micali construction (in red) and
our construction (in blue), for different settings of (t, ε). Both constructions are based
on the same illustrative PCP.

2 Techniques

We summarize the main ideas behind our main result (Theorem 1).

2.1 The Micali construction is inherently quadratic

We review the SNARG construction of Micali [Mic00] and explain why its
argument size is quadratic.
The Micali construction. Micali [Mic00] combined ideas from Fiat and Shamir
[FS86] and Kilian [Kil92] in order to compile any probabilistically checkable proof
(PCP) into a corresponding SNARG. Informally, the SNARG prover uses the
random oracle to Merkle hash the PCP to a short root that acts as a short
commitment to the PCP string; then, the SNARG prover uses the random oracle
to derive randomness for the PCP verifier’s queries; finally, the SNARG prover
outputs an argument that includes the Merkle root, answers to the PCP verifier’s
queries, and authentication paths for each of those answers (which act as local
openings to the commitment). The SNARG verifier re-derives the PCP verifier’s
queries from the Merkle root and then runs the PCP verifier with the provided
answers, ensuring that those answers are indeed authenticated.
On the output length of the random oracle. As mentioned in the in-
troduction, the argument size in the Micali construction is Õ(q · λ), ignoring
low-order terms; moreover, under standard complexity assumptions, the number
of queries must be q = Ω(log(t/ε)) (up to low-order terms) even if using conjec-
tured “best possible” PCPs. What about the oracle output size λ? If we were
to set λ = O(log t) then we would obtain the argument size Õ(log(t/ε) · log t)
claimed in Theorem 1. However, the Micali construction is not secure in this
regime, as we now explain.

5

Consider the following attack. A cheating prover selects an arbitrary Merkle
root; uses the random oracle to derive PCP randomness from this Merkle root;
finds a PCP string that satisfies the PCP verifier for this choice of PCP random-
ness; computes the Merkle tree on this PCP string; and hopes that the resulting
Merkle root equals the Merkle root that was previously chosen. A success would
constitute an “inversion”. If this did not work, the cheating prover re-tries until he
succeeds (or runs out of queries). If we want the construction to be (t, ε)-secure,
then any t-query attack can succeed with probability at most ε. However, the
described attack would succeed with probability roughly t · 2−λ which gives us
the lower bound λ = Ω(log(t/ε)) (for the Micali scheme to be secure we actually
need to set λ = Ω(log(t2/ε))).

Looking beyond the Micali construction. Our goal is to change the con-
struction such that we can set the output length of the random oracle to
λ = Õ(log t). This means that a cheating prover in this regime may find in-
versions or collisions in the random oracle. In particular, a Merkle tree with this
choice of λ is not a commitment scheme (e.g., a collision will allow him to open
in different ways). Therefore, we will need to find ways to handle this new class
of attacks and, in particular, prevent the inversion attack described above.

2.2 Our construction

Our construction shares features with the Micali construction: the argument
prover constructs a PCP string; commits to this PCP string using the random
oracle; derives PCP randomness (and thus PCP queries) from the resulting
commitment again using the random oracle; and outputs the commitment and
certified answers to each PCP query.

At the same time, our construction differs from the Micali construction
in several crucial ways. In the sequel, we describe the differences and provide
intuition for why these differences are useful towards reducing argument size. In
subsequent subsections, we will provide more information about how we establish
the security of our construction.

(1) Chopped tree. The argument prover commits to the PCP string via
a chopped Merkle tree: the Merkle tree is computed layer by layer from the
leaves but stops at a specific stop layer i∗. In the Micali construction, the stop
layer is i∗ = 0 (a single vertex called the Merkle root); in our construction,
the stop layer is (roughly) i∗ = log q (where q is the query complexity of the
PCP), which consists of 2i

∗
vertices that we collectively call a Merkle cap.5 The

argument prover then uses the Merkle cap similarly to a Merkle root in the
Micali construction: it derives PCP randomness from the Merkle cap by using
the random oracle (in a single query); and subsequently authenticates answers to
PCP queries via paths that are truncated at layer i∗.

As the stop layer i∗ increases, argument size increases as well. In the extreme,
if i∗ = log l (the stop layer is the leaf layer), then the argument contains the entire

5 Equivalently, the Merkle cap is an ordered list of Merkle roots for smaller sub-trees.

6

PCP string. In our construction, we set (roughly) i∗ = log q, in which case the
argument size is (almost) the same as when i∗ = 0 (for the same output size of
the random oracle). Intuitively, if the argument prover supplies q authentications
paths then, with high probability, most of the vertices in layer log q would have
been already included, so that truncating the paths to layer log q and including
in the argument all the digests in layer log q does not affect argument size by
much. (This is not just asymptotically: our experiments show that this has a
negligible effect on the argument size in practice as well.)

Our main observation is that as the stop layer increases, security increases as
well. In the Micali construction, a single inversion of the Merkle root breaks the
scheme: the attacker selects an arbitrary Merkle root, derives corresponding PCP
randomness (and thus PCP queries), finds a PCP string that makes the PCP
verifier accept with that PCP randomness, computes a (full) Merkle tree on this
PCP string, and hopes that the resulting root equals the previously selected root.
If the root has output size λ, this takes about 2λ attempts (which is roughly 2λ

queries). In contrast, in our construction, an inversion of a single vertex in the
Merkle cap affects only a 1/q fraction of the PCP string, which (in general) is
not a winning strategy for a cheating prover. To emulate the prior strategy, the
attacker would need to invert all q vertices in the Merkle cap, which is much
harder.

(2) Domain separation. The Micali construction involves two random oracles:
an oracle for computing the Merkle tree, and another oracle for deriving PCP
randomness. (See [Mic00].) In our construction, we use domain separation to
“split up” the oracle for the Merkle tree into a separate oracle for each vertex in
the (in our case, chopped) Merkle tree. To compute the digest located in position
j of layer i in the tree, the argument prover uses the prefix (i, j) in the query
to the tree oracle. This does not increase argument size (the indices i and j are
known so are not included in the argument) and has essentially no effect on the
prover time and verifier time.

This domain separation is crucial for security because, without it, a cheating
prover could recycle a single inversion or collision many times. For example, the
cheating prover could find a collision in a leaf vertex between the values 0 and
1 and then re-use the same collision for all leaves to compute a Merkle tree for
which any location can be opened to 0 or 1. This is insecure, e.g., for any PCP
over the binary alphabet.

(3) Permuting the proof. In our construction, the argument prover randomly
permutes the PCP string before applying the (chopped) Merkle tree. This requires
a random permutation Perm : [l]→ [l] that is also known to the argument verifier,
and can be derived via the Luby–Rackoff construction from the random oracle
(see Section 4.1). Thus, if the PCP verifier wishes to read the i-th symbol of the
PCP string, the Perm(i)-th leaf should be accessed. This modification also does
not increase argument size and has a negligible effect on the time complexity of
the argument prover and argument verifier (each permutation call translates to a
few calls to the random oracle).

7

Permuting the PCP string creates the effect of a PCP with uniform random
queries. This property ensures that there is no “weak” block of symbols in the
PCP. Indeed, recall that we chopped the Merkle tree in order to have a Merkle
cap instead of a Merkle root, so that if a cheating prover makes a single inversion
then this will affect only a small block of the PCP string. However, if all the PCP
queries were to this block, then the cheating prover could still win with this single
inversion. In contrast, since queries are random (after applying the permutation),
we are guaranteed that, with high probability, the queries are (roughly) spread
evenly across different blocks.
(4) Robust PCPs. Our construction is designed to work with PCPs that
satisfy a stronger soundness notion, which we call permuted robust soundness.
This notion is similar to the standard property of (strong) robust soundness of
PCPs, which captures the probability of being within a particular (block-wise)
distance from a satisfying proof. To fit our proof, we augment the standard notion
to additionally consider a permutation that randomizes the proof locations so
that queries are spread across blocks.

While we rely on strong soundness notions of PCPs, we show that repeated
PCPs satisfy this stronger notion. That is, one can take a base PCP, and repeat
it to amplify the soundness. What we show is that not only the soundness is
amplified, but the PCP also satisfies the stronger notion of permuted robust
soundness (with corresponding parameters). Intuitively, this notion lets us argue
the construction’s security even when the prover finds a small number of collisions
or inversions. The next subsections are dedicated to the precise notion of permuted
robust soundness, how to achieve it in repeated PCPs, and how we use it in our
proof of security.

2.3 Permuted robust soundness

We describe permuted robust soundness, the PCP soundness notion that we use
for our construction.

Given a block size parameter b ∈ N, we view a PCP string Π ∈ Σ l as divided
into blocks of size b, that is, as Π ∈ (Σ l/b)b. We denote by ∆b(Π,Π

′) the
block-wise distance between two PCP strings Π and Π ′ (i.e., the number of
blocks of symbols on which they differ); more generally, given a permutation
Perm : [l]→ [l], we denote by ∆Perm

b (Π,Π ′) this block-wise distance when the two
PCP strings are permuted according to Perm (and after are divided into blocks
for measuring distance).

The soundness is defined by the following game.

Game 1. The game Gper receives as input a PCP verifier V, an instance x, a
block size parameter b ∈ N, an allowed distance parameter d ∈ N, and a cheating
prover P̃. The game Gper(V,x, b, d, P̃) works as follows:

1. Sample a random permutation Perm : [l]→ [l], and give it to P̃.
2. P̃ outputs a PCP string Π ∈ Σ l.
3. Sample PCP randomness ρ ∈ {0, 1}r, and give it to P̃.
4. P̃ outputs another PCP string Π ′ ∈ Σ l.

8

5. The game outputs 1 if and only if ∆Perm
b (Π,Π ′) ≤ d and VΠ′(x; ρ) = 1.

Definition 1. A PCP (P,V) for a relation R has permuted robust sound-
ness error εper(x, b, d) if for every instance x /∈ L(R), block size b ∈ N, distance
bound d ∈ N, and malicious prover P̃,

Pr
[
Gper(V,x, b, d, P̃) = 1

]
≤ εper(x, b, d) .

Why we need permuted robust soundness. Before we continue with the
security analysis of our construction, we give intuition for how permuted robust
soundness is helpful towards security.

Consider the following strategy for a cheating prover, which captures the main
ideas in our proof. The prover: selects a PCP string; permutes it according to the
random permutation; commits to it via a chopped Merkle tree; and then derives
PCP randomness, and thus PCP queries, from the resulting Merkle cap. Each
vertex in the Merkle cap is itself a Merkle root for a subtree whose leaves are a
block of the PCP string. By inverting a root in the Merkle cap, the cheating prover
has complete control on the corresponding block. In particular, the cheating
prover can find the minimal set of blocks to modify so to make the PCP verifier
accept, and inverts the roots for these blocks. The success probability is (roughly)
his probability of successfully inverting all these roots. Thus, it is important that
no block has many queries, which is why we use the permutation.

In other words, the cheating prover’s success probability depends on the
distance of the PCP string to an accepting PCP string, where the distance is
defined by the block-wise Hamming distance (after the permutation). This is
why we need the PCP to have a robust notion of soundness where the probability
that a PCP string is close to being accepting is smaller as this distance is smaller.
For any constant k, we will bound the probability that the cheating prover can
invert k roots, and then compare this with the probability that a proof will be of
distance k from an accepting proof.

This is a high-level approach of how to handle this specific attack. However,
a cheating prover has a wide range of strategies: find collisions and inversions in
arbitrary locations in the chopped Merkle tree; create multiple trees from which
to choose from, and derive many different PCP query sets; and try to combine
all of the above. The permuted robust soundness is the notion that our proof is
built on, however, we will need to somehow address all possible prover strategies.

2.4 Repeated PCPs satisfy permuted robust soundness

Our main technical lemma regarding permuted robust soundness states that any
repeated PCP satisfies the (strong notion of) permuted robust soundness. Note
that for constructing SNARGs, the underlying PCP must have an exponentially
small soundness error. We know how to build such PCPs only by repeating
some base PCP multiple times. Here, we show that in addition to improving the
standard soundness, repetition improves the permuted robust soundness of the
PCP. Intuitively, for a repeated PCP the distance of a PCP string to an accepting

9

PCP string is proportional to the number of repetitions that reject it, and different
repetitions are likely to query different blocks (due to the permutation). This is
a simple generic way to construct PCPs suitable for our SNARG construction,
which suffices for our asymptotic result and also is useful for concrete efficiency.

In more detail, the κ-wise repetition of a PCP system (P,V), denoted
(Pκ,Vκ), is the PCP system obtained by setting Pκ := P (the PCP string
does not change) and setting Vκ to run V on κ independent choices of random-
ness. We prove the following lemma.

Lemma 1. Let (P,V) be a PCP with soundness error εbase, proof length l (over
any alphabet), and query complexity q; moreover, suppose that each location in
the PCP string is queried with probability at most p. For every κ ∈ N such that
b ≥ κ ·q · ε−1base and p ≤ (8b ·κ)−1, (Pκ,Vκ) has strong permuted robust soundness
error

εper(x, b, d) ≤
e1.2·d

d!
· bd · εbase(x)κ .

The formal statement of the lemma and its proof are in Section 5. Below we
provide an overview of (a simplified version of) this lemma.

Recall that if the base PCP has soundness error εbase then its κ-wise repetition
has soundness error εκbase. This soundness error is for a PCP string that is fixed
before the κ samples of PCP randomness are drawn. Here we are instead interested
in the probability that the PCP string is d blocks away from convincing the PCP
verifier. That is, the cheating prover can arbitrarily change any d blocks after
learning the PCP randomness (and, in particular, derive the queried locations).

How much power does this give to the cheating prover? To understand this,
we first need to see how the queries are distributed among the blocks. Since we
assume that no proof location is queried with too high probability, a typical query
set will have all queries distinct (or at least have only a few colliding queries).
Then the random permutation will randomize query locations, as if they had
been uniform random queries. In sum, queries will be mostly spread out evenly
across blocks.

For even further simplicity here, let us assume that no two queries land in
the same block. (This is possible as the total number of queries κ · q is less
than b.) In this case, the prover can change at most d blocks after seeing the
queries and can affect the output of at most d out of the κ repetitions. Without
assuming any additional property about the underlying PCP, changing a single
query within a repetition might suffice to convince the PCP verifier. Thus we
cannot expect soundness better than εκ−dbase . Moreover, the cheating prover chooses
which d blocks to change adaptively after seeing all query locations, which grants
the cheating prover additional power.

To bound the soundness error we fix in advance a choice of d repetitions
among the κ repetitions that the prover controls; the remaining κ− d iterations
each contribute a multiplicative factor of soundness error εbase. By a union bound
over all choices of the d iterations, we get the expression:(

κ

d

)
· εκ−dbase ≤

κd

d!
· εκ−dbase =

1

d!
·
(

κ

εbase

)d
· εκbase ≤

bd

d!
· εκbase .

10

This expression is better than what we set out to prove. The additional term
e1.2d in Lemma 1 comes from removing the simplifying assumptions used above.
Without those assumptions, the cheating prover may gain an advantage when a
block contains queries from more than one repetition: (i) queries might collide
before the permutation is applied, and these queries will be mapped to the same
(random) location by the permutation; (ii) even distinct queries might be mapped
to the same block after the permutation (and this is likely to happen). The full
proof must take these into account, which complicates the expressions above and
introduces the additional term e1.2d.

Remark 1 (repetition of a robust PCP). Lemma 1 shows that the repetition of
any PCP satisfies permuted robust soundness. This will let us instantiate our
SNARG construction based on the repetition of any PCP, retaining maximal
freedom in choosing parameters of the PCP, without worrying about additional
properties of the PCP. Nevertheless, we could also consider the repetition of
a PCP that is already somewhat robust (in the standard sense), which would
improve the soundness expression in the lemma. For example, suppose that in
every local view of the PCP string we need to change at least two answers to
make the PCP verifier accept. For this case we expect the soundness of the
repeated PCP to be close to εκ−d/2PCP , instead of εκ−dPCP . We leave it for future work
to derive the analogue of Lemma 1 for robust PCPs.

2.5 The cap soundness game

In order to obtain a security analysis of our construction, we introduce an
intermediate information-theoretic game, called cap soundness game, that enables
us to model the effects of attacks against our construction. The intermediate
game then leaves us with two tasks: reduce the security of our construction to
winning the cap soundness game (see Section 2.7); and reduce winning the cap
soundness game to breaking the permuted robust soundness of the PCP (see
further below).
The game. The cap soundness game has several inputs: a PCP verifier V;
an instance x (which we will usually omit from the description); an integer λ
(modeling the random oracle’s output size); a stop layer i∗; a malicious prover
P̃ to play the game; a query budget t ∈ N; a collision budget tcol ∈ N; and a
inversion budget tinv ∈ N. We denote this game by Gcap(V,x, λ, i

∗, P̃, t, tcol, tinv).
The graph G. The game is played on a graph G = (V,E) that represents the
chopped Merkle trees constructed by the adversary so far. Letting d be the height
of a full Merkle tree, vertices in G are the union V := Vi∗ ∪V1 ∪ · · · ∪Vd where Vi
are the vertices of level i of the tree: for every i ∈ {i∗, . . . , d− 1}, Vi := {(i, j, h) :
j ∈ [2i], h ∈ {0, 1}λ} is level i; and Vd := {(d, j, h) : j ∈ [2d], h ∈ Σ} is the leaf
level. The indices i and j represent the location in the tree (vertex j in level i)
and the string h represents either a symbol of the PCP (if in the leaf level) or an
output of the random oracle (if in any other level). Edges in G are hyperedges
that keep track of which inputs are “hashed” together to create a given output.

11

That is, elements in the edge set E of G are chosen from the collection E below,
which represents an edge between two vertices in level i+ 1 and their common
parent in level i:

E =

(u, v0, v1) :
u = (i, j, h) ∈ Vi
v0 = (i+ 1, 2j − 1, h0) ∈ Vi+1

v1 = (i+ 1, 2j, h1) ∈ Vi+1

 .

The set of valid caps consists of all possible lists of vertices in Vi∗ that consist a
full layer of vertices:

C :=
{(

(i∗, 1, h1), . . . , (i
∗, 2i

∗
, h2i∗)

)
: h1, . . . , h2i∗ ∈ {0, 1}λ

}
.

Playing the game. The game starts with the graph G empty (E = ∅),
and proceeds in rounds; moreover, the game samples a random permutation
Perm : [l]→ [l] and gives it to the adversary. After that, in each round, provided
there is enough query budget t left, the adversary chooses between two actions:
(i) add an edge to E from the set E , provided the edge is allowed; (ii) obtain the
PCP randomness for a given Merkle cap. We discuss each in more detail.

– Adding edges. When the prover adds to E an edge (u, v0, v1) ∈ E the query
budget is reduced t← t− 1. Moreover, the collision and inversion budgets may
also be reduced if the edge creates a collision or inversion, as described below.
• Collisions. If the edge (u, v0, v1) collides with an edge (u, v′0, v

′
1) that is

already in E, the game charges a unit of collision budget by setting tcol ←
tcol− 1. Note that the game charges a single unit for each collision edge, and
multi-collisions are allowed. Thus, a k-wise collision costs k − 1 units of tcol.
This makes the collision budget versatile in that, for example, a budget of 2
can be used to create two 2-wise collisions or one 3-wise collision.

• Inversions. If the edge (u, v0, v1) is added when u is not free (defined next),
the game charges a unit of inversion budget by setting tinv ← tinv − 1. The
vertex u is free if it is not already connected to a vertex in a level closer
to the cap, i.e., if u ∈ Vi then for every w ∈ Vi−1 and u′ ∈ Vi it holds that
(w, u, u′) /∈ E. (Note that the game would not charge an inversion if these
edge where added in reverse order, though, as that would not have been an
inversion.)

– Deriving randomness. The prover submits a cap (v1, . . . , v2i∗) ∈ C, and the
game samples new PCP randomness ρ. The pair

(
(v1, . . . , v2i∗), ρ

)
is added

to a mapping Rand. (The prover is not allowed to submit a cap that already
appears in the mapping Rand.) This costs a unit of the query budget, so when
this happens the query budget is reduced t← t− 1.

Winning the game. When it decides to stop playing, the prover outputs a
cap (v1, . . . , v2i∗) ∈ C and a PCP string Π ∈ Σ l. The prover wins the game if
the following two conditions hold.

– The PCP verifier accepts the PCP string Π when using the randomness
associated to (v1, . . . , v2i∗). That is, VΠ(x; ρ) = 1 for ρ := Rand[(v1, . . . , v2i∗)].
(If Rand has no randomness for this cap then the prover loses.)

12

– The PCP string Π is consistent with the cap (v1, . . . , v2i∗) in the graph
G. That is, if the PCP verifier queries location j of Π, then the leaf u =
(d, j,Π[Perm(j)]) ∈ Vd is connected to a vertex in the cap (v1, . . . , v2i∗) in G.
(The collection E of possible edges ensures that the j-th leaf can be connected
to at most one vertex in a cap, the one corresponding to the first i∗ bits of the
index j.)

We denote by εcap(i∗, t, tcol, tinv) the maximum winning probability in the cap
soundness game, with stop layer i∗, by any adversary with query budget t,
collision budget tcol, and inversion budget tinv.
From permuted robust soundness to cap soundness. We reduce the
soundness of a cheating prover in the cap soundness game to the soundness in
the permuted robust soundness game.

Lemma 2. Let (P,V) be a PCP for a relation R with permuted robust soundness
error εper(b, d). Then, (P,V) has cap soundness error

εcap(i
∗, t, tcol, tinv) ≤ t · 2tcol · εper(b = 2i

∗
, d = tinv) .

The proof of the lemma is somewhat technical and is provided in Section 6.
Here we provide some intuition on the above expression. The term εper(b =
2i
∗
, d = tinv) comes from the fact that if the attacker can make tinv inversions then

it suffices for the attacker to commit to a PCP string that is within a block-size
distance of tinv from an accepting PCP string (and the blocks have size 2i

∗
since

that is the number of leaves under a vertex in the cap). The multiplicative factor
2tcol comes from the fact that if the attacker can find tcol collisions then the
attacker can open up to 2tcol PCP strings for the same cap (as each collision
doubles the number of PCP strings that could be consistent with the same cap).
The further multiplicative factor t comes from the fact that the attacker can
re-try its strategy roughly t times.

2.6 Scoring oracle queries

The cap soundness game lets us bound the success probability of an adversary
given specific budgets. But what budgets should we use when analyzing a cheating
argument prover? For this, we rely on an analysis tool introduced in [anon
citation]: a scoring function for the query trace of an algorithm in the random
oracle model. For convenience and completeness, we review this notion below.

Intuitively, the score of a query trace “counts” the number of collisions and
inversions in a way that reflects the probability of that event occurring. The
lower the probability, the higher the score. This enables us to translate our claims
about cheating argument provers into claims about cheating cap soundness
provers, where a high score is translated to a high budget. A strategy that uses a
large budget has a higher chance of winning the cap soundness game, but the
probability of achieving a corresponding high score is low, and our goal is to
balance these two.

The scoring function is separately defined for collisions and for inversions, as
motivated below.

13

– Scoring collisions. The score of a k-wise collision is set to be k − 1 (assuming
k is maximal within the query trace); in particular, a 2-wise collision gets a
score of 1. Note that two pairwise collisions and one 3-wise collision both get
the same score of 2, even though the latter is less likely to occur. This aligns
with our proof since two pairwise collisions yield four possible proof strings,
while a 3-wise collision yields only three possible proof strings.

– Scoring inversions. Scoring inversions is done by simply counting the number
of inversions in the query trace. We now elaborate on what is considered
an inversion in the query trace. Recall that queries to the random oracle
designated for the (chopped) Merkle tree are compressing: a query is of the
form x = (x1, x2) ∈ {0, 1}λ × {0, 1}λ and an answer is y ∈ {0, 1}λ. Instead,
queries to the random oracle designated for deriving PCP randomness are of
the form x ∈ {0, 1}2i

∗
·λ and an answer is ρ ∈ {0, 1}r. For inversions we only

consider tree queries, and note that a given tree query may invert one of the
two components in a previous tree query or may invert (the one component of)
a previous randomness query. Hence, a tree query performed at time j with
answer y is an inversion if there exist a previous tree query (at time j′ < j) of
the form x = (x1, x2) with x1 = y or x2 = y, or a previous randomness query
x with x = y.

The precise definitions of scores and the proof of the following lemma are provided
in the full version:

Lemma 3. For any t-query algorithm that queries the random oracle and every
k ∈ N:

1. Pr [collision score > k] ≤
(

t2

2·2λ

)k
;

2. Pr [inversion score > k] ≤ 1
k! ·
(
2t
2λ

)k
.

2.7 Concluding the proof of Theorem 1

We are left with putting pieces together to derive the argument size. To this end,
we first establish the soundness error of our construction, and then the argument
size will follow.

Soundness of our construction. We show that our construction is sound
given any PCP with permuted robust soundness. Recall that permuted robustness
soundness depends on the distance d (Section 2.3). In our construction the quantity
that matters is an associated worst-case ratio: we say that the PCP has permuted
robustness ratio β(b) if

max
d∈{0,1,...,b}

εper(x, b, d+ 1)

εper(x, b, d)
≤ β(b) .

Then, we show the following lemma.

14

Lemma 4. Suppose our construction is instantiated with a random oracle with
output size λ, and a PCP with soundness error εPCP and permuted robustness ratio
β(b) with stop layer i∗. If λ ≥ 2 log t+ log β(b = 2i

∗
) + 3 then our construction

has soundness error ε(t) ≤ t · εPCP against t-query adversaries.

In our soundness analysis we consider every possible query trace score and
also the probability that the cheating argument prover achieves that score (see
Section 2.6). For any integer k ∈ N we consider the event of the cheating argument
prover produces a query trace that has either collision score or inversion score
exactly k. We show that, conditioned on the cheating prover producing a query
trace of score k, there is a related adversary that wins the cap soundness game
with the same probability and budget k (the precise statement is given in Claim 6).
Informally,

Pr

[
verifier
accepts

∣∣∣∣ score k] ≤ εcap(i∗, t, k, k) .
We consider an infinite sum over k, and for each value of k we bound the

probability of the adversary getting a score of k multiplied by the maximum
winning probability in the cap soundness game given budgets tcol = k and
tinv = k. This infinite sum converges to the soundness expression stated in
Lemma 4, provided that λ ≥ 2 log t+ log β + 3.

In more detail, this approach could be over-simplified via the following equa-
tions (for simplicity here we are not careful with constants). First, using Lemma 3
we obtain that the probability that the collision or inversion score equals k is
bounded by the sum of the two probabilities:

Pr[score of k] ≤ 2 ·
(
2t2

2λ

)k
.

This lets us express the success probability of the cheating prover as an infinite
sum conditioned on getting a score of k, for any k ∈ N:

Pr

[
verifier
accepts

]
≤
∞∑
k=0

Pr

[
verifier
accepts

∣∣∣∣ score of k
]
· Pr[score of k]

≤
∞∑
k=0

εcap(i
∗, t, k, k) · Pr[score of k] ≤

∞∑
k=0

O

(
t · 2k · εper(k) ·

(
2t2

2λ

)k)

≤
∞∑
k=0

O

(
t · 2k · βk · εPCP ·

(
2t2

2λ

)k)
= O(t · εPCP) ·

∞∑
k=0

(
4β · t2

2λ

)k
= O (t · εPCP) .

The last equality follows from the fact that
∑∞
k=0

(
4β·t2
2λ

)k
= O(1) since λ ≥

2 log t+ log β + 3.
Argument size of our construction. We choose an appropriate PCP and
obtain the argument size claimed in Theorem 1. Recall that Lemma 4 tells us
that the soundness error of our construction is t · εPCP provided that the random

15

oracle output size satisfies λ ≥ 2 log t+ log β + 3; in particular, to achieve (t, ε)
security, we need the PCP soundness error to be εPCP = ε/t.

Towards this end, we apply Lemma 1 to any constant-query constant-soundness
PCP (over a small alphabet), where the probability of querying each proof loca-
tion is not too high, as required by the lemma (most PCP constructions satisfy
this requirement). We get that its κ-wise repetition has permuted robustness
ratio β(b) = O

(bd+1·εκbase

bd·εκbase

)
= O(b) for a block size b. The block size depends on

the number of repetitions, the query complexity, and the soundness of the base
PCP (where the last two are constant), and thus we have that b = O(κ). To
achieve the desired PCP soundness error, we set the number of repetitions to be
κ = O(log(t/ε)); hence the number of queries is q = O(log(t/ε)). Finally, we set
stop layer according to Lemma 4 to be i∗ = O(log b).

The argument contains the Merkle cap (which has size 2i
∗ · λ), PCP query

answers (which have total size q · log |Σ|), and the authentication paths (which
have total size q · λ · log(l/2i∗)). The argument size thus is

|argument| = 2i
∗
· λ+ q · log |Σ|+ q · λ · log(l/2i

∗
) = O(q · λ · log(l/q))

= O

(
log

t

ε
·
(
log t+ log log

t

ε

)
· log l

log(t/ε)

)
= Õ

(
log

t

ε
· log t

)
,

where the last equality hides log log t
ε and log l factors (as we assume that

l = poly(n) where n is the input length).
Achieving concrete efficiency. In order to achieve concrete efficiency (e.g.,
the numbers reported in Table 1), our security analysis improves on the above
expression by showing that the hidden constant (in the big-O notation) in the
soundness expression can be replaced with the constant 1.

To achieve this, it does not suffice simply to pay attention to the constants in
the computations, but we need to separately count the queries performed to a
tree oracle and to a PCP randomness oracle. The PCP randomness oracle has a
long input length (it maps 2i

∗ · λ bits to λ bits). Therefore, we count each query
to it as 2i

∗
queries. This is aligned with how one would implement such an oracle

using domain extension ([Mer89; Dam89]). Thus, in the full proof, we introduce
two new parameters ttree and trnd such that it always holds that t = ttree+2i

∗ · trnd.
Hence the full proof contains similar expressions as above, where in some cases, t
is replaced with either ttree, trnd, or their (weighted) sum.

3 Definitions

Relations. A relation R is a set of tuples (x,w) where x is the instance and
w the witness. The corresponding language L = L(R) is the set of x for which
there exists w such that (x,w) ∈ R.
Random oracles. We denote by U(λ) the uniform distribution over functions
ζ : {0, 1}∗ → {0, 1}λ (implicitly defined by the probabilistic algorithm that assigns,
uniformly and independently at random, a λ-bit string to each new input). If ζ
is sampled from U(λ), we call ζ a random oracle.

16

Oracle algorithms. We restrict our attention to oracle algorithms that are
deterministic since, in the random oracle model, an oracle algorithm can obtain
randomness from the random oracle. Given an oracle algorithm A and an oracle
ζ ∈ U(λ), queries(A, ζ) is the set of oracle queries that Aζ makes. We say that A
is t-query if |queries(A, ζ)| ≤ t for every ζ ∈ U(λ).

3.1 Probabilistically checkable proofs

We provide standard notations and definitions for probabilistically checkable proofs
(PCPs) [BFLS91; FGL+91; AS98; ALM+98]. Let PCP = (P,V) be a pair where
P, known as the prover, is an algorithm, and V, known as the verifier, is an
oracle algorithm. We say that PCP is a PCP for a relation R with soundness
error εPCP if the following holds.

– Completeness.
For every (x,w) ∈ R, letting Π := P(x,w) ∈ Σ l, Prρ∈{0,1}r [VΠ(x; ρ) = 1] = 1.

– Soundness.
For every x /∈ L(R) and malicious proof Π̃ ∈ Σ l, Prρ∈{0,1}r [VΠ̃(x; ρ) = 1] ≤
εPCP(x).

Above, Σ is a finite set that denotes the proof’s alphabet, and l is an integer that
denotes the proof’s length. We additionally denote by q the number of queries to
the proof made by the verifier. All of these complexity measures are implicitly
functions of the instance x.

Definition 2. Let ∆ be an absolute distance measure. We say that PCP has
(strong) robustness soundness error εPCP with respect to ∆ if for every
instance x /∈ L(R), proof string Π ∈ Σ l, and (absolute) distance parameter
d ∈ [b],

Pr
ρ∈{0,1}r

[
∃Π ′ s.t. VΠ′(x; ρ) = 1 and ∆(Π,Π ′) ≤ d

]
≤ εPCP(x, d) .

Standard soundness corresponds to the case where ∆ is the Hamming distance
and εPCP(x, 0) = εPCP(x) for some error function εPCP(x) and εPCP(x, d) = 1
for any d > 0. The standard notion of robust soundness is a special case of
Definition 2, corresponding to the case where εPCP(x, d) = εPCP(x) for d in some
interval [0, d∗] and εPCP(x, d) = 1 for d > d∗.

3.2 Non-interactive arguments in the random oracle model

We consider non-interactive arguments in the random oracle model (ROM), where
security holds against query-bounded, yet possibly computationally-unbounded,
adversaries. Recall that a non-interactive argument typically consists of a prover
algorithm and a verifier algorithm that prove and validate statements for a binary
relation, which represents the valid instance-witness pairs.

Let ARG = (P, V) be a tuple of (oracle) algorithms. We say that ARG is a
non-interactive argument in the ROM for a relation R with (t, ε)-security if, for
a function λ : N× (0, 1) → N, the following holds for every query bound t ∈ N
and soundness error ε ∈ (0, 1).

17

– Completeness. For every (x,w) ∈ R,

Pr

[
V ζ(x, π) = 1

∣∣∣∣ ζ ← U(λ(t, ε))π ← P ζ(x,w)

]
= 1 .

– Soundness. For every x /∈ L(R) with |x| ≤ t and t-query P̃ ,

Pr

[
V ζ(x, π) = 1

∣∣∣∣ ζ ← U(λ(t, ε))π ← P̃ ζ

]
≤ ε .

The argument size s := |π| is a function of the desired query bound t and
soundness error ε. So are the running time pt of the prover P and the running
time vt of the verifier V .

4 Our construction

We describe our construction of a (succinct) non-interactive argument from a
PCP. Let (P,V) be a PCP system for the desired relation, with proof length
l over an alphabet Σ and query complexity q; for notational convenience, we
set d := dlog le. The construction is additionally parametrized by a stop layer
i∗ ∈ {0, 1, . . . , d− 1}, which we will set in the analysis (looking ahead, 2i

∗
will

be roughly the number of queries in the PCP).
The oracles in our construction. The algorithms below are granted access
to three oracles:

1. a tree oracle ζtree : {0, 1}2λ → {0, 1}λ, which hashes two elements to one;
2. a PCP randomness oracle ζrnd : {0, 1}2

i∗ ·λ → {0, 1}r, which hashes 2i
∗
elements

to r bits, where r is the randomness complexity of the PCP verifier V;
3. a random permutation Perm : [l]→ [l], over the locations of a PCP string.

In our analysis, we assume that these oracle are available; all of them can be
derived from a single random oracle ζ : {0, 1}∗ → {0, 1}∗. First, using domain
separation one can create multiple random oracles from a single one. The second
oracle has a larger domain, which is derived via domain extension (for example,
using the Merkle–Damgård iterated construction [Mer89; Dam89]). The third is
derived via Feistel networks, as discussed in Section 4.1.

Since the oracles have different input lengths, the cost for querying each oracle
differs. We consider a query to the tree oracle as a single query to the random
oracle (i.e., reducing a single unit from the cheating prover’s query budget).
The PCP randomness oracle hashes 2i

∗
elements and thus its cost will be 2i

∗

accordingly. We consider queries to the random permutation to be “free”. That is,
a cheating prover can completely query the permutation oracle with no change
to its query budget (this makes our result stronger).

We describe the argument prover P and then the argument verifier V of the
tuple ARG = (P, V).
Argument prover. The argument prover P takes as input an instance x and
a witness w, and computes an argument π as follows.

18

1. Run the PCP prover P on (x,w) to obtain a PCP string Π ′ ∈ Σ l.
2. Use the permutation Perm to permute this PCP string and obtain Π such

that Π[i] = Π ′[Perm(i)].
3. Use the random oracle ζtree to Merkle commit to Π, as follows:

– For every j ∈ [l], set the j-th leaf hd,j := Πj ∈ Σ.
– For i = d− 1, d− 2, . . . , i∗: for j ∈ [2i], compute
hi,j := ζtree(i‖j‖hi+1,2j−1‖hi+1,2j) ∈ {0, 1}λ.

– Set the Merkle cap h := {hi∗,j ∈ {0, 1}λ}j∈[2i∗].
4. Derive randomness ρ := ζrnd(h) ∈ {0, 1}r and simulate the PCP verifier V on

input (x; ρ) and PCP string Π; this execution induces q query-answer pairs
(j1, a1), . . . , (jq, aq) ∈ [l]×Σ.

5. Output
π :=

(
h, (j1, a1, p1), . . . , (jd, ad, pd)

)
(1)

where p1, . . . , pd are the authentication paths for the query-answer pairs
(j1, a1), . . . , (jq, aq), truncated at level i∗ of the tree.

Argument verifier. The argument verifier V takes as input an instance x and
a proof π (of the form as in Equation (1)), and computes a decision bit as follows.

1. derive randomness ρ := ζrnd(h) for the PCP verifier from the Merkle cap h;
2. check that the PCP verifier V, on input (x; ρ) and by answering a query to
jr with ar, accepts;

3. check that p1, . . . , pd are authentication paths of (j1, a1), . . . , (jd, ad) relative
to the Merkle cap h.

Argument size. The argument π contains the Merkle cap h ∈ {0, 1}2i
∗
·λ, a

(log |Σ|)-bit answer for each of q queries, and q authentication paths. This totals
to an argument size that is

2i
∗
· λ+ q · log |Σ|+ q · λ · log(l/2i

∗
) . (2)

Each of the q queries in [l] comes with an authentication path containing the
log(l/2i

∗
) siblings of vertices on the path from the query to the Merkle cap, which

amounts to λ · log(l/2i∗) bits. (More precisely, log |Σ|+ λ · (log(l/2i∗)− 1) bits
since the first sibling is a symbol in Σ rather than an output of the random
oracle.)

As noted in earlier works (e.g., [BBHR19; BCR+19]) parts of the information
across the q authentication paths is redundant, and the argument size can be
reduced by pruning : the prover includes in π the minimal set of siblings to
authenticate the q queries as a set. All concrete argument sizes that we report in
Table 1 already account for this straightforward optimization.

Remark 2 (salts for zero knowledge and more). The security analysis that
we present in this paper (see Section 7) works even if all the vertices in the
tree are “salted”, which means that an attacker may include an arbitrary string
σi,j ∈ {0, 1}λ in the query that obtains the digest hi,j , for any i ∈ {0, 1, . . . , d−1}

19

and j ∈ [2i]. That is, our results hold against strong attacks (the attacker can
obtain multiple random digests hi,j for any given indices i and j). Salts are useful
for showing additional properties of SNARGs in the random oracle model, and
in particular, to achieve zero-knowledge[BCS16; IMSX15].

4.1 Implementing the random permutation

We discuss how to implement the random permutation given the random oracle.
We need a pseudorandom permutation over the domain [l], where l is the length of
the PCP. There are multiple ways to do this, and here we use Feistel networks, also
known as also known as Luby–Rackoff permutations [HR10; LR88; NR99]. These
constructions are parameterized by a number of Feistel rounds r; each round calls
the random oracle once, and the more rounds, the better the security. In particular,
for any algorithm performing q queries, the advantage in distinguishing it from
a truly random permutation is exponentially small. In our case, the “adversary”
performing the queries is the PCP verifier, which performs non-adaptive queries.
We do not need to fool the cheating prover of the argument scheme. The only
goal of the permutation is to spread the PCP queries into evenly divided blocks.
We use the following theorem.

Theorem 2 ([HR10, Theorem 3]). The Feistel permutation over [l] with r
rounds has distinguishing advantage at most q

r+1

(
4q
l

)r
, for any non-adaptive

q-query algorithm.

In particular, setting r to be large enough (and recalling that q is merely the
number of queries in the PCP), we can set the distinguishing probability to be
extremely small with negligible effect on our proof, and thus we omit these terms
and perm our analysis under the assumption of a truly random permutation.
For our theoretical needs, the theorem above suffices. Even setting concrete
parameters, the number of rounds needed is relatively small. However, there are
several other alternatives with different concrete performance. One example is to
use DES (recall that we do not need to hide the key from the cheating prover) or
to use other standards such as FFX [BRS10].

5 Permuted robust soundness

Definition 3 (Block distance). Let Π,Π ′ ∈ Σ l be two strings, and consider
them divided to b blocks. That is, we view them as Π,Π ′ ∈ (Σ l/b)b. Define
∆b(Π,Π

′) to be the block-wise distance between Π and Π ′ (i.e., the number of
blocks of symbols on which they differ).

Moreover, for any permutation Perm, we define ∆Perm
b similarly where we first

permute the order according to Perm and then divide to blocks.

Game 3. The permuted robust soundness game is parametrized by a PCP verifier
V, an instance x, a positive integer b, and a non-negative integer d. We denote
by Gper(V,x, b, d, P̃) the boolean random variable denoting whether a malicious
prover P̃ wins in this game, according to the description below.

20

1. Perm is sampled as a random permutation over [l].
2. P̃ outputs a proof string Π ∈ Σ l.
3. P̃ receives a random string ρ ∈ {0, 1}r, which represents randomness for the PCP

verifier.
4. P̃ outputs a proof string Π ′ ∈ Σ l.
5. The game outputs 1 if and only if VΠ′(x; ρ) = 1, and ∆Perm

b (Π,Π ′) ≤ d.

Definition 4. A PCP (P,V) for a relation R has permuted robust sound-
ness error εper(x, b, d) if for every instance x /∈ L(R), integers b, d, and mali-
cious prover P̃,

Pr
[
Gper(V,x, b, d, P̃) = 1

]
≤ εper(x, b, d) .

The PCP has permuted robustness ratio β (with respect to b) if for any d ∈
{0, 1, . . . , b} it holds that:

εper(x, b, d+ 1) ≤ β · εper(x, b, d) .

Lemma 5 (restatement of Lemma 1). Let (P,V) be a PCP with soundness
error εbase, length l, and query complexity q, and assume each location is queried
with probability at most p. Let κ ∈ N and let (P,V)κ be the κ-repeated version of
(P,V). If b ≥ κ · q · ε−1base, and p ≤ (8b · κ)−1 then (P,V)κ has strong permuted
robust soundness error

εper(x, b, d) ≤
e1.2·d

d!
· bd · εκbase .

Moreover, the robustness ratio is β ≤ 2.33 · b.
Using the above lemma, we can plug in a PCP with soundness error 1/2 that

uses 3 queries, with proof length l and get the following corollary.

Corollary 1. For any κ ∈ N , there is a PCP (P,V) that has query complexity
q = 3κ and has permuted robust ratio

β ≤ 2.33 · κ · 3 · 2 = 14κ .

The lemma is proved in the full version.

6 Cap soundness

We define a PCP soundness game that we call cap soundness game. The game
is played on a graph G = (V,E) that represents the Merkle tree in the Micali
construction. The game starts out with the graph being empty (E = ∅), and the
PCP adversary can iteratively choose one of several actions, with some budget
limitations that constrain how many collisions and inversions the PCP adversary
can create in the Merkle tree. We stress that this game is information-theoretic,
and can be viewed as an abstract modeling of the effects of these attacks in the
real world. The edges are in fact hyperedges in order to keep track of which
inputs are “hashed” together to create a specific output. Below we introduce
definitions for describing the game, and then relate winning this game to winning
the reverse soundness game.

21

Definition 5. Let d, i∗, and λ be positive integers, and Σ a finite alphabet. The
vertex set V is the union Vi∗ ∪ · · · ∪ Vd where Vd := {(d, j, h) : j ∈ [2d], h ∈ Σ}
and, for every i ∈ {i∗, . . . , d − 1}, Vi := {(i, j, h) : j ∈ [2i], h ∈ {0, 1}λ}. We
consider graphs of the form G = (V,E) where E is a set of (hyper)edges chosen
from the following collection:

E =

(u, v0, v1) :
u = (i, j, h) ∈ Vi
v0 = (i+ 1, 2j − 1, h0) ∈ Vi+1

v1 = (i+ 1, 2j, h1) ∈ Vi+1

 .

For an edge e = (u, v0, v1), we call u its base vertex and v0, v1 its children vertices.
We also define:
– the edges of a base vertex u = (i, j, h) are edges(u) := {(u, v0, v1) ∈ E :
v0, v1 ∈ Vi+1};

– the level of an edge e, denoted level(e), is i if its base vertex has the form
u = (i, j, h).

Each leaf of the graph, namely, a vertex u = (d, j, h) at level d is associated
to a symbol, h. A collection of leaves thus determine a string whose location j is
the symbol of the j-th leaf.

Definition 6. Let G = (V,E) be a graph over the vertex set V as in Definition 5.
– A vertex ud ∈ Vd is connected in G to a vertex u` ∈ V` if there exist vertices
ud−1, . . . , u`+1 such that, for all i ∈ {d, d− 1, . . . , `+ 1}, ui ∈ Vi and there is
an edge e ∈ E such that ui, ui−1 ∈ e.

– A vertex v ∈ Vi is free in G if for every u ∈ Vi−1 and v′ ∈ Vi it holds that
(u, v, v′) /∈ E.

Notice that the connectivity concerns only paths that begin at any leaf (a
vertex at level d) and move directly towards the vertex u`. That is, at each step
on the path, the level decreases by 1. Moreover, a vertex at level i is free if there
is no edge that connects it to a vertex at level i− 1.

Definition 7. Let G = (V,E) be a graph over the vertex set V as in Definition 5,
and let Perm be a permutation. A string s ∈ (Σ ∪ {⊥})l is consistent with G
with respect to Perm if for every j ∈ [l] such that s[j] 6= ⊥ there exists a vertex
vPerm(j) = (d, Perm(j), h) ∈ Vd such that h = s[j] and vPerm(j) is connected some
u ∈ Vi∗ in G. In such a case we write Consistent(G, Perm, s) = 1.

Game 4. The cap soundness game is parametrized by a PCP verifier V, an
instance x, and an integer λ. The game receives as input a malicious prover P̃, a
root budget trnd ∈ N, a tree budget ttree ∈ N, a collision budget tcol ∈ N, and an
inversion budget tinv ∈ N, which we denote Gcap(V,x, λ, P̃, i

∗, trnd, ttree, tcol, tinv).
The game works as follows:

– Initialization:
1. Set E := ∅ to be an empty edge set for the graph G = (V,E).
2. Set Rand to be an empty mapping from V to verifier randomness.

22

3. Perm is a sampled as a uniformly random permutation over [l] and given to the
prover P̃.

– Round: P̃ chooses one of the following options until it decides to exit.
• Option ADD: P̃ submits a vertex u = (i, j, h) ∈ V with i ∈ {i∗, . . . , d− 1} and

strings h0, h1.
1. Set the (hyper)edge e := (u, v0, v1) where v0 := (i+ 1, 2j − 1, h0) ∈ Vi+1 and

v1 := (i+ 1, 2j, h1) ∈ Vi+1.
2. If u is not free then tinv ← tinv − 1.
3. If |e(u)| ≥ 1 then tcol ← tcol − 1.
4. Add e = (u, v0, v1) to E.
5. ttree ← ttree − 1.

• Option RND: P̃ submits a cap vertex vh ∈ Vi∗ .
1. If Rand already contains an entry for vh then set ρ← Rand[vh].
2. If Rand does not contain an entry for vh then sample ρ ∈ {0, 1}r at random and

set Rand[vh]← ρ.
3. trnd ← trnd − 1.
4. ρ is given to P̃.

– Output: P̃ outputs a cap v1, . . . , v2i∗ ∈ Vi∗ and leaf vertices v1, . . . , vq ∈ Vd.
– Decision: P̃ wins if all checks below pass.

1. Construct a PCP string Π ∈ (Σ ∪ {⊥})l: for every r ∈ [q], parse the r-th leaf
vertex as vr = (d, j, h) and set Π[Perm(j)] := h ∈ Σ; set Π[j] := ⊥ for all other
locations.

2. Retrieve PCP randomness for this root vertex: ρ∗ ← Rand[vh].
3. Check that the PCP verifier accepts: VΠ(x; ρ∗) = 1.
4. Check that Π is consistent in G w.r.t. Perm: Consistent(G, Perm, Π) = 1.
5. Check that P̃ is within budget: tcol ≥ 0, tinv ≥ 0, trnd ≥ 0, and ttree ≥ 0.

Definition 8. A PCP (P,V) for a relation R has cap soundness error
εcap(x, λ, i

∗, trnd, ttree, tcol, tinv) if for every x /∈ L(R), output size λ ∈ N, malicious
prover P̃, stop layer i∗, and budgets trnd, tcol, tinv ∈ N,

Pr
[
Gcap(V,x, λ, P̃, i

∗, trnd, ttree, tcol, tinv) = 1
]
≤ εcap(x, λ, i∗, trnd, ttree, tcol, tinv) .

Lemma 6 (restatement of Lemma 2). Let (P,V) be a PCP for a relation
R with permuted robust soundness error εPCP with respect to distance ∆b for
parameter b, and suppose it has uniformly random queries. Then, (P,V) has cap
soundness error

εcap(x, λ, i
∗, trnd, ttree, tcol, tinv) ≤ trnd · 2tcol · εper(x, b = 2i

∗
, d = tinv) .

The lemma is proved in the full version.

7 Soundness based on permuted robust soundness

Theorem 5 (restatement of Lemma 4). Suppose that our construction
(described in Section 4) is instantiated with:

1. a PCP with soundness εPCP and permuted robustness ratio β(b);

23

2. a random oracle with output size λ; and
3. stop layer i∗.

Then, provided that λ ≥ 2 log t+ log β(2i
∗
) + 3, the construction has a soundness

error ε(t) against t-query adversaries that is bounded as follows:

ε(t) ≤ t · εPCP .

Using this soundness analysis along with concrete PCPs, we get the following
corollary:

Corollary 2 (restatement of Theorem 1). Our construction implies a
SNARG for NP in the random oracle model that has (t, ε)-security with an
argument size of

O
(
log(t/ε) ·

(
log t+ log log(t/ε)

)
· log(l/ log(t/ε))

)
. (3)

We prove the theorem in Section 7.1 and the corollary in Section 7.2.

7.1 Proof of Theorem 5

Fix t ∈ N. Let P̃ be a t-query cheating argument prover. Note that P̃ can make
queries to the randomness oracle ζrnd and tree oracle ζtree (or the permutation
but we are giving these queries to the cheating prover for free). Recall that the
randomness oracle trnd has a larger domain size and thus has cost 2i

∗
. For any

choice of positive integers trnd and ttree such that 2i
∗ · trnd + ttree ≤ t, below we

condition on the event that P̃ makes trnd queries to ζrnd and ttree queries to ζtree.
For any such choice, we obtain the same upper bound (independent of the choice
of trnd and ttree), and hence conclude that the bound holds for the distribution of
trnd and ttree implied by P̃ .

We rely on the claim below, which states that a cheating argument prover
can be transformed into a cheating PCP prover for the cap soundness game with
a small loss, when the budgets for collisions and inversions correspond to the
corresponding scores of the trace of the argument prover.

Claim 6. There is an efficient transformation T such that, for every cheating
argument prover P̃ , the cheating PCP prover P̃ := T(P̃) satisfies the following
condition for every k ∈ N:

Pr

V ζ(x, π) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ζ ← U(λ)
π ← P̃ ζ

trrnd ← queriesrnd(P̃ , ζ)

trtree ← queriestree(P̃ , ζ)
|trrnd| = trnd, |trtree| = ttree

scorecol(trtree) ≤ k
scoreinv(trtree) ≤ k

≤ Pr

[
Gcap(V,x, λ, P̃, i

∗, trnd, ttree, k, k) = 1
]
.

(4)

Above queriesrnd(P̃ , ζ) and queriestree(P̃ , ζ) respectively denote the queries by P̃
to the oracles ζrnd and ζtree obtained from ζ via domain separation.

24

The proof of Claim 6 is given at the end of this proof.
We use the oracle scoring lemma to obtain a bound that will be useful in the

analysis further below; we also use the assumption that λ ≥ 2 log t+ log β + 3
and the fact that t ≥ ttree. The bound holds for any choice of a parameter k ∈ N.

∞∑
k=0

2k · βk · Pr[scoreinv(trtree) = k ∨ scorecol(trtree) = k]

≤ 1 +

∞∑
k=1

(2β)
k ·

(
1

k!
·
(
2t · ttree

2λ

)k
+

(
t2tree
2 · 2λ

)k)

= 1 +

∞∑
k=1

1

k!
·
(
4t · ttree · β

2λ

)k
+

∞∑
k=1

(
t2tree · β
2λ

)k
≤ 1 +

∞∑
k=1

1

k!
·
(
4ttree
23 · t

)k
+

∞∑
k=1

(
ttree
23 · t

)k
(since λ ≥ 2 log t+ log β + 3)

≤ 1 +
ttree
t
·
∞∑
k=1

1

k!
·
(

4

23

)k
+
ttree
t
·
∞∑
k=1

(
1

23

)k
≤ 1 + 0.65 · ttree

t
+ 0.15 · ttree

t

≤ 1 +
ttree
t

.

Using the above bound, we conclude the following:

Pr

[
V ζ(x, π) = 1

∣∣∣∣ ζ ← U(λ)π ← P̃ ζ

]
≤
∞∑
k=0

Pr
[
Gcap(V,x, λ, P̃, i

∗, trnd, ttree, k, k) = 1
]
·

Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k] (by Claim 6)

≤
∞∑
k=0

εcap(x, λ, i
∗, trnd, ttree, k, k)·

Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k] (by Definition 8)

≤
∞∑
k=0

trnd · 2k · εper(x, 2
i∗ , k)·

Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k] (by Lemma 6)

≤
∞∑
k=0

trnd · 2k · βk · εper(x, 2
i∗ , 0)·

Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k] (since β is the robustness ratio)

≤
∞∑
k=0

trnd · 2k · βk · εPCP(x)·

25

Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k] (since εper(x, 2
i∗ , 0) = εPCP(x))

= trnd · εPCP(x) ·
∞∑
k=0

2k · βk·

Pr[scoreinv(trtree, trrnd) = k ∨ scorecol(trtree) = k]

≤ trnd · εPCP(x) ·
(
1 +

ttree
t

)
(using the bound proved above)

= t · εPCP(x) .

This concludes the proof of the theorem, giving an upper bound on the soundness
error.

We are left to prove the claim used in the proof above.

Proof of Claim 6. For the sake of simplicity of the proof, we will assume the
following two conditions that are without loss of generality:

– (No duplicate queries): The cheating argument prover P̃ does not make du-
plicate queries to the random oracle. This can be achieved by having P̃ store
the answers to prior queries, and making only new queries to the random
oracle, and has no effect on the rest of the proof. Recall that we are considering
the Micali construction with salts (see Remark 2), which means that the
aforementioned “no duplicate query” condition implies that the prover does
not make the same query with the same salt but can make the same query
with a different salt (as that results in a different input to the random oracle).

– (Self-verifying): The cheating prover, before submitting his final proof, runs the
verify to check that it accepts, and otherwise submits a ⊥ symbol. This can be
achieved by having P̃ run the verifier at the end of its execution. Admittingly,
this is not completely without loss of generalization, as this might cost a few
additional queries. However, this has a negligible effect on the query complexity
and on our results and we omit it.

We use P̃ to construct a PCP prover P̃ that plays in the cap soundness
game Gcap (Game 4). The PCP prover P̃ simulates the argument prover P̃ and,
whenever P̃ performs a query x to the random oracle, P̃ performs one of the
following actions depending on x.

– Root query: x is a query in {0, 1}λ to the PCP randomness oracle ζrnd.
1. Construct the root vertex vh := (0, 1, x) ∈ V0.
2. Submit, via Option RND in Gcap, the root vertex vh.
3. Receive from Gcap a random string ρ ∈ {0, 1}r for the PCP verifier.
4. Send ρ to P̃ .

– Tree query: x is a query (i, j, h0, h1, σ) to the tree oracle ζtree with indices
i ∈ {0, 1, . . . , d− 1} and j ∈ [2i], strings h0, h1 in {0, 1}λ or Σ (depending on
i) and salt σ ∈ {0, 1}λ.
1. Sample a random h ∈ {0, 1}λ and set u := (i, j, h) ∈ Vi;
2. Submit u, h0, h1 via Option ADD in Gcap;
3. Send h to P̃ .

26

– Other query: x is a query that does not fit either case above.
1. Sample a random h ∈ {0, 1}λ and send h to P̃ .

At the end of its simulation, P̃ outputs a proof π that is parsed as in Equation (1).
The cheating prover P̃ outputs the root vertex vh := (0, 1,h) where h is the root
contained in π and also outputs the leaf vertices {vr}r∈[q] where vr := (d, jr, ar)
specifies the location jr ∈ [l] and answer ar ∈ Σ in π for the r-th query. We now
argue that the constructed PCP prover P̃ satisfies Equation (4).
Perfect simulation. We claim that the PCP prover P̃ performs a perfect
simulation of the argument prover P̃ , in that P̃ gives values to P̃ that are
identically distributed as the answers from a random oracle ζ. We argue this for
(well-formed) queries to ζrnd and queries to ζtree; any other types of queries are
trivially uniformly random because that is how P̃ answers in the third bullet.

First, if P̃ issues a query x to the randomness oracle ζrnd, then P̃ replies with
the randomness ρ received from the cap soundness game Gcap, which is uniformly
distributed.

Second, suppose that P̃ issues a query x to the tree oracle ζtree. Since P̃ ’s
queries are distinct, either of i, j, h0, h1 are new elements, in which case no value
h has been assigned; or the salt σ is new (the salt allows P̃ to get new randomness
for the same choice of i, j, h0, h1).
When P̃ wins then P̃ wins. We claim that the PCP prover P̃ wins the cap
soundness game whenever the argument prover P̃ convinces the argument verifier
V .

Suppose that V ζ(x, π) = 1 for the proof π output by P̃ and the (partial)
random oracle ζ implied by the randomness of the simulation and cap soundness
game. Let ρ∗ ← Rand[vh] where vh is the root vertex output by P̃ and Rand is
the table maintained by the cap soundness game.

We can deduce the following two items, which mean that P̃ wins up to budget
constraints.

– VΠ(x; ρ∗) = 1 where Π is the PCP proof with value ar ∈ Σ at location jr ∈ [l]
for every r ∈ [q], and the value ⊥ at all other locations. This is because if the
argument verifier V accepts then the underlying PCP verifier V also accepts:
V on instance x and randomness ρ∗ accepts when, for every r ∈ [q], the answer
to query jr is the value ar.

– For every r ∈ [q], the leaf vertex vr is connected in G to the root vertex vh
(G is the graph maintained by the cap soundness game), provided that P̃ has
queried all vertices in the authentication paths in the final proof π (which we
assumed is the case). This is because p1, . . . , pq in π are valid authentication
paths for the query-answer pairs (j1, a1), . . . , (jq, aq) with respect to the root
h in π (and the oracle ζ), and thus all the edges between the leaf vertices
{vr}r∈[q] and the root vertex vh are in the graph.

The budget of P̃ suffices. We left to argue that the budgets given to P̃
suffices for the cap soundness game to accept. Let εk be the success probability of
the argument prover P̃ conditioned on scorecol(trtree) ≤ k and scoreinv(trtree) ≤ k

27

where trrnd is P̃ ’s trace of queries to the randomness oracle ζrnd and trtree is P̃ ’s
trace of queries to the tree oracle ζtree (with |trrnd| = trnd and |trtree| = ttree).

Consider any fixed oracle ζ that contributes to εk, i.e., P̃ wins and the scores
are at most k. There is a one-to-one mapping of the values of the oracle ζ to the
random values in the simulation that make P̃ win within the required budget of
k. The mapping is done in a natural way because P̃ does a perfect simulation of
P̃ : the randomness used by the simulation for query x (either tree of root query)
corresponds to the value of the random oracle on query x.

Hence, we only need to show that when the scores are bounded by k then the
budgets for the cap soundness game suffice to win the game.

– If scorecol(trtree) ≤ k then we know that P̃ has found at most k collisions in
trtree. In this case, P̃ submits the same number of collisions as P̃ because it
imitates its queries. Thus, the collision budget will suffice for the simulation.

– If scoreinv(trtree) ≤ k then we know that P̃ has performed at most k “almost
inversions” in trtree and trrnd together. In this case, P̃ simulates the same queries
and will use Option INV at most k times. Thus, the inversion budget will
suffice for the simulation.

– Since P̃ performs at most trnd queries to the randomness oracle ζrnd and at
most ttree queries to the tree oracle ζtree, then Π̃ will perform the same amount
of queries to Option RND and Option ADD respectively.

7.2 The argument size

We prove Corollary 2. Fix t and ε. As a base PCP, we take any constant query,
constant soundness PCP over a binary (or small) alphabet of polynomial length l.
We amplify the soundness by repeating κ = O(log(t/ε)) times, and get soundness
εPCP = O(ε/t), and query complexity q = O(log(t/ε)). By Corollary 1, we get
that the repeated PCP has permuted robustness ratio β = O(κ) = O(log(t/ε)),
with b = O(κ), and 2i

∗
= O(q) . Thus, we need to set

λ = 2 log t+ log β + 3 = O(log t+ log log(t/ε)) .

Plugging this in the argument size formula given in Equation (2), we get that
the argument size is:

2i
∗
· λ+ q · log |Σ|+ q · λ · log(l/2i

∗
) =

O (log(t/ε) · (log t+ log log(t/ε)) · log(l/ log(t/ε))) .

Acknowledgments

Alessandro Chiesa is funded by the Ethereum Foundation and Eylon Yogev is
funded by the ISF grants 484/18, 1789/19, Len Blavatnik and the Blavatnik
Foundation, The Blavatnik Interdisciplinary Cyber Research Center at Tel Aviv
University, and The Raymond and Beverly Sackler Post-Doctoral Scholarship.
This work was done (in part) while the second author was visiting the Simons
Institute for the Theory of Computing.

28

References

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. “Proof verifi-
cation and the hardness of approximation problems”. In: Journal of the
ACM (1998). Preliminary version in FOCS ’92.

[AS98] S. Arora and S. Safra. “Probabilistic checking of proofs: a new character-
ization of NP”. In: Journal of the ACM (1998). Preliminary version in
FOCS ’92.

[BBB+18] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell.
“Bulletproofs: Short Proofs for Confidential Transactions and More”. In:
S&P ’18.

[BBC+18] C. Baum, J. Bootle, A. Cerulli, R. d. Pino, J. Groth, and V. Lyubashevsky.
“Sub-linear Lattice-Based Zero-Knowledge Arguments for Arithmetic Cir-
cuits”. In: CRYPTO ’18.

[BBHR19] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. “Scalable Zero
Knowledge with No Trusted Setup”. In: CRYPTO ’19.

[BCC+16] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. “Efficient Zero-
Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting”.
In: EUROCRYPT ’16.

[BCG+14] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza. “Zerocash: Decentralized Anonymous Payments from Bitcoin”.
In: SP ’14.

[BCI+13] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth. “Succinct
Non-Interactive Arguments via Linear Interactive Proofs”. In: TCC ’13.

[BCR+19] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P.
Ward. “Aurora: Transparent Succinct Arguments for R1CS”. In: EURO-
CRYPT ’19.

[BCS16] E. Ben-Sasson, A. Chiesa, and N. Spooner. “Interactive Oracle Proofs”. In:
TCC ’16-B.

[BFLS91] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. “Checking computations
in polylogarithmic time”. In: STOC ’91.

[BFS20] B. Bünz, B. Fisch, and A. Szepieniec. “Transparent SNARKs from DARK
Compilers”. In: EUROCRYPT ’20.

[BGLR93] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. “Efficient Proba-
bilistically Checkable Proofs and Applications to Approximations”. In:
STOC ?93.

[BISW17] D. Boneh, Y. Ishai, A. Sahai, and D. J. Wu. “Lattice-Based SNARGs and
Their Application to More Efficient Obfuscation”. In: EUROCRYPT ’17.

[BISW18] D. Boneh, Y. Ishai, A. Sahai, and D. J. Wu. “Quasi-Optimal SNARGs via
Linear Multi-Prover Interactive Proofs”. In: EUROCRYPT ’18.

[BRS10] M. Bellare, P. Rogaway, and T. Spies. “The FFX mode of operation for
format-preserving encryption”. In: NIST submission (2010).

[CMS19] A. Chiesa, P. Manohar, and N. Spooner. “Succinct Arguments in the
Quantum Random Oracle Model”. In: TCC ’19.

[CY20] A. Chiesa and E. Yogev. “Barriers for Succinct Arguments in the Random
Oracle Model”. In: TCC ’20.

[Dam89] I. Damgård. “A Design Principle for Hash Functions”. In: CRYPTO ’89.
[DHK15] I. Dinur, P. Harsha, and G. Kindler. “Polynomially Low Error PCPs with

polyloglog n Queries via Modular Composition”. In: STOC ’15.

29

[FGL+91] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. “Approxi-
mating clique is almost NP-complete (preliminary version)”. In: SFCS ’91.

[FS86] A. Fiat and A. Shamir. “How to prove yourself: practical solutions to
identification and signature problems”. In: CRYPTO ’86.

[GGPR13] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. “Quadratic Span
Programs and Succinct NIZKs without PCPs”. In: EUROCRYPT ’13.

[GH98] O. Goldreich and J. Håstad. “On the complexity of interactive proofs with
bounded communication”. In: Information Processing Letters (1998).

[Gro10] J. Groth. “Short Pairing-Based Non-interactive Zero-Knowledge Argu-
ments”. In: ASIACRYPT ’10.

[HR10] V. T. Hoang and P. Rogaway. “On Generalized Feistel Networks”. In:
CRYPTO ’10.

[IMSX15] Y. Ishai, M. Mahmoody, A. Sahai, and D. Xiao. “On Zero-Knowledge
PCPs: Limitations, Simplifications, and Applications”. Available at http:
//www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf.

[Kil92] J. Kilian. “A note on efficient zero-knowledge proofs and arguments”. In:
STOC ’92.

[LR88] M. Luby and C. Rackoff. “How to Construct Pseudorandom Permutations
from Pseudorandom Functions”. In: SIAM Journal on Computing (1988).

[Mer89] R. C. Merkle. “One Way Hash Functions and DES”. In: CRYPTO ’89.
[Mic00] S. Micali. “Computationally Sound Proofs”. In: SIAM Journal on Comput-

ing (2000). Preliminary version appeared in FOCS ’94.
[NR99] M. Naor and O. Reingold. “On the Construction of Pseudorandom Permu-

tations: Luby–Rackoff Revisited”. In: Journal of Cryptology (1999).
[Zc14] Electric Coin Company. “Zcash Cryptocurrency”. https://z.cash/.
[zkr] Ethereum. “ZK-Rollups”. https://docs.ethhub.io/ethereum-roadmap/

layer-2-scaling/zk-rollups/.

30

http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
http://www.cs.virginia.edu/~mohammad/files/papers/ZKPCPs-Full.pdf
https://z.cash/
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-rollups/
https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/zk-rollups/

	Abstract
	1 Introduction
	1.1 Breaking the quadratic barrier
	1.2 Concrete efficiency

	2 Techniques
	2.1 The Micali construction is inherently quadratic
	2.2 Our construction
	2.3 Permuted robust soundness
	2.4 Repeated PCPs satisfy permuted robust soundness
	2.5 The cap soundness game
	2.6 Scoring oracle queries
	2.7 Concluding the proof of theorem:intro:main

	3 Definitions
	3.1 Probabilistically checkable proofs
	3.2 Non-interactive arguments in the random oracle model

	4 Our construction
	4.1 Implementing the random permutation

	5 Permuted robust soundness
	6 Cap soundness
	7 Soundness based on permuted robust soundness
	7.1 Proof of theorem:tight-micali
	7.2 The argument size

	Acknowledgments
	References

