Broadcast-Optimal Two Round MPC
with an Honest Majority

Ivan Damgard!, Bernardo Magri2, Divya Ravi', Luisa Siniscalchi!*?, and
Sophia Yakoubov!*

L Aarhus University, Denmark
2 Concordium Blockchain Research Center

Abstract. This paper closes the question of the possibility of two-round
MPC protocols achieving different security guarantees with and without
the availability of broadcast in any given round. Cohen et al. [CGZ20]
study this question in the dishonest majority setting; we complete the
picture by studying the honest majority setting.

In the honest majority setting, given broadcast in both rounds, it is
known that the strongest guarantee — guaranteed output delivery —
is achievable [GLS15]. We show that, given broadcast in the first round
only, guaranteed output delivery is still achievable. Given broadcast in
the second round only, we give a new construction that achieves identi-
fiable abort, and we show that fairness — and thus guaranteed output
delivery — are not achievable in this setting. Finally, if only peer-to-peer
channels are available, we show that the weakest guarantee — selective
abort — is the only one achievable for corruption thresholds t > 1 and
for t = 1 and n = 3. On the other hand, it is already known that selective
abort can be achieved in these cases. In the remaining cases, i.e., t = 1
and n > 4, it is known [[KP10JIKKP15|] that guaranteed output delivery
(and thus all weaker guarantees) are possible.

1 Introduction

In this paper we advance the study of round-optimal secure computation, focus-
ing on secure computation with active corruptions, an honest majority, and some
setup (e.g. a public key infrastructure). It is known that in this setting, secure
computation is possible in two rounds (whereas one round is clearly not enough).
However, most known two-round protocols in the honest majority setting either
only achieve the weakest security guarantee (selective abort) [ACGJ19], or make
use of a broadcast channel in both rounds |[GLS15)]. Since broadcast channels are
expensive, it is important to try to minimize their use (while achieving strong
security guarantees).

The only step in this direction is the protocol of Cohen et al. [CGZ20]. They
achieve secure computation with unanimous abort for a dishonest majority (and

* Funded by the European Research Council (ERC) under the European Unions’s
Horizon 2020 research and innovation programme under grant agreement No 669255
(MPCPRO).

thus also for an honest majority) with broadcast in the second round only, and
they also show that unanimous abort is the strongest achievable guarantee in this
setting. Finally, Cohen et al. showed that, given a dishonest majority, selective
abort is the strongest achievable security guarantee with broadcast in the first
round only.

We make a study analogous to the work of Cohen et al. but in the honest
majority setting. Like Cohen et al., we consider all four broadcast patterns:
broadcast in both rounds, broadcast in the second round only, broadcast in the
first round only, and no broadcast at all. Gordon et al. [GLSI5] showed that,
given broadcast in both rounds, the strongest guarantee — guaranteed output
delivery — is achievable. For each of the other broadcast patterns, we ask:

What is the strongest achievable security guarantee in this broadcast
pattern, given an honest majority?

We consider the following security guarantees:

Selective Abort (SA): A secure computation protocol achieves selective
abort if every honest party either obtains the output, or aborts.
Unanimous Abort (UA): A secure computation protocol achieves unan-
imous abort if either all honest parties obtain the output, or they all (unan-
imously) abort.

Identifiable Abort (IA): A secure computation protocol achieves identi-
fiable abort if either all honest parties obtain the output, or they all (unani-
mously) abort, identifying one corrupt party.

Fairness (FAIR): A secure computation protocol achieves fairness if either
all parties obtain the output, or none of them do. In particular, an adversary
cannot learn the output if the honest parties do not also learn it.
Guaranteed Output Delivery (GOD): A secure computation protocol
achieves guaranteed output delivery if all honest parties will learn the com-
putation output no matter what the adversary does.

Some of these guarantees are strictly stronger than others. In particular, guar-
anteed output delivery implies identifiable abort (since an abort never happens),
which implies unanimous abort, which in turn implies selective abort. Similarly,
guaranteed output delivery implies fairness, which implies unanimous abort.
Fairness and identifiable abort are incomparable. In a fair protocol, in case of
an abort, both corrupt and honest parties get less information: corrupt parties
are guaranteed to learn nothing if the protocol aborts, but honest parties may
not learn anything about corrupt parties’ identities. On the other hand, in a
protocol with identifiable abort, in case of an abort corrupt parties may learn
the output, but honest parties will identify at least one corrupt party.

In Table[I} we summarize our results. Like the impossibility results of Cohen
et al., all of our impossibility results hold given arbitrary setup (such as a com-
mon reference string, a public key infrastructure, and correlated randomness).
Our feasibility results use only a PKI and CRS. Below we give a very brief de-
scription of our results. It turns out that going from dishonest to honest majority

Broadcast selective unanimous identifiable . guaranteed
Pattern t abort abort abort fairness output
delivery
R1 | R2
BC | BC v v v [GLS15) v/ «— v [GLS15]
P2P| BC v v v (Thm[8) |X (Thm[2) for > X for t > 1
t>1
1<t< g
X (Cor for & X for n < 3t
n < 3t
BC |P2P v v v (Thm [7) v/ «— v (Thm[7)
P2P | P2P v [ACGII9]| X (Cor[i) for X for t > 1 |X (Thm[2) for > X for t > 1
t>1 t>1
X (CorB) for 1 X for n < 3t
n < 3t
t=1,n=23||/ [ACGII9| X (CorP) —+—— X X (Cor[g) —+—— ¥
P2P|P2P|lt =1, n =14 v/ v/ v/ ([KKP15]) v/ «—1 v ([[KKP15])
t=1,n>5 v v v ([IKP10]) v/ — v ([[KPI10])

Table 1: Feasibility and impossibility for two-round MPC in the honest majority setting
with different guarantees and broadcast patterns.
The R1 column describes whether broadcast is available in round 1; the R2 column
describes whether broadcast is available in round 2.
Arrows indicate implication: the possibility of a stronger security guarantee implies
the possibility of weaker ones in the same setting, and the impossibility of a weaker
guarantee implies the impossibility of stronger ones in the same setting.

allows for stronger security guarantees in some, but not all cases. In section [L.1
we give a longer overview of our results, and the techniques we use.

No Broadcast In this setting, we show that if the adversary controls two or
more parties (t > 1), or if t = 1,n = 3, selective abort is the best achievable
guarantee. This completes the picture, since (1) selective abort can indeed be
achieved by the results of Ananth et al. [ACGJ19], and (2) for t = 1,n > 4,
guaranteed output delivery can be achieved by the results of Ishai et al.
IKP10], [IKKP15].

Broadcast in the First Round Only In this setting, we show that guar-
anteed output delivery — the strongest guarantee — can be achieved.
Broadcast in the Second Round Only In this setting, we show that fair-
ness is impossible if ¢ > n/3, or if ¢ > 1 (again, in the remaining case of
t = 1,n > 4, guaranteed output delivery can be achieved). If fairness is ruled
out, the best one can hope for is identifiable abort, and we show this can
indeed be achieved given an honest majority.

To achieve identifiable abort with broadcast in the second round only, we

introduce a new tool called one-or-nothing secret sharing, which we believe to be

of independent interest. One-or-nothing secret sharing is a flavor of secret sharing
that allows a dealer to share a vector of secrets. Once the shares are distributed
to the receivers, they can vote on which secret to reconstruct by publishing
“ballots”. Each receiver either votes for the secret she wishes to reconstruct,
or abstains (by publishing a special equivocation ballot). If only one secret is
voted for, and gets sufficiently many votes, the ballots enable reconstruction
of that secret. On the other hand, if receivers disagree about which secret to
reconstruct, nothing is revealed. This could have applications to voting scenarios
where, though some voters may remain undecided, unanimity among the decided
voters is important.

1.1 Technical Overview

In this section we summarize our results given each of the broadcast patterns in
more detail.

No Broadcast (P2P-P2P) Without a broadcast channel, we show that only the
weakest guarantee — selective abort — is achievable. Ananth et al. [ACGJI9)
give a protocol for secure computation with selective abort in this setting; we
prove that secure computation with unanimous abort is not achievable, implying
impossibility for all stronger guarantees. More specifically, we get the following
two results:

Result 1 (Cor 1} P2P-P2P, UA, ¢t > 1) Secure computation of general func-
tions with unanimous abort cannot be achieved in two rounds of peer-to-peer
communication for corruption threshold t > 1.

Result 2 (Cor |2t P2P-P2P, UA, t =1, n = 3) Secure computation of gen-
eral functions with unanimous abort cannot be achieved in two rounds of peer-
to-peer communication for corruption threshold t =1 whenn =3 E|

We prove the first result by focusing on broadcast, where only one party (the
dealer) has an input bit, and all parties should output that bit. We show that
computing broadcast with unanimous abort in two peer-to-peer rounds with
t>1is impossibleﬂ

The only case not covered by these two results is t = 1 and n > 4. However
for this case, it follows from results by Ishai et al. [IKP10] and [IKKP15] that
the strongest guarantee — guaranteed output delivery — is achievable in two
rounds of peer-to-peer communication.

For completeness, we note that the case of n = 2 and ¢ = 1 is special. We are
no longer in an honest majority setting, so fairness is known to be impossible
[Cle86]. The other three guarantees are possible and equivalent.

3 Patra and Ravi [PRIS| give a similar result in the absence of a PKI and correlated
randomness; our impossibility result is stronger, as it holds even given arbitrary
correlated randomness

4 Tt is well known that computing broadcast with guaranteed output delivery requires
t rounds, but this of course does not imply the same for broadcast with unanimous
abort.

Broadcast in the First Round Only (BC-P2P) We show that any first-round
extractable two broadcast-round protocol (where the simulator demonstrating
security of the protocol can extract parties’ inputs from their first-round mes-
sages and it is efficient to check whether a given second-round message is correct)
can be run over one broadcast round followed by one peer-to-peer round with-
out any loss in security. Since the protocol of Gordon et al. [GLS15] satisfies
these properties, we conclude that guaranteed output delivery is achievable in
the honest majority setting as long as broadcast is available in the first round.

Result 3 (Thm m: BC-P2P, GOD, n > 2t + 1) Secure computation of gen-
eral functions with guaranteed output delivery is possible in two rounds of com-
munication, only the first of which is over a broadcast channel, for corruption
threshold t such that n > 2t + 1.

Broadcast in the Second Round Only (P2P-BC) When broadcast is available in
the second round, not the first, it turns out that fairness (and hence guaranteed
output delivery) cannot be achieved. More specifically, we obtain the following
two results:

Result 4 (Cor |3t P2P-BC, FAIR, n < 3t) Secure computation of general func-
tions with fairness cannot be achieved in two rounds of communication, only the
second of which is over a broadcast channel, for corruption threshold t such that

n < 3t.

Result 5 (Thm (2t P2P-BC, FAIR, t > 1) Secure computation of general func-
tions with fairness cannot be achieved in two rounds of communication, only the
second of which is over a broadcast channel, for corruption threshold t > 1.

Both these results are shown using the same basic idea, namely if the protocol
is fair, we construct an attack in which corrupt players send inconsistent messages
in the first round and then use the second round messages to obtain two different
outputs, corresponding to different choices of their own input — which, of course,
violates privacy.

Combining the two results, we see that fairness is unachievable when broad-
cast is only available in the second round (the only case not covered ist = 1,n > 4
where guaranteed output delivery is possible, as discussed above). We therefore
turn to the next-best guarantee, which is identifiable abort; in Section [§] we
show how to achieve it for n > 2t.

Result 6 (Thm @: P2P-BC, ID, n > 2t) Secure computation of general func-
tions with identifiable abort is achievable in two rounds of communication, only
the second of which is over a broadcast channel, for corruption threshold t such
that n > 2t.

To show this result, we use a high-level strategy adopted from Cohen et al.
Namely, we start from any protocol that achieves identifiable abort for honest
majority given two rounds of broadcast, and compile this into a protocol that

works when the first round is limited to peer-to-peer channels. While Cohen
et al. achieve unanimous abort this way, we aim for the stronger guarantee of
identifiable abort, since we assume honest majority.

To explain our technical contribution, let us follow the approach of Cohen
et al. and see where we get stuck. The idea is to have each party broadcast
a garbled circuit in the second round. This garbled circuit corresponds to the
code they would use to compute their second-round message in the underlying
protocol (given their input and all the first-round messages they receive). In the
first round (over peer-to-peer channels), the parties additively secret share all
the labels for their garbled circuit, and send their first-round message from the
underlying protocol to each of their peers. In the second round (over broadcast),
for each bit of first-round message she receives, each party forwards her share of
the corresponding label in everyone else’s garbled circuit. Cohen et al. used this
approach to achieve unanimous abort for dishonest majority.

However, even assuming honest majority, this will not be sufficient for iden-
tifiable abort. The main issue is that corrupt parties may send inconsistent
messages in the first round. This problem cannot be solved just by requiring
each party to sign their first-round messages, because P; may send an invalid
signature — or nothing at all — to P;. P; then cannot do what she was sup-
posed to in the second round; so, all she can do is to complain, but she cannot
demonstrate any proof that P; cheated. All honest parties now agree that either
P; or Pj is corrupt, but there is no way to tell which one. This is not an issue if
we aim for unanimous abort; however, if we aim for identifiable abort, we must
either find out who to blame or compute the correct output anyway, without
any further interaction.

We solve this problem by introducing a new primitive we call one-or-nothing
secret sharing. This special kind secret sharing allows a dealer to share several
values simultaneously. (In our case, the values would be two garbled circuit labels
for a given bit b.) The share recipients can then “vote” on which of the values to
reconstruct; if they aren’t sure (in our case, they wouldn’t be sure if they didn’t
get b in the first round), they are able to “abstain”, which essentially means
casting their vote with the majority. As long as there are no contradictory votes
and a minority of abstain votes, reconstruction of the appropriate value succeeds;
otherwise, the privacy of all values is guaranteed.

We use this primitive to share the labels for the garbled circuits as sketched
above. If all reconstructions succeed, we get the correct output. Otherwise, we
can identify a corrupt player. By requiring parties to sign their first-round mes-
sages, we can ensure that if there are contradicting votes, all parties can agree
that some party P; sent inconsistent messages in the first round. If there is a ma-
jority of abstains, this proves that some particular P; sent an invalid first-round
message to at least one honest party.

1.2 Related Work

The quest for optimal round-complexity for secure computation protocols is a
well-established topic in cryptography. Starting with the first feasibility results

from almost 35 years ago [Yao86|GMWS7IBGWSSICCDSS] a lot of progress has
been made in improving the round complexity of protocols [GIKROIILin01JCDO1]
IK2TKPIOTKKPISIGLSTSPRISIACGIISICGZ20]. In this section we detail
the prior work that specifically targets the two-round setting. We divide the
discussion into two: impossibility and feasibility results.

Result n t Guarantee CRS? PKI? CR? R1 R2

[GIKR02] any ¢t >2 fairness v X X BC+ P2P BC + P2P

IGLS15] n=3t=1 fairness v X X BC BC
[PRIS] n=3¢t=1 fairness v X X BC + P2P BC + P2P
[PRIS| n=3t=1 UA v X x PP P2pP
[CGZ20) n=3t=2 UA V/ v v BC P2pP

[CGZ20) n=3t=2 IA vV v v PP BC

Table 2: Previous impossibility results. Each row in this table describes a setting
where MPC is known to be impossible. “UA” stand for unanimous abort, and “IA” for
identifiable abort.

Impossibility Results. Table[2]summarizes the known lower bounds on two-round
secure computation. Gennaro et al. [GIKR02] shed light on the optimal round-
complexity for general MPC protocols achieving fairness without correlated ran-
domness (e.g., PKI). Their model allows for communication over both authenti-
cated point-to-point channels and a broadcast channel. They show that in this
setting, three rounds are necessary for a protocol with at least ¢ > 2 corrupt par-
ties by focusing on the computation of exclusive-or and conjunction functions. In
a slightly different model, where the parties can communicate only over a broad-
cast channel, Gordon et al. [GLS15] show that the existence of a fair two-round
MPC protocol for an honest majority would imply a virtual black-box program
obfuscation scheme, which would contradict the well-known impossibility result
of Barak et al. [BGIT01].

Patra and Ravi [PR1§] investigate the three party setting. They show that
three rounds are necessary for generic secure computation achieving unanimous
abort when parties do not have access to a broadcast channel, and that the same
three are necessary for fairness even when parties do have a broadcast channel.
Badrinarayanan et al. [BMMR21] study broadcast-optimal three-round MPC
with guaranteed output delivery given an honest majority and CRS, and show
that use of broadcast in the first two rounds is necessary.

It is well known that in the dishonest majority setting fairness cannot be
achieved for generic computation [Cle86]. Cohen et al. [CGZ20] study the fea-
sibility of two round secure computation with unanimous and identifiable abort
in the dishonest majority setting. Their results show that considering arbitrary
setup (e.g., a PKI) and communication over point-to-point channels, achieving

unanimous abort in two rounds is not possible even if the parties are addition-
ally allowed to communicate over a broadcast channel only in the first round,
and achieving identifiable abort in two rounds is not possible even if the parties
are additionally allowed to communicate over a broadcast channel only in the
second round.

Result n t Guarantee PKI? CRS? 1st round 2nd round Assumptions
IKPI0] n>5t=1 GOD X X P2p P2p PRG
IKKP15] n=3 t=1 SA X X P2p P2p PRG
IKKPI5| n=4 t=1 GOD X X P2P P2pP injective OWF
[GLST5] any t< % M-GOD v v BC + P2P BC + P2P dFHE
[PRI8] n=3t= UA X X BC + P2P BC + P2P GC, NICOM, eNICOM, PRG
[ACGJI8] any t< & UA X X BC + P2P BC + P2P OWF
[ACGII8] any t< % FS-GOD v X BC + P2P BC + P2P OWF
[ACGJI8] any t< % FS-GOD X X BC + P2P BC + P2P OWF, SH-OT
[ACGJI8] any t< % FS-GOD / SM-GOD v X BC BC OWF
[GS18] any t<mn UA X v BC BC 2-round OT
ICGZ20] any t<mn SA X v P2p P2p 2-round OT
ICGZ20] any t<mn UA X v P2p BC 2-round OT
[ICGZ20] any t<mn IA X v BC BC 2-round OT

Table 3: Protocols for secure MPC with two-rounds. “UA” stands for unanimous abort,
“FS-GOD” for guaranteed output delivery against fail-stop adversaries, “SM-GOD”
for guaranteed output delivery against semi-malicious adversaries, and “M-GOD” for
guaranteed output delivery against malicious adversaries.

Feasibility Results. Table [3] summarizes known two-round secure computation
constructions. While three rounds are necessary for fair MPC [GIKR02] for ¢ > 2
(without correlated randomness), Ishai et al. [IKP10] show that it is possible to
build generic two-round MPC with guaranteed output delivery when only a
single party is corrupt (¢t = 1) for n > 5. Later, [IKKP15] showed the same for
n = 4, and that selective abort is also possible for n = 3.

The work of [GLS15] gives a three round generic MPC protocol that guar-
antees output delivery and is secure against a minority of semi-honest fail-stop
adversaries where parties only communicate over point-to-point channels; the
same protocol can be upgraded to be secure against malicious adversaries if the
parties are also allowed to communicate over a broadcast channel. The use of
broadcast channel in the last round can be avoided (and point-to-point channels
can be used instead), as shown by Badrinarayanan et al. [BMMR21]. Moreover,
assuming a PKI, the protocol of [GLS15] can be compressed to only two rounds.

For n = 3 and ¢t = 1, Patra and Ravi [PR18| present a tight upper bound
achieving unanimous abort in the setting with point-to-point channels and a
broadcast channel. The protocol leverages garbled circuits, (equivocal) non-
interactive commitment scheme and a PRG. In the same honest majority setting
but for arbitrary n, Ananth et al. [ACGJ18] build four variants of a two-round
protocol. Two of these variants are in the plain model (without setup), with
both point-to-point channels and broadcast available in both rounds. The first

achieves security with unanimous abort and relies on one-way functions, and
the second achieves guaranteed output delivery against fail-stop adversaries and
additionally relies on semi-honest oblivious transfer. Their other two protocols
require a PKI; and achieve guaranteed output delivery against fail-stop and
semi-malicious adversaries.

Finally, Cohen et al. [CGZ20|] present a complete characterization of the
feasibility landscape of two-round MPC in the dishonest majority setting, for all
broadcast patterns. In particular, they show protocols (without a PKI) for the
cases of point-to-point communication in both rounds, point-to-point in the first
round and broadcast in the second round, and broadcast in both rounds. The
protocols achieve security with selective abort, unanimous abort and identifiable
abort, respectively. All protocols rely on two-round oblivious transfer.

2 Secure Multiparty Computation (MPC) Definitions

2.1 Security Model

We follow the real/ideal world simulation paradigm and we adopt the security
model of Cohen, Garay and Zikas [CGZ20]. As in their work, we state our results
in a stand-alone settingﬂ

Real-world. An n-party protocol IT = (Py,..., P,) is an n-tuple of probabilistic
polynomial-time (PPT) interactive Turing machines (ITMs), where each party
P; is initialized with input z; € {0,1}* and random coins r; € {0,1}*. We let A
denote a special PPT ITM that represents the adversary and that is initialized
with input that contains the identities of the corrupt parties, their respective
private inputs, and an auxiliary input. The protocol is executed in rounds (i.e.,
the protocol is synchronous), where each round consists of the send phase and
the receive phase, where parties can respectively send the messages from this
round to other parties and receive messages from other parties. In every round
parties can communicate either over a broadcast channel or a fully connected
point-to-point (P2P) network, where we additionally assume all communication
to be private and ideally authenticated. (Given a PKI and a broadcast channel,
such a fully connected point-to-point network can be instantiated.)

During the execution of the protocol, the corrupt parties receive arbitrary
instructions from the adversary A, while the honest parties faithfully follow the
instructions of the protocol. We consider the adversary A to be rushing, i.e.,
during every round the adversary can see the messages the honest parties sent
before producing messages from corrupt parties.

At the end of the protocol execution, the honest parties produce output,
the corrupt parties produce no output, and the adversary outputs an arbitrary
function of its view. The view of a party during the execution consists of its
input, random coins and the messages it sees during the execution.

5 We note that our security proofs can translate to an appropriate (synchronous)
composable setting with minimal changes.

Definition 1 (Real-world execution). Let IT = (Py,...,P,) be an n-party
protocol and let T C [n], of size at most t, denote the set of indices of the parties
corrupted by A. The joint execution of IT under (A,T) in the real world, on input
vector x = (x1,...,%,), auziliary input aux and security parameter A, denoted
REAL 77 A(aux) (2, A), is defined as the output vector of Py,..., P, and A(aux)
resulting from the protocol interaction.

Ideal-world. We describe ideal world executions with selective abort (sl-abort),
unanimous abort (un-abort), identifiable abort (id-abort), fairness (fairness) and
guaranteed output delivery (god).

Definition 2 (Ideal Computation). Consider type € {sl-abort, un-abort, id-abort,
fairness,god}. Let f : ({0,1}*)™ — ({0,1}*)™ be an n-party function and let
T C [n], of size at most t, be the set of indices of the corrupt parties. Then,

the joint ideal execution of f under (S,7) on input vector x = (x1,...,%y),
auzxiliary input aux to S and security parameter \, denoted IDEAL}Y?S(aUX)(aj, A),

is defined as the output vector of Py, ..., P, and S resulting from the following
ideal process.

1. Parties send inputs to trusted party: An honest party P; sends its input x;
to the trusted party. The simulator & may send to the trusted party arbitrary
inputs for the corrupt parties. Let x} be the value actually sent as the input
of party P;.

2. Trusted party speaks to simulator: The trusted party computes (y1,...,Yyn) =
f(zy, ... xl). If there are no corrupt parties or type = god, proceed to step .
(a) If type € {sl-abort, un-abort, id-abort}: The trusted party sends {y; }icz to

S.

(b) If type = fairness: The trusted party sends ready to S.

8. Simulator S responds to trusted party:

(a) If type = sl-abort: The simulator S can select a set of parties that will
not get the output as J C [n] \ Z. (Note that J can be empty, allowing
all parties to obtain the output.) It sends (abort, J) to the trusted party.

(b) If type € {un-abort, fairness}: The simulator can send abort to the trusted
party. If it does, we take J = [n] \ Z.

(c¢) If type = id-abort: If it chooses to abort, the simulator S can select a
corrupt party i* € T who will be blamed, and send (abort,i*) to the
trusted party. If it does, we take J = [n] \ Z.

4. Trusted party answers parties:

(a) If the trusted party got abort from the simulator S,

i. It sets the abort message abortmsg, as follows:
— if type € {sl-abort, un-abort, fairness}, we let abortmsg = L.
— if type = id-abort, we let abortmsg = (L, i*).
it. The trusted party then sends abortmsg to every party P;, j € J, and
y; to every party Pj, j € [n]\ J.
Note that, if type = god, we will never be in this setting, since S was
not allowed to ask for an abort.

10

(b) Otherwise, it sends y to every P;, j € [n].

5. Outputs: Honest parties always output the message received from the trusted
party while the corrupt parties output nothing. The simulator S outputs an
arbitrary function of the initial inputs {x; }icz, the messages received by the
corrupt parties from the trusted party and its auziliary input.

Security Definitions. We now define the security notion for protocols.

Definition 3. Consider type € {sl-abort, un-abort, id-abort, fairness, god}. Let f :
({0,1}*)™ — ({0,1}*)™ be an n-party function. A protocol II t-securely computes
the function f with type security if for every PPT real-world adversary A there
exists a PPT simulator 8 such that for every T C [n] of size at most t, it holds
that

Illo

type
{REAL 1.2, (7 ’\)}xeqo,l}*)”,AeN {IDEALvaa‘S(a“*) (@,)\)}ze({o 1})m AN

2.2 Notation

In this paper, we focus on two-round secure computation protocols. Rather than
viewing a protocol II as an n-tuple of interactive Turing machines, it is conve-
nient to view each Turing machine as a sequence of three algorithms: frst-msg,,
to compute P;’s first messages to its peers; snd-msg;, to compute P;’s second
messages; and output,, to compute P;’s output. Thus, a protocol II can be
defined as {(frst-msg;, snd-msg;, output;)}ic[n]-

The syntax of the algorithms is as follows:

— frst-msg;(z;,r;) — (msgl,;,...,msgl,) produces the first-round mes-
sages of party P; to all parties. Note that a party’s message to itself can
be considered to be its state.

1 1 2 2

— snd-msg;(x;,r;, MSg;_,;, ..., msg, ;) — (msg;,...,msg;,,) produces the
second-round messages of party P; to all parties.

— output;(z;,r;,msgl ;. ..., msgl .. msg? msg2_..) — y; produces the

output returned to party P;.

When the first round is over broadcast channels, we consider frst-msg,; to
return only one message — msgi. Similarly, when the second round is over
broadcast channels, we consider snd-msg; to return only msg}.

Throughout our negative results, we omit the randomness r, and instead
focus on deterministic protocols, modeling the randomness implicitly as part of
the algorithm.

3 No Broadcast: Impossibility of Unanimous Abort

For our negative results in the setting where no broadcast is available, we lever-
age related negative results for broadcast (or byzantine agreement). To show that

11

guaranteed output delivery is impossible in two rounds of peer-to-peer commu-
nication, we can use the fact that broadcast cannot be realized in two rounds
for t > 1 [FL82IDS83|. To show the impossibility of weaker guarantees such as
unanimous abort in this setting, we prove that a weaker flavor of broadcast,
called (weak) detectable broadcast [FGMv(02] — where all parties either learn
the broadcast bit, or unanimously abort — cannot be realized in two rounds
either.

We state the definitions of broadcast and detectable broadcast (from Fitzi et
al. [FGMv02]) below.

Definition 4 (Broadcast). A protocol among n parties, where the dealer D =
Py holds an input value x € {0,1} and every other party P;,i € [2,...,n] outputs
a value y; € {0,1}, achieves broadcast if it satisfies the following two conditions:

Validity: If the dealer D is honest then all honest parties P; output y; = x.
Counsistency: All honest parties output the same value yo = --- =y, = y.

Definition 5 (Detectable Broadcast). A protocol among n parties achieves
detectable broadcast if it satisfies the following three conditions:

Correctness: All honest parties unanimously accept or unanimously reject
the protocol. If all honest parties accept then the protocol achieves broadcast.
Completeness: If all parties are honest then all parties accept.

Fairness: If any honest party rejects the protocol then the adversary gets no
information about the dealer’s input x.

We additionally define weak detectable broadcast.

Definition 6 (Weak Detectable Broadcast). A protocol among n parties
achieves weak detectable broadcast if it satisfies only the correctness and com-
pleteness requirements of detectable broadcast.

An alternative way of viewing broadcast, through the lense of secure com-
putation, is by considering the simple broadcast function fyc(x, L,..., L) =
(L,z,...,2) which takes an input bit z from the dealer D = P;, and outputs
that bit to all other parties. Broadcast (Definition is exactly equivalent to
computing fp. with guaranteed output delivery; detectable broadcast (Defini-
tion is equivalent to computing it with fairness; and weak detectable broadcast
(Definition @ is equivalent to computing it with unanimous abort.

Theorem 1. Weak detectable broadcast cannot be achieved in two rounds of
peer-to-peer communication for corruption threshold t > 1.

Proof. We prove Thm [I| by contradiction. We let
Iyape = {(frst-msg;, snd-msg;, output;)}ic(i,.. n]

be the description of the two-round weak detectable broadcast protocol. We use
the notation we introduce for two-round secure computation in Section and

12

consider the weak detectable broadcast protocol to be a secure computation with
unanimous abort of f,.. We let £1 = = denote the bit being broadcast by the
dealer D = Py, and a; = L for i € [2,...,n] be placeholders for other parties’
inputs. We assume that p = negl is the negligible probability with which security
of IT,qpc fails.

Below we consider an execution of IT,4,. and a sequence of scenarios involving
different adversarial strategies with two corruptions (¢ = 2). The dealer D = P,
is corrupt in all of these; at most one of the receiving parties Ps, ..., P, is corrupt
at a time. We argue that each subsequent strategy clearly requires certain parties
to output certain values, by the definition of weak detectable broadcast. In the
last strategy, we see a contradiction, where some parties must output both 0 and
1. Therefore, Ilqv. could not have been a weak detectable broadcast protocol.
In all of the strategies below, we let msg, ,_,; denote a party P;’s bth-round
message to party P;; we only specify how these messages are generated when
this is done dishonestly.

Scenario 1: D is corrupt.

Round 1: D behaves honestly using input x = 0.

Round 2: D behaves honestly using input = 0.
By completeness (which holds since everyone behaved honestly), all honest
parties must accept the protocol. By correctness, the protocol must thus
achieve broadcast. By validity, all honest parties must output 0. Since com-
pleteness, correctness and validity hold with probability at least 1 — u, we
can infer that honest parties must output 0 with probability at least 1 — p.
Scenario 2,,: D and P, are corrupt.

Round 1: D computes two different sets of messages, using different

inputs x = 0 and x = 1, as follows:

(msgiﬁ?l), cee msg}ﬁoz) + frst-msg, (z = 0)
(msgiill), ce msgiil,)L) + frst-msg, (z = 1)
D sends msgiiog, cey msgiiogl to parties Ps, ..., P,. P> behaves honestly.

Round 2: D behaves honestly using input x = 0. P» computes two dif-
ferent sets of second-round messages, as follows:

2,(0 2,0 1,(0

(msg2i1), ce mngL,)L) < snd-msg, (L, msglig7 msgs .o, ..., MSEL o)
2,(1 2,(1 1,(1

(s, msg3) ¢+ sndmsgy(L, msgy (. msg o, msg), o)

(1)

—n

P; sends msgg to P, (pretending, essentially, that D dealt a 1), and

msggioi) to other parties P; (pretending that D dealt a 0).
Ps, ..., P,_1 must accept and output 0 with probability at least 1 — p, since
their views are identical to those in the previous scenario. By correctness,
P,, must also accept when other honest parties accept. By consistency, P,
must also output 0. Since correctness or consistency break with probability

at most u, P, outputs 0 with probability at least 1 — 2u.

13

Scenario 2g: D is corrupt.
Round 1: D sends msgl’() to P, and msgl’() to other parties P;.
Round 2: D continues to represent x = 1 towards P, and = = 0 towards
the others.
P,, must accept and output 0 with probability at least 1 — 2u, since its
view is the same as in the previous scenario. By correctness, Ps, ..., P,_1
must also accept when P, accepts. By consistency, Ps, ..., P,_1 must also
output 0. Since correctness or consistency break with probability at most pu,
P, ..., P,_; output 0 with probability at least 1 — 3p.

Now, skipping ahead, we generalize, for k € [3,...,n —1]:

Scenario kp;: D and Py, are corrupt.
Round 1: D sends msg}’(l) to Py, ..., P,_1, and msgl_(>) to the other

—1
parties Pgy1,...,P,. Py acts honestly.
Round 2: D continues to represent z =1 to Ps,...,Pr,_1 and z = 0 to
Piy1,..., P,. In the second round P acts analogously to P in scenario
2ar; ie., Py uses msgli,z to compute (msgkil), . msgif}l 1) (which it

1(

2,(1) ;
N . (which it sends

sends to P, ..., P,_1), and msgy’ ,3 to compute msg;
to Py).
Py, ..., P,_1 must accept and output 0 with probability at least 1—(2(k—1)—
1u =1—(2k — 3)u, since their views are identical to those in the previous
scenario (namely Scenario (k — 1)g). By correctness, P, must also accept
when other honest parties accept. By consistency, P, must also output O.
Since correctness or consistency break with probability at most u, P, outputs
0 with probability at least 1 — (2k —3)u —p=1—2(k — 1)p.
Scenario kg: D is corrupt.
Round 1: D sends msgli) to Ps,..., Py, and msg;’
ties Pr41,..., Py

1,(0

—q

) to the other par-

Round 2: D continues to represent = 1 to Ps,..., Py and x = 0 to
Peyq,..., Py
P, must accept and output 0 with probability at least 1 — 2(k — 1)u, since
its view is the same as in the previous scenario. By correctness, Ps, ..., P,_1
must also accept. By consistency, P, ..., P,_1 must also output 0. Since
correctness or consistency break with probability at most u, Ps, ..., Ph—1

output 0 with probability at least 1 — 2(k —)y —pu=1— (2k — 1)p.
We end with Scenarios ny;, ny.

Scenario ny;: D and P, are corrupt.
Round 1: D behaves honestly using input x = 1. P, behaves honestly.
Round 2: D behaves honestly using input x = 1. P,, pretends D dealt
a 0 towards, e.g., only P,. More precisely, P,, uses msgl’() to compute

msgif% (which it sends to P;), and msgIL% to compute (msgni%, cey

msgng,)L 1) (which it sends to Ps,..., Pp_1).

14

P, must accept and output 0 with probability at least 1 — (2(n — 1) — 1)u =
1—(2n — 3)u, since its view is the same as in the previous scenario (namely,
Scenario (n—1)g). By correctness, Ps, ..., P,_1 must also accept. By consis-
tency, Ps, ..., P,_1 must also output 0. This must happen with probability
atleast 1 — (2n —3)p—pu=1-2(n—1)u.
Scenario ny: D is corrupt.

Round 1: D behaves honestly using input x = 1.

Round 2: D behaves honestly using input z = 1.

In Scenario ng, on the one hand, by completeness (which holds as everyone
behaved honestly), all honest parties must accept the protocol; by validity, all
honest parties must output 1. On the other hand, since the view of P3, ..., P,_1
is the same as their respective views in the previous scenario, they must output
0 with probability at least 1 — 2(n — 1)u, which is overwhelming. This is a
contradiction.

The impossibility of realizing weak detectable broadcast in two rounds for
t > 1 clearly implies that there exists a function (specifically, fyc) which is
impossible to compute with unanimous abort for £ > 1 in two rounds of peer-to-
peer communication.

Corollary 1 (P2P-P2P, UA, ¢t > 1). There exist functions f such that no
n-party two-round protocol can compute f with unanimous abort against t > 1
corruptions in two rounds of peer-to-peer communication.

4 Broadcast in the Second Round: Impossibility of
Fairness

In this section, we show that it is not possible to design fair protocols tolerating
t > 1 corruptions when broadcast is available only in the second round.

Theorem 2 (P2P-BC, FAIR, ¢ > 1). There exist functions f such that no n-
party two-round protocol can compute f with fairness against t > 1 corruptions
while making use of broadcast only in the second round (i.e. where the first round
is over point-to-point channels and second round uses both broadcast and point-
to-point channels).

In our proof we use the function fye, which is defined below. Let P; hold as
input a bit X; = b € {0,1}, and every other party P; (i € {2,...,n}) hold as

input a pair of strings, denoted as X; = (29, z}).

fmot(Xl =0, Xo = (29, 23),..., X = (x?wx;)) = (acg,xg, . ,xb).

n

Proof. We prove Thm [2 by contradiction. Let IT be a protocol that computes
fuor with fairness by using broadcast only in the second round. Consider an
execution of IT where X; denotes the input of P;. We describe a sequence of
scenarios C1,...,C,,C). In each scenario, P; and at most one other party is

15

corrupt. In all the scenarios, the corrupt parties behave honestly (in particular,
they use their honest inputs), but may drop incoming or outgoing messages.

At a high-level, the sequence of scenarios is designed so that corrupt P; drops
her first-round message to one additional honest party in each scenario. We show
that in each scenario, the adversary manages to obtain the output computed with
respect to X1 = b and (at least some of) the honest parties’ inputs. This leads
to a contradiction, because the final scenario involves no first-round messages
from P; related to its input X; = b, but the adversary is still able to learn xé’
corresponding to some honest P;. In particular, this implies that the adversary
is able to re-compute second-round messages from P; with different choices of
input X7, obtaining multiple outputs (on different inputs).

Before describing the scenarios in detail, we define some useful notation. Let
(X1,...,X,) denote a specific combination of inputs that are fixed across all
scenarios. Let i = negl denote the negligible probability with which the security
of IT breaks. We assume, without loss of generality, that the second round of IT
involves broadcast communication alone (as given a PKI and a broadcast chan-
nel, point-to-point communication can be realized by broadcasting encryptions
of the private messages using the public key of the recipient). Let rﬁ?g? denote
P;’s second-round broadcast message, computed honestly given that P; did not
receive the private message (i.e. the communication over point-to-point channel)
from P; in the first round.

Scenario C;: P; is corrupt.
Round 1: P; behaves honestly (i.e. follows the instructions of IT).
Round 2: P; behaves honestly.

Since everyone behaved honestly, it follows from correctness that P; obtains the
b b

output y = faor (1, ..,7,) = (25,25, ...,2%) with probability at least 1 — p.
Scenario Cy: P; and P, are corrupt.
Round 1: P; and P, behave honestly.
Round 2: P; remains silent. P; pretends she did not receive a first-round
message from P;. In more detail, P, sends nfm\/gg over broadcast channel.

The adversary’s view subsumes her view in the previous scenario, so the adver-
sary learns the output y = (2%,28,...,2%) which allows her to learn 2% corre-
sponding to each honest P;. It follows from the security of IT that honest parties
also obtain x% corresponding to each honest P; (i.e. for i € [n]\ {1,2}) with
probability at least 1 — u. If not, then either correctness or fairness is violated,
which contradicts our assumption that I7 is secure.

Scenario C3: P; and P; are corrupt.
Round 1: P; behaves honestly, but does not send a message to Ps. P3
behaves honestly.
Round 2: P; remains silent. P3 pretends that she did not receive a first-
. P
round message from P; (i.e. she sends msg; via broadcast).

16

The adversary’s view subsumes the view of an honest P3 in Scenario Cy (which
includes rr’fngg), so, the adversary learns {.’E?}ie[n]\{Lg} with probability at least
1 — p. By the fairness of IT, when the adversary obtains this information, honest
parties Py, Py, Ps, ..., P, must also learn xé’ corresponding to each honest P; (i.e.

for i € [n] \ {1,3})[f] Since the fairness of IT breaks with probability at most s,
parties Py, Py, Ps, ..., P, learn {l’?}ie[n]\{Lg} with probability at least 1 — 2u.

Scenario C4: P; and P, are corrupt.
Round 1: P; behaves honestly, except that she does not send a message
to P; and P;. P, behaves honestly.
Round 2: P, remains silent. P, pretends that she did not receive a first-
. 2 .
round message from P; (i.e. she sends msgy via broadcast).

The adversary’s view subsumes the view of an honest P, in Scenario C3 (which
includes r'r’@éf, where j € {2,3}). Therefore, the adversary learns {z};c(n)\ (1,3}
with probability at least 1 — 2u. By the security of IT, honest P», P3, Ps, ..., P,
must also obtain z? corresponding to each honest P; (i.e. for i € [n]\{1,4}). Since
the security of II breaks with probability at most u, parties Ps, Ps, Ps, ..., P,
learn {xf}ie[n]\{m} with probability at least 1 — 3u.

Generalizing the above for k = 3 to n:

Scenario Cy: P; and P, are corrupt.
Round 1: P; behaves honestly, except that she does not send a message
to Py, P3, ..., Py_1. P; behaves honestly.
Round 2: P; remains silent. Py, pretends that she did not receive a first-
. 2 .
round message from P; (i.e. she sends msg), via broadcast).

The adversary’s view subsumes the view of an honest Py in Scenario Cy_1 (which

includes messages r’rf1\s/g§, where j € {2,...,k — 1}). Thus, the adversary learns

{22} icp\(1,6—13 With probability at least 1 — (k — 2)u. By the security of 7,

honest parties should obtain z? corresponding to each honest P; (i.e. for i €

[n] \ {1, k}). Since the security of II breaks with probability at most x, honest

parties learn the values :cf with probability at least 1 —(k—2)p—p =1—(k—1)p.
Finally, we describe the last scenario:

Scenario C}: P, and P, are corrupt.
Round 1: P, remains silent. P, behaves honestly.
Round 2: P; and P, remain silent.

The adversary’s view subsumes her view in Scenario C,, (which includes messages
n??é?, where j € {1,...,n — 1}). Thus, in Scenario C};, the adversary is able to
learn {x?}ie[n]\{lm_l} with probability at least 1 — (n—1)u. This leads us to the

6 Note that we conclude that the honest parties learn x5, which the adversary may,
for some reason, not have learned. This is because in the ideal functionality, output
is considered as a single unit of information; fairness requires that if the adversary
learns any output it could not have obtained solely from its own inputs, then the
honest parties must learn the entire output.

17

final contradiction: C}; does not involve any message from P, related to the input
X = b, but the adversary was able to obtain {xf}ie[n]\{l’n_l}. This implies that
the adversary can compute {z?/}ie[n]\{lm_l} with respect to any input X; =0/
of her choice. This “residual attack” breaks the privacy property of the protocol,
as it allows the adversary to learn both input strings of an honest P;. (which is
not allowed as per the ideal realization of fyey).

Lastly, we note that the above proof requires that the function computed
is such that each party receives the output. This is because the inference in
Scenario Cj, (k € [n]) relies on the adversary obtaining output on behalf of Pj.

5 Completing the Picture: Impossibility Results for
n < 3t

In the previous two sections, we showed the impossibility of unanimous abort
when no broadcast is available, and the impossibility of fairness when broadcast
is only available in the second round. However, both of those impossibility results
only hold for ¢ > 1. In this section, using different techniques, we extend those
results to the case when ¢ = 1 and n = 3. In our impossibility results in this
section, we use a property which we call last message resiliency.

Definition 7 (Last Message Resiliency). A protocol is t-last message re-
silient if, in an honest execution, any protocol participant P; can compute its
output without using t of the messages it received in the last round.
More formally, consider a protocol Il = {(frst-msg;, snd-msg;, output,)}ic[1,... n]-

The protocol is t-last message resilient if, for each i € [1,...,n] and each

S C{L,....,n}\{i} such that |S| < t, the output function output, returns the
correct output even without second round messages from parties P;,i € S. That

is, for all security parameters X, for all sets S C {1,...,n}\{i} such that |S| <,

for all inputs x1,...,T,,

. 1 1 eel . a2
T (OUtPUti(xza MSE1 s+« + s MSGpy 55 MSET_4i5 - -+ mSgnaz))) — negl()\)

1 1 2 2
output,(z;, msg;_,;, ..., Msg,,_,;, MSgi_,;,...,msg,_,,
over the randomness used in the protocol, where, for j € [1,...,n],
1 1
(msg;_,1,...,msg;_,,) < frst-msg;(z;),
2 2 d) 1 1
(msgjﬁl) AR msgj%n) < sn —IIngj (xjv mSglﬁjv AR mSgnﬁj)a

and

m§g2 o msg?%zﬁ Zf] ¢S,
It 1 otherwise.

Theorem 3. Any protocol II which achieves secure computation with unani-
mous abort with corruption threshold t and whose last round can be executed
over peer-to-peer channels must be t-last message resilient.

18

Proof. We prove this by contradiction. Assume II achieves unanimous abort,
and is not t-resilient. Then, by definition, there exist inputs x1,...,x,, an i €
[1,...,n] and a subset S C {1,...,n}\{i} (such that |S| < ¢) where, with non-
negligible probability,

1 1 = 2 - 9
output,(z;, msgi_,,, ..., Msg, _,;, MSET_,, ..., Msgs _,)
1 1 2 2
output,(x;, msg;_,;, ..., Msg, ., MSEI_;, ..., Msg,_,.)

(where the messages are produced in the way described in Definition .

The adversary can use this by corrupting P;, j € S; it will behave honestly,
except in the last round, where P}, j € S will not send messages to P;. (Note that
the ability to send last round messages to some parties but not others relies on
the fact that the last round is over peer-to-peer channels.) With non-negligible
probability, P; will receive an incorrect output (e.g. an abort). However, this
cannot occur in a protocol with unanimous abort; all other honest parties must
accept the protocol and produce the correct output (since their views are the
same as in an entirely honest execution), so P; must as well.

Theorem 4. Any protocol Il which achieves secure computation with fairness
with corruption threshold t must be t-last message resilient.

Proof. We prove this by contradiction. Assume II achieves fairness, and is not
t-resilient. Then, by definition, there exist inputs xy,...,2,, an i € [1,...,n]
and a subset S C {1,...,n}\{i} (such that |S| < t) where, with non-negligible
probability,

1 1 - 2 - 2
output, (z;, msgi_,,, ..., Msg, _,;, MSE{_,;, ..., Msg,)
1 1 2 2
output,(z;, msgi_,,,...,MSgy_,;, MSEI_;,- .., MSE5_,.).

(where the messages are produced in the way described in Definition .

The adversary can use this by corrupting P;, 7 € S. As in the previous
proof, it will behave honestly, except in the last round, where P;,j € S will not
send messages to P;. With non-negligible probability, P; will receive an incorrect
output (e.g. an abort), while the rushing adversary will learn the output, since
it will have all of the messages it would have gotten in a fully honest execution
of the protocol. This violates fairness["]

Theorem 5. There exists a function f such that any protocol Il securely real-
izing f with corruption threshold t such that n < 3t and whose first round can
be executed over peer-to-peer channels cannot be t-last message resilient.

Proof. Consider the function fyot described in the proof of Thm [2| where party

Py provides as input a choice bit X; = b € {0,1} and every other party P,

provides as input a pair of strings i.e. X; = (29, x}).

" Note that while P; does not learn the output, other honest parties might. How-
ever, even one honest party not receiving the output is a violation of fairness if the
adversary learns the output.

19

Consider an adversary corrupting P;. The adversary should clearly be unable
to recompute the function with multiple inputs, e.g., with respect to both X; =0
and X; = 1 (as this will allow it to learn both the input strings of the honest
parties which is in contrast to an ideal execution, where it can learn exactly one
of the input strings).

We now show that, in a ¢-last message resilient (where n < 3t) two-round
protocol IT where the first round is over peer-to-peer channels, P; can always
learn both of those outputs. Consider a corrupt P;, and partition the honest
parties into two sets of equal size (assuming for simplicity that the number of
honest parties is even): Sy and Sy. Note that [So| = |S1] = 255 < ¢.

Py uses X7 = 0 to compute its first round messages to Sp; it uses X1 =1 to
compute its first round messages to S;. (Note that the ability to send first round
messages based on different inputs relies on the fact that the first round is over
peer-to-peer channels.) All other parties behave honestly. Because the protocol
11 is t-last message resilient, and because S contains t or fewer parties, P; has
enough second round messages excluding those it received from S7 to compute
its output. Note that all second round messages except for those received from
S1 are distributed exactly as in an honest execution with X; = 0; therefore, by
last message resiliency, Py learns (29,29,...,2%) (as per the definition of fyy)-
Similarly, by excluding second round messages it received from Sy, P; learns the
output (z3,z3,...,xL) i.e. the output computed based on X; = 1. This is clearly
a violation of privacy.

Corollary 2 (P2P-P2P, UA, n < 3t). Secure computation of general func-
tions with unanimous abort cannot be achieved in two rounds of peer-to-peer
communication for corruption threshold t such that n < 3t.

This corollary follows directly from Theorems [3] and

Remark 1. Note that for ¢ > 1, Cor [2] is subsumed by Cor [[] However, Cor
covers the case of t = 1 and n = 3, closing the question of unanimous abort with
honest majority in two rounds of peer-to-peer communication.

Corollary 3 (P2P-BC, FAIR, n < 3t). Secure computation of general func-
tions with fairness cannot be achieved in two rounds the first of which is over
peer-to-peer channels for corruption threshold t such that n < 3t.

This corollary follows from Theorems [4] and [5}

6 Broadcast in the First Round: Guaranteed Output
Delivery

In this section, we argue that any protocol that achieves guaranteed output
delivery in two rounds of broadcast also achieves guaranteed output delivery
when broadcast is available in the first round only. We first show that if the
protocol achieves guaranteed output delivery with corruption threshold ¢ in two

20

rounds of broadcast, it achieves the same guarantee with threshold ¢ —1 when the
second round is over peer-to-peer channels. We next show that if the first-round
messages commit corrupt parties to their inputs, the second round can be run
over peer-to-peer channels with no loss in corruption budget.

Theorem 6. Let Hffd be a two broadcast-round protocol that securely computes
the function f with guaranteed output delivery against an adversary corrupting
t parties. Then Hffd achieves the same guarantee when the second round is run
over peer-to-peer channels but with t — 1 corruptions.

Proof (Sketch). Let ITE* denote the protocol where the second round is run
over peer-to-peer channels but with ¢ — 1 corruptions. Towards a contradiction,
assume ﬁf: 4'is not secure against (¢ — 1) corruptions; in particular, assume that
there is an adversary A that breaks security.

We first observe that A certainly can’t cause honest parties to abort in J782
by sending them incorrect things in the second round, since ITg; 4 achieves guar-
anteed output delivery, meaning that honest parties do not abort no matter
what A does. Therefore, all A can hope for is to cause disagreement in 178,
In particular, A can send different second-round messages to different honest
parties, hoping that honest parties end up with outputs computed on different
corrupt party inputs. However, if A could do that, we could use A to build an
adversary A that breaks the security of ITE7 d by corrupting one additional hon-
est party, mentally sending different messages to it, and obtaining the output on
two different sets of its own inputs.

Suppose A can make a pair of honest parties in ﬁf: 4 P and P; — obtain
different outputs by sending different second-round messages to them. Then, we
construct our adversary A for IT5e 4 as follows. A corrupts the same ¢ — 1 parties
as A, as well as one additional honest party — P; — who will behave semi-
honestly. A uses the second-round messages sent by A to P; as her broadcast
second-round messages in Hffd. However, A also computes what P;’s output
would have been if she had broadcast the second-round messages sent by A to
P;. This allows A to obtain the output on behalf of P; on two different sets of
inputs, breaking the security of IT5c d (and completing the proof).

Theorem 7. Let Hgfd be a two broadcast-round protocol that securely computes
the function f with guaranteed output delivery with the additional constraint that
a stmulator can extract inputs from the first-round messages and it is efficient
to check whether a given second-round message is correct. Then Hgfd achieves
the same guarantee when the second round is run over point-to-point channels.

Proof (Sketch). Starting from the protocol IT it is possible to define another
protocol HESSQP that has the following modifications: (1) the second round mes-
sages of Hffd are sent over point-to-point channels and (2) the honest parties
compute their output based on all the first round messages and the subset C' of
second round messages that are generated correctly. (Observe that |C| > n — ¢,

because at least n — t parties are honest.)

21

Relying on the GOD security of I18 it is possible to claim that Hffsgp also
achieves GOD. This follows from two important observations. First, since the
input is extracted from the first round of HES;QP which is over broadcast, the
adversary cannot cause disagreement among the honest parties with respect to
her input (i.e. she cannot send messages based on different inputs to different
honest parties). Second, in HESSQP the honest parties are always able to compute
the output; otherwise, the honest parties in Hfsd would not have been able to
compute an output when A does not send any second round message, which

contradicts GOD security.

Next, we observe that the two broadcast-round protocol of Gordon et al.
[GLS15] has the two properties required by Thm (7} The protocol of Gordon
et al. [GLS15] uses zero knowledge proofs to compile a semi-malicious protocol
into a fully malicious one. The zero knowledge proofs accompanying the first
round messages can be used for input extraction; the zero knowledge proofs
accompanying the second round messages can be used to efficiently determine
which of these second round messages are generated correctly.

7 One-or-Nothing Secret Sharing

In Section [§] we will show a protocol that achieves security with identifiable
abort in the honest majority setting in two rounds, only the second of which
is over broadcast. In this section, we introduce an important building block for
that protocol which we call one-or-nothing secret sharing.

We define one-or-nothing secret sharing as a new flavor of secret sharing
wherein the dealer can share a vector of secrets. While traditional secret sharing
schemes are designed for receivers to eventually publish their shares and recover
the entirety of what was shared, one-or-nothing secret sharing is designed for
receivers to eventually recover at most one of the shared values. While recon-
struction usually requires each party to contribute its entire share, in one-or-
nothing secret sharing, each party instead wvotes on the index of the value to
reconstruct by producing a “ballot” based on its secret share. If two parties vote
for different indices, the set of published ballots should reveal nothing about any
of the values. However, some parties are allowed to equivocate — they might be
unsure which index they wish to vote for, so they will support the preference of
the majority. If a majority votes for the same index, and the rest equivocate, the
ballots enable the recovery of the value at that index.

Our secure computation construction in Section [§| uses one-or-nothing secret
sharing to share labels for garbled circuits. However, we imagine one-or-nothing
secret sharing might be of independent interest, e.g. in voting scenarios where
unanimity among the decided voters is important.

7.1 Definitions

Syntax The natural syntax for a one-or-nothing secret sharing scheme consists
of a tuple of three algorithms (share, vote, reconstruct).

22

share(z(M, ..., 20) — (s,51,...,s,) isan algorithm that takes [values (!,

..,z and produces the secret shares s1, ..., sn, as well as the public share
s.
vote(s, s;,v) — §; is an algorithm that takes the public share s, a secret
share s;, and a vote v, where v € {1,...,l, 1} can either be an index of a

value, or it can be L if party ¢ is unsure which value it wants to vote for. It
outputs a public ballot ;.

reconstruct(s,3i,...,5,) — {z(*), L} is an algorithm that takes the public
share s, all of the ballots 3, ...,3,, and outputs either the value z(*) which
received a majority of votes, or outputs L.

Non-Interactive One-or-Nothing Secret Sharing We modify this natural syntax
to ensure that each party can vote even if they have not received a secret share.
This is important in case e.g. the dealer is corrupt, and chooses not to distribute
shares properly. We call such a scheme a non-interactive one-or-nothing secret
sharing scheme. A non-interactive one-or-nothing secret sharing scheme consists
of a tuple of four algorithms (setup, share, vote, reconstruct).

setup(1?) — sk is an algorithm that produces a key shared between the
dealer and one of the receivers. (This can be non-interactively derived by
both dealer and receiver by running setup on randomness obtained from e.g.
key exchange.)

share(sky,...,sky, MW, ,x(l)) — s is an algorithm that takes the n shared
keys sky, ..., sk, and the [values z(!),..., 2 and produces a public share
s.

vote(sk;,v) — §; is an algorithm that takes a secret share s; and a vote v,
where v € {1,...,l, L} can either be an index of a value, or it can be L if
party ¢ is unsure which value it wants to vote for. It outputs a public ballot
S;-

reconstruct(s,3,...,5,) — {z(*), L} is an algorithm that takes the public
share s, all of the ballots 3, ...,5,, and outputs either the value z(*) which
received a majority of votes, or outputs L.

Security We require three properties of one-or-nothing secret sharing: correct-
ness, privacy (which requires that if fewer than ¢ + 1 parties vote for an index,
the value at that index stays hidden) and contradiction-privacy (which requires
that if two parties vote for different indices, all values stay hidden). Below we
define these formally for non-interactive one-or-nothing secret sharing.

Definition 8 (One-or-Nothing Secret Sharing: Correctness). Informally,
this property requires that when at least n — t parties produce their ballot using
the same v (and the rest produce their ballot with 1), reconstruct returns =(*).
(Whent =4 — 1, n—t is a majority.)

More formally, a one-or-nothing secret sharing scheme is correct if for any
security parameter X € N, any vector of secrets (z™1), ..., 2®), any index v € [I]

23

and any subset S C [n],|S| > n —t,

sk; + setup(1?) fori € [n]
s < share(sky,...,sky,,z(M,..., z(0)
Pr |z =2z : S; < vote(sk;,v) fori e S > 1 —negl(X),
5; < vote(sk;, L) fori e [n]\S
x + reconstruct(s,31,...,3,)

where the probability is taken over the random coins of the algorithms.

Definition 9 (One-or-Nothing Secret Sharing: Privacy). Informally, this
property requires that when no honest parties produce their ballot using v, then
the adversary learns nothing about =)

More formally, a one-or-nothing secret sharing scheme is private if for any
security parameter A € N, for every PPT adversary A, it holds that

Pr[A wins] < % + negl(N)

in the following experiment:

Adversary A Challenger C
b+« {0,1}
AcC{,..., n}(s.t. |Al <t
{ X Al) >H:={1,...,n}\A
20”8 (st 27 = =20
>z =y

’
{w(v)}u’e{l ,,,,, I3\ {v}
v, {vi # v}ien

>
sk; < setup(1?) for i € [n]
s < share(ski, ..., sk, 2, .., m(l))
S; + vote(sk;,v;) fori € H
{ski}iea, s, {Si}tien

b/
A wins if b’ = b

Definition 10 (One-or-Nothing Secret Sharing: Contradiction-Privacy).
Informally, this property requires that if two different parties produce their ballots
using different votes v; # v; such that v; # L and v; # L, then the adversary
should learn nothing at all.

More formally, a one-or-nothing secret sharing scheme is contradiction-private
if for any security parameter A\ € N, for every PPT adversary A, it holds that

1
Pr[A wins] < 5 + negl(\)
in the following experiment:

24

Adversary A Challenger C

b+ {0,1}

AcC{l,...,n}(s.t. |A| <t

{ X Al) > H:={1,...,n}\A
(v) (v) (W) — ()
Ty sy (st |zy | = |2y])
0 ! 0 ! z®) = acl()v) forve{1,...,1}

forve{1,...,l}

{vi}ien
>

sk; < setup(1?) for i € [n]
s < share(skq, ... sk, oML ,a:(l))
S; <+ vote(sk;,v;) fori € H
{ski}ica, s, {Si}ien
b/
A wins if b’ = b

and there exists 1,7 € H
s.t. vy Fvj, vi L andv; # L

7.2 Constructions

A first attempt would be to additively share all the values (), ..., z(®. How-
ever, this fails because if all of the honest parties compute vote on L (by e.g.
publishing both their additive shares), the adversary will be able to reconstruct
all of the values, violating privacy (Definition [9)).

Instead, we instantiate a non-interactive one-or-nothing secret sharing scheme
as follows, using a symmetric encryption scheme SKE = (keygen, enc, dec) (de-
fined in the full version of this paper [DMR™20]).

Figure 7.1: Non-Interactive One-or-Nothing Secret Sharing

setup(1*) — sk: Choose [+ 1 symmetric encryption keys k... k@ k() us-

ing SKE.keygen(1"). Let sk = (k... k@ k1)),

share(sky,..., skmx(l) .. <l)) — st
1. Compute (z{”,..., ") as the additive sharing of 2(*) for v € [I].
2. Compute (1’5217 . E:)n) as the threshold sharing of :cgv) with threshold
t for v € [1], 7 € [n].
3. Parse (k(l) k(l) k(l)) = sk; for i € [n].
4. Compute ¢) = enc(k'", 2{")) for v € [1], i € [n].
5. Compute c(v) = enc(kgj‘),enc(k@> EU_))])) forve[l],i €[n], j € [n].

6. Output s = {Cf)}ie[n],ve[zh{CHj}z,je[nJ,vem)
vote(sks,v) = S; wherev € {1,...,1,L}: Output 5; = (U,kz(-”)).
reconstruct(s,s1,...,5,) — {z*, L}:
L. Parse ({c{" Vienlwer: {61, }isetmlven) = 5.
2. Parse (vi, ki) =3; for i € [n].
3. If there does not exist a v € {1,...,1} such that at least (n —t) parties vote
for v and everyone else votes for L, output L.
4. Let v # L denote the only value which received votes; let S C {1,...,n}
be the set of ¢ such that v; = v.

25

5. For ¢ € S (so, v; = v), compute z; = dec(k;, CEU)).

6. For ¢ ¢ S (so, vy = 1), for each j € S, compute x;—; =
dec(ki,dec(kj,cgv_zj)). Let z; denote the value reconstructed using the
threshold shares {z;—,} es.

7. If there exists any i such that x; = L, output L. Else, output x = Z

n

i=1 Li-

Theorem 8. The above construction is a secure non-interactive one-or-nothing
sharing scheme when n > 2t.

We defer the proof of security to the full version of this paper [DMR™20].

8 Broadcast in the Second Round: Identifiable Abort

In this section, we show a protocol achieving secure computation with identifiable
abort in two rounds, with the first round only using peer-to-peer channels, when
t< 3.

One could hope that executing a protocol IT,. that requires two rounds of
broadcast over one round of peer-to-peer channels followed by one round of
broadcast will simply work, just like in the case of one round of broadcast fol-
lowed by one round of peer-to-peer channels (Section @ However, this is not
the case. When the first round is over peer-to-peer channels, the danger is that
corrupt parties might send inconsistent messages to honest parties in that round.
Allowing honest parties to compute their second-round messages based on in-
consistent first-round messages might violate security. So, we must somehow
guarantee that all honest-party second-round messages are based on the same
set of first-round messages.

Our protocol follows the structure of the protocols described by Cohen et al.
[CGZ20Q). It is described as a compiler that takes a protocol IT,. which achieves
the desired guarantees given two rounds of broadcast, and achieves those same
guarantees in the broadcast pattern we are interested in, which has broadcast
available in the second round only. In the compiler of Cohen et al., to ensure
that honest parties base their second-round messages on the same view of the
first round, parties garble and broadcast their second-message functions. In more
detail, in the first round the parties secret share all the labels for their garbled
circuit using additive secret sharing, and send their first-round message from the
underlying protocol to each of their peers. In the second round (over broadcast),
each party sends their garbled second-message function, and for each bit of first-
round message she receives, she forwards her share of the corresponding label
in everyone else’s garbled circuit. The labels corresponding to the same set of
first-round messages are reconstructed for each party’s garbled second-message
function, thus guaranteeing consistency.

We use a similar approach. However, as mentioned in the introduction, there
are other challenges to address when our goal is identifiable (as opposed to
unanimous) abort. In the techniques of Cohen et al., in the second round, for

26

each bit of every first-round message, every party P; must forward to everyone
else exactly one of a pair of shares of labels which P; should have obtained from
every other party P;. However, since the first round is over peer-to-peer channels,
P; can claim that it didn’t get the shares of labels from P;, and the computation
must still complete (i.e. the correct label needs to be reconstructed), since it is
unclear who to blame — P; or P; E|

An alternative approach might be to use threshold secret sharing instead of
additive secret sharing to share the garbled labels. In order to ensure that honest
parties can either identify a cheater or reconstruct at least one of each pair of
labels, we would need to set our secret sharing threshold to be at most n — ¢.
However, when t = § —1, the adversary only needs one additional honest party’s
share to reconstruct any given label. If she sends different first-round messages to
different honest parties, they will contribute shares of different labels, enabling
the adversary to reconstruct both labels for some input wires. This allows the
adversary to violate honest parties’ privacy.

This is where our non-interactive one-or-nothing secret sharing primitive
comes into play. Parties can use it to secret share the pair of labels for each
wire of their garbled circuit by only broadcasting one value — the public share
— in the second round. By the non-interactive design of the one-or-nothing
secret sharing scheme, parties don’t even need to have seen the public share to
contribute to reconstruction, so no party can claim to be unable to contribute.
The privacy properties of the scheme guarantee that at most one label per wire
will be recovered. Moreover, if an honest party is not sure which label share to
choose (which may happen if she did not get a valid first-round message of ITy.),
she can still enable the recovery of the appropriate label (by contributing an
equivocation ballot).

We also have to consider how to identify an adversary that sends different
first-round messages from the underlying protocol to different honest parties. We
thus require each party P; to sign these first-round messages; each other party P;
will only act upon first-round messages from P; with valid signatures, and echo
those messages (and signatures). In this way, we can identify P; as a cheater as
long as she included valid signatures with her inconsistent messages. If she did
not, then either enough parties will complain about P; to implicate her, or the
equivocation ballots will allow the computation to complete anyway.

At a very high level, our protocol can be described as follows. In the first
round, the parties send their first-round message of T, along with a signature to
each of their peers. In the second round (over broadcast), the parties do the fol-
lowing: (1) compute a garbling of their second-message function; (2) secret share
all the labels for their garbled circuit using the one-or-nothing secret sharing; (3)
vote for the share of the corresponding label (based on the first-round message
received) in everyone else’s garbled circuit; (4) compute a zero-knowledge proof
to ensure the correctness of the actions taken in the second round; and (5) echo

8 Note that this is not an issue in the protocol with unanimous abort of Cohen et al.
since if the reconstruction of the label fails, the honest parties can simply abort.

27

all the first-round messages of I, with the corresponding signatures received
from the other parties in the first round.

Intuitively, our protocol achieves identifiable abort due to the following. First,
if a corrupt party is not caught, she must have sent a first-round message with
a valid signature to at least one honest party; otherwise, n —t > t parties would
claim to have a conflict with her, which implicates her as a cheater (since at
least one honest party is clearly accusing her). Second, she must not have sent
two different first-round messages with valid signatures; otherwise, those two
contradictory signatures would implicate her. Third, the zero-knowledge proof in
the second round ensures that every corrupt party garbles and shares its garbled
circuit labels correctly. We can conclude that, by the correctness property of the
secret sharing scheme, if no party is caught, then one label from each label pair
is reconstructed, and the underlying protocol I, can be carried out.

We state the theorem below, and defer the formal description of the protocol
to the full version of this paper [DMR™20).

Theorem 9 (P2P-BC, ID, n > 2t). Let F be an efficiently computable n-
party function and let n > 2t. Let Iy, be a two broadcast-round protocol that
securely computes F with identifiable abort with the additional constraint that
the straight-line simulator can extract inputs from the first-round messages. As-
suming a setup with CRS and PKI, and that (garble, eval,simGC) is a secure
garbling scheme, (gen,sign,ver) is a digital signature scheme, (share,vote,
reconstruct,verify) is a one-or-nothing secret sharing scheme, (keygen, keyagree)
is a non-interactive key agreement scheme and (setupZK, prove,verify, simP,
simP.Extract) is a secure non-interactive zero-knowledge proof system. Then,
there exists a protocol that securely computes F with identifiable abort over two
rounds, the first of which is over peer-to-peer channels, and the second of which
is over a broadcast channel.

Remark 2. Note that when the underlying protocol I1. is instantiated using the
protocols of Gordon et al. or Cohen et al. [GLS15ICGZ20], then our construction
relies only on CRS and PKI (and does not require correlated randomness).

References

ACGJ18. Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek
Jain. Round-optimal secure multiparty computation with honest majority.
In CRYPTO 2018, Part I1I, LNCS. Springer, Heidelberg, August 2018.

ACGJ19. Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek
Jain. Two round information-theoretic MPC with malicious security. In
EUROCRYPT 2019, Part II, LNCS. Springer, Heidelberg, May 2019.

BGIT01. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In CRYPTO 2001, LNCS. Springer, Heidelberg, August 2001.

BGWS88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In 20th ACM STOC. ACM Press, May 1988.

28

BMMR21.

CCDSS.

CDo1.

CGZ20.

Cle86.

DMR™20.

DS83.

FGMv02.

FL82.

GIKRO1.

GIKRO02.

GLS15.

GMWS8r.

GS18.

IKO02.

IKKP15.

Saikrishna Badrinarayanan, Peihan Miao, Pratyay Mukherjee, and Divya
Ravi. On the round complexity of fully secure solitary mpc with honest
majority. Cryptology ePrint Archive, Report 2021/241, 2021. https://
eprint.iacr.org/2021/241.

David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty uncondi-
tionally secure protocols (extended abstract). In 20th ACM STOC. ACM
Press, May 1988.

Ronald Cramer and Ivan Damgard. Secure distributed linear algebra in a
constant number of rounds. In CRYPTO 2001, LNCS. Springer, Heidel-
berg, August 2001.

Ran Cohen, Juan A. Garay, and Vassilis Zikas. Broadcast-optimal two-
round MPC. In EUROCRYPT 2020, Part II, LNCS. Springer, Heidelberg,
May 2020.

Richard Cleve. Limits on the security of coin flips when half the processors
are faulty (extended abstract). In 18th ACM STOC. ACM Press, May
1986.

Ivan Damgard, Bernardo Magri, Divya Ravi, Luisa Siniscalchi, and Sophia
Yakoubov. Broadcast-optimal two round mpc with an honest majority.
Cryptology ePrint Archive, Report 2020/1254, 2020. https://eprint.
iacr.org/2020/1254.

Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzan-
tine agreement. SIAM J. Comput., 12(4):656-666, 1983.

Matthias Fitzi, Nicolas Gisin, Ueli M. Maurer, and Oliver von Rotz. Uncon-
ditional byzantine agreement and multi-party computation secure against
dishonest minorities from scratch. In FEUROCRYPT 2002, LNCS. Springer,
Heidelberg, April / May 2002.

Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to
assure interactive consistency. Inf. Process. Lett., 14(4):183-186, 1982.
Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. The round
complexity of verifiable secret sharing and secure multicast. In 33rd ACM
STOC. ACM Press, July 2001.

Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. On 2-
round secure multiparty computation. In CRYPTO 2002, LNCS. Springer,
Heidelberg, August 2002.

S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with
fairness and guarantee of output delivery. In CRYPTO 2015, Part II,
LNCS. Springer, Heidelberg, August 2015.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In 19th
ACM STOC. ACM Press, May 1987.

Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure
computation from minimal assumptions. In EUROCRYPT 2018, Part II,
LNCS. Springer, Heidelberg, April / May 2018.

Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computa-
tion via perfect randomizing polynomials. In ICALP 2002, LNCS. Springer,
Heidelberg, July 2002.

Yuval Ishai, Ranjit Kumaresan, Eyal Kushilevitz, and Anat Paskin-
Cherniavsky. Secure computation with minimal interaction, revisited. In
CRYPTO 2015, Part II, LNCS. Springer, Heidelberg, August 2015.

29

https://eprint.iacr.org/2021/241
https://eprint.iacr.org/2021/241
https://eprint.iacr.org/2020/1254
https://eprint.iacr.org/2020/1254

IKP10.

Lin0O1.

PR18.

Yao86.

Yuval Ishai, Eyal Kushilevitz, and Anat Paskin. Secure multiparty com-
putation with minimal interaction. In CRYPTO 2010, LNCS. Springer,
Heidelberg, August 2010.

Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party
computation. In CRYPTO 2001, LNCS. Springer, Heidelberg, August 2001.
Arpita Patra and Divya Ravi. On the exact round complexity of secure
three-party computation. In CRYPTO 2018, Part II, LNCS. Springer,
Heidelberg, August 2018.

Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th FOCS. IEEE Computer Society Press, October 1986.

30

	Broadcast-Optimal Two Round MPC with an Honest Majority

