
Three Halves Make a Whole? Beating the
Half-Gates Lower Bound for Garbled Circuits?

Mike Rosulek and Lawrence Roy

Oregon State University, {rosulekm,royl}@oregonstate.edu

Abstract. We describe a garbling scheme for boolean circuits, in which
XOR gates are free and AND gates require communication of 1.5κ + 5
bits. This improves over the state-of-the-art “half-gates” scheme of Za-
hur, Rosulek, and Evans (Eurocrypt 2015), in which XOR gates are free
and AND gates cost 2κ bits. The half-gates paper proved a lower bound
of 2κ bits per AND gate, in a model that captured all known garbling
techniques at the time. We bypass this lower bound with a novel tech-
nique that we call slicing and dicing, which involves slicing wire labels
in half and operating separately on those halves. Ours is the first to by-
pass the lower bound while being fully compatible with free-XOR, mak-
ing it a drop-in replacement for half-gates. Our construction is proven
secure from a similar assumption to prior free-XOR garbling (circular
correlation-robust hash), and uses only slightly more computation than
half-gates.

1 Introduction

Garbled circuits (GC) were introduced by Yao in the 1980s [Yao82] in one of the
first secure two-party computation protocols. They remain the leading technique
for constant-round two-party computation. Garbled circuits exclusively use ex-
tremely efficient symmetric-key operations (e.g., a few calls to AES per gate of
the circuit), making communication rather than computation the bottleneck in
realistic deployments — the parties must exchange O(κ) bits per gate. For that
reason, most improvements to garbled circuits have focused heavily on reducing
their concrete size [BMR90, NPS99, KS08, PSSW09, KMR14, GLNP15]. The
current state of the art for garbled (boolean) circuits is the half-gates construc-
tion of Zahur, Rosulek, and Evans [ZRE15]. In the half-gates scheme, AND gates
are garbled with size 2κ bits, while XOR gates are free, requiring no communi-
cation.

The half-gates paper also establishes a lower bound for the size of garbled
circuits. Specifically, the authors define a model of linear garbling — which
captured all known techniques at the time — and proved that a garbled AND
gate in this model requires 2κ bits. Thus, half-gates is optimal among linear
garbling schemes. In response, there has been a line of work focused on finding

? First author partially supported by NSF award #1617197. Second author supported
by a DoE CSGF Fellowship.

ways around the lower bound. Several works [KKS16, BMR16, WmM17] were
successful in constructing an AND gate using only κ bits, using techniques out-
side of the linear-garbling model. However, these constructions work only for a
single AND gate in isolation, so they do not result in any improvement to half-
gates for garbling general circuits.1 Garbling an entire arbitrary circuit with less
than 2κ bits per AND-gate remained an open problem. We discuss the linear
garbling lower bound and different paths around it later in Section 7.

1.1 Our Results

We show a garbling scheme for general boolean circuits, in which XOR gates
are free and AND gates cost only 1.5κ + 5 bits. This is the first scheme to
successfully bypass the linear-garbling lower bound for all AND gates in a circuit,
not just a single isolated AND gate. For the typical case of κ = 128 this is a
concrete reduction of 23% in the size of garbled circuits relative to half-gates.
Our construction compares to half-gates along other dimensions as follows:

– Hardness assumption: All free-XOR-based garbling schemes require a
function H with output length κ and satisfying a circular correlation-robust
property. In short, this means that terms of the form H(X⊕∆) and H(X⊕
∆) ⊕∆ are indistinguishable from random, for adversarially chosen X and
global, secret ∆. Our construction requires a slight generalization. First, we
require H that gives outputs of length κ/2. Second, the secret ∆ is split
into two halves ∆ = ∆L‖∆R, and we require terms like H(X ⊕ ∆) ⊕ ∆L,
H(X ⊕∆)⊕∆L ⊕∆R, etc. to be indistinguishable from random.

– Computation: Our scheme requires 50% more calls to H per AND gate
than half-gates (6 vs 4 for the garbler, and 3 vs 2 for the evaluators). Similar
to other work, we can instantiate the necessary H using just 1 call to AES
with a key that is fixed for the entire circuit. As a result, the computational
cost of our scheme is comparable to prior work.
Additionally, since we require H with only κ/2 bits of output, certain queries
to H for different AND-gates can be combined into a single query to a κ-
bit-output function. The effect of this optimization depends on the circuit
topology but in some cases our construction can have identical or better
computation to half-gates (see Section 6.2).

We bypass the [ZRE15] lower bound by using two techniques that are outside
of its linear-garbling model. We refer to the techniques collectively as slicing-
and-dicing.

– Slicing: In our construction the evaluator slices wire labels into halves,
and uses (possibly different!) linear combinations to compute each half. We
stress that this does not halve the security — the hash H is still given the
whole wire label with κ bits of entropy. To the best of our knowledge, this

1 These constructions require the input labels to have a certain correlation that they
do not guarantee for the gate’s output labels.

2

technique is novel in garbled circuits. As we demonstrate in detail later,
introducing more linear combinations for the evaluator increases the linear-
algebraic dimension in which the scheme operates, in a way that lets us
exploit more linear-algebraic structures that prior schemes could not exploit.

– Dicing: The evaluator first decrypts a constant-size ciphertext containing
“control bits”, which determine the linear combinations (of input label
[halves], gate ciphertexts, and H-outputs) he/she will use to compute the
output label [halves]. The control bits are chosen randomly by the garbler
(i.e., by tossing “dice”) in a particular way. Randomized control bits are
outside of the linear garbling model, which requires the evaluator’s linear
combinations to be fixed. This technique first appeared in [KKS16].

We also describe a variant of our scheme that can garble any kind of gate
(e.g., XOR gates, even constant-output gates) for 1.5κ + 10 bits, in a way that
hides the gate’s truth table from the evaluator. This improves on the state of the
art for gate-hiding garbling, due to Rosulek [Ros17], in which each gate is garbled
for 2κ+ 8 bits, and constant-output gates are not supported. Additionally, our
gate-hiding construction is fully compatible with free-XOR, meaning that the
circuit can contain both “public” XOR gates (evaluator knows that this gate is
an XOR) and “private” XOR gates (only the garbler knows that this gate is an
XOR), with the public ones being free.

1.2 Related Work

The garbled circuits technique was first introduced by Yao [Yao82], although the
first complete description and security proof for Yao’s protocol was given much
later [LP09]. Bellare, Hoang, and Rogaway [BHR12] promoted garbled circuits
from a technique to well-defined cryptographic primitive with standardized se-
curity properties, which they dubbed a garbling scheme. In this work, we use
their framework to formally express our schemes and prove security.

The garbling scheme formalization captures many techniques, but in this
work we focus on “practical” GC techniques built from symmetric-key tools
(PRFs, hash functions, but not homomorphic encryption or obfuscation). In the
realm of practical garbling, there have been many quantitative and qualitative
improvements over the years, especially focused on reducing the size of garbled
circuits. These works are showcased in Figure 1. Of particular note are the Free-
XOR technique of Kolesnikov & Schneider [KS08] and the half-gates consruc-
tion [ZRE15], mentioned above. Free-XOR allows XOR gates in the circuit to be
garbled with no communication, and our construction inherits this technique to
achieve the same feature. The free-XOR technique requires a cryptographic hash
with a property called circular correlation-resistance [CKKZ12]. As mentioned
above, the half-gates paper introduced a lower bound for garbling, which several
works have bypassed in some limited manner. We discuss the lower bound and
these related works in more detail in Section 7.

Several garbling schemes are tailored to support both AND and XOR gates
while hiding the type of gate from the evaluator [KKS16, WmM17, Ros17]. These

3

GC size calls to H per gate
(κ bits / gate) garbler evaluator

scheme AND XOR AND XOR AND XOR assump.

unoptimized textbook Yao 8 8 4 4 2.5 2.5 PRF
Yao + point-permute [BMR90] 4 4 4 4 1 1 PRF
4→ 3 row reduction [NPS99] 3 3 4 4 1 1 PRF
4→ 2 row reduction [PSSW09] 2 2 4 4 1 1 PRF
free-XOR [KS08] 3 0 4 0 1 0 CCR
fleXOR [KMR14] 2 {0, 1, 2} 4 {0, 2, 4} 1 {0, 1, 2} CCR
half-gates [ZRE15] 2 0 4 0 2 0 CCR
[GLNP15] 2 1 4 3 2 1.5 PRF

ours 1.5 0 ≤6 0 ≤3 0 CCR

Fig. 1. Comparison of efficient garbling schemes. Gate size ignores small constant ad-
ditive term (i.e., “2” means 2κ+O(1) bits per gate). CCR = circular correlation robust
hash function.

GC size calls to H per gate supported
scheme (κ bits/gate) garbler evaluator gates assump.

Yao + point-permute [BMR90] 4 4 1 all PRF
4→ 3 row reduction [NPS99] 3 4 1 all PRF
[KKS16] 2 3 1 symmetric CCR
[WmM17] 2 3 1 symmetric CCR
[Ros17] 2 4 1 non-const PRF

ours 1.5 ≤6 ≤3 all CCR

Fig. 2. Comparison of gate-hiding garbling schemes, where the garbled circuit leaks
only the topology of the circuit and not the type of each gate. Gate size ignores small
constant additive term (i.e., “2” means 2κ + O(1) bits per gate). CCR = circular
correlation robust hash function. “Symmetric” means all gates g with g(0, 1) = g(1, 0).
“Non-const” means all gates g except g(a, b) = 0 and g(a, b) = 1.

works are compared in Figure 2. They differ in the exact class of boolean gates
they can support — all gates, all symmetric gates (satisfying g(0, 1) = g(1, 0)),
or all non-constant gates.

2 Preliminaries

2.1 Circuits

We represent a circuit f = (inputs, outputs, in, leak, eval) by choosing a topological
order of the |f | inputs and gates in the circuit. Let inputs be the number of inputs
in the circuit, which we require to come first in the ordering. Each gate is then
labeled by its index in the order. For every gate index g in the circuit, its two
input indices2 are in1(g) and in2(g), where ini(g) < g. Each gate can be evaluated

2 We assume that all gates take two inputs. NOT gates can be merged into downstream
gates — e.g. if x goes into a NOT gate, and then into an AND gate with another
input y, this is equivalent to a single x ∧ y gate.

4

using a function eval(g) : {0, 1}2 → {0, 1}. Finally, the outputs are a subset of
the indices outputs ⊆ [1, |f |].

Garbling only hides only partial information about the circuit. What is re-
vealed is contained in the “leakage function” Φ(f). Sometimes two gates in a
circuit may both be e.g. XOR-gates, but one will publicly be XOR while the
operation performed by the other gate will be hidden. To support this, each
gate is associated with some leakage leak(g). Gates with different leakages may
compute the same function, but have different rules about how much informa-
tion is revealed. We then define Φ(f) to be (inputs, outputs, in, leak), containing
the circuit topology and partial information about the gates’ truth tables.

2.2 Garbling Schemes

We use a slightly modified version of the garbling definitions of [BHR12].

Definition 1. A garbling scheme consists of four algorithms:

– (F, e, d)← Garble(1κ, f).
– X := Encode(e, x). (deterministic)
– Y := Eval(F,X). (deterministic)
– y := Decode(d, Y). (deterministic)

such that the following conditions hold.

Correctness: For any circuit f and input x, if (F, e, d) ← Garble(1κ, f) then
f(x) = Decode(d,Eval(Encode(e, x))) holds with all but negligible probability.

Privacy with respect to leakage Φ: There must be a simulator S such that
for any circuit f and input x the following distributions are indistinguishable.

(F, e, d)← Garble(1κ, f)
X := Encode(e, x)
return (F,X, d)

(F,X, d)← S(1κ, Φ(f), f(x))
return (F,X, d)

Obliviousness w.r.t. leakage Φ: There must be a simulator S such that for
any circuit f and input x the following distributions are indistinguishable.

(F, e, d)← Garble(1κ, f)
X := Encode(e, x)
return (F,X)

(F,X)← S(1κ, Φ(f))
return (F,X)

Authenticity: For any circuit f and input x, no PPT adversary A can make
the following distribution output true with non-negligible probability.

(F, e, d)← Garble(1κ, f)
X := Encode(e, x)
Y ← A(F, d,X)
return Decode(d, Y) /∈ {f(x),⊥}

5

The definitions differ from [BHR12] in two ways. First, we change correctness
to allow a negligible failure probability.3 Secondly, we strengthen the authenticity
property by giving d to the adversary. This stronger property is easy to achieve
by simply changing what one takes as garbled output Y .

2.3 Circular Correlation Robust Hashes

Our construction requires a hash function H with a property called circular
correlation robustness (CCR). A comprehensive treatment of this property is
presented in [CKKZ12, GKWY20].

The relevant definition of [GKWY20] is tweakable CCR (TCCR). For a hash
function H, define a related oracle O∆(X, τ, b) = H(X ⊕ ∆, τ) ⊕ b∆. Then H
is a TCCR if O∆ is indistinguishable from a random oracle, provided that the
distinguisher never repeats a (X, τ) pair in calls to the oracle.

We modify their definition in several important ways:

– We require H to have different input and output lengths. In the original
definition, the adversary used the argument b ∈ {0, 1} to determine whether
∆ was XOR’ed with the output of H. We generalize so that the adversary
can choose a linear function of (the bits of) ∆ that will be XOR’ed with
the output of H. Our construction ultimately needs only 4 linear functions
reflecting our slicing of wire labels in half: La,b(∆L‖∆R) = a∆L ⊕ b∆R, for
a, b ∈ {0, 1}.

– [GKWY20] observe that a “full” TCCR is stronger than what is needed for
garbled circuits. In order to construct a TCCR that uses only one call to an
ideal permutation, they prove TCCR security against adversaries that query
only on “naturally derived” keys. It is somewhat cumbersome to generalize
“naturally derived” keys to our setting, where the values are sliced into pieces.
We instead relax TCCR so that H is drawn from a family of hashes, and the
adversary only receives the description of H after making all of its oracle
queries. This relaxation suffices for garbled circuits (the garbler chooses H
and reveals it only in the garbled circuit description, after all queries to H
have been made), and simplifies both our definition and our proof.

Definition 2. A family of hash functions H, where each H ∈ H maps {0, 1}n×
T → {0, 1}m for some set of tweaks T , is randomized tweakable circular
correlation robust (RTCCR) for a set of linear functions L from {0, 1}n to
{0, 1}m if, for any PPTs A1,A2 that never repeat an oracle query to OH,∆ on
the same (X, τ),∣∣∣∣ Pr

H,∆

[
v ← AH,OH,∆1 ;A2(v,H) = 1

]
− Pr
H,R

[
v ← AH,R1 ;A2(v,H) = 1

]∣∣∣∣
3 Most garbling schemes actually do not have perfect correctness. If an output wire has

labels W0,W1, then d will contain both H(W0) and H(W1). Correctness is violated
if H(W0) = H(W1).

6

is negligible, where R is a random oracle and OH,∆ is defined as

OH,∆(X ∈ {0, 1}n, τ ∈ T , L ∈ L):

return H(X ⊕∆, τ)⊕ L(∆)

In the full version we show that if Fk(X) is both a (plain) CCR hash for L
when k is fixed and a PRF when k is random, and {(X, τ) 7→ X⊕U(τ) | U ∈ U}
is a universal hash family,4 then

{
(X, τ) 7→ Fk(X ⊕ U(τ)) | k ∈ {0, 1}κ, U ∈ U

}
is a secure RTCCR hash family for L.

For our recommended instantiation, let σ be a simple function of the form
σ(XL‖XR) = αXL‖αXR, where α is any fixed element in GF(2n/2) \ GF(22).
Then AESk(X) ⊕ σ(X) is both a PRF for random k, and a CCR for any fixed
k (modelling AESk as an ideal permutation). Hence we get an RTCCR of the
form:

(X, τ) 7→ AESk
(
X ⊕ U(τ)

)
⊕ σ(X ⊕ U(τ))

U can likewise be a simple function, e.g., when |τ | ≤ κ/2 then we can use
U(τ) = u1τ‖u2τ where u1, u2 are random elements of GF(2κ/2).

3 A Linear-Algebraic View of Garbling Schemes

In this section we present a linear-algebraic perspective of garbling schemes,
which is necessary to understand our construction and its novelty. This perspec-
tive is inspired by the presentation of Rosulek [Ros17], where the evaluator’s
behavior (in each of the 4 different gate-input combinations) defines a set of
linear equations that the garbler must satisfy, and we rearrange those equations
to isolate the values that are outside of the garbler’s control.

3.1 The Basic Linear Perspective

Throughout this section, we consider an AND gate whose input wires have labels
(A0, A1) and (B0, B1). We will always consider the free-XOR setting [KS08],
where all wires have labels that xor to a common global ∆; i.e., A0 ⊕ A1 =
B0⊕B1 = ∆. Our view of garbling will always start with the circuit evaluator’s
perspective; hence we consider the subscripts to be public. In other words, if the
evaluator holds Ai, then he knows the value i. In some works these subscripts
are called “color bits” or “permute bits.” The garbler secretly knows which of
{A0, A1} represent true and which of {B0, B1} represent true.

Let’s take an example of a textbook Yao garbled gate, using the point-
permute technique. The garbled gate consists of 4 ciphertexts G00, . . . , G11.
When the evaluator has input labels Ai, Bj , he computes the output label by
decrypting the (i, j)’th ciphertext, as H(Ai, Bj)⊕Gij .5 In order to correspond

4 Equivalently, U is 2−κ-almost-XOR-universal (AXU).
5 For now, assume H is a random oracle. We ignore including the gate ID as an

additional argument to H.

7

to an AND gate, this evaluation expression must result in some label C (which
could be either C0 or C1) representing (false) in 3 cases and C ⊕∆ (true) in the
other. Suppose (A1, B0) is the case corresponding to inputs (true,true), then the
garbler needs to arrange for:

C = H(A0, B0)⊕G00 C ⊕∆ = H(A1, B0)⊕G10

C = H(A0, B1)⊕G01 C = H(A1, B1)⊕G11

We can rearrange these equations as follows:

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

C
G00

G01

G10

G11

 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

H(A0, B0)
H(A0, B1)
H(A1, B0)
H(A1, B1)

⊕

0
0
1
0

︸︷︷︸
t

∆

In this equation, values that the garbler cannot control are on the right, and
the results of the garbling process (gate ciphertexts and output labels) are on
the left. The vector marked t is the truth table of the gate (when inputs are
ordered by color bits), and known only to the garbler.

In order for the scheme to work, for all possible values on the right-hand
side (including all choices of secret t!) the garbler must be able to solve for the
variables on the left-hand side. In this case the left-hand side is under-determined
so solving is easy. The garbler can simply choose random C and move it to the
right-hand side. Then the matrix remaining on the left-hand side is an invertible
identity matrix. Multiplying by the inverse solves for the desired values. Clearly
this can be done for any t, meaning that this approach works to garble any gate
(not just AND gates).

3.2 Row-Reduction Techniques

Row reduction refers to any technique to reduce the size of the garbled gate
below 4 ciphertexts. The simplest method works by removing the ciphertext
G00, and simply having the evaluator take H(A0, B0) as the output label when
he has inputs A0, B0.

C = H(A0, B0)
C = H(A0, B1)⊕G01

C ⊕∆ = H(A1, B0)⊕G10

C = H(A1, B1)⊕G11

⇒

1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

 C
G01

G10

G11

 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

H(A0, B0)
H(A0, B1)
H(A1, B0)
H(A1, B1)

⊕

0
0
1
0

︸︷︷︸
t

∆

The matrix on the left is now a square matrix, and invertible. Thus for any
choice of t, the garbler can solve for C and the Gij values by multiplying by the
inverse matrix.

8

3.3 Half-Gates

The previous example shows that decreasing the size of the garbled gate from 4
to 3 causes the matrix on the left to change from size 4×5 to 4×4. Reducing the
garbled gate further (from 3 ciphertexts to 2) would cause the matrix to be 4×3,
and the system of linear equations would be overdetermined! So how does the
half-gates garbling scheme [ZRE15] actually achieve a 2-ciphertext AND gate?

Let us recall the gate-evaluation algorithm for the half-gates scheme, which is
considerably different from all previous schemes. On inputs Ai, Bj the evaluator
computes the output label as H(Ai)⊕H(Bj)⊕ i ·G0⊕ j(G1⊕Ai), where G0, G1

are the two gate ciphertexts.
Suppose as before that A1 and B0 correspond to true. Then the garbler must

arrange for the following to be true:

C = H(A0)⊕H(B0)

C = H(A0)⊕H(B1) ⊕G1 ⊕A0

C ⊕∆ = H(A1)⊕H(B0)⊕G0

C = H(A1)⊕H(B1)⊕G0 ⊕G1 ⊕ (A0 ⊕∆)︸ ︷︷ ︸
A1

Rearranging in our usual way, we get:

1 0 0
1 0 1
1 1 0
1 1 1

 CG0

G1

 =

1 0 1 0 0 0
1 0 0 1 1 0
0 1 1 0 0 0
0 1 0 1 1 1

⊕

0 0 0
0
1

0 0 ︸︷︷︸
t

0

H(A0)
H(A1)
H(B0)
H(B1)
A0

∆

Note that ∆ is used both in the truth table adjustment (t) and in the usual
operations of the evaluator (implicitly, in the one case where he includes A1 =
A0 ⊕∆ in the linear combination).

As promised, the matrix on the left is only 4×3. We cannot solve for the left-
hand side by inverting this matrix as in the previous cases. Instead, the garbler
takes advantage of the fact that the matrices on both sides have the same
column space. Specifically, the columns on the left span the space of all even-
parity vectors. For any choice of t containing just a single 1 (corresponding to
the truth table of an AND gate), every column on the right also has even parity!
Concretely, suppose the evaluator solved the first three rows of this system of
linear equalities (which is possible since the first three rows on the left form an
invertible matrix), then the fourth row would automatically be in equality since
on both sides it is the sum of the first 3 rows.6 One can see that this technique
works only for gates whose truth table has odd parity (e.g., AND gates).

6 More generally, multiplying by a left-inverse of the matrix on the left-hand side
“just works,” as in the case where the matrix on the left-hand side is invertible.

9

Half-gates was the first garbling scheme to structure its oracle queries as
H(Ai) and H(Bj), instead of H(Ai, Bj). Our linear-algebraic perspective high-
lights the importance of this change. For a 2-ciphertext AND gate, the matrix on
the left will be 4×3, so the matrix on the right must have rank 3. An expression
like H(Ai, Bj) can be used by the evaluator in only one combination of inputs,
leading to an identity matrix minor that has rank 4. By contrast, each H(Ai)
and H(Bj) term is used for two input combinations, so the corresponding matrix
can have rank 3.

Our linear algebraic perspective confirms and provides an explanation for
a prior finding of Carmer & Rosulek [CR16]. They used a SAT solver to show
that no garbling scheme (in the linear model of the half-gates paper) could
achieve a 2-ciphertext AND gate, when the evaluator makes only one query to
H. This reiterates the importance of half gates using H(A), H(B) oracle queries
to achieve a 2-ciphertext AND gate.

4 High-Level Overview of Our Scheme

In the previous section, we saw that it was important that the evaluator used
oracle queries like H(Ai) and H(Bj) in the half-gates scheme. For every term
of the form H(Ai) there are two gate-input combinations in which the evaluator
uses this term. This property led to a desirable redundancy in the matrix that
relates H-queries to input combinations. Redundancies in this matrix lead to
smaller garbled gates. We push this idea further using several key observations.

4.1 Observation #1: Get the Most out of the Oracle Queries

H(Ai) and H(Bj) are not the only oracle queries that can be made in two
different gate-input combinations. We can also ask the evaluator to query H(Ai⊕
Bj). Because of the free-XOR constraint, A0 ⊕ B0 = A1 ⊕ B1, and A0 ⊕ B1 =
A1 ⊕ B0. This means that the following oracle queries can be made for each
gate-input combination:

H(A0) H(A1) H(B0) H(B1) H(A0 ⊕B0) H(A0 ⊕B1)
gate input (0,0) X X X
gate input (0,1) X X X
gate input (1,0) X X X
gate input (1,1) X X X

(1)

Can we use queries of this form to introduce even more redundancy in the
relevant matrices?

4.2 Observation #2: Increase Dimension by Slicing Wire Labels

Our linear-algebraic perspective of garbling includes only 4 linear equations, cor-
responding to the 4 different gate-inputs. Having only 4 linear equations makes

10

it difficult to take advantage of any new structure introduced by observation #1.
Our second observation, and perhaps the key to our entire approach, is to split
each wire label into a left and right half, and let the evaluator compute the
two halves (of the output label) with different linear combinations. This results
in 8 linear equations in our linear-algebraic perspective — 2 equations for each
of the 4 gate-input combinations.

Consider the following proposal,

H(A0) H(A1) H(B0) H(B1) H(A0 ⊕B0) H(A0 ⊕B1)
(0,0) left X X
(0,0) right X X
(0,1) left X X
(0,1) right X X
(1,0) left X X
(1,0) right X X
(1,1) left X X
(1,1) right X X

(2)

For example, on gate-input (0,0) the evaluator will compute the left half of the
output label as H(A0) ⊕ H(A0 ⊕ B0) ⊕ · · · (plus other terms, involving gate
ciphertexts and input labels). There are several important features of this table
to note:

– H(·) is used in a linear equation to compute half of an output label, therefore
H(·) is a function with κ/2 bits of output. Three of these half-sized hash
functions are combined to encrypt the gate output.7 However, we still will
use the entire input wire labels as input to H — using wire-label halves as
input to H would cut the effective security parameter in half.

– For an evaluator with gate-input (0,0), the valuesH(A1),H(B1), andH(A0⊕
B1) are all jointly indistinguishable from random. With that in mind, con-
sider the linear combinations for any other gate-input. For example, in the
(1,0) case the evaluator will compute the output as

left = H(A1)⊕H(A0 ⊕B1)⊕ · · ·
right = H(B0)⊕H(A0 ⊕B1)⊕ · · ·

Because H(A1) and H(A0 ⊕ B1) are pseudorandom, this makes both of
these outputs jointly pseudorandom. The entire output of the (1,0) case is
pseudorandom from the perspective of the evaluator in the (0,0) case. This is
a necessary condition, since sometimes the (0,0) and (1,0) cases give different
outputs. This pattern holds with respect to any pair of two gate-inputs.

– If we interpret Equation 2 as a matrix (X=1, empty cell=0), we see that
it has rank 5. This suggests that the garbling process can result in only 5
output values, where in this case each of these values is κ/2 bits. Two of
the values are the halves of the output wire label C, leaving 3 values to

7 Hence the title: “Three Halves Make a Whole”.

11

comprise the garbled gate ciphertexts. In other words, we are on our way
to a garbled gate with only 3κ/2 bits, if only we can get all of the relevant
linear equations to cooperate.

4.3 Observation #3: Randomize and Hide the Evaluator’s
Coefficients

Let us apply our observations so far to our linear perspective of Section 3. Since
wire labels are divided into halves, we use notation like A0R to denote the right
half of A0. Note that the free-XOR constraint applies independently to the wire
label halves; i.e., A1R = A0R ⊕∆R and so on.

The evaluator computes each half of the output label separately, using a
linear combination of available information: oracle responses, gate ciphertexts,
and the 4 (!) halves of the input labels. If we account for all 8 of the evaluator’s
linear equations, while using the oracle-query structure suggested in Equation 2,
we obtain the following system:

1 0 ? ? ?
0 1 ? ? ?

1 0 ? ? ?
0 1 ? ? ?

1 0 ? ? ?
0 1 ? ? ?

1 0 ? ? ?
0 1 ? ? ?

CL
CR
G0

G1

G2

 =

1 0 0 0 1 0 ? ? ? ? ? ?
0 0 1 0 1 0 ? ? ? ? ? ?

1 0 0 0 0 1 ? ? ? ? ? ?
0 0 0 1 0 1 ? ? ? ? ? ?

0 1 0 0 0 1 ? ? ? ? ? ?
0 0 1 0 0 1 ? ? ? ? ? ?

0 1 0 0 1 0 ? ? ? ? ? ?
0 0 0 1 1 0 ? ? ? ? ? ?

⊕

0 0 0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0 ︸︷︷︸

t

0 0

H(A0)
H(A1)
H(B0)
H(B1)

H(A0 ⊕B0)
H(A0 ⊕B1)

A0L

A0R

B0L

B0R

∆L

∆R

(3)

The first row represents the evaluator’s linear equation to compute the left half
CL of the output label on input A0, B0, etc. Note that the truth table t now
consists of 2× 2 identity blocks and 2× 2 zero-blocks.

For everything to work correctly, we need to replace the “?” entries, so that
for every choice of t, the matrices on both sides have the same column space.

– The columns on the right-hand side (representing the H outputs) already
span a space of dimension 5, so there is no choice but to extend the left-hand
side matrix to a basis of that space.

– The “?” entries on the right are subject to other constraints, so that they
reflect what an evaluator can actually do in each input combination. For
example, on input A0, B1, the evaluator cannot include B0R in its linear
combination, it can only include B1R = B0R ⊕∆R. Note that the matrix is
written in terms of B0 only.

Unfortunately, it is not possible to complete the right-hand-side matrix subject
to these constraints. For every t, there is a valid way to replace the “?”
entries, but there is no one way that works for all t.

12

To get around this problem, we randomize and encrypt the entries of
the matrix. To the best of our knowledge, the technique first appeared in the
garbling scheme of [KKS16], and was also used in [WmM17, Ros17]. The garbler
will complete the matrices so that the system of equations can be solved (i.e.,
the column spaces coincide). This causes the matrix entries to now depend on
the garbler’s secret t. Next, the garbler will encrypt these matrix entries,
so that when the evaluator has input Ai, Bj , he can decrypt only those matrix
entries needed for that particular input combination — not the entire matrix.
For example, the evaluator can use A0, B0 to decrypt the top two rows of the
matrix — just enough to determine the coefficients of the linear combinations
computing the output label. Unlike other schemes, there is a step of indirection
(decrypting this additional ciphertext) before the evaluator determines which
linear combinations to apply — the linear combination does not depend solely
on the color bits of the input labels. We call the contents of these ciphertexts
control bits, which tell the evaluator what linear combination to apply. The
control bits are of small constant size, so encrypting them adds only a constant
number of bits to the garbling scheme.

The garbler completes the missing entries in the matrix by drawing them
randomly from a distribution over matrices. The distribution depends on t, as
we mentioned — however, it can be arranged that each marginal view of the
matrix is independent of t. Since the evaluator sees only such a marginal
view, not the entire matrix, the value of t is hidden.

5 Details: Slicing & Dicing

5.1 Choosing the Matrices

Let us begin by filling out the question marks in Equation 3. We rewrite this
equation using block matrices, and we group related parts together.

V

[
C
~G

]
= M ~H ⊕

(
R⊕

[
0 0 t

]) A0

B0

∆

 (4)

Here C, A0, B0, and ∆ are two-element (column) vectors representing the two

halves of these wire labels; ~G is the vector of gate ciphertexts; and ~H =
[
H(A0)

H(A1) H(B0) H(B1) H(A0 ⊕ B0) H(A0 ⊕ B1)
]>

is the vector of H-outputs. t
is the 8× 2 truth table matrix, which contains a 2× 2 identity matrix block for
each case of the gate that should output true. We have already filled out M —
it is the portion of the right-hand side matrix in Equation 3 with no question
marks, that operates on the hash outputs ~H. R is called the control matrix
because it determines which pieces of input labels are added to the output.

Choosing V . Recall that the matrices on both sides of the equation must have
the same column space, and that M already spans this 5-dimensional space. Call
this common column space the gate space G. Then

G = colspace(V) = colspace(M) ⊇ colspace
(
R⊕

[
0 0 t

])
.

13

It will be more convenient to represent G using linear constraints, rather than
as the span of the columns of M . We use a matrix K as a basis for the cokernel
of M , so that any vector v is in G if and only if Kv = 0. Then V must satisfy
rank(V) = 5 and KV = 0.

Any K and V satisfying these constraints will suffice, and we will use the
following:

K =

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
0 0 0 1 1 0 1 1

 V =

1 0 0 0 0
0 1 0 0 0
1 0 0 0 1
0 1 0 1 1
1 0 1 0 1
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0

Note that the columns of V corresponding to the gate ciphertexts (the 3 right-
most columns) are the same as the columns in M corresponding to hash outputs
H(A1), H(B1), H(A0 ⊕B1), so they are clearly in the column space of M .

Constraints on choosing R. It remains to see how we choose the control matrix
R. Using our new notation, colspace

(
R⊕

[
0 0 t

])
⊆ G is equivalent to KR =

K
[
0 0 t

]
, so we must choose R to match Kt. Because t is composed of 2× 2

zero or identity blocks, we can deduce:

KR = K
[
0 0 t

]
=

0 0 0 0 p 0
0 0 0 0 0 p
0 0 0 0 a b

 (5)

for some a, b ∈ {0, 1}, where p is the parity of the truth table. In our main
construction, p = 1 since it only considers garbling AND gates. However, the
bits a, b reveal more than the parity of the gate — they leak the position of
the “1” in the truth table. Since R must depend on these a, b bits, we resort to
randomizing the control matrix R to hide a, b.

We also need the control matrix to reflect linear combinations that the eval-
uator can actually do with the available wire labels. The linear constraints are
expressed in terms of A0, B0, and ∆, but when the evaluator has wire label, say,
A1, he can either include it in the linear combination (adding both A0 and ∆)
or not (adding neither A0 nor ∆) — he cannot include only one of A0, ∆ in the
linear combination. This means that R must decompose into 2 × 2 matrices in
the following way:

R =

R00A R00B 0
R01A R01B R01B

R10A R10B R10A

R11A R11B R11A ⊕R11B

 (6)

When the evaluator holds input labels Ai, Bj , the submatrix Rij =
[
RijA RijB

]
is enough to completely determine which linear combination should be applied.

14

We call Rij the marginal view for that input combination. We will random-
ize the choice of R, subject to the constraints listed above, so that any single
marginal view leaks nothing about t. That is, we want to find a distribution
R(t) such that when R ← R(t), KR = K

[
0 0 t

]
with probability 1, yet for

every i, j ∈ {0, 1}, if t ← T and R ← R(t) then t and Rij are independently
distributed.

Basic approach to the distribution R(t): We must choose R to match the p, a, b
bits defined above (which depend on the truth table t). Suppose we have a
distribution R0 with the following properties:

– If R$ ← R0 then KR$ = 0
– For all i, j ∈ {0, 1}, if R$ ← R0 then (R$)ij (the marginal view) is uniform

and we also have fixed matrices Rp, Ra, Rb such that:

KRp =

0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

 KRa =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0

 KRb =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

, (7)

Define R(t) to first sample R$ ← R0 and output R = pRp ⊕ aRa ⊕ bRb ⊕ R$.
The result R will always satisfy the condition of Equation 5. The randomness
in R$ also causes marginal views of Rij to be uniform and therefore hide p, a, b.
Concrete values for Rp, Ra, Rb are given in Figures 3 and 4, as part of a different
construction.

If R0 is the uniform distribution over all matrices satisfying KR = 0, then
the garbler must encrypt the full marginal views Rij at 8 bits per view. A more
thoughtful choice of distribution will allow the garbler to convey Rij marginal
views with fewer bits.

Compressing the marginal views: Each marginal view Rij is a 2× 4 matrix. We
can “compress” these if we manage to restrict all Rij to some linear subspace
S = span{S1, S2, . . . , Sd} of 2× 4 matrices (presumably with dimension d < 8),
while still maintaining the other properties needed.

Let R̄ij denote the representation of Rij with respect to the basis S — i.e.,
a vector of length d. Then the garbler can encrypt only the R̄ij ’s to convey the
marginal views of R. The choice of the subspace S depends on the class of truth
tables that need to be hidden.

Parity-leaking gates: We performed an exhaustive computer search of low dimen-
sional subspaces to determine how to pick the basis S for different types of gates.
For even-parity gates (e.g. XOR or constant gates) we found a 2-dimensional
subspace that works. Details of the R(t) distribution are given in Figure 3. For
odd-parity gates (like AND, OR) we simply use the even-parity distribution and
add a public constant Rp (from Figure 4) to the result. This approach works
when the parity of the gate is public, since the evaluator must know to add Rp
when decoding the description of their marginal view Rij .

The construction for odd-parity gates is our primary construction, which
would be used in most applications of garbling (in combination with free XOR
gates).

15

S1 =

[
1 1 1 0
1 0 0 1

]
S2 =

[
1 0 0 1
0 1 1 1

]

R̄a =

0 0
1 1
0 1
1 0

 R̄b =

0 0
1 0
1 1
0 1

 R̄$ ← span

1 0
1 0
1 0
1 0

 ,

0 1
0 1
0 1
0 1

Ra =

0 0 0 0 0 0
0 0 0 0 0 0

0 1 1 1 1 1
1 1 1 0 1 0

1 0 0 1 1 0
0 1 1 1 0 1

1 1 1 0 0 1
1 0 0 1 1 1

Rb =

0 0 0 0 0 0
0 0 0 0 0 0

1 1 1 0 1 0
1 0 0 1 0 1

0 1 1 1 0 1
1 1 1 0 1 1

1 0 0 1 1 1
0 1 1 1 1 0

R$ ← span

1 1 1 0 0 0
1 0 0 1 0 0

1 1 1 0 1 0
1 0 0 1 0 1

1 1 1 0 1 1
1 0 0 1 1 0

1 1 1 0 0 1
1 0 0 1 1 1

,

1 0 0 1 0 0
0 1 1 1 0 0

1 0 0 1 0 1
0 1 1 1 1 1

1 0 0 1 1 0
0 1 1 1 0 1

1 0 0 1 1 1
0 1 1 1 1 0

Fig. 3. Control matrices for even-parity gates. The top row contains the two basis
matrices for S. The bottom row shows the full control matrices (Rp is not needed
for even-parity gates). The middle row shows the “compressed” representation of the
control matrices, in terms of the basis {S1, S2} (i.e., each row expresses which linear
combination of S1, S2 appears in the corresponding blocks of the control matrix). The
reader can verify that (1) each row in R̄$ is individually uniform; (2) KR$ = 0; and
(3) Equation 7 holds.

S1 =

[
1 1 1 0
1 0 0 1

]
S2 =

[
1 0 0 1
0 1 1 1

]
S3 =

[
0 0 1 0
0 0 0 0

]
S4 =

[
0 0 0 0
0 1 0 0

]

R̄p =

0 0 1 1
0 0 1 0
0 0 0 1
0 0 0 0

 R̄$ ← span

0 0 1 0
1 1 1 0
0 1 1 0
1 0 1 0

 ,

0 0 0 1
1 0 0 1
1 1 0 1
0 1 0 1

 , . . .

Rp =

0 0 1 0 0 0
0 1 0 0 0 0

0 0 1 0 1 0
0 0 0 0 0 0

0 0 0 0 0 0
0 1 0 0 0 1

0 0 0 0 0 0
0 0 0 0 0 0

R$ ← span

0 0 1 0 0 0
0 0 0 0 0 0

0 1 0 1 0 1
1 1 1 0 1 0

1 0 1 1 1 0
0 1 1 1 0 1

1 1 0 0 1 1
1 0 0 1 1 1

,

0 0 0 0 0 0
0 1 0 0 0 0

1 1 1 0 1 0
1 1 0 1 0 1

0 1 1 1 0 1
1 0 1 0 1 0

1 0 0 1 1 1
0 0 1 1 1 1

, . . .

Fig. 4. Control matrices for gate-hiding garbling. The top row contains the basis ma-
trices for S. The basis of Figure 3 is a subset of this basis, so we can use the same Ra
and Rb as Figure 3. The distributions on R̄$ and R$ also include the matrices from
Figure 3 (omitted with “. . .” here). The middle row gives the control matrices in terms
of the new basis, while the bottom row shows them directly. The reader may verify that
(1) each row of R̄$ is individually uniform; (2) KR$ = 0; and (3) Equation 7 holds.

16

Parity-hiding gates: To make the garbling scheme gate-hiding, we also need to
hide the parity of the truth table. In other words, the distribution on R$ must
be random enough to mask the presence (or absence) of a matrix Rp as in
Equation 7. The Rp in Figure 4 is not in the subspace S of control matrices in
Figure 3. Hence, to support parity-hiding we have had to extend that subspace
with two additional basis elements (the basis matrices S1, S2 are as in the parity-
leaking case). Our parity-hiding gates require 4 (compressed) control bits per
gate-input combination, corresponding to the 4-dimensional basis S. See Figure 4
for details.

5.2 Garbling the Control Bits

So far we have glossed over the details of how the control bits actually get
encrypted and sent to the evaluator. We know that there will be some 4 × d
(d = 2 for parity-leaking gates and d = 4 for parity hiding gates) matrix R̄, and
that the evaluator should only get to see a single row R̄ij of R̄ telling them what
linear combination of S1, . . . , Sd to use as control bits. The garbler can easily
encrypt these values so that on input Ai, Bj the evaluator can decrypt only R̄ij .

In order to reuse the calls to H that the evaluator already uses, it turns
out that we can use our new garbling construction to garble the control bits as
well. At first it looks like this would just give infinite recursion, as if we used
something like Equation 4 to garble the control bits then that garbling would
need its own control bits, which would need to be garbled, and so on. In reality,
the compressed control bits actually have a structure that allows us to garble
them without recursive control bits.

Conceptually, we can treat the bits of R̄ as wire labels and slice them as we
do regular wire labels. Collect the bits from odd and even-indexed positions of
R̄ij into numbers rijL and rijR ∈ GF(2d/2), respectively. Define the vector

~r =
[
r00L r00R r01L r01R r10L r10R r11L r11R

]>
We observed that for both our parity-leaking and parity-hiding constructions,
this vector is always in the gate subspace G — i.e., that K~r = 0. Looking at
Figure 3, the reader can check that this holds for any possible ~r (which in this
case is the same as R̄ read in row-major order). And similarly for Figure 4; this
time the test for R̄ is equivalent to checking its two 4× 2 blocks individually.

Since the control bits, when expressed as ~r, are always in the gate subspace
G, they can be garbled without needing their own control bits. The garbler can
compute a constant-size ciphertext ~z such that:

V ~z ⊕M lsb d
2
(~H) = ~r, (8)

where V,M, ~H are as in Equation 4. Here we assume that every hash has been
extended by an extra d/2 bits (or more realistically given that block ciphers have
a fixed size, each wire label slice has been shrunk by d/2 bits to make room),
and that these extra bit can be extracted with lsb d

2
. The remainder of the hash

17

vector, msbκ
2
(~H), is used for garbling the wire labels themselves. By the same

reasoning as for usual garbling, when the evaluator has input labels Ai, Bj , he
can learn only the ~rij portions of ~r.

We can combine Equations 4 and 8 into a single system, allowing the whole
gate to be garbled at once.

V

(
~z
∥∥∥ [C~G

])
⊕M ~H = ~r

∥∥∥
(R⊕ [0 0 t

])A0

B0

∆

 , (9)

where ‖ denotes element wise concatenation, so e.g. the bits of r00L ∈ GF(2d/2)
get concatenated with some x ∈ GF(2κ/2) to get a value in GF(2(κ+d)/2). We

write the bits in little endian order, so lsb d
2
(~H) ‖msbκ

2
(~H) = ~H.

5.3 The Construction

We can now describe our garbling scheme formally. All of our different types of
gates are compatible, so we describe a single unified scheme. The circuit has a
leak function that indicates what information about each gate is public (which
affects the cost of garbling each gate):

– EVEN: even-parity gate
– ODD: odd-parity gate

– XOR: free XOR gate
– NONE: no leakage (gate-hiding)

Because we need different control matrices depending on what kind of gate
is being garbled, we use the notation R(L, t), for L ∈ {EVEN,ODD,NONE} to
denote the appropriate distribution over control matrices. For EVEN/ODD gates,

SampleR(t, leak):

R←R(leak, t)
for i, j ∈ {0, 1}:

find coeffs c s.t. Rij =
⊕

k ck Sk(leak)
rijL := c1 ‖ · · · ‖ cd−1 // odd positions
rijR := c2 ‖ · · · ‖ cd // even positions

~r =
[
r00L r00R r01L r01R r10L r10R r11L r11R

]>
if leak = ODD:
R := R⊕Rp(ODD)

return R,~r

Encode((∆,W, π), x):

for k = 1 to inputs:
Ek := Wk ⊕ (xk ⊕ πk)∆

return E

DecodeR(~r, leak, i, j):[
c1 ‖ · · · ‖ cd−1

c2 ‖ · · · ‖ cd

]
:= ~r

Rij :=
⊕

k ck Sk(leak)
if leak = ODD:
Rij := Rij ⊕ (Rp(ODD))ij

return Rij

Decode((Φ,D), E):

(inputs, outputs, in, leak) := Φ
y := empty list
for k ∈ outputs:

if ∃j.Dj
k = H ′(Ek, k):

append j to y
else: abort

return y

Fig. 5. Our garbling scheme (continued in Figure 6).

18

Garble(1κ, f):

(inputs, outputs, in, leak, eval) := f
H ← H

∆←
[
1 ‖GF(2κ/2−1)

GF(2κ/2)

]
for k = 1 to inputs:

Wk ←
[
0 ‖GF(2κ/2−1)

GF(2κ/2)

]
πk ← {0, 1}

for k = inputs + 1 to |f |:
A0, B0 := Win1(k),Win2(k)

πA, πB := πin1(k), πin2(k)

if leak(k) = XOR:
Wk := A0 ⊕B0

πk := πA ⊕ πB
continue

g := eval(k)

t :=
[
g(πA, πB) g(πA, 1− πB) g(1− πA, πB) g(1− πA, 1− πB)

]>
R,~r := SampleR(t, leak(k))

~zk

∥∥∥ [C~Gk
]

:= V −1

~r ∥∥∥ (R⊕ [0 0 t
])A0

B0

∆

⊕ V −1M

H(A0, 3k − 3)
H(A0 ⊕∆, 3k − 3)

H(B0, 3k − 2)
H(B0 ⊕∆, 3k − 2)
H(A0 ⊕B0, 3k − 1)

H(A0 ⊕B0 ⊕∆, 3k − 1)

πk := lsb(C)
Wk := C ⊕ πk∆

for k ∈ outputs, j ∈ {0, 1}:
Dj
k := H ′(Wk ⊕ (j ⊕ πk)∆, k)

return F = (Φ(f), H, ~G, ~z), e = (∆,W, π), d = (Φ(f), D)

Eval(F = (Φ,H, ~G, ~z), E):

(inputs, outputs, in, leak) := Φ
for k = inputs + 1 to |Φ|:
A,B := Ein1(k), Ein2(k)

i, j := lsb(A), lsb(B)
if leak(k) = XOR:
Ek := A⊕B

else

~r ‖Xij := Vij

(
~zk

∥∥∥ [0
~Gk

])
⊕
[
1 0 1
0 1 1

] H(A, 3k − 3)
H(B, 3k − 2)

H(A⊕B, 3k − 1)

Rij := DecodeR(~r, leak, i, j)

Ek := Xij ⊕Rij
[
A
B

]
return E

Fig. 6. Our garbling scheme (continued from Figure 5). V −1 is a left inverse of V .

19

the distribution is as in Figure 3 (with Rp added in the case of ODD), and for
NONE the distribution is as in Figure 4.

Our garbling scheme is shown in Figures 5 and 6. The garbler associates the
kth wire in the circuit with a wire label Wk (and its opposite label Wk⊕∆) and
a point-and-permute bit πk. Wk is the label with color bit lsb(Wk) = 0 (visible
to the evaluator). The label Wk ⊕ πk∆ is the wire label representing false on
that wire. Equivalently, Wk is the wire label representing logical value πk.

For each non-free gate, the garbler first samples a control matrix R and
encodes its marginal views (i.e., expresses each view in terms of the basis {Sj}j).
We have factored out this sampling procedure into a helper function SampleR,
along with a corresponding decoding function DecodeR used by the evaluator
to reconstruct its marginal view of the control matrix. One thing to note about
SampleR is that in the case of a ODD gate, the control matrices include the term
Rp, but Rp is not in the subspace spanned by the basis {Sj}j . The compressed
representation of each marginal view excludes the contribution ofRp, but in these
cases it is publicly known that the evaluator should compensate by manually
adding Rp.

For each gate k, we have a master evaluation equation in the style of Equa-
tion 9. This equation expresses constraints that must be true about that gate,
but the garbler is interested in computing garbled gate ciphertexts ~Gk, control
bit ciphertexts ~zk, and output wire label that satisfy the constraints. As previ-
ously discussed, we can solve for these values by multipying both sides by V −1,
a left inverse of V . One possible choice of V −1 is given below:

V −1 =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 0 1 0

 (10)

The queries to hash function H include tweaks based on the gate ID, for
domain separation. Finally, for each output wire, the garbler computes hashes
of the wire labels, which will be used in Decode to authenticate labels and de-
termine their logical value (true or false). These hashes need κ bits for authen-
ticity, so they are computed using another hash function H ′(E, k) with output
length κ instead κ+d

2 . It is simplest to set H ′(E, k) = msbκ
2
(H(E, 3|f |+ 2k)) ‖

msbκ
2
(H(E, 3|f |+ 2k + 1)), which puts together κ bits from two evaluations of

H, while avoiding any overlaps in tweaks.
The evaluator follows a similar process. Starting with the input wire labels E,

it evaluates the garbled circuit one gate at a time. The invariant is that on wire
k, the evaluator will hold the “active” wire label Ek = Wk⊕(xk⊕πk)∆, where xk
is the logical value on that wire, for the given circuit input. If A,B are the active
wire labels on the input wires of this gate, then the evaluator computes terms of
the form H(A), H(B), H(A⊕B) and evaluates the gate according to Equation 9.
The evaluator only knows enough for two rows of Equation 9, depending on the
color bits i = lsb(A), j = lsb(B), so we let Vij be the corresponding pair of rows

20

from V . It only evaluates the gate partially at first, in order to find the encoded
control bits so that it can decode them with DecodeR and use them to finally
compute the output wire label.

5.4 Security Proof

Theorem 3. Let H be a family of hash functions, with output length (κ+ d)/2
bits, that is RTCCR for L = {Lab(∆L‖∆R) = 0d/2‖a∆L ⊕ b∆R | a, b,∈ {0, 1}}.
Then our construction (Figures 5 and 6) is a secure garbling scheme.

Proof. We need to prove four properties of the construction.

Correctness: We need to prove an invariant: Ek = Wk ⊕ (xk ⊕ πk)∆ for all k,
if xk is the plaintext value on that wire. Encode chooses the inputs in this way,
so at least it’s true for k ≤ inputs, and it is trivially maintained for free-XOR
gates. For any v ∈ colspace(V) = G, we have V V −1v = v, as there exists some
u such that v = V u and V V −1V u = V u = v because V −1 is a left inverse of V .
In Section 5.1 we showed that colspace(M) = G, colspace(R ⊕

[
0 0 t

]
) ⊆ G,

and ~r ∈ G, so after multiplying both sides of garbler’s equation by V on the left,
the V V −1s will cancel, and taking a two-row piece of this equation gives the
evaluator’s equation. In this equation, Xij is the two rows of

~X = C ⊕
(
R⊕

[
0 0 t

]) A0

B0

∆

 , (11)

corresponding to the evaluation case i, j. The structure of R (see Equation 6)
implies that the evaluator’s row pair of R[A>0 B>0 ∆>]> will be Rij [A

> B>]>.
Therefore

Ek = Xij ⊕R
[
A
B

]
= C ⊕ tij∆ = Wk ⊕ (eval(k)(πA ⊕ i, πB ⊕ j)⊕ πk)∆,

which maintains this invariant because

i = lsb(Ein1(k)) = lsb
(
Win1(k) ⊕ (xin1(k) ⊕ πin1(k))∆

)
= xin1(k) ⊕ πin1(k),

and similarly for j. Finally, Decode will correctly find that Dxk
k = H ′

(
Wk⊕(xk⊕

πk)∆, k
)

= H ′(Ek, k), assuming that Dxk
k 6= D1−xk

k , which has only negligible
probability of failing. Therefore it gives the correct result.

Privacy: We need to prove that generating (Φ, ~G, ~z), E, (Φ,D) with Garble and
Encode is indistinguishable from the output of Spriv. We give a sequence of
intermediate hybrids, going from the real garbler to the simulator.

Hybrid 1: This hybrid switches from the garbler’s perspective to the evaluator’s
perspective when garbling the circuit. Instead of keeping track of the “zero” wire
label Wk for every gate, we keep track of the “active” wire label Ek, and rewrite
the garbling procedure in terms of the “active” labels. This basically involves a
change of variable names throughout the garbling algorithm. The changes are
extensive, and given in detail in Figure 7:

21

Spriv(1
κ, Φ, x):

(inputs, outputs, in, leak) := Φ
(F,E)← Sobliv(1

κ, Φ)
E′ := Eval(F,E)
for k ∈ outputs:
D
xk
k := H′(E′k, k)

D
1−xk
k ← GF(2κ)

return F,E, (Φ,D)

Sobliv(1
κ, Φ):

(inputs, outputs, in, leak) := Φ
H ← H
for k = 1 to inputs:

Ek ← GF(2κ/2)2

for k = inputs + 1 to |Φ|:
if leak(k) = XOR: continue
~Gk ← GF(2κ/2)3

~zk ← GF(2d(leak(k)) /2)5

return (Φ,H, ~G, ~z), E

Hybrid1(1κ, f, x):

(inputs, outputs, in, leak, eval) := f
H ← H

∆←
[
1 ‖GF(2κ/2−1)

GF(2κ/2)

]
for k = 1 to inputs:

Ek ← GF(2κ/2)2

for k = inputs + 1 to |f |:
A,B := Ein1(k), Ein2(k)

i, j := lsb(A), lsb(B)
xA, xB := xin1(k), xin2(k)

if leak(k) = XOR:
Ek := A⊕ B
xk := xA ⊕ xB
continue

g := eval(k)
xk := g(xA, xB)

t :=

 g(xA ⊕ i, xB ⊕ j)
g(xA ⊕ i, xB ⊕ j ⊕ 1)
g(xA ⊕ i⊕ 1, xB ⊕ j)

g(xA ⊕ i⊕ 1, xB ⊕ j ⊕ 1)

R,~r := SampleR(t, leak(k))

R′ := R

1 0 0 0 i 0
0 1 0 0 0 i
0 0 1 0 j 0
0 0 0 1 0 j
0 0 0 0 1 0
0 0 0 0 0 1

~H0 :=

 H(A, 3k − 3)
H(B, 3k − 2)

H(A⊕ B, 3k − 1)

~H∆ :=

 H(A⊕∆, 3k − 3)
H(B ⊕∆, 3k − 2)

H(A⊕ B ⊕∆, 3k − 1)

(~zk)bot

∥∥∥ ~Gk := V
−1
gate

~r ∥∥∥ (R′ ⊕ [0 0 t
])AB

∆

⊕ V −1

gate (M0
~H0 ⊕M∆

~H∆)

Ek := Vij

[
0
~Gk

]
⊕
[
1 0 1
0 1 1

]
msbκ

2
(~H0)⊕ Rij

[
A
B

]
(~zk)top := Vij

[
0

(~zk)bot

]
⊕
[
1 0 1
0 1 1

]
lsb d

2
(~H0)⊕ ~rij

for k ∈ outputs, j ∈ {0, 1}:
Djk := H′(Ek ⊕ (j ⊕ xk)∆, k)

return (Φ(f), ~G, ~z), E, (Φ(f), D)

Fig. 7. Left: simulators for privacy and obliviousness. Right: a hybrid for privacy.

– Replace point-and-permute bits πk with the equivalent expression xk ⊕
lsb(Ek).

– Write the control matrix part of the garbling equation in terms of active
wire labels A = Ein1(k) and B = Ein2(k) instead of A0 and B0.

replace R×

A0

B0

∆

 with equivalent R′ ×

AB
∆

 .
22

where a change of basis has been applied to R, that expresses A0 as the
appropriate linear combination of A and ∆, and expresses B0 in terms of B
and ∆.

– Partition ~H into two pieces:

~H0 = [H(A) H(B) H(A⊕B)]>

~H∆ = [H(A⊕∆) H(B ⊕∆) H(A⊕B ⊕∆)]>

where again A and B are the active wire labels. Similarly partition the matrix
M into M0 and M∆, and replace M × ~H with (M0

~H0 ⊕M∆
~H∆).

– Note that the matrix V −1 has 5 rows, where the first 2 correspond to slices
of the output label and the last 3 correspond to the gate ciphertexts. Denote
this division of V −1 by V −1label and V −1gate. Instead of multiplying on the left
by V −1 to solve for the output label and gate ciphertexts, we now multiply
on the left by V −1gate to solve for only the gate ciphertexts. We then evaluate
those gate ciphertexts with A and B to learn the (active) output label Ek.
This different approach has the same result by the correctness of the scheme.
We can similarly partition the control bit ciphertexts ~zk = [(~zk)top (~zk)bot],
use V −1gate to compute (~zk)bot, and then use the evaluator’s computation to
solve for (~zk)top. Solving for (~zk)top is simplified by the first two columns of
Vij being the identity matrix. In this case, we solve for the missing positions
using knowledge of the compressed control bits rij .

All of the changes are simple variable substitutions or basis changes in the linear
algebra, so this hybrid is distributed identically to the real garbling.

Hybrid 2: In this hybrid, we apply the RTCCR property of H to all oracle
queries of the form H(· ⊕∆). We must show that ∆ is used in a way that can
be achieved by calling the oracle from the RTCCR security game.

We focus on the term

V −1gateM ~H = V −1gate(M0
~H0 ⊕M∆

~H∆)

First, consider the expression V −1 ×M , and recall that M is written in terms
of the zero-labels A0, B0. Using the V −1 given in Equation 10, we can compute:

V −1M =

1 0 0 0 1 0
0 0 1 0 1 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

 (12)

Thus V −1gate ×M will consist of the bottom three rows of Equation 12.
Recall that the columns of M correspond to oracle queries H(A0), H(A0 ⊕

∆), H(B0), H(B0 ⊕∆), H(A⊕B), H(A⊕B ⊕∆), in that order. In the current
hybrid M is partitioned into M0 (corresponding to H-queries on active labels)
and M∆ (corresponding to the other queries). In other words, M∆ will consist

23

of exactly one of rows {1, 2}, exactly one of rows {3, 4}, and exactly one of rows
{5, 6} from M . In all cases, the result of V −1gateM∆ (i.e., the bottom 3 rows of
V −1M∆) is the 3× 3 identity matrix!

This means we can rewrite the hybrid in the following way:

(~zk)bot

∥∥∥ ~Gk := V −1gate

~r ∥∥∥ (R′ ⊕ [0 0 t
])AB

∆

⊕ V −1gate(M0
~H0 ⊕M∆

~H∆)

= ~H∆ ⊕ [linear combinations of ∆]⊕ · · ·

Since all the H-queries in ~H∆ include a ∆ term, we can compute this expression
with 3 suitable calls to the RTCCR oracle.8 Finally, D1−xk

k = H ′(Ek⊕∆, k) also
uses ∆, and will become two calls to the RTCCR oracle. These transformations
successfully moves all references to ∆ into the RTCCR oracle.

Applying RTCCR security, it has negligible effect to replace the results of
these H-queries with uniformly random values. This has the effect of making the
entire expression uniform, i.e.:

(~zk)bot

∥∥∥ ~Gk ← GF(2(κ+d)/2)3

Also, D1−xk
k is now sampled uniformly at random in GF(2κ).

Hybrid 3: After making the previous change, the only place that R is used is
when we use the marginal views Rij and ~rij to solve for the output label and for
the missing pieces of the control bit ciphertexts. In Section 5.1 we specifically
chose R so that this marginal views is uniform for all t and all i, j. Therefore
instead of doing R,~r ← SampleR(t, leak(k)), we can simply choose uniform ~rij
and use DecodeR to reconstruct Rij . The change has no effect on the overall
view of the adversary.

Note that after making this change, the control-bit ciphertexts (~zk)top become
uniform since ~rij acts as a one-time pad.

Hybrid 4: As a result of the previous change, the hybrid no longer uses t. Ad-
ditionally, t was the only place where the plaintext values xk were used, other
than in the computation of D. But D only uses plaintext values for the circuit’s
output wires. In other words, the entire hybrid can be computed knowing only
the circuit output f(x). Additionally, all garbled gate ciphertexts and control
bit ciphertexts are chosen uniformly, and the active wire labels on output wires
are determined by the scheme’s evaluation procedure. Hence, the hybrid exactly
matches what happens in Spriv.

Obliviousness: Notice that Spriv calls Sobliv to generate (F,E), then samples
some more random bits for decoding and returns it all. Therefore, any adversary
for obliviousness could be turned into one for privacy by only looking at (F,E)
and ignoring the rest.

8 Note also that the calls to H have globally distinct tweaks.

24

Authenticity: The first two steps of the authenticity distribution are exactly the
same as the real privacy distribution, so we can swap them for the simulated
distribution Spriv in a hybrid. Then to break authenticity the adversary must
cause Decode to choose j = 1 − xk for at least one output k, as otherwise it
will either produce the correct answer or abort. But D1−xk

k is fresh uniform

randomness, so the probability that D1−xk
k = H ′(Ek, k) is 2−κ.

5.5 Discussion

Concrete costs. The garbler makes 6 calls to H per non-free gate, while the
evaluator makes 3 calls to H per non-free gate.

Each non-free garbled gate consists of gate ciphertexts ~G and encrypted con-
trol bits ~z. There are 3 gate ciphertexts, each being κ/2 bits long. The encrypted
control bits are a vector of length 5, where each component of the vector has
length d/2 (where d is the dimension of the control matrix subspace). For the
standard (parity-leaking) instantiation of our scheme, d = 2 and we get that the
total size of a garbled gate is 1.5κ + 5 bits. For the gate-hiding instantiation,
d = 4 and we get a size of 1.5κ+ 10 bits.

Comparison to half-gates. We assume that calls to H are the computational
bottleneck, in any implementation of both our scheme and in half-gates [ZRE15].
The following analysis therefore ignores the cost of xor’ing wire labels and bit-
fiddling related to color bits and control bits.

In the time it takes to call H 12 times, half-gates generates 3 gates and sends
6κ bits (4 calls to H and 2κ bits per gate), while our scheme generates 2 gates
and sends 3κ bits (6 calls to H and 1.5κ bits per gate). Thus, a CPU-bound
implementation of our scheme will produce garbled output at half the rate of
half-gates. We evaluated the optimized half-gates garbling algorithm from the
ABY3 library [MR18], and found it capable of generating garbled output at a
rate of ∼850 Mbyte/s on single core of a i7-7500U laptop processor running at
3.5GHz. Thus, we conservatively estimate that a comparable implementation of
our scheme could generate garbled output at ∼400 Mbyte/s = 3.2 Gbit/s. This
rate would still leave our scheme network-bound in most situations and appli-
cations of garbled circuits. When both half-gates and our scheme are network
bound, our scheme is expected to take ∼25% less time by virtue of reducing
communication by 25%.

6 Optimizations

6.1 Optimizing Control Bit Encryptions

In our scheme the control bit encryptions ~z is a vector of length 5, where the
components in that vector are each a single bit (in the case of parity-leaking
gates) or 2 bits (in the case of parity-hiding gates). These ciphertexts therefore
contribute 5 or 10 bits to the size of each garbled gate.

25

We remark that it is possible to use ideas of garbled row reduction [NPS99,
PSSW09] to reduce ~z to a length-3 vector. This will result in these ciphertexts
contributing 3 or 6 bits to the garbled gate. Such an optimization may be con-
venient in parity-hiding case, where the change from 10 to 6 bits allows these
control bit ciphertexts to fit in a single byte.

Recall that in the security proof, we partition the control bit ciphertexts ~z
into (~z)top (2 components) and (~z)bot (3 components). Our idea to reduce their
size is to simply fix (~z)top to zeroes, so that these components do not need to be
explicitly included in the garbled gate. The evaluator can act exactly as before,
taking the missing values from ~z to be zeroes. The garbler must sample the
control matrix subject to it causing (~z)top = 0.

A drawback to this optimization is that it significantly complicates the secu-
rity proof (and hence why we only sketch it here). When we apply the security
of RTCCR in the security proof, the hybrid acts as follows:

1. It uses the d/2 least significant bits of the H-outputs to determine how the
control bits are going to be “masked”.

2. Based on these masks, it chooses a consistent control matrix R that causes
the first two components of ~z to be 0.

3. The choice of R determines which linear combinations of wire label slices
(including slices of ∆) are applied.

So the reduction to RTCCR security must first read the low bits of several
H(· ⊕ ∆) queries before it decides which linear combination of ∆ should be
XOR’ed with the remaining output of H. Of course the RTCCR oracle requires
the choice of linear combination to be provided when H is called. It is indeed
possible to formally account for this, but only by modeling the two parts of H’s
output (for masking wire label slices and for masking control bits) as separate
hash functions for the purposes of the security proof.

6.2 Optimizing Computation

Our construction requires a RTCCR function H with output length (κ+d)/2. We
propose an efficient instantiation of H which naturally results in κ-bit output,
which is then truncated to (κ + d)/2. The hash produces nearly twice as many
bits as needed, raising the question of whether we are “wasting” these extra bits.
In fact, if we reduce the security parameter slightly so that H is derived from
a (κ + d)-bit primitive, we can use these extra bits to reduce the computation
cost.

Suppose H ′ is a [RT]CCR with (κ+ d) bits of output. Then define

H(X, τ) =

{
first half of H ′(X, τ2) τ even

second half of H ′(X, τ−12) τ odd

Clearly H is also a [RT]CCR with (κ+ d)/2 bits of output. How can we use this
H to reduce the total number of calls to the underlying H ′?

26

circuit baseline optimized improvement half-gates [ZRE15]

64-bit adder 6.00 6.00 0% 4.00
64-bit division 6.00 5.75 4.1% 4.00
64-bit multiplication 6.00 4.99 16.8% 4.00
AES-128 6.00 4.31 28.2% 4.00
SHA-256 6.00 5.77 3.8% 4.00
Keccak f 6.00 4.00 33.3% 4.00

Fig. 8. Number of calls to κ-bit H ′ RTCCR function (per AND gate) to garble each
circuit, with and without the optimization of Section 6.2. Evaluating the garbled circuit
costs exactly half this number of calls to H ′.

When a wire with labels (A,A ⊕ ∆) is used as input to an AND gate, our
scheme makes calls of the form H(A, j), H(A ⊕∆, j) where j is the ID of that
AND gate. Let us slightly change how the tweaks are used. Suppose this wire
with label (A,A⊕∆) is used as input in n different AND gates. Then those gates
should make calls of the form H(A, 0 ‖ i), H(A, 1 ‖ i), . . . ,H(A,n− 1 ‖ i), where
i is now the index of the wire whose labels are (A,A ⊕∆). When H is defined
as above, these queries can be computed with only dn/2e queries to H ′.

Note that both the garbler and evaluator can take advantage of this optimiza-
tion, with the garbler always requiring exactly twice as many calls to H ′ (if in
some scenario the evaluator needs H ′(X) then the garbler will need H ′(X) and
H ′(X⊕∆)). Our AND gates require calls to H of the form H(A), H(B), H(A⊕
B), and so far we have discussed optimizing only the H(A) and H(B) queries.
Similar logic can be applied to the queries of the form H(A⊕ B); for example,
if a circuit contains gates a ∧ b and (a ⊕ b) ∧ c, then both of those AND gates
will require H(A⊕B) terms that can be optimized in this way.

We explored the effect of this optimization for a selection of circuits.9 The
results are shown in Figure 8. The improvement ranges from 0% to 33.3%. As
a reference, our baseline construction requires 6 calls to ((κ + d)/2-bit output)
H to garble an AND gate, while half-gates requires 4 calls (to a κ-bit function).
Interestingly, in the Keccak f -function every wire used as input to an even
number of AND gates, so that our optimized scheme has the same computation
cost as half-gates (4 calls to H ′ per AND gate). In principle, this optimization
can result in as few as 3 calls to H ′ per AND gate,10 but typical circuits do not
appear to be nearly so favorable.

7 The Linear Garbling Lower Bound

In [ZRE15], the authors present a lower bound for garbled AND gates in a model
that they call linear garbling. The linear garbling model considers schemes
with the following properties:

9 Circuits were obtained from https://homes.esat.kuleuven.be/~nsmart/MPC/
10 This can happen, e.g., when for every a∧b gate there is a corresponding a∨b = a ∧ b

gate.

27

https://homes.esat.kuleuven.be/~nsmart/MPC/

– Wire labels have an associated color bit which must be {0, 1}.
– To evaluate the garbled gate, the evaluator makes a sequence of calls to a

random oracle (that depend only on the input wire labels), and then outputs
some linear combination of input labels, gate ciphertexts, and random oracle
outputs. The linear combination must depend only on the color bits of the
input labels.

The bound of [ZRE15] considers only linear combinations over the field GF(2κ),
and it is unclear to what extent the results generalize to other fields.

Several works have bypassed this lower bound, and we summarize them be-
low. All of these works show how to garble an AND gate for κ+O(1) bits, but
only a single AND gate in isolation. These constructions all require the input
wire labels to satisfy a certain structure, but do not guarantee that the output
labels also satisfy that structure.

– Kempka, Kikuchi, and Suzuki [KKS16] and Wang & Malluhi [WmM17] both
use a technique of randomizing the control bits. The evaluator decrypts a
constant-size ciphertext to determine which linear combination to apply.
This approach is outside of the linear garbling model, which requires that
the linear combination depend only on the color bits. These works also add
wire labels in Z2κ rather than XOR them (as in GF(2κ)). Apart from these
similiarities, the two approaches are quite different.

– Ball, Malkin, and Rosulek [BMR16] deviate from the linear garbling model
by letting each wire label have a color “trit” from Z3 instead of a color bit
from Z2. There is no further “indirection” of the evaluator’s linear combina-
tion — it depends only on the colors of the input labels. They also perform
some linear combinations on wire labels over a field of characteristic 3.

As described earlier, we bypass the lower bound by adopting the control-bit
randomization technique of [KKS16] but also introducing the wire-label-slicing
technique.

8 Open Problems

We conclude by listing several open problems suggested by our work.

Optimality. Is 1.5κ bits optimal for garbled AND gates in a more inclusive model
than the one in [ZRE15]? A natural model that excludes “heavy machinery” like
fully homomorphic encryption is Minicrypt, in which all parties are computa-
tionally unbounded but have bounded access to a random oracle. Conversely,
can one do better — say, 4κ/3 bits per AND gate? Does it help to sacrifice
compatibility with free-XOR? In our construction, free-XOR seems crucial.

Computation Cost. In Section 6.2 we described how to reduce the number of
queries to an underlying κ-bit primitive, with an optimization that depends on
topology of the circuit. Is there a way to reduce the computation cost of our
scheme (measured in number of calls to, say, a κ-bit ideal permutation), for all
circuits?

28

In the best case, we can garble a circuit for only 3 (amortized) calls per AND
gate, whereas all prior schemes require 4. Setting aside garbled circuit size and
free-XOR compatibility, is there any scheme that can garble arbitrary circuits
for less than 4 (amortized) calls to a κ-bit primitive per AND gate?

Hardness Assumption. Free-XOR garbling requires some kind of circular cor-
relation robust assumption (see [CKKZ12] for a formal statement). The state-
of-the-art garbling scheme based on the minimal assumption of PRF is due to
Gueron et al. [GLNP15], where AND gates cost 2κ and XOR gates cost κ bits.
Can our new techniques be used to improve on garbling from the PRF assump-
tion, or alternatively can the optimality of [GLNP15] be proven? Again, our
construction seems to rely heavily on the free-XOR structure of wire labels,
which (apparently) makes circular correlation robustness necessary.

Privacy-Free Garbling. Frederiksen et al. [FNO15] introduced privacy-free gar-
bled circuits, in which only the authenticity property is required of the garbling
scheme. The state-of-the-art privacy-free scheme is due to [ZRE15], where XOR
gates are free and AND gates cost κ bits. Can our new techniques lead to a
privacy-free garbling scheme with less than κ bits per AND gate (with or with-
out free-XOR)?

Simpler Description. Is there a way to describe our construction as the clean
composition of simpler components, similar to how the half-gates construction is
described in terms of simpler “half gate” objects? The challenge in our scheme is
the way in which left-slices and right-slices of the wire labels are used together.

References

BHR12. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of
garbled circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors,
ACM CCS 2012, pages 784–796. ACM Press, October 2012.

BMR90. Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity
of secure protocols (extended abstract). In 22nd ACM STOC, pages 503–
513. ACM Press, May 1990.

BMR16. Marshall Ball, Tal Malkin, and Mike Rosulek. Garbling gadgets for Boolean
and arithmetic circuits. In Edgar R. Weippl, Stefan Katzenbeisser, Christo-
pher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016,
pages 565–577. ACM Press, October 2016.

CKKZ12. Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng
Zhou. On the security of the “free-XOR” technique. In Ronald Cramer, ed-
itor, TCC 2012, volume 7194 of LNCS, pages 39–53. Springer, Heidelberg,
March 2012.

CR16. Brent Carmer and Mike Rosulek. Linicrypt: A model for practical cryptog-
raphy. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part III, volume 9816 of LNCS, pages 416–445. Springer, Heidelberg, Au-
gust 2016.

FNO15. Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi.
Privacy-free garbled circuits with applications to efficient zero-knowledge.
In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015,

29

Part II, volume 9057 of LNCS, pages 191–219. Springer, Heidelberg, April
2015.

GKWY20. Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. Efficient and secure
multiparty computation from fixed-key block ciphers. In 2020 IEEE Sym-
posium on Security and Privacy, pages 825–841. IEEE Computer Society
Press, May 2020.

GLNP15. Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast garbling
of circuits under standard assumptions. In Indrajit Ray, Ninghui Li, and
Christopher Kruegel, editors, ACM CCS 2015, pages 567–578. ACM Press,
October 2015.

KKS16. Carmen Kempka, Ryo Kikuchi, and Koutarou Suzuki. How to circumvent
the two-ciphertext lower bound for linear garbling schemes. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume
10032 of LNCS, pages 967–997. Springer, Heidelberg, December 2016.

KMR14. Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. FleXOR: Flex-
ible garbling for XOR gates that beats free-XOR. In Juan A. Garay and
Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS,
pages 440–457. Springer, Heidelberg, August 2014.

KS08. Vladimir Kolesnikov and Thomas Schneider. Improved garbled cir-
cuit: Free XOR gates and applications. In Luca Aceto, Ivan Damg̊ard,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of LNCS, pages
486–498. Springer, Heidelberg, July 2008.

LP09. Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for
two-party computation. Journal of Cryptology, 22(2):161–188, April 2009.

MR18. Payman Mohassel and Peter Rindal. ABY3: A mixed protocol framework
for machine learning. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, ACM CCS 2018, pages 35–52. ACM Press,
October 2018.

NPS99. Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auc-
tions and mechanism design. In Proceedings of the 1st ACM Conference on
Electronic Commerce, pages 129–139, New York, NY, USA, 1999. ACM.

PSSW09. Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C.
Williams. Secure two-party computation is practical. In Mitsuru Matsui,
editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 250–267. Springer,
Heidelberg, December 2009.

Ros17. Mike Rosulek. Improvements for gate-hiding garbled circuits. In Arpita
Patra and Nigel P. Smart, editors, INDOCRYPT 2017, volume 10698 of
LNCS, pages 325–345. Springer, Heidelberg, December 2017.

WmM17. Yongge Wang and Qutaibah m. Malluhi. Reducing garbled circuit size
while preserving circuit gate privacy. Cryptology ePrint Archive, Report
2017/041, 2017. https://eprint.iacr.org/2017/041.

Yao82. Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-
stract). In 23rd FOCS, pages 160–164. IEEE Computer Society Press,
November 1982.

ZRE15. Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole
- reducing data transfer in garbled circuits using half gates. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume
9057 of LNCS, pages 220–250. Springer, Heidelberg, April 2015.

30

https://eprint.iacr.org/2017/041

	Three Halves Make a Whole? Beating the Half-Gates Lower Bound for Garbled Circuits

