
A Black-Box Approach to Post-Quantum
Zero-Knowledge in Constant Rounds

Nai-Hui Chia1,2, Kai-Min Chung3, and Takashi Yamakawa4

1 QuICS, University of Maryland
2 Luddy School of Informatics, Computing, and Engineering, Indiana University

Bloomington naichia@iu.edu
3 Institute of Information Science, Academia Sinica kmchung@iis.sinica.edu.tw

4 NTT Secure Platform Laboratories takashi.yamakawa.ga@hco.ntt.co.jp

Abstract. In a recent seminal work, Bitansky and Shmueli (STOC ’20)
gave the first construction of a constant round zero-knowledge argument
for NP secure against quantum attacks. However, their construction
has several drawbacks compared to the classical counterparts. Specifi-
cally, their construction only achieves computational soundness, requires
strong assumptions of quantum hardness of learning with errors (QLWE
assumption) and the existence of quantum fully homomorphic encryption
(QFHE), and relies on non-black-box simulation.
In this paper, we resolve these issues at the cost of weakening the no-
tion of zero-knowledge to what is called ε-zero-knowledge. Concretely,
we construct the following protocols:
– We construct a constant round interactive proof for NP that sat-

isfies statistical soundness and black-box ε-zero-knowledge against
quantum attacks assuming the existence of collapsing hash functions,
which is a quantum counterpart of collision-resistant hash functions.
Interestingly, this construction is just an adapted version of the clas-
sical protocol by Goldreich and Kahan (JoC ’96) though the proof
of ε-zero-knowledge property against quantum adversaries requires
novel ideas.

– We construct a constant round interactive argument for NP that
satisfies computational soundness and black-box ε-zero-knowledge
against quantum attacks only assuming the existence of post-quantum
one-way functions.

At the heart of our results is a new quantum rewinding technique that
enables a simulator to extract a committed message of a malicious verifier
while simulating verifier’s internal state in an appropriate sense.

1 Introduction

Zero-Knowledge Proof. Zero-knowledge (ZK) proof [GMR89] is a fundamen-
tal cryptographic primitive, which enables a prover to convince a verifier of a
statement without giving any additional “knowledge” beyond that the state-
ment is true. In the classical setting, there have been many feasibility results
on ZK proofs for specific languages including quadratic residuosity [GMR89],
graph isomorphism [GMW91], statistical difference problem [SV03] etc., and
for all NP languages assuming the existence of one-way functions (OWFs)

[GMW91, Blu86]. On the other hand, van de Graaf [Gra97] pointed out that
there is a technical difficulty to prove security of these protocols against quan-
tum attacks. Roughly, the difficulty comes from the fact that security proofs of
these results are based on a technique called rewinding, which cannot be done
when an adversary is quantum due to the no-cloning theorem. Watrous [Wat09]
considered post-quantum ZK proof, which means a classical interactive proof
that satisfies (computational) zero-knowledge property against quantum mali-
cious verifiers, and showed that some of the classical constructions above are also
post-quantum ZK. Especially, he introduced a new quantum rewinding technique
which is also applicable to quantum adversaries and proved that 3-coloring pro-
tocol of Goldreich, Micali, and Wigderson [GMW91] is secure against quantum
attacks assuming that the underlying OWF is post-quantum secure, i.e., unin-
vertible in quantum polynomial-time (QPT).5 Since the 3-coloring problem is
NP-complete, this means that there exists a post-quantum ZK proof for all NP
languages assuming the existence of post-quantum OWFs.

Round Complexity. An important complexity measure of ZK proofs is round
complexity, which is the number of interactions between a prover and verifier. In
this aspect, the 3-coloring protocol [GMW91] (and its quantumly secure version
[Wat09]) is not satisfactory since that requires super-constant number of rounds.6

Goldreich and Kahan [GK96] gave the first construction of a constant round ZK
proof for NP assuming the existence of collision-resistant hash function in the
classical setting. However, Watrous’ rewinding technique does not seem to work
for this construction (as explained in Sec. 1.2), and it has been unknown if their
protocol is secure against quantum attacks.

Recently, Bitansky and Shmueli [BS20] gave the first construction of post-
quantum ZK argument [BC90] for NP, which is a weakened version of post-
quantum ZK proof where soundness holds only against computationally bounded
adversaries. In addition to weakening soundness to computational one, there are
several drawbacks compared to classical counterparts. First, they assume strong
assumptions of quantum hardness of learning with erros (QLWE assumption)
[Reg09] and the existence of quantum fully homomorphic encryption (QFHE)
[Mah18a, Bra18]. Though the QLWE assumption is considered fairly standard
due to reductions to worst-case lattice problems [Reg09, Pei09, BLP+13], a
construction of QFHE requires circular security of an QLWE-based encryption
scheme, which has no theoretical evidence. In contrast, a constant round clas-
sical ZK argument for NP is known to exist under the minimal assumption

5 Strictly speaking, Watrous’ assumption is a statistically binding and post-quantum
computationally hiding commitment scheme, and he did not claim that this can be
constructed under the existence of post-quantum OWFs. However, we can see that
such a commitment scheme can be obtained by instantiating the construction of
[Nao91, HILL99] with a post-quantum OWF.

6 3-round suffices for achieving a constant soundness error, but super-constant times
sequential repetitions are needed for achieving negligible soundness error (i.e., a
cheating prover can let a verifier accept on a false statement only with a negligible
probability). Negligible soundness error is a default requirement in this paper.

2

of the existence of OWFs [FS90, PW09]. Second, their security proof of quan-
tum ZK property relies on a novel non-black-box simulation technique, which
makes use of the actual description of malicious verifier instead of using it as a
black-box. In contrast, classical counterparts can be obtained by black-box sim-
ulation [FS90, GK96, PW09]. Therefore, it is of theoretical interest to ask if we
can achieve constant round quantum ZK by black-box simulation. Third, some-
what related to the second issue, their construction also uses building blocks
in a non-black-box manner, which makes the actual efficiency of the protocol
far from practical. Again, classical counterparts are known based on black-box
constructions [GK96, PW09].

Given the state of affairs, it is natural to ask the following questions:

1. Are there constant round post-quantum ZK proofs for NP instead of argu-
ments?

2. Are there constant round post-quantum ZK proofs/arguments for NP from
weaker assumptions than those in [BS20]?

3. Are there constant round post-quantum ZK proofs/arguments for NP based
on black-box simulation and/or black-box construction?

4. Are known constructions of constant round classical ZK proofs/arguments
for NP (e.g., [FS90, GK96, PW09]) secure against quantum attacks if we
instantiate them with post-quantum building blocks?

1.1 Our Results

In this work, we partially answer the above questions affirmatively at the cost of
weakening the quantum ZK property to quantum ε-ZK, which is the quantum
version of ε-ZK introduced in [DNS04].7

Quantum ε-Zero-Knowledge. The standard quantum ZK property roughly re-
quires that for any QPT V ∗, there exists a QPT simulator S that simulates
the interaction between V ∗ and an honest prover so that the simulation is in-
distinguishable from the real execution against any QPT distinguishers. On the
other hand, in quantum ε-ZK, a simulator is allowed to depend on a “accuracy
parameter” ε. That is, it requires that for any QPT malicious verifier V ∗ and a
noticeable accuracy parameter ε, there exists a QPT simulator S whose running
time polynomially depends on ε−1 that simulates the interaction between V ∗

and an honest prover so that no QPT distinguisher can distinguish it from real
execution with advantage larger than ε. Though this is a significant relaxation
of quantum ZK, this still captures meaningful security. For example, we can see
that quantum ε-ZK implies both quantum versions of witness indistinguishabil-
ity and witness hiding similarly to the analogous claims in the classical setting
[BKP19].8 Moreover, by extending the observation in [DNS04] to the quantum

7 ε-ZK was originally called ε-knowledge, but some later works [BKP18, FGJ18] call
it ε-ZK. We use ε-ZK to clarify that this is a variant of ZK.

8 Actually, [BKP19] shows that even weaker notion called weak ZK suffices for witness
indistinguishability and witness hiding. See also Sec. 1.3.

3

setting, we can see the following: Suppose that a QPT malicious verifier solves
some puzzle whose solution is efficiently checkable (e.g., finding a witness of an
NP statement) after an interaction between an honest prover. Then, quantum
ε-ZK implies that if the verifier succeeds in solving the puzzle with noticeable
probability p after the interaction, then there is a QPT algorithm (whose running
time polynomially depends on p−1) that solves the same puzzle with noticeable
probability (say, p/2) without interacting with the honest prover. This captures
the naive intuition of the ZK property that “anything that can be done after the
execution can be done without execution” in some sense, and this would be suf-
ficient in many cryptographic applications. Thus we believe that quantum ε-ZK
is conceptually a similar notion to the standard quantum ZK. More discussion
on (quantum) ε-ZK and other related notions of ZK can be found in Sec. 1.3.

Our Constructions. We give two constructions of constant round quantum ε-ZK
protocols.

– We construct a constant round quantum ε-ZK proof for NP assuming the
existence of collapsing hash functions [Unr16b, Unr16a], which is considered
as a counterpart of collision-resistant hash functions in the quantum setting.
Especially, we can instantiate the construction based on the QLWE assump-
tion. Our construction is fully black-box in the sense that both simulation
and construction rely on black-box usage of building blocks and a malicious
verifier. Interestingly, this construction is just an adapted version of the
classical protocol of [GK96] though the proof of quantum ε-zero-knowledge
property requires novel ideas.

– We construct a constant round quantum ε-ZK argument for NP assum-
ing the minimal assumption of the existence of post-quantum OWFs. This
construction relies on black-box simulation, but the construction itself is
non-black-box.

At the heart of our results is a new quantum rewinding technique that enables
a simulator to extract a committed message of a malicious verifier while simu-
lating verifier’s internal state in some sense. We formalize this technique as an
extraction lemma, which we believe is of independent interest.

1.2 Technical Overview

Though we prove a general lemma which we call extraction lemma (Lemma 3.1)
and then prove quantum ε-ZK of our constructions based on that in the main
body, we directly explain the proof of quantum ε-ZK without going through such
an abstraction in this overview.

Known Classical Technique and Difficulty in Quantum Setting. First, we review
a classical constant round ZK proof by Goldreich and Kahan [GK96] (referred to
as GK protocol in the following), and explain why it is difficult to prove quantum
ZK for this protocol by known techniques. GK protocol is based on a special type

4

of 3-round proof system called Σ-protocol.9 In a Σ-protocol, a prover sends the
first message a, a verifier sends the second message e referred to as a challenge,
which is just a public randomness, and the prover sends the third message z.
A Σ-protocol satisfies a special type of honest-verifier ZK, which ensures that
if a challenge e is fixed, then one can simulate the transcript (a, e, z) without
using a witness. Though this may sound like almost the standard ZK property,
a difficulty when proving ZK is that a malicious verifier may adaptively choose
e depending on a, and thus we cannot fix e at the beginning. To resolve this
issue, the idea of GK protocol is to let the verifier commit to a challenge e at the
beginning of the protocol. That is, GK protocol roughly proceeds as follows:10

1. A verifier sends a commitment com to a challenge e of a Σ-protocol.

2. The prover sends the first message a of the Σ-protocol.

3. The verifier opens com to open a challenge e and its opening information r
(i.e., the randomness used for the commitment).

4. The prover aborts if the verifier’s opening is invalid. Otherwise it sends the
third message z of the Σ-protocol.

When proving the ZK property of GK protocol, they rely on a rewinding ar-
gument. That is, a simulator first runs the protocol with a malicious verifier
until Step 3 to extract a committed message e inside com, and then rewind the
verifier’s state back to just after Step 1, and then simulates the transcript by
using the extracted knowledge of e.

On the other hand, this strategy does not work if we consider a quantum
malicious verifier since a quantum malicious verifier may perform measurements
in Step 3, which is in general not reversible. In other words, since we cannot
copy the verifier’s internal state after Step 1 due to the no-cloning theorem, we
cannot recover that state after running the protocol until Step 3.

Watrous [Wat09] proved that we can apply a rewinding argument for quan-
tum verifiers under a certain condition. Roughly speaking, the condition is that
there is a simulator that succeeds in simulation for quantum verifiers with a
fixed (verifier-independent) and noticeable probability. For example, if the chal-
lenge space is polynomial size, then a simulator that simply guesses a challenge
e suffices. However, for achieving negligible soundness error, the challenge space
should be super-polynomial size, in which case it seems difficult to construct
such a simulator. Also, relaxing quantum ZK to quantum ε-ZK does not seem
to resolve the issue in any obvious way.

Quantum Analysis of GK Protocol. In spite of the above mentioned diffi-
culty, we succeed in proving quantum ε-ZK for a slight variant of GK protocol.
In the following, we explain the idea for our results.

9 In this paper, we use Σ-protocol to mean a parallel repetition version where sound-
ness error is reduced to negligible.

10 We note that this construction is based on an earlier work of [BCY91].

5

Simplified Goal: Simulation of Non-Aborting Case. First, we apply a general
trick introduced in [BS20], which simplifies the task of proving quantum ZK. In
GK protocol, we say that a verifier aborts if it fails to provide a valid opening
to com in Step 3. Then, for proving quantum ZK of the protocol, it suffices to
construct two simulators Sima and Simna that work only when the verifier aborts
and does not abort and they do not change the probability that the verifier aborts
too much, respectively. The reason is that if we randomly choose either of these
two simulators and just run the chosen one, then the simulation succeeds with
probability 1/2 since the guess of if the verifier aborts is correct with probability
1/2. Then, we can apply Watrous’ rewinding technique to convert it to a full-
fledged simulator. Essentially the same trick also works for quantum ε-ZK.

Moreover, it is easy to construct Sima because the first message of a Σ-
protocol can be simulated without witness, and one need not provide the third
message to the verifier when it aborts. Therefore, the problem boils down to
constructing a simulator Simna that works only when the verifier does not abort.

Initial Observations. For explaining how to construct Simna, we start by con-
sidering the simplest case where a verifier never aborts. Moreover, suppose that
the commitment scheme used for committing to a challenge e satisfies the strict-
binding property [Unr12], i.e., for any commitment com, there is at most one
valid message and randomness. Then, a rewinding strategy similar to the classi-
cal case works since, in this case, the verifier’s message in Step 3 is information-
theoretically determined, and such a deterministic computation does not collapse
a quantum state in general.11 However, for ensuring statistical soundness, we
have to use a statistically hiding commitment, which cannot be strict-binding.
Fortunately, this problem can be resolved by using collapse-binding commit-
ments [Unr16b], which roughly behave similarly to strict-binding commitments
for any computationally bounded adversaries.12 Since this is rather a standard
technique, in the rest of this overview, we treat the commitment as if it satisfies
the strict-binding property.

Next, we consider another toy example where a verifier sometimes aborts.
Suppose that a malicious verifier V ∗ is given an initial state 1√

2
(|ψa〉+ |ψna〉) in

its internal register V where |ψa〉 and |ψna〉 are orthogonal, and runs as follows:

1. V ∗ randomly picks e, honestly generates a commitment com to e, and sends
it to the prover (just ignoring the initial state).

2. After receiving a, V ∗ performs a projective measurement {|ψa〉 〈ψa| , I −
|ψa〉 〈ψa|} on V, and immediately aborts if |ψa〉 〈ψa| is applied, and otherwise
honestly opens (e, r).

3. After completing the protocol, V ∗ outputs its internal state in V.

11 This is also observed in [BS20].
12 Strictly speaking, we need to use a slightly stronger variant of collapse-binding com-

mitments which we call strong collapse-binding commitments. Such commitments
can be constructed under the QLWE assumption or the existence of collapsing hash
functions in more general. See Sec. 2.2 for more details.

6

It is trivial to construct a simulator for this particular V ∗ since it just ignores
prover’s messages. But for explaining our main idea, we examine what happens
if we apply the same rewinding strategy as the classical case to the above verifier.
After getting a commitment com from V ∗, a simulator sends a random a to V ∗

to extract e. Since we are interested in constructing a simulator that works in
the non-aborting case, suppose that V ∗ does not abort, i.e., sends back a valid
opening (e, r). At this point, V ∗’s internal state collapses to |ψna〉. Then the
simulator cannot “rewind” this state to the original verifier’s state 1√

2
(|ψa〉 +

|ψna〉) in general, and thus the simulation seems to get stuck. However, our key
observation is that, conditioned on that V ∗ does not abort, V ∗’s state always
collapses to |ψna〉 even in the real execution. Since our goal is to construct Simna

that is only required to work for the non-aborting case, it does not matter if
V ∗’s state collapses to |ψna〉 when the simulator runs extraction. More generally,
extraction procedure may collapse verifier’s internal state if a similar collapsing
happens even in the real execution conditioned on that the verifier does not
abort.

Our Idea: Decompose Verifier’s Space To generalize the above idea, we want
to decompose verifier’s internal state after Step 1 into aborting part and non-
aborting part. However, the definition of such a decomposition is non-trivial since
a verifier may determine if it aborts depending on the prover’s message a in
addition to its internal state. Therefore, instead of decomposing it into always-
aborting part and always-non-aborting part as in the example of the previous
paragraph, we set a noticeable threshold t and decompose it into “not-abort-
with-probability < t part” and “not-abort-with-probability ≥ t part” over the
randomness of a.

For implementing this idea, we rely on Jordan’s lemma (e.g., see a lecture
note by Regev [AR06]) in a similar way to the work by Nagaj, Wocjan, and
Zhang [NWZ09] on the amplification theorem for QMA. Let Π be a projection
that corresponds to “Step 2 + Step 3 + Check if the verifier does not abort” in
GK protocol. A little bit more formally, let V be a register for verifier’s internal
state and Aux be an auxiliary register. Then Π is a projection over V ⊗Aux
that works as follows:

1. Apply a unitary Uaux over Aux that maps |0〉Aux to 1√
|R|

∑
rand∈R |rand, arand〉Aux

where R is the randomness space to generate the first message of the Σ-
protocol and arand is the first message derived from the randomness rand.13

2. Apply a unitary UV that corresponds to Step 3 for prover’s message arand in
Aux except for measurement,

3. Apply a projection to the subspace spanned by states that contain valid
opening (e, r) for com in designated output registers,

4. Apply (UV Uaux)
†.

13 Aux stores multiple qubits, but we denote by |0〉Aux to mean |0`〉Aux for the ap-
propriate length ` for notational simplicity.

7

One can see that the probability that the verifier does not abort (i.e., sends a
valid opening) is ‖Π |ψ〉V |0〉Aux ‖2 where |ψ〉V is verifier’s internal state after
Step 1. Then Jordan’s lemma gives an orthogonal decomposition of the Hilbert
space of V⊗Aux into many one- or two-dimensional subspaces S1, ..., SN that
are invariant under Π and |0〉Aux 〈0|Aux such that we have the following:

1. For any j ∈ [N] and |ψj〉V |0〉Aux ∈ Sj , the projection Π succeeds with
probability pj , i.e., ‖Π |ψj〉V |0〉Aux ‖2 = pj .

2. A success probability of projection Π is “amplifiable” in each subspace. That
is, there is an “amplification procedure” Amp that maps any |ψj〉V |0〉Aux ∈
Sj toΠ |ψj〉V |0〉Aux with overwhelming probability within poly(λ, p−1j) times
iteration of the same procedure (that does not depend on j) for any j ∈ [N].
Moreover, this procedure does not cause any interference between different
subspaces.

Then we define two subspaces

S<t :=
⊕
j:pj<t

Sj , S≥t :=
⊕
j:pj≥t

Sj .

Then for any |ψ〉V, we can decompose it as

|ψ〉V = |ψ<t〉V + |ψ≥t〉V

by using (sub-normalized) states |ψ<t〉V and |ψ≥t〉V such that |ψ<t〉V |0〉Aux ∈
S<t and |ψ≥t〉V |0〉Aux ∈ S≥t. In this way, we can formally define a decompo-
sition of verifier’s internal state into “not-abort-with-probability < t part” and
“not-abort-with-probability ≥ t part”.

Extraction and Simulation. Then we explain how we can use the above decom-
position to implement extraction of e for simulation of non-aborting case. First,
we consider an easier case where the verifier’s state after Step 1 only has S≥t
component |ψ≥t〉V. In this case, we can use Amp to map |ψ≥t〉V |0〉Aux onto the
span of Π within poly(λ, t−1) times iteration. After mapped to Π, we can extract
(e, r) without collapsing the state by the definition of Π and our assumption that
the commitment is strict-binding. This means that given |ψ≥t〉V, we can extract
(e, r), which is information theoretically determined by com, with overwhelming
probability. In general, such a deterministic computation can be implemented in
a reversible manner, and thus we can extract (e, r) from |ψ≥t〉V almost without
damaging the state.

On the other hand, the same procedure does not work for |ψ<t〉V since
poly(λ, t−1) times iteration is not sufficient for amplifying the success proba-
bility of Π to overwhelming in this subspace. Our idea is to let a simulator run
the above extraction procedure in superposition even though S<t component
may be damaged.

Specifically, our extraction procedure Ext works as follows:

8

1. Given a verifier’s internal state |ψ〉V after Step 1, initialize Aux to |0〉Aux

and runs Amp for poly(λ, t−1) times iteration. Abort if a mapping onto Π
does not succeed. Otherwise, proceed to the next step.

2. Apply UV Uaux, measure designated output registers to obtain (eExt, rExt), and
apply (UV Uaux)

†. We note that (eExt, rExt) is always a valid opening of com
since Ext runs this step only if it succeeds in mapping the state onto Π in
the previous step. We also note that this step does not collapse the state at
all by the strict-binding property of the commitment.

3. Uncompute Step 1 and measure Aux. Abort if the measurement outcome is
not 0. Otherwise, proceed to the next step.

4. Output the extracted opening (eExt, rExt) along with a “post-extraction state”
|ψ′〉V in register V. For convenience, we express |ψ′〉V as a sub-normalized
state whose norm is the probability that Ext does not abort and the post-

extraction state conditioned on that the extraction succeeds is
|ψ′〉V
‖|ψ′〉V‖

.

In the following, we analyze Ext. We consider the decomposition of |ψ〉V as
defined in the previous paragraph:

|ψ〉V = |ψ<t〉V + |ψ≥t〉V .

Suppose that Ext does not abort, i.e., it outputs a valid opening (eExt, rExt) along
with a post-extraction state |ψ′〉V. Then, |ψ′〉V can be expressed as

|ψ′〉V = |ψ′<t〉V + |ψ′≥t〉V

for some |ψ′<t〉V and |ψ′≥t〉V such that |ψ′<t〉V |0〉Aux ∈ S<t, |ψ′≥t〉V |0〉Aux ∈
S≥t, and |ψ≥t〉V ≈ |ψ

′
≥t〉V since there is no interference between S<t and S≥t

when running Amp and S≥t component hardly changes as observed above. This
is not even a close state to the original state |ψ〉V in general since the S<t
component may be completely different. However, our key observation is that,
conditioned on that the verifier does not abort, at most “t-fraction” of S<t
component survives even in the real execution by the definition of the subspace
S<t. That is, in the verifier’s final output state conditioned on that it does not
abort, the average squared norm of a portion that comes from S<t component
is at most t. Thus, even if a simulator fails to simulate this portion, this only
impacts the accuracy of the simulation by a certain function of t, which is shown
to be O(t1/3) in the main body.

With this observation in mind, the non-aborting case simulator Simna works
as follows.

1. Run Step 1 of the verifier to obtain com and let |ψ〉V be verifier’s internal
state at this point.

2. Run Ext on input |ψ〉V. Abort if Ext aborts. Otherwise, obtain an extracted
opening (eExt, rExt) and a post-extraction state |ψ′〉V, and proceed to the
next step.

3. Simulate a transcript (a, eExt, z) by the honest-verifier ZK property of the
Σ-protocol.

9

4. Send a to the verifier whose internal state is replaced with |ψ′〉V. Let (e, r) be
the verifier’s response. Abort if (e, r) is not a valid opening to com. Otherwise
send z to the verifier.

5. Output the verifier’s final output.

By the above analysis, we can see that Simna’s output distribution is close to
the real verifier’s output distribution with an approximation error O(t1/3) con-
ditioned on that the verifier does not abort. Furthermore, the probability that
the verifier does not abort can only be changed by at most O(t1/3). If we could
set t to be a negligible function, then we would be able to achieve quantum
ZK rather than quantum ε-ZK. However, since we have to ensure that Amp’s
running time poly(λ, t−1) is polynomial in λ, we can only set t to be noticeable.
Since we can set t to be an arbitrarily small noticeable function, we can make
the approximation error O(t1/3) be an arbitrarily small noticeable function. This
means that the protocol satisfies quantum ε-ZK.

Black-Box Simulation. So far, we did not pay attention to the black-box prop-
erty of simulation. We briefly explain the definition of black-box quantum ZK
and that our simulator satisfies it. First, we define black-box quantum ZK by
borrowing the definition of quantum oracle machine by Unruh [Unr12]. Roughly,
we say that a simulator is black-box if it only accesses unitary part of a veri-
fier and its inverse in a black-box manner, and does not directly act on the
verifier’s internal registers. With this definition, one part where it is unclear if
our simulator is black-box is the amplification procedure Amp. However, by a
close inspection, we can see that Amp actually just performs sequential mea-
surements {Π, IV,Aux−Π} and {|0〉Aux 〈0|Aux , IV,Aux−|0〉Aux 〈0|Aux}, which
can be done by black-box access to the verifier as seen from the definition of Π.
Therefore, we can see that our simulator is black-box.

A Remark on Underlying Σ-Protocol. In the original GK protocol, any Σ-
Protocol can be used as a building block. However, in our technique, we need
to use delayed-witness Σ-protocol where the first message a can be generated
without knowledge of a witness due to a technical reason. An example of delayed-
witness Σ-protocol is Blum’s Graph Hamiltonicity protocol [Blu86]. Roughly, the
reason to require this additional property is for ensuring that a simulator can
perfectly simulate the first message a of the Σ-protocol when running the ex-
traction procedure. In the classical setting, a computationally indistinguishable
simulation of a works, but we could not prove an analogous claim in our setting.

OWF-based Construction. Next, we briefly explain our OWF-based quan-
tum ε-ZK argument. The reason why we need a stronger assumption in our first
construction is that we need to implement the commitment for the challenge
by a constant round statistically hiding commitment, which is not known to
exist from OWF. Then, a natural idea is to relax it to computationally hiding
one if we only need computational soundness. We can show that the extraction
technique as explained above also works for statistically binding commitments

10

with a small tweak. However, we cannot prove soundness of the protocol with-
out any modification due to a malleability issue. For explaining this, we recall
that the first message a of a Σ-protocol itself is also implemented as a com-
mitment. Then, the computational hiding of commitment does not prevent a
computationally bounded prover, which is given a commitment com to e, from
generating a “commitment” a whose committed message depends on e. Such a
dependence leads to an attack against soundness. To prevent this, an extractable
commitment scheme is used to generate a in the classical setting [PW09]. How-
ever, since it is unclear if the extractable commitment scheme used in [PW09] is
secure against quantum adversaries, we take an alternative approach that we let
a prover prove that it knows a committed message inside a by using a proof of
knowledge before a verifier opens a challenge as is done in [Gol01, Sec.4.9],[Gol04,
App.C.3]. A naive approach to implement this idea would be to use ZK proof of
knowledge, but this does not work since a constant round ZK argument is what
we are trying to construct. Fortunately, we can instead use witness indistinguish-
able proof of knowledge (WIPoK) with a simple OR proof trick. Specifically, we
let a prover prove that “I know committed message in a” OR “I know witness
w for x” where x is the statement being proven in the protocol. In the proof
of soundness, since we assume x is a false statement, a witness for the latter
statement does not exist. Then we can extract a committed message inside a
to break the hiding property of the commitment scheme used by the verifier if
the committed message depends on e. On the other hand, in the proof of ε-ZK
property, we can use the real witness w in an intermediate hybrid to simulate
WIPoK without using knowledge of a committed message. In such a hybrid, we
can rely on honest-verifier ZK of the Σ-protocol to change a to a simulated one
for an extracted challenge e.

Finally, we remark that though we are not aware of any work that explicitly
claims the existence of a constant round WIPoK that works for quantum provers
from OWFs, we observe that a combination of known works easily yields such
a construction. (See the full version for more details.) As a result, we obtain
constant round quantum ε-ZK argument from OWFs.

1.3 Related Work

ε-Zero-Knowledge and Related Notions. Though we are the first to consider ε-ZK
in the quantum setting, there are several works that consider ε-ZK in the classical
setting. We briefly review them. We note that all of these results are in the
classical setting, and it is unknown if similar results hold in the quantum setting.
The notion of ε-ZK (originally called ε-knowledge) was introduced by Dwork,
Naor, and Sahai [DNS04] in the context of concurrent ZK proofs. Bitansky, Kalai,
and Paneth [BKP18] gave a construction of 4-round ε-ZK proof for NP assuming
the existence of key-less multi-collision resistant hash function.14 Barak and
Lindell [BL02] showed the impossibility of constant round black-box ZK proof

14 The protocol achieves full-fledged ZK if we allow the simulator to take non-uniform
advice or assume a super-polynomial assumption.

11

with strict-polynomial time simulation, and observed that strict-polynomial time
simulation is possible if we relax ZK to ε-ZK. This can be understood as a
theoretical separation between ZK and ε-ZK. On the other hand, Fleischhacker,
Goyal, and Jain [FGJ18] showed that there does not exist 3-round ε-ZK proof for
NP even with non-black-box simulation under some computational assumptions,
which is the same lower bound as that for ZK proofs if we allow non-black-box
simulation.

Another relaxation of ZK is super-polynomial simulation (SPS)-ZK [Pas03],
where a simulator is allowed to run in super-polynomial time. One may find a
similarity between ε-ZK and SPS-ZK in the sense that the latter can be seen as
a variant of ε-ZK where we set the accuracy parameter ε to be negligible. On the
other hand, it has been considered that ε-ZK is much more difficult to achieve
than SPS-ZK. For example, the work of Bitansky, Khurana, and Paneth [BKP19]
gave a construction of a 2-round argument for NP that achieves a weaker notion
of ZK than ε-ZK, and the result is considered a significant breakthrough in the
area even though there is a simple construction of 2-round SPS-ZK argument
for NP [Pas03].

Several works considered other weakened notions of ZK [DNRS03, BP12,
CLP15, JKKR17, BKP19]. Some of them are weaker than ε-ZK, and others are
incomparable. For example, “weak ZK” in [BP12, CLP15] is incomparable to
ε-ZK whereas “weak ZK” in [BKP19] is weaker than ε-ZK.

Post-Quantum Zero-Knowledge with Classical Computational Soundness. Ananth
and La Placa [AL20] gave a construction of post-quantum ZK argument for
NP with classical computational soundness assuming the QLWE assumption.
Though such a protocol would be easy to obtain if we assume average-case clas-
sical hardness of certain problems in BQP (e.g., factoring) in addition to the
QLWE assumption, what is interesting in [AL20] is that they only assume the
QLWE assumption.

Post-Quantum Zero-Knowledge with Trusted Setup. Several works studied (non-
interactive) post-quantum ZK proofs for NP in the common random/reference
string model [Kob03, DFS04, PS19]. Among them, Peikert and Shiehian [PS19]
proved that there exists non-interactive post-quantum ZK proof for NP in the
common reference string model assuming the QLWE assumption.15

Zero-Knowledge for QMA. The complexity class QMA is a quantum analogue
of NP. Broadbent, Ji, Song, and Watrous [BJSW20] gave a construction of a
ZK proof for QMA. Recently, Broadbent and Grilo [BG20] gave an alternative
simpler construction of a ZK proof for QMA. Bitansky and Shmueli [BS20]
gave a constant round ZK argument for QMA by combining the construction

15 In [PS19], they do not explicitly claim ZK against quantum adversaries. However,
since their security proof does not rely on rewinding, it immediately extends to
post-quantum security if we assume the underlying assumption against quantum
adversaries.

12

of [BG20] and their post-quantum ZK argument for NP. We believe that our
technique can be used to construct a constant round ε-ZK proof for QMA by
replacing the delayed-witness Σ-protocol for NP with the delayed-witness quan-
tum Σ-protocol for QMA recently proposed by Brakerski and Yuen [BY20].16

This is beyond the scope of this paper, and we leave a formal proof as a future
work.

Several works studied non-interactive ZK proofs/arguments for QMA in
preprocessing models [CVZ20, BG20, Shm20, ACGH20].

Collapsing Hash Functions. The notion of collapsing hash functions was intro-
duced by Unruh [Unr16b] for a replacement of collision-resistant hash functions
in post-quantum setting. Unruh [Unr16a] gave a construction of a collapsing
hash function under the QLWE assumption. Actually, the construction is generic
based on any lossy function with sufficiently large “lossy rate”.17 Currently, we
are not aware of any other construction of collapsing hash function based on
standard assumptions, but any new construction of collapsing hash function
yields a new instantiation of our first construction.

Zhandry [Zha19] proved that any collision-resistant hash function that is not
collapsing yields a stronger variant of public-key quantum money (with infinitely
often security). Given the difficulty of constructing public key quantum money,
he suggested that most natural post-quantum collision-resistant hash functions
are likely already collapsing.

Relation to [CCY20]. Our idea of decomposing a verifier’s internal space into
“aborting space” and “non-aborting space” is inspired by a recent work of Chia,
Chung, and Yamakawa [CCY20]. In [CCY20], the authors consider a decomposi-
tion of a prover’s internal space into “know-answer space” and “not-know-answer
space” to prove soundness of parallel repetition version of Mahadev’s classical
verification of quantum computation protocol [Mah18b]. Though the conceptual
idea and some technical tools are similar, the ways of applying them to actual
problems are quite different. For example, in our case, we need a careful analysis
to make sure that a post-extraction state is close to the original one in some
sense while such an argument does not appear in their work since their goal is
proving soundness rather than ZK. On the other hand, their technical core is a
approximated projection to each subspace, which is not needed in this paper.

Subsequent work. Subsequently to this work, Chia, Chung, Liu, and Yamakawa
[CCLY21] proved that there does not exist a constant round post-quantum ZK
argument for NP unless NP ∈ BQP, which is highly unlikely. This justifies the
relaxation to ε-ZK in our constructions.

16 Actually, their protocol is delayed-input, i.e., the first message generation does not
use the statement either.

17 A lossy function is defined similarly to a lossy trapdoor function [PW08] except that
we do not require the existence of trapdoor.

13

2 Preliminaries

Basic Notations. We use λ to denote the security parameter throughout the
paper. For a positive integer n ∈ N, [n] denotes a set {1, 2, ..., n}. For a finite set

X , x
$← X means that x is uniformly chosen from X . A function f : N → [0, 1]

is said to be negligible if for all polynomial p and sufficiently large λ ∈ N, we
have f(λ) < 1/p(λ), said to be overwhelming if 1 − f is negligible, and said to
be noticeable if there is a polynomial p such that we have f(λ) ≥ 1/p(λ) for
sufficiently large λ ∈ N. We denote by poly an unspecified polynomial and by
negl an unspecified negligible function. We use PPT and QPT to mean (classi-
cal) probabilistic polynomial time and quantum polynomial time, respectively.

For a classical probabilistic or quantum algorithm A, y
$← A(x) means that A

is run on input x and outputs y. When A is classical probabilistic algorithm,
we denote by A(x; r) to mean the execution of A on input x and a randomness
r. When A is a quantum algorithm that takes a quantum advice, we denote by
A(x; ρ) to mean the execution of A on input x and an advice ρ. For a quantum
algorithm A, a unitary part of A means the unitary obtained by deferring all
measurements by A and omitting these measurements. We use the bold font
(like X) to denote quantum registers, and HX to mean the Hilbert space corre-
sponding to the register X. For a quantum state ρ, MX◦ρ means a measurement
in the computational basis on the register X of ρ. For quantum states ρ and ρ′,
TD(ρ, ρ′) denotes trace distance between them. When we consider a sequence
{Xλ}λ∈N of some objects (e.g., bit strings, quantum states, sets, Hilbert spaces
etc.) indexed by the security parameter λ, we often simply write X to mean Xλ

or {Xλ}λ∈N, which will be clear from the context. Similarly, for a function f in
the security parameter λ, we often simply write f to mean f(λ).

Standard Computational Models.

– A PPT algorithm is a probabilistic polynomial time (classical) Turing ma-
chine. A PPT algorithm is also often seen as a sequence of uniform polynomial-
size circuits.

– A QPT algorithm is a polynomial time quantum Turing machine. A QPT al-
gorithm is also often seen as a sequence of uniform polynomial-size quantum
circuits.

– An adversary (or malicious party) is modeled as a non-uniform QPT algo-
rithm A (with quantum advice) that is specified by sequences of polynomial-
size quantum circuits {Aλ}λ∈N and polynomial-size quantum advice {ρλ}λ∈N.
When A takes an input of λ-bit, A runs Aλ taking ρλ as an advice.

Interactive Quantum Machine and Oracle-Aided Quantum Machine. We rely
on the definition of an interactive quantum machine and oracle-aided quantum
machine that is given oracle access to an interactive quantum machine following
[Unr12]. Roughly, an interactive quantum machine A is formalized by a unitary
over registers M for receiving and sending messages and A for maintaining
A’s internal state. For two interactive quantum machines A and B that share

14

the same message register M, an interaction between A and B proceeds by
alternating invocations of A and B while exchanging messages over M.

An oracle-aided quantum machine S given oracle access to an interactive
quantum machine A with an initial internal state ρ (denoted by SA(ρ)) is allowed
to apply unitary part of A and its inverse in a black-box manner where S can
act on A’s internal register A only through oracle access. We refer to [Unr12] for
more formal definitions of interactive quantum machines and black-box access
to them.

Indistinguishability of Quantum States. We define computational and statistical
indistinguishability of quantum states similarly to [BS20].

We may consider random variables over bit strings or over quantum states.
This will be clear from the context. For ensembles of random variables X =
{Xi}λ∈N,i∈Iλ and Y = {Yi}λ∈N,i∈Iλ over the same set of indices I =

⋃
λ∈N Iλ

and a function δ, we write X
comp
≈ δ Y to mean that for any non-uniform QPT

algorithm A = {Aλ, ρλ}, there exists a negligible function negl such that for all
λ ∈ N, i ∈ Iλ, we have

|Pr[Aλ(Xi; ρλ)]− Pr[Aλ(Yi; ρλ)]| ≤ δ(λ) + negl(λ).

Especially, when we have the above for δ = 0, we say that X and Y are compu-

tationally indistinguishable, and simply write X
comp
≈ Y.

Similarly, we write X
stat
≈ δ Y to mean that for any unbounded time algorithm

A, there exists a negligible function negl such that for all λ ∈ N, i ∈ Iλ, we have

|Pr[A(Xi)]− Pr[A(Yi)]| ≤ δ(λ) + negl(λ).18

Especially, when we have the above for δ = 0, we say that X and Y are statis-

tically indistinguishable, and simply write X
stat
≈ Y. Moreover, we write X ≡ Y

to mean that Xi and Yi are distributed identically for all i ∈ I

2.1 Post-Quantum One-Way Functions and Collapsing Hash
Functions

A post-quantum one-way function (OWF) is a classically computable function
that is hard to invert in QPT. A collapsing hash function is a quantum counter-
part of collision-resistant hash function introduced by Unruh [Unr16b]. Unruh
[Unr16a] gave a construction of collapsing hash functions based on the QLWE
assumption. We give formal definitions in the full version since they are only
used for constructing other cryptographic primitives and not directly used in
our constructions.

18 In other words, X
stat
≈ δ Y means that there exists a negligible function negl such

that the trace distance between ρXi and ρYi is at most δ(λ) + negl(λ) for all λ ∈ N
and i ∈ Iλ where ρXi and ρYi denote density matrices corresponding to Xi and Yi.

15

2.2 Commitment

We use commitments in our constructions. Though they are mostly standard,
we need one new security notion which we call strong collapse-binding, which
is a stronger variant of collapse-biding introduced by Unruh [Unr16b]. Roughly
speaking, this security requires that for any superposition of messages and ran-
domness corresponding the same commitment generated by an adversary, the ad-
versary cannot distinguish if the message and randomness registers are measured
or not. The difference from the original collapse-binding property is that both
message and randomness registers are measured rather than only the message
register. We observe that the collapse-binding commitment based on collapsing
hash functions in [Unr16b] also satisfies the strong collapse-binding property.
Especially, there exists a strong collapse-binding commitment under the QLWE
assumption. See the full version for deails of the definition and construction of
strong collapse-binding commitments.

2.3 Interactive Proof and Argument.

We define interactive proofs and arguments similarly to [BS20].

Notations. For an NP language L and x ∈ L, RL(x) is the set that consists of
all (classical) witnesses w such that the verification machine for L accepts (x,w).

A (classical) interactive protocol is modeled as an interaction between inter-
active quantum machines P referred to as a prover and V referred to as a verifier
that can be implemented by PPT algorithms. We denote by 〈P (xP), V (xV)〉(x)
an execution of the protocol where x is a common input, xP is P ’s private in-
put, and xV is V ’s private input. We denote by OUTV 〈P (xP), V (xV)〉(x) the
fianl output of V in the execution. An honest verifier’s output is > indicating
acceptance or ⊥ indicating rejection, and a quantum malicious verifier’s output
may be an arbitrary quantum state.

Definition 2.1 (Interactive Proof and Argument for NP). An interactive
proof or argument for an NP language L is an interactive protocol between a
PPT prover P and a PPT verifier V that satisfies the following:

Perfect Completeness. For any x ∈ L, and w ∈ RL(x), we have

Pr[OUTV 〈P (w), V 〉(x) = >] = 1

Statistical/Computational Soundness. We say that an interactive protocol is sta-
tistically (resp. computationally) sound if for any unbounded-time (resp. non-
uniform QPT) cheating prover P ∗, there exists a negligible function negl such
that for any λ ∈ N and any x ∈ {0, 1}λ \ L, we have

Pr[OUTV 〈P ∗, V 〉(x) = >] ≤ negl(λ).

We call an interactive protocol with statistical (resp. computational) soundness
an interactive proof (resp. argument).

16

Delayed-Witness Σ-Protocol We introduce a special type of Σ-protocol
which we call delayed-witness Σ-protocol where the first message can be gener-
ated without witness.

Definition 2.2 (Delayed-Witness Σ-protocol). A (post-quantum) delayed-
witness Σ-protocol for an NP language L is a 3-round interactive proof for NP
with the following syntax.

Common Input: An instance x ∈ L ∩ {0, 1}λ for security parameter λ ∈ N.
P ’s Private Input: A classical witness w ∈ RL(x) for x.

1. P generates a “commitment” a and a state st. For this part, P only uses the
statement x and does not use any witness w. We denote this procedure by

(a, st)
$← Σ.P1(x). Then it sends a to the verifier, and keeps st as its internal

state.
2. V chooses a“challenge” e

$← {0, 1}λ and sends e to P .
3. P generates a “response” z from st, witness w, and e. We denote this pro-

cedure by z
$← Σ.P3(st, w, e). Then it sends z to V .

4. V verifies the transcript (a, e, z) and outputs > indicating acceptance or ⊥
indicating rejection. We denote this procedure by >/⊥ $← Σ.V (x, a, e, z).

We require a delayed-witness Σ-protocol to satisfy the following property in
addition to perfect completeness and statistical soundness.19

Special Honest-Verifier Zero-Knowledge. There exists a PPT simulator SimΣ

such that we have

{(a, z) : (a, st)
$← Σ.P1(x), z

$← Σ.P3(st, w, e)}λ,x,w,e
comp
≈ {(a, z) : (a, z)

$← SimΣ(x, e)}λ,x,w,e

where x ∈ L ∩ {0, 1}λ, w ∈ RL(x), and e ∈ {0, 1}λ.

Instantiations. An example of a dealyed-witness Σ-protocol is a parallel repe-
tition version of Blum’s Graph Hamiltonicity protocol [Blu86]. In the ptorocol,
we need a computationally hiding and perfectly binding non-interactive commit-
ment scheme, which exists under the QLWE assumption as noted in Sec. 2.2.
In summary, a delayed-input Σ-protocol for all NP languages exists under the
QLWE assumption.

Quantum ε-Zero-Knowledge Proof and Argument Here, we define quan-
tum black-box ε-zero-knowledge proofs and arguments. The difference from the
definition of quantum zero-knowledge in [BS20] are:

1. (ε-Zero-Knowledge) We allow the simulator to depend on a noticeable
“accuracy parameter” ε, and allows its running time to polynomially depend
on ε−1, and

19 We do not require special soundness, which is often a default requirement of Σ-
protocol.

17

2. (Black-Box Simulation) the simulator is only given black-box access to a
malicious verifier.

Definition 2.3 (Post-Quantum Black-Box ε-Zero-Knowledge Proof and
Argument). A post-quantum black-box ε-zero-knowledge proof (resp. argument)
for an NP language L is an interactive proof (resp. argument) for L that sat-
isfies the following property in addition to perfect completeness and statistical
(resp. computational) soundness:

Quantum Black-Box ε-Zero-Knowledge. There exists an oracle-aided QPT simu-
lator Sim such that for any non-uniform QPT malicious verifier V ∗ = {V ∗λ , ρλ}λ∈N
and any noticeable function ε(λ), we have

{OUTV ∗λ 〈P (w), V ∗λ (ρλ)〉(x)}λ,x,w
comp
≈ ε {OUTV ∗λ (SimV ∗λ (ρλ)(x, 1ε

−1

))}λ,x,w

where λ ∈ N, x ∈ L∩{0, 1}λ, w ∈ RL(λ), and OUTV ∗λ (SimV ∗λ (ρλ)(x)) is the state
in the output register of V ∗λ after the simulated execution of V ∗λ by Sim.

Remark 2.1. In the above definition of quantum black-box ε-zero-knowledge, we
do not consider an entanglement between auxiliary input of a malicious verifier
and distinguisher unlike the original definition of quantum zero-knowledge by
Watrous [Wat09]. However, in the full version we show that the above definition
implies indistinguishability against a distinguisher that may get an entangled
state to verifier’s auxiliary input by taking advantage of black-box simulation.

Witness Indistinguishable Proof of Knowledge The definition of witness
indistinguishable proof of knowledge is given in the full version

2.4 Quantum Rewinding Lemma

Watrous [Wat09] proved a lemma that enables us to amplify the success prob-
ability of a quantum algorithm under certain conditions. The following form of
the lemma is based on that in [BS20, Lemma 2.1].

Lemma 2.1 ([Wat09, BS20]). There is an oracle-aided quantum algorithm R
that gets as input the following:

– A quantum circuit Q that takes n-input qubits in register Inp and outputs a
classical bit b (in a register outside Inp) and an m output qubits.

– An n-qubit state ρ in register Inp.
– A number T ∈ N in unary.

R(1T ,Q, ρ) executes in time T · |Q| and outputs a distribution over m-qubit
states Dρ := R(1T ,Q, ρ) with the following guarantees.

For an n-qubit state ρ, denote by Qρ the conditional distribution of the output
distribution Q(ρ), conditioned on b = 0, and denote by p(ρ) the probability that
b = 0. If there exist p0, q ∈ (0, 1), γ ∈ (0, 12) such that:

18

– Amplification executes for enough time: T ≥ log(1/γ)
4p0(1−p0) ,

– There is some minimal probability that b = 0: For every n-qubit state ρ,
p0 ≤ p(ρ),

– p(ρ) is input-independent, up to γ distance: For every n-qubit state ρ, |p(ρ)−
q| < γ, and

– q is closer to 1
2 : p0(1− p0) ≤ q(1− q),

then for every n-qubit state ρ,

TD(Qρ, Dρ) ≤ 4
√
γ

log(1/γ)

p0(1− p0)
.

Moreover, R(1T ,Q, ρ) works in the following manner: It uses Q for only imple-
menting oracles that perform the unitary part of Q and its inverse, acts on Inp
only through these oracles, and the output of R is the state in the output regis-
ter of Q after the simulated execution. We note that R may directly act on Q’s
internal registers other than Inp.

Remark 2.2. The final claim of the lemma (“Moreover...”) is not explicitly stated
in previous works. In the description of R in [Wat09], the first qubit of Inp is
designated to output b, and thus the above requirement is not satisfied. However,
this can be easily avoided by just letting Q output b in a register outside Inp as
required above. Then one can see that R acts on the input register only through
Q as seen from the description of R in [Wat09] (with the above modification in
mind). Looking ahead, this is needed to show our ε-zero-knowledge simulators
are black-box.

3 Extraction Lemma

In this section, we prove our main technical lemma, which we call the extrac-
tion lemma. Before giving a formal statement, we give an intuitive explanation.
Suppose that we have a two-stage quantum algorithm A = (Acom,Aopen) that
works as follows. Acom is given pp of a commitment scheme and generates a com-
mitment com, and passes a quantum state ρst in its internal register to Aopen.
Aopen is given the internal state ρst, and outputs a message-randomness pair
(m, r) (which is not necessarily a valid opening to com) along with a classical
output out, and let ρ′st be its internal state after the execution. We call a suc-
cessive execution of Acom and Aopen a real experiment. On the other hand, we
consider an extraction experiment where an “extractor” Ext runs on input ρst
in between Acom and Aopen to “extract” a committed message mExt while gener-
ating a simulated A’s internal state ρExt. Then we run Aopen with the internal
state ρExt instead of ρst to complete the extraction experiment. Roughly, the ex-
traction lemma claims that if the commitment scheme is strong collapse-binding
(resp. statistically binding), then there exists an extractor Ext such that we have
m = mExt with high probability and distributions of (m, r, out, ρ′st) in real and ex-
traction experiments are computationally (resp. statistically) indistinguishable
conditioned on that (m, r) is a valid opening to com.

The formal statement is given below.

19

Definition 3.1 (Extraction Experiments). Let Com = (Setup,Commit) be a
commitment scheme with message space M, randomness space R, commitment
space COM, and a public parameter space PP. Let A = {Acom,λ,Aopen,λ, ρλ}λ∈N
be a sequence of two-stage non-uniform QPT algorithms with the following syn-
tax:

Acom,λ(pp; ρλ)→ (com, ρst): It takes as input pp ∈ PP and an advice ρλ, and
outputs com ∈ COM and a quantum state ρst in register ST.

Aopen,λ(ρst)→ (m, r, out, ρ′st): It takes as input a quantum state ρst in register
ST, and outputs m ∈M, r ∈ R, a classical string out, and a quantum state
ρ′st in register ST.

Let Ext be a QPT algorithm and δ be a function in λ. Then we define following
experiments:

Expreal[Com,A](λ)

pp
$← Setup(1λ),

(com, ρst)
$← Acom,λ(pp; ρλ),

(m, r, out, ρ′st)
$← Aopen,λ(ρst),

If Commit(pp,m; r) 6= com,
Output ⊥

Else Output (pp, com,m, r, out, ρ′st).

Expext[Com,A,Ext](λ, δ)
pp

$← Setup(1λ),

(com, ρst)
$← Acom,λ(pp; ρλ),

(mExt, ρExt)
$← Ext(1λ, 1δ

−1

, pp, com,Aopen,λ, ρst),

(m, r, out, ρ′st)
$← Aopen,λ(ρExt),

If Commit(pp,m; r) 6= com ∨m 6= mExt,
Output ⊥

Else Output (pp, com,m, r, out, ρ′st).

Lemma 3.1 (Extraction Lemma). For any strong collapse-binding commit-
ment scheme Com = (Setup,Commit), there exists a QPT algorithm Ext such
that for any noticeable function δ(λ) and A = {Acom,λ,Aopen,λ, ρλ}λ∈N as in
Definition 3.1, we have

{Expreal[Com,A](λ)}λ∈N
comp
≈ δ {Expext[Com,A,Ext](λ, δ)}λ∈N.

If Com is statistically binding instead of strong collapse-binding, we have

{Expreal[Com,A](λ)}λ∈N
stat
≈ δ {Expext[Com,A,Ext](λ, δ)}λ∈N.

Moreover, Ext(1λ, 1δ
−1

, pp, com,Aopen,λ, ρst) works in the following manner: It
uses Aopen,λ for only implementing oracles that perform unitary part of Aopen,λ

and its inverse, and acts on ST only through black-box access to the oracles. The
second output ρExt of Ext is the state in ST after the execution. We note that
Ext may directly act on internal registers of Aopen,λ other than ST.

The above lemma abstracts our technical core, which is extraction of the ver-
ifier’s committed challenge without collapsing verifier’s internal state too much.
(One can think of A in the above lemma as the verifier and ρst and ρ′st as ver-
ifier’s internal states before and after opening the commitment, respectively, in
our constant round ε-zero-knowledge proofs/arguments.) Since the intuition of
the proof is already explained in Sec. 1.2, we defer the proof to the full version.

20

4 Post-Quantum ε-Zero-Knowledge Proof and Argument

In this section, we prove the following theorems.

Theorem 4.1. If the QLWE assumption holds, then there exists a 5-round post-
quantum black-box ε-zero-knowledge proof for all NP languages.

Theorem 4.2. If a collapsing hash function exists, then there exists a 5-round
post-quantum black-box ε-zero-knowledge proof for all NP languages.

Theorem 4.3. If post-quantunm OWF exists, then there exists a 9-round post-
quantum black-box ε-zero-knowledge argument for all NP languages.

In the rest of this section, we prove Theorem 4.1 and 4.2. The proof of Theorem
4.3 is given in the full version.

4.1 Construction

Our construction is the same as the Golderich-Kahan protocol [GK96] except
that we instantiate the verifier’s commitment with a strong collapse-binding com-
mitment and we rely on a post-quantum delayed-witness Σ-protocol. Specifically,
our construction is built on the following ingredients:

– A commitment scheme (CBCom.Setup,CBCom.Commit) that is statistical
hiding and strong collapse-binding with message space {0, 1}λ and random-
ness space R. As noted in Sec. 2.2, such a commitment scheme exists under
the QLWE assumption.

– A delayed-witness Σ-protocol (Σ.P1, Σ.P3, Σ.V) for an NP language L as
defined in Definition 2.2. As noted in Sec. 2.3, such a protocol exists under
the QLWE assumption.

Then our construction of post-quantum black-box ε-zero-knowledge proof is
given in Figure 1.

The completeness of the protocol clearly follows from that of the underlying
Σ-protocol. In Sec. 4.2 and 4.3, we prove that this protocol satisfies statistical
soundness and quantum black-box ε-zero-knowledge. Then we obtain Theorem
4.1.

4.2 Statistical Soundness

This is essentially the same as the proof in [GK96], but we give a proof for
completeness.

For x /∈ L an unbounded-time cheating prover P ∗, we consider the following
sequence of hybrids. We denote by wini the event that P ∗ wins in Hybi.

Hyb1: This is the original game. That is,
1. P ∗ sends pp to V .

21

Protocol 1

Common Input: An instance x ∈ L ∩ {0, 1}λ for security parameter λ ∈ N.
P ’s Private Input: A classical witness w ∈ RL(x) for x.

1. V ’s Commitment to Challenge:

(a) P computes pp
$← CBCom.Setup(1λ) and sends pp to V .

(b) V chooses e
$← {0, 1}λ and r

$← R, computes com
$←

CBCom.Commit(pp, e; r), and sends com to P .
2. Σ-Protocol Execution:

(a) P generates (a, st)
$← Σ.P1(x) and sends a to V .

(b) V sends (e, r) to P .
(c) P aborts if CBCom.Commit(pp, e; r) 6= com.

Otherwise, it generates z
$← Σ.P3(st, w, e) and sends z to V .

(d) V outputs Σ.V (x, a, e, z).

Fig. 1. Constant-Round Post-Quantum ε-Zero-Knowledge Proof for L ∈ NP

2. V chooses e
$← {0, 1}λ and r

$← R, computes com
$← CBCom.Commit(pp, e; r),

and sends com to P ∗.
3. P ∗ sends a to V .
4. V sends (e, r) to P ∗

5. P ∗ sends z to V .
We say that P ∗ wins if we have Σ.V (x, a, e, z) = >.

Hyb2: This hybrid is identical to the previous one except that in Step 4, V
uniformly chooses r′ such that com = CBCom.Commit(pp, e; r′) and sends
(e, r′) to P ∗ instead of (e, r). We note that this procedure may be inefficient.
This is just a conceptual change and thus we have Pr[win1] = Pr[win2].

Hyb3: This hybrid is identical to the previous one except that in Step 2, V sends

com
$← CBCom.Commit(pp, 0`; r) and the generation of e is delayed to Step

4.
Since no information of r is given to P ∗ due to the modification made in Hyb2,
by the statistical hiding property of CBCom, we have |Pr[win3]−Pr[win2]| =
negl(λ).
Now, it is easy to prove Pr[win3] = negl(λ) by reducing it to the statistical
soundness of the Σ-protocol. Namely, we consider a cheating prover Σ.P ∗

against the Σ-protocol that works as follows.
1. Σ.P ∗ runs P ∗ to get the first message pp.

2. Σ.P ∗ computes com
$← CBCom.Commit(pp, 0`; r), sends com to P ∗, and

gets the third message a. Then Σ.P ∗ sends a to its own external chal-
lenger as the first message of the Σ-protocol.

3. Upon receiving a challenge e from the external challenger, Σ.P ∗ uni-
formly chooses r′ such that com = CBCom.Commit(pp, e; r′), sends (e, r′)
to P ∗, and gets the P ∗’s final message z. Then Σ.P ∗ sends z to the ex-
ternal challenger.

22

It is easy to see that Σ.P ∗ perfectly simulates the environment in Hyb3 for
P ∗. Therefore, Σ.P ∗’s winning probability is equal to Pr[win3]. On the other
hand, by soundness of the Σ-protocol, Σ.P ∗’s winning probability is negl(λ).
Therefore we have Pr[win3] = negl(λ).

Combining the above, we have Pr[win1] = negl(λ), which means that the
protocol satisfies the statistical soundness.

4.3 Quantum Black-Box ε-Zero-Knowledge

Structure of the Proof. A high-level structure of our proof is similar to that
of [BS20]. Specifically, we first construct simulators Sima and Simna that simu-
late the “aborting case” and “non-aborting case”, respectively. More precisely,
Sima correctly simulates the verifier’s view if the verifier aborts and otherwise re-
turns a failure symbol Fail and Simna correctly simulates the verifier’s view if the
verifier does not abort and otherwise returns a failure symbol Fail. Then we con-
sider a combined simulator Simcomb that runs either of Sima or Simna with equal
probability. Then Simcomb correctly simulates the verifier’s view conditioned on
that the output is not Fail, and it returns Fail with probability almost 1/2. By
applying the Watrous’ quantum rewinding lemma (Lemma 2.1) to Simcomb, we
can convert it to a full-fledged simulator.

Though the above high-level structure is similar to [BS20], the analyses of
simulators Sima and Simna are completely different from [BS20] since we consider
different protocols. While the analysis of Sima is easy, the analysis of Simna is a
little more complicated as it requires the extraction lemma (Lemma 3.1), which
was developed in Sec. 3.

Proof of Quantum Black-Box ε-Zero-Knowledge. For clarity of exposition,
we first show the quantum ε-zero-knowledge property ignoring that the simulator
should be black-box. That is, we give the full description of the malicious verifier
and its quantum advice as part of the simulator’s input instead of only the oracle
access to the verifier. At the end of the proof, we explain that the simulator is
indeed black-box.

In quantum ε-zero-knowledge, we need to show a simulator Sim that takes
an accuracy parameter 1ε

−1

as part of its input. We assume ε(λ) = o(1) without
loss of generality since the other case trivially follows from this case. Without
loss of generality, we can assume that a malicious verifier V ∗ does not terminate
the protocol before the prover aborts since it does not gain anything by declaring
the termination. We say that V ∗ aborts if it fails to provide a valid opening (e, r)
to com in Step 2b (i.e., the prover aborts in Step 2c).

First, we construct a simulator Simcomb, which returns a special symbol Fail
with probability roughly 1/2 but almost correctly simulates the output of V ∗λ
conditioned on that it does not return Fail. The simulator Simcomb uses simulators
Sima and Simna as sub-protocols:

Simcomb(x, 1
ε−1

, V ∗λ , ρλ):

23

1. Choose mode
$← {a, na}.

2. Run Simmode(x, 1
ε−1

, V ∗λ , ρλ).
3. Output what Simmode outputs.

Sima(x, 1
ε−1

, V ∗λ , ρλ): 20

1. Set V ∗λ ’s internal state to ρλ.

2. Compute pp
$← CBCom.Setup(1λ) and send pp to V ∗λ .

3. V ∗λ returns com.

4. Compute (a, st)
$← Σ.P1(x) and send a to V ∗λ .

5. V ∗λ returns (e, r).
6. Return Fail and abort if CBCom.Commit(pp, e; r) = com.

Otherwise, let V ∗λ output the final output notifying that the prover
aborts.

7. The final output of V ∗λ is treated as the output Sima.

Simna(x, 1
ε−1

, V ∗λ , ρλ):
1. Set V ∗λ ’s internal state to ρλ.

2. Compute pp
$← CBCom.Setup(1λ) and send pp to V ∗λ .

3. V ∗λ returns com. Let ρst be the internal state of V ∗λ at this point.

4. Compute (eExt, ρExt)
$← Ext(1λ, 1δ

−1

, pp, com,Aopen,λ, ρst) where Ext is as

in Lemma 3.1 for the commitment scheme CBCom, δ := ε2

3600 log4(λ)
, and

A = (Acom,λ,Aopen,λ) as defined below:
Acom,λ(pp; ρλ): It sets V ∗λ ’s internal state to ρλ and sends pp to V ∗λ . Let

com be the response by V ∗λ and ρst be the internal state of V ∗λ at this
point. It outputs (com, ρst).

Aopen,λ(ρst): It generates (a, st)
$← Σ.P1(x),21 sets V ∗λ ’s internal state

to ρst, and sends a to V ∗λ . Let (e, r) be the response by V ∗λ and let
ρ′st be the internal state of V ∗λ at this point. It outputs (e, r, out :=
(a, st), ρ′st).

Here, we remark that V ∗λ ’s internal register corresponds to ST and e
corresponds to m in the notation of Lemma 3.1.

5. Set the verifier’s internal state to ρExt.

6. Compute (a, z)
$← SimΣ(x, eExt) and send a to V ∗λ .

7. V ∗λ returns (e, r).
8. Return Fail and abort if e 6= eExt or CBCom.Commit(pp, e; r) 6= com.

Otherwise, send z to V ∗λ .
9. The final output of V ∗λ is treated as the output Simna.

Intuitively, Sima (resp. Simna) is a simulator that simulates the verifier’s view
in the case that verifier aborts (resp. does not abort).

More formally, we prove the following lemmas.

20 Though Sima does not depend on ε, we include 1ε
−1

in the input for notational
uniformity.

21 We note that we consider x to be hardwired into Aopen,λ. We also note that though
Aopen,λ does not take explicit randomness, it can generate randomness by say, ap-
plying Hadamard on its working register and then measuring it.

24

Lemma 4.1 (Sima simulates the aborting case.). For any non-uniform
QPT malicious verifier V ∗ = {V ∗λ , ρλ}λ∈N, let OUTV ∗a 〈P (w), V ∗λ (ρλ)〉(x) be the
V ∗λ ’s final output that is replaced with Fail if V ∗λ does not abort. Then we have

{OUTV ∗a 〈P (w), V ∗λ (ρλ)〉(x)}λ,x,w ≡ {Sima(x, 1
ε−1

, V ∗λ , ρλ)}λ,x,w.

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).

Proof. Since Sima perfectly simulates the real execution for V ∗λ when it aborts,
Lemma 4.1 immediately follows.

Lemma 4.2 (Simna simulates the non-aborting case.). For any non-uniform
QPT malicious verifier V ∗ = {V ∗λ , ρλ}λ∈N, let OUTV ∗na〈P (w), V ∗λ (ρλ)〉(x) be the
V ∗λ ’s final output that is replaced with Fail if V ∗λ aborts. Then we have

{OUTV ∗na〈P (w), V ∗λ (ρλ)〉(x)}λ,x,w
comp
≈ δ {Simna(x, 1

ε−1

, V ∗λ , ρλ)}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).

Proof. Here, we analyze Simna(x, 1
ε−1

, V ∗λ , ρλ). In the following, we consider hy-

brid simulators Simna,i(x,w, 1
ε−1

, V ∗λ , ρλ) for i = 1, 2, 3. We remark that they
also take the witness w as input unlike Simna.

Simna,1(x,w, 1ε
−1

, V ∗λ , ρλ): This simulator works similarly to Simna(x, 1
ε−1

, V ∗λ , ρλ)

except that it generates (a, st)
$← Σ.P1(x) and z

$← Σ.P3(st, w, eExt) instead

of (a, z)
$← SimΣ(x, eExt) in Step 6.

By the special honest-verifier zero-knowledge property of the Σ-protocol, we
have

{Simna(x, 1
ε−1

, V ∗λ , ρλ)}λ,x,w
comp
≈ {{Simna,1(x,w, 1ε

−1

, V ∗λ , ρλ)}λ,x,w}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).

Simna,2(x,w, 1ε
−1

, V ∗λ , ρλ): This simulator works similarly to Simna,1(x,w, 1ε
−1

, V ∗λ , ρλ)
except that the generation of z is delayed until Step 8 and it is generated as

z
$← Σ.P3(st, w, e) instead of z

$← Σ.P3(st, w, eExt).
The modification does not affect the output distribution since it outputs Fail
if e 6= eExt and if e = eExt, then this simulator works in exactly the same way
as the previous one. Therefore we have

{Simna,1(x,w, 1ε
−1

, V ∗λ , ρλ)}λ,x,w ≡ {Simna,2(x,w, 1ε
−1

, V ∗λ , ρλ)}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).

Simna,3(x,w, 1ε
−1

, V ∗λ , ρλ): This simulator works similarly to Simna,2(x,w, 1ε
−1

, V ∗λ , ρλ)
except that Step 4 and 5 are deleted and the check of e 6= eExt in Step
8 is omitted. That is, it outputs Fail in Step 8 if and only if we have
CBCom.Commit(pp, e; r) 6= com. We note that eExt and ρExt are no longer
used at all and thus need not be generated.

25

We can see that Step 3 is exactly the same as executing (com, ρst)
$←

Acom,λ(pp; ρλ) and Step 6 and 7 of previous and this experiments are ex-

actly the same as executing (e, r, out = (a, st), ρ′st)
$← Aopen,λ(ρExt) and

(e, r, out = (a, st), ρ′st)
$← Aopen,λ(ρst), respectively where we define ρ′st in sim-

ulated experiments as V ∗λ ’s internal state after Step 7. Moreover, the rest of
execution of the simulators can be done given (pp, com, e, r, out = (a, st), ρ′st).
Therefore, by a straightforward reduction to Lemma 3.1, we have

{Simna,2(x,w, 1ε
−1

, V ∗λ , ρλ)}λ,x,w
comp
≈ δ {Simna,3(x,w, 1ε

−1

, V ∗λ , ρλ)}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).

We can see that Simna,3(x,w, 1ε
−1

, V ∗λ , ρλ) perfectly simulates the real exe-
cution for V ∗λ and outputs V ∗λ ’s output conditioned on that V ∗λ does not abort,
and just outputs Fail otherwise. Therefore, we have

{Simna,3(x,w, 1ε
−1

, V ∗λ , ρλ)}λ,x,w ≡ {OUTV ∗na〈P (w), V ∗λ (ρλ)〉(x)}λ,x,w

where λ ∈ N, x ∈ L∩{0, 1}λ, and w ∈ RL(x). Combining the above, Lemma 4.2
is proven.

By combining Lemmas 4.1 and 4.2, we can prove the following lemma.

Lemma 4.3 (Simcomb simulates V ∗λ ’s output with probability almost 1/2).

For any non-uniform QPT malicious verifier V ∗ = {V ∗λ , ρλ}λ∈N, let psuccomb(x, 1
ε−1

, V ∗λ , ρλ)

be the probability that Simcomb(x, 1
ε−1

, V ∗λ , ρλ) does not return Fail and Dsim,comb(x,

1ε
−1

, V ∗λ , ρλ) be a conditional distribution of Simcomb(x, 1
ε−1

, V ∗λ , ρλ), conditioned
on that it does not return Fail. There exists a negligible function negl such that
for any x = {xλ ∈ L ∩ {0, 1}λ}λ∈N, we have∣∣∣psuccomb(x, 1

ε−1

, V ∗λ , ρλ)− 1/2
∣∣∣ ≤ δ/2 + negl(λ). (1)

Moreover, we have

{OUTV ∗〈P (w), V ∗λ (ρλ)〉(x)}λ,x,w
comp
≈ 4δ {Dsim,comb(x, 1

ε−1

, V ∗λ , ρλ)}λ,x,w (2)

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).

Proof. (sketch.) Intuition of the proof is very easy: By Lemma 4.1 and 4.2, Sima

and Simna almost simulate the real output distribution of V ∗λ conditioned on that
V ∗λ aborts and does not abort, respectively. Therefore, if we randomly guess if
V ∗λ aborts and runs either of Sima and Simna that successfully works for the
guessed case, the output distribution is close to the real output distribution of
V ∗λ conditioned on that the guess is correct, which happens with probability
almost 1/2.

Indeed, the actual proof is based on the above idea, but for obtaining concrete
bounds as in Eq. 1 and 2, we need some tedious calculations. We give a full proof
in the full version since the proof is easy and very similar to that in [BS20] (once
we obtain Lemma 4.1 and 4.2).

26

Then, we convert Simcomb to a full-fledged simulator that does not return Fail
by using the quantum rewinding lemma (Lemma 2.1). Namely, we let Q be a

quantum algorithm that takes ρλ as input and outputs Simcomb(x, 1
ε−1

, V ∗λ , ρλ)
where b := 0 if and only if it does not return Fail, p0 := 1

4 , q := 1
2 , γ := δ,

and T := 2 log(1/δ). Then it is easy to check that the conditions for Lemma
2.1 is satisfied by Eq. 1 in Lemma 4.3 (for sufficiently large λ). Then by using
Lemma 2.1, we can see that R(1T ,Q, ρλ) runs in time T · |Q| = poly(λ) and its

output (seen as a mixed state) has a trace distance bounded by 4
√
γ log(1/γ)
p0(1−p0)

from Dsim,comb(x, 1
ε−1

, V ∗λ , ρλ). Since we have γ = δ = ε2

3600 log4(λ)
= 1/poly(λ),

we have 4
√
γ log(1/γ)
p0(1−p0) < 30

√
γ log2(λ) = ε

2 for sufficiently large λ where we used

log(1/γ) = log(poly(λ)) = o(log2(λ)). Thus, by combining the above and Eq. 2

in Lemma 4.3, if we define Sim(x, 1ε
−1

, V ∗λ , ρλ) := R(1T ,Q, ρλ), then we have

OUTV ∗〈P (w), V ∗λ (ρλ)〉(x)
comp
≈ ε

2+4δ Sim(x, 1ε
−1

, V ∗λ , ρλ).

We can conclude the proof of quantum ε-zero-knowledge by noting that we have
ε
2 + 4δ < ε since we have δ = ε2

3600 log4(λ)
< ε

8 .

Black-Box Simulation. Here, we explain that the simulator Sim constructed as
above only needs black-box access to the verifier. What we need to show are that
Sim applies the unitary part UV ∗λ of V ∗λ and its inverse U†V ∗λ

only as oracles and

Sim does not directly act on V ∗λ ’s internal register. There are two parts of the
construction of Sim that are not obviously black-box. The first is Step 4 and 5 of
Simna where it runs the extraction algorithm Ext of Lemma 3.1, and the second
is the conversion from Simcomb to Sim using R in Lemma 2.1. In the following, we
explain that both steps can be implemented by black-box access to the verifier.

1. By Lemma 3.1, Ext uses the unitary part of Aopen,λ and its inverse only in
a black-box manner, and they can be implemented by black-box access to
UV ∗λ and U†V ∗λ

. Moreover, since register ST in the notation of Lemma 3.1

corresponds to the internal register of V ∗λ in our context, the lemma ensures
that Ext does not directly act on it. Also, Simna need not explicitly set V ∗λ ’s
internal register to ρExt in Step 5 if we do the above black-box simulation
since a state in the register automatically becomes ρExt after the execution as
stated in Lemma 3.1. Therefore, this step can be implemented by black-box
access to V ∗λ .

2. Given the above observation, we now know that both Sima and Simna only
need black-box access to V ∗λ . This means that Q only needs black-box access
to V ∗λ . Since R only uses Q as oracles that perform the unitary part of Q
and its inverse as stated in Lemma 2.1 and they can be implemented by
black-box access to V ∗λ , R uses UV ∗λ and U†V ∗λ

only as oracles. Moreover, since

the register Inp in Lemma 2.1 corresponds to the internal register of V ∗λ in
our context, R does not directly act on it.

By the above observations, we can see that the simulator Sim only needs black-
box access to V ∗λ .

27

4.4 Instantiation from Collapsing Hash Function

Our construction in Figure 1 is based on two building blocks: a statistically
hiding and strong collapse-binding commitment scheme and a delayed-witness
Σ-protocol. Though the former can be instantiated by a collapsing hash function,
we do not know how to instantiate the latter by a collapsing hash function since it
needs non-interactive commitment that is not known to be implied by collapsing
hash functions. However, we can just use a 4-round version of a delayed-witness
Σ-protocol where the first message “commitment” in the Σ-protocol is instan-
tiated based on Naor’s commitments [Nao91] instead of a non-interactive one.
Since Naor’s commitments can be instantiated under any OWF and collapsing
hash function is trivially also one-way, we can instantiate the 4-round version
of a delayed-witness Σ-protocol based on a collapsing hash function. We can
prove security of the construction based on 4-round version of a delayed-witness
Σ-protocol in essentially the same manner as the security proofs in Sec. 4.2
and 4.3. We also note that this does not increase the number of rounds of our
construction. Based on these observations, we obtain Theorem 4.2.

Acknowledgement

NHC’s research is support by the U.S. Department of Defense and NIST through
the Hartree Postdoctoral Fellowship at QuICS and by NSF through IUCRC
Planning Grant Indiana University: Center for Quantum Technologies (CQT)
under award number 2052730. KMC’s research is partially supported by MOST,
Taiwan, under Grant no. MOST 109-2223-E-001-001-MY3 and Executive Yuan
Data Safety and Talent Cultivation Project (ASKPQ-109-DSTCP).

References

ACGH20. G. Alagic, A. M. Childs, A. B. Grilo, and S.-H. Hung. Non-interactive
Classical Verification of Quantum Computation. In TCC 2020, Part III,
pages 153–180. 2020.

AL20. P. Ananth and R. L. La Placa. Secure Quantum Extraction Protocols. In
TCC 2020, Part III, pages 123–152. 2020.

AR06. N. Aharon and O. Regev. Witness-preserving Amplification of QMA
(lecture note), 2006. https://cims.nyu.edu/~regev/teaching/quantum_

fall_2005/ln/qma.pdf.
BC90. G. Brassard and C. Crépeau. Sorting out Zero-Knowledge. In EURO-

CRYPT’89, pages 181–191. 1990.
BCY91. G. Brassard, C. Crépeau, and M. Yung. Constant-Round Perfect Zero-

Knowledge Computationally Convincing Protocols. Theor. Comput. Sci.,
84(1):23–52, 1991.

BG20. A. Broadbent and A. B. Grilo. QMA-hardness of Consistency of Local
Density Matrices with Applications to Quantum Zero-Knowledge. In 61st
FOCS, pages 196–205. 2020.

BJSW20. A. Broadbent, Z. Ji, F. Song, and J. Watrous. Zero-Knowledge Proof Sys-
tems for QMA. SIAM J. Comput., 49(2):245–283, 2020.

28

https://cims.nyu.edu/~regev/teaching/quantum_fall_2005/ln/qma.pdf
https://cims.nyu.edu/~regev/teaching/quantum_fall_2005/ln/qma.pdf

BKP18. N. Bitansky, Y. T. Kalai, and O. Paneth. Multi-collision resistance: a
paradigm for keyless hash functions. In 50th ACM STOC, pages 671–684.
2018.

BKP19. N. Bitansky, D. Khurana, and O. Paneth. Weak zero-knowledge beyond the
black-box barrier. In 51st ACM STOC, pages 1091–1102. 2019.

BL02. B. Barak and Y. Lindell. Strict polynomial-time in simulation and extrac-
tion. In 34th ACM STOC, pages 484–493. 2002.

BLP+13. Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical
hardness of learning with errors. In 45th ACM STOC, pages 575–584. 2013.

Blu86. M. Blum. How to prove a theorem so no one else can claim it. In Proceedings
of the International Congress of Mathematicians, page 1444–1451, 1986.

BP12. N. Bitansky and O. Paneth. Point Obfuscation and 3-Round Zero-
Knowledge. In TCC 2012, pages 190–208. 2012.

Bra18. Z. Brakerski. Quantum FHE (Almost) As Secure As Classical. In
CRYPTO 2018, Part III, pages 67–95. 2018.

BS20. N. Bitansky and O. Shmueli. Post-quantum zero knowledge in constant
rounds. In 52nd ACM STOC, pages 269–279. 2020.

BY20. Z. Brakerski and H. Yuen. Quantum Garbled Circuits. arXiv, 2006.01085,
2020.

CCLY21. N.-H. Chia, K.-M. Chung, Q. Liu, and T. Yamakawa. On the Impossibility
of Post-Quantum Black-Box Zero-Knowledge in Constant Rounds. arXiv,
2103.11244, 2021.

CCY20. N.-H. Chia, K.-M. Chung, and T. Yamakawa. Classical Verification of Quan-
tum Computations with Efficient Verifier. In TCC 2020, Part III, pages
181–206. 2020.

CLP15. K.-M. Chung, E. Lui, and R. Pass. From Weak to Strong Zero-Knowledge
and Applications. In TCC 2015, Part I, pages 66–92. 2015.

CVZ20. A. Coladangelo, T. Vidick, and T. Zhang. Non-interactive Zero-Knowledge
Arguments for QMA, with Preprocessing. In CRYPTO 2020, Part III, pages
799–828. 2020.

DFS04. I. Damg̊ard, S. Fehr, and L. Salvail. Zero-Knowledge Proofs and String
Commitments Withstanding Quantum Attacks. In CRYPTO 2004, pages
254–272. 2004.

DNRS03. C. Dwork, M. Naor, O. Reingold, and L. J. Stockmeyer. Magic Functions.
J. ACM, 50(6):852–921, 2003.

DNS04. C. Dwork, M. Naor, and A. Sahai. Concurrent zero-knowledge. J. ACM,
51(6):851–898, 2004.

FGJ18. N. Fleischhacker, V. Goyal, and A. Jain. On the Existence of Three Round
Zero-Knowledge Proofs. In EUROCRYPT 2018, Part III, pages 3–33. 2018.

FS90. U. Feige and A. Shamir. Zero Knowledge Proofs of Knowledge in Two
Rounds. In CRYPTO’89, pages 526–544. 1990.

GK96. O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-
Knowledge Proof Systems for NP. Journal of Cryptology, 9(3):167–190,
1996.

GMR89. S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of
Interactive Proof Systems. SIAM Journal on Computing, 18(1):186–208,
1989.

GMW91. O. Goldreich, S. Micali, and A. Wigderson. Proofs that Yield Nothing
But Their Validity for All Languages in NP Have Zero-Knowledge Proof
Systems. J. ACM, 38(3):691–729, 1991.

29

Gol01. O. Goldreich. The Foundations of Cryptography - Volume 1: Basic Tech-
niques. Cambridge University Press, 2001.

Gol04. O. Goldreich. The Foundations of Cryptography - Volume 2: Basic Appli-
cations. Cambridge University Press, 2004.

Gra97. J. V. D. Graaf. Towards a formal definition of security for quantum proto-
cols. PhD thesis, University of Montreal, Montreal, Canada, 1997.

HILL99. J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A Pseudorandom
Generator from any One-way Function. SIAM J. Comput., 28(4):1364–1396,
1999.

JKKR17. A. Jain, Y. T. Kalai, D. Khurana, and R. Rothblum. Distinguisher-
Dependent Simulation in Two Rounds and its Applications. In
CRYPTO 2017, Part II, pages 158–189. 2017.

Kob03. H. Kobayashi. Non-interactive Quantum Perfect and Statistical Zero-
Knowledge. In ISAAC 2003, pages 178–188. 2003.

Mah18a. U. Mahadev. Classical Homomorphic Encryption for Quantum Circuits. In
59th FOCS, pages 332–338. 2018.

Mah18b. U. Mahadev. Classical Verification of Quantum Computations. In 59th
FOCS, pages 259–267. 2018.

Nao91. M. Naor. Bit Commitment Using Pseudorandomness. Journal of Cryptology,
4(2):151–158, 1991.

NWZ09. D. Nagaj, P. Wocjan, and Y. Zhang. Fast Amplification of QMA. arXiv,
0904.1549, 2009.

Pas03. R. Pass. Simulation in Quasi-Polynomial Time, and Its Application to
Protocol Composition. In EUROCRYPT 2003, pages 160–176. 2003.

Pei09. C. Peikert. Public-key cryptosystems from the worst-case shortest vector
problem: extended abstract. In 41st ACM STOC, pages 333–342. 2009.

PS19. C. Peikert and S. Shiehian. Noninteractive Zero Knowledge for NP from
(Plain) Learning with Errors. In CRYPTO 2019, Part I, pages 89–114.
2019.

PW08. C. Peikert and B. Waters. Lossy trapdoor functions and their applications.
In 40th ACM STOC, pages 187–196. 2008.

PW09. R. Pass and H. Wee. Black-Box Constructions of Two-Party Protocols from
One-Way Functions. In TCC 2009, pages 403–418. 2009.

Reg09. O. Regev. On lattices, learning with errors, random linear codes, and cryp-
tography. J. ACM, 56(6):34:1–34:40, 2009.

Shm20. O. Shmueli. Multi-theorem (Malicious) Designated-Verifier NIZK for QMA.
arXiv, 2007.12923, 2020.

SV03. A. Sahai and S. P. Vadhan. A complete problem for statistical zero knowl-
edge. J. ACM, 50(2):196–249, 2003.

Unr12. D. Unruh. Quantum Proofs of Knowledge. In EUROCRYPT 2012, pages
135–152. 2012.

Unr16a. D. Unruh. Collapse-Binding Quantum Commitments Without Random Or-
acles. In ASIACRYPT 2016, Part II, pages 166–195. 2016.

Unr16b. D. Unruh. Computationally Binding Quantum Commitments. In EURO-
CRYPT 2016, Part II, pages 497–527. 2016.

Wat09. J. Watrous. Zero-Knowledge against Quantum Attacks. SIAM J. Comput.,
39(1):25–58, 2009.

Zha19. M. Zhandry. Quantum Lightning Never Strikes the Same State Twice. In
EUROCRYPT 2019, Part III, pages 408–438. 2019.

30

	A Black-Box Approach to Post-Quantum Zero-Knowledge in Constant Rounds

