
KHAPE: Asymmetric PAKE from Key-Hiding
Key Exchange

Yanqi Gu1, Stanislaw Jarecki1, and Hugo Krawczyk2

1 University of California, Irvine. Email: {yanqig1@,stasio@ics.}uci.edu.
2 Algorand Foundation. Email: hugokraw@gmail.com.

Abstract. OPAQUE [Jarecki et al., Eurocrypt 2018] is an asymmetric
password authenticated key exchange (aPAKE) protocol that is being
developed as an Internet standard and for use within TLS 1.3.
OPAQUE combines an Oblivious PRF (OPRF) with an authenticated
key exchange to provide strong security properties, including security
against pre-computation attacks (called saPAKE security). However,
the security of OPAQUE relies crucially on the security of the OPRF.
If the latter breaks (by cryptanalysis, quantum attacks or security
compromise), the user’s password is exposed to an offline dictionary
attack. To address this weakness, we present KHAPE, a variant of
OPAQUE that does not require the use of an OPRF to achieve aPAKE
security, resulting in improved resilience and near-optimal
computational performance. An OPRF can be optionally added to
KHAPE, for enhanced saPAKE security, but without opening the
password to an offline dictionary attack upon OPRF compromise.
In addition to resilience to OPRF compromise, a DH-based
implementation of KHAPE (using HMQV) offers the best performance
among aPAKE protocols in terms of exponentiations with less than the
cost of an exponentiation on top of an UNauthenticated Diffie-Hellman
exchange. KHAPE uses three messages if the server initiates the
exchange or four when the client does (one more than OPAQUE in the
latter case).
All results in the paper are proven within the UC framework in the ideal
cipher model. Of independent interest is our treatment of key-hiding AKE
which KHAPE uses as a main component as well as our UC proofs of
AKE security for protocols 3DH (a basis of Signal), HMQV and SKEME,
that we use as efficient instantiations of KHAPE.

1 Introduction

In the last few years the subject of password authenticated key exchange
(PAKE) protocols, particularly in the client-server setting (called asymmetric
PAKE, or aPAKE for short), has seen renewed interest due to the weaknesses
of password protocols and the ongoing standardization effort at the Internet
Engineering Task Force [49]. In particular, due to vulnerabilities in PKI
systems and TLS deployment, the standard PKI-based encrypted password
authentication (or “password-over-TLS”) often leads to disclosure of passwords

and increased exploitation of phishing techniques. Even when the password is
decrypted at the correct server, its presence in plaintext form after decryption,
constitutes a security vulnerability as evidenced by repeated incidents where
plaintext passwords were accidentally stored in large quantities and for long
periods of time even by security-conscious companies [1, 2].

In this paper we investigate the question of how “minimal” an asymmetric
PAKE can be. In spite of the many subtleties surrounding the design and
analysis of aPAKE protocols, there are several efficient and practical
realizations which meet a universally composable (UC) notion of aPAKE [27].
For example, the overhead of the recently analyzed SPAKE2+ protocol [51]
over the unauthenticated Diffie-Hellman (uDH) protocol is 1 or 2
exponentiations per party. Similar overhead costs are also imposed by the
generic results which compile any PAKE to aPAKE [27, 33]. Known strong
aPAKEs (see below), add similar or larger overhead costs [37, 15].

The comparison to uDH is significant not only from a practical point of
view, but also because PAKE protocols imply unauthenticated key exchange in
the sense of the Impagliazzo-Rudich results [34, 29]. Thus, we can see uDH as
the lowest possible expected performance of PAKE protocols. But how close to
the uDH cost can we get; can one improve on existing protocols?

In the symmetric PAKE case, where the two peers share the same
password, there are almost optimal answers to this question. The
Bellovin-Merrit’s classical EKE protocol [10], shows that all you need is to
apply a symmetric-key encryption on top of the uDH transcript. It requires a
carefully chosen encryption scheme, e.g., one that is modeled after an ideal
cipher, but it only involves symmetric key techniques [9, 4, 14, 46].3

Can this low overhead relative to uDH be achieved also in the more involved
setting of asymmetric PAKEs, where security against offline attacks is to be
provided even when the server is broken into? We show an aPAKE protocol,
KHAPE, that only requires symmetric operations (in the ideal cipher model)
over regular authenticated DH.

KHAPE (for Key-Hiding Asymmetric PakE) can be seen as a variant of the
OPAQUE protocol [37] that is being developed into an Internet standard [42]
and intended for use within TLS 1.3 [52]. OPAQUE introduces the idea of
password-encrypted credentials containing an encrypted private key for the
user and an authenticated public key for the server. The user deposits the
encrypted credentials at the server during password registration and it
retrieves them for login sessions, thus allowing user and server to run a regular
authenticated key exchange (AKE) protocol. However, encrypting and
authenticating credentials with a password opens the protocol to trivial offline
dictionary attacks. Therefore, OPAQUE first runs an Oblivious PRF (OPRF)
on the user’s password in order to derive a strong encryption key for the
credential. This makes the protocol fully reliant on the strength of the OPRF.

3 Several other symmetric PAKE protocols, e.g. SPAKE2 [5], SPEKE [35, 43, 30] and
TBPEKE [48], attain universally composable security without relying on an ideal
cipher but incur additional exponentiations over uDH costs [3].

2

If OPRF is ever broken (by cryptanalysis, quantum attacks or security
compromise), the user’s password is exposed to an offline dictionary attack.

Near-optimal aPAKE. KHAPE addresses this weakness by dispensing with the
OPRF (hence also improving performance). It uses a “paradoxical” mechanism
that allows to directly encrypt credentials with the password and still prevent
dictionary attacks. Two key ideas are: (i) dispense with authentication of the
credentials4 and instead use a non-committing encryption where decryption of
a given ciphertext under different keys cannot help identify which key from a
candidate set was used to produce that ciphertext; and (ii) using a key-hiding
AKE. The latter refers to AKE protocols that require that no adversary, not even
active one, can identify the long-term keys used by the peers to an exchange even
if provided with a list of candidate keys (a notion reminiscent of key anonymity
for public key encryption [8]).

Fortunately, many established AKE protocols are key hiding, including
implicitly authenticated protocols such as 3DH [44] and HMQV [41], and
KEM-based protocols with key-hiding KEMs (e.g., SKEME [39]). The
non-committing property of encryption models symmetric encryption as an
ideal model (similarly to the case of EKE discussed above) and allows for
implementations based on random oracles with hash-to-curve operations to
encode group elements as strings (see Section 8). As a result, KHAPE with
HMQV, uses only one fixed-base exponentiation, one variable-base
(multi)exponentiation for each party, and one hash-to-curve operation for the
client. In all, it achieves computational overhead relative to unauthenticated
Diffie-Hellman of less than the cost of one exponentiation, thus providing a
close-to-optimal answer to our motivating questions above. Such computational
performance compares favorably to that of other efficient aPAKE protocols
such as SPAKE2+ and OPAQUE that incur overhead of one and two
(variable-base) exponentiations, respectively, for server and client. In terms of
number of messages, KHAPE uses 4 (3 if server initiates), compared to 3
messages in SPAKE2+ and OPAQUE.

Refer to Section 6 for a detailed description and rationale of the generic
KHAPE protocol (compiling any key-hiding AKE into an aPAKE) and to
Section 7 for the instantiation using HMQV.

On Strong aPAKE and reliance on OPRF. In the comparisons above, it
is important to stress that OPAQUE achieves a stronger notion of aPAKE, the
so called Strong aPAKE (saPAKE) model from [37]. In this model, the attacker
that compromises a server can only start running an offline dictionary attack
after breaking into the server. In contrast, in regular aPAKE, an offline attack
is still needed but a specialized dictionary can be prepared ahead of time and
used to find the password almost instantaneously when breaking into the server.
KHAPE, as discussed above, does not provide this stronger security. However, as
shown in [37], one can add a run of an OPRF to any aPAKE protocol to achieve

4 Dispensing with authentication of credentials in OPAQUE completely breaks the
protocol, allowing for trivial offline dictionary attacks.

3

Strong aPAKE security. If one does that to KHAPE, one gets a Strong aPAKE
protocol with performance similar to that of OPAQUE (using HMQV or 3DH).

However, there is a significant difference in the reliance on the security of
OPRF. While the password security of OPAQUE breaks down with a
compromise of the OPRF key (namely, it allows for an offline dictionary attack
on the password), in KHAPE the effect of compromising the OPRF is only to
fall back to the (non-strong) aPAKE setting. In particular, this distinction is
relevant in the context of quantum-safe cryptography as there are currently no
known efficient OPRFs considered to be quantum safe. This opens a path to
quantum-safe aPAKEs based on KHAPE with key hiding quantum-safe KEMs.

Closer comparison with OPAQUE. As stated above, KHAPE has an
advantage over OPAQUE in terms of security due to its weaker reliance on
OPRF and its computational advantage when the OPRF is not used. Also,
KHAPE seems more conducive to post-quantum security via post-quantum
key-hiding KEMs.5 On the other hand, KHAPE requires one more message and
allows for a more restrictive family of AKEs relative to OPAQUE (e.g., it does
not allow for signature-based protocols as those based on SIGMA [40] and used
in TLS 1.3 and IKEv2). KHAPE also relies for its analysis on the ideal cipher
model while OPAQUE uses the random oracle model. An interesting advantage
of KHAPE over OPAQUE is that in OPAQUE, an online attacker testing a
password learns whether the password was wrong before the server does (in
KHAPE the server learns first). This leads to a more complex mechanism for
counting password failures at a server running OPAQUE, especially in settings
with unreliable communication. Finally, we point out an advantage of using an
OPRF with KHAPE (in addition to providing Strong aPAKE security): It
allows for multi-server security via a threshold OPRF [36] where an attacker
needs to break into multiple servers before it can run an offline attack on a
password.

UC model analysis of (key-hiding) AKE’s. All our protocols are framed
and analyzed in the Universally Composable (UC) model [17]. This includes a
formalization of the key-hiding AKE functionality that underlies the design of
KHAPE. In order to instantiate KHAPE with specific AKE protocols, we prove
that protocols 3DH [44] and HMQV [41] realize the key-hiding AKE functionality
(in the ROM and under the Gap CDH assumption). We prove a similar result
for SKEME [39] with appropriate KEM functions. We see the security analysis
of these AKE protocols in the UC model, with and without key confirmation, as
a contribution of independent interest. Moreover, the study of key-hiding AKE
has applicability in other settings, e.g., where a gateway or IP address hides
behind it other identities; say, a corporate site hosting employee identities or a
web server aggregating different websites.

Organization. In Section 2, we define the notion of UC key-hiding AKE. In
Sections 3 and 4, we show, respectively, that 3DH and HMQV, are secure UC

5 We are currently investigating the use of NIST’s post-quantum KEM selections [47]
in conjunction with KHAPE.

4

key-hiding AKE protocols under the Gap DH assumption in ROM. In Section 5,
we study the security of the SKEME protocol as a key-hiding AKE. In Section
6, we show a compiler from key-hiding AKE to asymmetric PAKE. In Section
7 we describe a concrete example of aPAKE, KHAPE-HMQV, that instantiates
KHAPE with HMQV as the key-hiding AKE. Finally, in Section 8 we survey
potential instantiations of our ideal cipher encryption. In the full version of the
paper [28], we include more background material as well as full proofs for all our
theorems.

2 The Key-Hiding AKE UC Functionality

Protocol KHAPE results from the composition of an encrypted credentials
scheme and a key-hiding AKE protocol. Fig. 1 defines the UC functionality
FkhAKE that captures the properties required from a key-hiding AKE protocol.
The modeling choices target the following requirements: First, as shown in
Section 6, the security and key-hiding properties of this key-hiding AKE model
suffice for our main application, a generic construction of UC aPAKE from any
protocol realizing FkhAKE. Second, as we show in the final version [28], adding
a standard key confirmation to any protocol that realizes FkhAKE results in a
(standard) UC AKE with explicit entity authentication. Lastly, this
functionality is realized by several well-known and efficient AKE protocols,
including 3DH and HMQV, as shown in Sections 3 and 4, as well as by a
KEM-based AKE such as SKEME, if instantiated with a key-hiding KEM, see
Section 5. We provide more details and rationale for the FkhAKE next.

High-level requirements for key-hiding AKE. The most salient property
we require from AKE is key hiding. To illustrate this requirement consider an
experiment where the attacker A is provided with a transcript of a session
between a party P and its counterparty CP. Party P has two inputs in this
AKE instance: a public key pkCP for CP and its own private key skP which P
uses to authenticate to CP who presumably knows P’s public key pkP. In
addition, A is given a pair of private keys: P’s private key skP and a second
random independent private key. A’s goal is to decide which of the two keys P
used in that session.6 We are interested in AKE protocols where the attacker
has no better chance to answer correctly than guessing randomly even for
sessions in which A is allowed to choose the messages from CP.

The key hiding property will come up in the analysis of KHAPE as follows.
The attacker learns a ciphertext c that encrypts the user’s private key under
the user’s password. By decrypting this ciphertext under all passwords in a
dictionary, the attacker obtains a set of possible private keys for the user. The key
hiding property ensures that the attacker cannot identify the correct key (or the
password) in the set. Fortunately, as we prove here, a large class of AKE protocols

6 This is reminiscent of key anonymity for PK encryption [8] where the attacker needs
to distinguish between public keys for a given ciphertext.

5

– PK is the list of all public keys created via Init, initially empty
– PK P is the list of all public keys created by P, initially empty for all P
– CPK is the list of all compromised keys in PK , initially empty

Keys: Initialization and Attacks

On Init from P:

Send (Init,P) to A, let A specify pk s.t. pk 6∈ PK , add pk to PK and to PK P, and
output (Init, pk) to P

On (Compromise,P, pk) from A:

If pk ∈ PK P then add pk to CPK

Login Sessions: Initialization and Attacks

On (NewSession, sid,CP, pk , pkCP) from P:

If pk ∈ PK P and there is no prior session record 〈sid,P, ·, ·, ·, ·〉 then:

– create session record 〈sid,P,CP, pk , pkCP,⊥〉 marked fresh
– initialize random function Rsid

P : ({0, 1}∗)3 → {0, 1}κ
– send (NewSession, sid,P,CP) to A

On (Interfere, sid,P) from A:

If session 〈sid,P,CP, pkP, pkCP,⊥〉 is marked fresh then change its mark to interfered

Login Sessions: Key Establishment

On (NewKey, sid,P, α) from A:

If ∃ session record rec = 〈sid,P,CP, pkP, pkCP,⊥〉 then:

– if rec is marked fresh: If ∃ record 〈sid,CP,P, pkCP, pkP, k
′〉 marked fresh s.t.

k ′ 6= ⊥ then set k ← k ′, else pick k ←R {0, 1}κ
– if rec is marked interfered then set k ← Rsid

P (pkP, pkCP, α)
– update rec to 〈sid,P,CP, pkP, pkCP, k〉 and output (NewKey, sid, k) to P

Session-Key Query

On (SessionKey, sid,P, pk , pk ′, α) from A:

If ∃ record 〈sid,P, ...〉 and pk ′ ∈ CPK or pk ′ 6∈ PK , send Rsid
P (pk , pk ′, α) to A

Fig. 1. FkhAKE: Functionality for Key-Hiding AKE

6

satisfy the key-hiding property, including implicitly authenticated protocols such
as HMQV and 3DH, and some KEM-based protocols.

Additionally, FkhAKE strengthens the basic guarantees of AKE protocols in
several ways. It requires resilience to KCI (key-compromise impersonation)
attacks, namely, upon the compromise of the private key of party P, the
attacker can impersonate P to others but it cannot impersonate others to P. In
the aPAKE setting, this ensures that an attacker that compromises a server,
cannot impersonate the client to the server without going through an offline
dictionary attack. In the context of key hiding AKE, we also need KCI
resilience to prevent the attacker from authenticating to the client when given
a set of possible private keys for that client.

Second, FkhAKE requires that keys exchanged by a honest P with a corrupted
CP still maintain a good amount of randomness, namely, the attacker can cause
them to deviate from uniform but not by much (a property sometimes referred
to as “contributive” key exchange, and not required in standard UC treatment).
In the setting of protocol KHAPE, adversarial choice of session keys (particularly
the ability of the attacker to create equal keys in different sessions) could lead to
protocols where the attacker can test more than one password in a single session.

Properties that we do not consider as part of the FkhAKE functionality, but
will be provided by our final aPAKE protocol, KHAPE, include key confirmation,
explicit authentication and full forward secrecy (FkhAKE itself implies forward
secrecy only against passive attackers).

Identities and public keys. We consider a setting where each party P has
multiple public keys in the form of arbitrary handles pk . In the security model
we assume that the public keys are arbitrary bitstrings chosen without loss of
generality by the attacker (ideal adversary) A, with the limitation that honest
parties are assigned non-repeating pk strings. Pairs (P, pk) act as regular UC
identities from the environment’s point of view, but the pk component is
concealed from A during key exchange sessions, even for sessions which are
actively attacked by A. This model can capture practical settings where P
represents a gateway or IP address behind which other identities reside, e.g., a
corporate site hosting employee identities or a web server aggregating different
websites, and where one is interested to hide which party behind the gateway is
communicating in a given session. Our specific application setting when using
key-hiding AKE in the aPAKE construction of Section 6, is more abstract: The
party symbols P,CP represent parties like internet clients and servers, while
the multiplicity of public keys comes from decryptions of encrypted credentials
under multiple password.

(Compromise,P, pk). This adversarial action hands the (long-term) private key
of party (P, pk) to the attacker A. Such private-key leakage does not provide A
with control over party P, and it does not even imply that the sessions which
party P runs using the (leaked) key pk are insecure. However, when combined
with the ability to run active attacks, via the Interfere action below, A can fully
impersonate (P, pk) in sessions of A’s choice. The leakage of the private key sk
corresponding to (P, pk) does not affect the security of a session executed by

7

party P even if it uses the compromised key pk . This captures the KCI property,
i.e. that leakage of the private key of party P does not allow to impersonate
others to party P. Also, any party P′ which runs AKE with a counterparty
identity specified as (P, pk), will also be secure as long as A does not actively
interfere in that protocol. This captures the requirement that passively-observed
AKE instance are secure regardless of the compromise of the long-term secrets
used by either party. Note that A cannot compromise a party P but rather an
identity pair (P, pk) and such compromise does not affect other pairs (P, pk ′).

NewSession. A session is initiated by a party P that specifies its own identity
pair (P, pk) as well as the intended counterparty identity pair (CP, pkCP). Session
identifiers sid are assumed to be unique within an honest party. The role of the
initialized session-specific random function Rsid

P is described below. A record for a
session is initialized as fresh and is represented by a tuple 〈sid,P,CP, pk , pkCP,⊥〉
where the last position, set to ⊥, is reserved for recording the session key. An
essential element in NewSession is that A learns (sid,P,CP) but it does not learn
(pk , pkCP). In the real world this translates into the inability of the attacker to
identify public (or private) keys associated to a pair of parties (P,CP) engaging
in the Key-Hiding AKE protocol.

The functionality enforces that an honest P can start a session only on key pk
which P generated and for which it holds a private key. However, the functionality
does not check anything about the intended counterparty’s identity (CP, pkCP),
so the private key corresponding to pkCP could be held by party CP, or it could
be held by a different party, or it could be compromised by the adversary, or it
could be that pkCP was not even generated by the key generation interface of
FkhAKE, and it is an adversarial public key, whose private key the environment
gave to the adversary. Our model thus includes honest parties who are tricked to
use a wrong public key for the counterparty (e.g., via a phishing attack) in which
case the attacker may know the corresponding private key. Note that regardless
of what key pkCP the session runs on, it is not given to the adversary, so if it
is a key created by the envriment (i.e. a higher-level application which uses the
key-hiding AKE) it does not necessarily follow that this key will be known to
the adversary, and only in the case it is known the adversary will be able to
attack that session using interfaces Interfere, NewKey, and SessionKey below.

Function Rsid
P . When command NewSession creates a session for (sid,P) the

functionality initializes a random function Rsid
P specific to this session. Function

Rsid
P is used to set the value of the session key for sessions in which A actively

interferes. It also allows A to have limited control over the value of the key
under strict circumstances, namely it must know the pulic keys pk , pkCP used
on that session, and it must compromise party (CP, pkCP). Even then the only
freedom A has is to evaluate function Rsid

P on any point α via a SessionKey
query, see below, and then choose one such point in the NewKey caommand.
This captures the “contributive” property discussed above: If an honest party
runs the AKE protocol even with adversary as a counterparty, the adversary’s
influence over the session key is limited to pre-computing polynomially-many
random key candidates and then choosing one of them as a key on that session.

8

The exact mechanics and functionality of Rsid
P are defined in the NewKey and

SessionKey actions below.

(Interfere, sid,P). This action represents an active attack on session (P, sid) and
makes the session change its status from fresh to interfered. The adversary does
not have to know either P’s own key pk or the intended counterparty key pkCP

which P uses on that session.7 Such active atack will prevent session (P, sid) from
establishing a secure key with any other honest party session, e.g. (CP, sid). It
will also allow A to learn and/or influence the value of the session key this
session outputs (using function Rsid

P), but only if in addition to being active A
compromises the counterparty key (CP, pkCP) used on session (P, sid).

NewKey. This action finalizes an AKE instance and makes (P, sid) output a
session key. If the session is fresh then it receives either a fresh random key or
the same key that was previously received by a matching session. If the session
is interfered, the value of the session key is determined by the function Rsid

P on
input (pk , pkCP, α) where α is chosen arbitrarily by A, allowing A to influence
the value of the session key (but in a very limited way as explained above). In
the real-world, α represents transcript elements generated by the attacker, e.g.,
value Y an adversarial P2 sends to an honest party P1 in 3DH or HMQV.

SessionKey. This action allows A to query the function Rsid
P associated to a

session (sid,P), potentially allowing A to learn and/or influence the session key
for (sid,P). Note that learning any values of function Rsid

P is useless unless the
adversary actively attacks session (sid,P), because otherwise Rsid

P is not used to
determine the key output by session (sid,P). Moreover, A needs to provide
(pk , pkCP, α) as input to SessionKey, and if those inputs do not match P’s own
key pk and the intended counterparty key pkCP which P uses on session
(sid,P), then this query reveals an irrelevant value, since Rsid

P is a random
fuction. Finally, FkhAKE releases value Rsid

P (pk , pkCP, α) to A only if key pkCP is
either compromised or adversarial. Summing up, the ability to learn (and/or
control via the NewKey interface) the session key output by session (sid,P) is
restricted to the case where all of the following hold: A actively interfered on
that session, A guesses keys pk , pkCP which this session uses, and A
compromises counterparty’s key (CP, pkCP).

How FkhAKE ensures key hiding and session security. The description
of FkhAKE is now complete. We now explain how FkhAKE ensures the key hiding
property by which A cannot learn the value pk for an identity pair (P, pk) even if
A knows P, has a list of all possible values of (P, pk), and actively interacts with
(P, pk) using a compromised party (CP, pkCP). Let’s assume these conditions
hold. Note that the only actions in which A can learn pk values from FkhAKE are

7 Currently functionality FkhAKE assumes the ideal-world adversary A knows, and
indeed creates, all honest parties’ public keys. A tighter model is possible, if FkhAKE

samples public keys on behalf of honest players using the prescribed key generation
algorithm, instead of letting A pick them. This would allow modeling use cases where
the public keys are not public and are not freely available to the adversary.

9

upon key generation and via the SessionKey call. Key generation assumes that A
has a list of all possible values (P, pk). As we explain above, the only argument
on which the value of function Rsid

P is useful is a tuple (pk , pkCP, α) which the
functionality uses to derive a session key for an actively attacked session (sid,P).

Consequently, the only way FkhAKE can leak the session key output by
(sid,P) is if A satisfies the three conditions above, i.e. it interferes in that
session, key pkCP used on that session is either compromised or adversarial,
and A queries SessionKey on the proper keys pk , pkCP. This is also the only
way A can learn anything about keys pk , pkCP used by session (sid,P): It has
to attack the session, compromise pkCP, get a session key candidate k∗ via
query SessionKey on pk , pkCP, and then compare this key candidate against any
information it has about the key k output by session (sid,P). For example, if
P’s higher-level application uses key k to MAC or encrypt a message, the
adversary can verify the result against a candidate key k∗ and thus learn
whether k∗ = k , and hence whether keys pk , pkCP which A used to compute k∗

were the same keys that were used by session (sid,P).

3 3DH as Key-Hiding AKE

We show that protocol 3DH, presented in Figure 2, realizes the UC notion of
Key-Hiding AKE, as defined by functionality FkhAKE in Section 2, under the Gap
CDH assumption in ROM. As a consequence, 3DH can be used to instantiate
protocol KHAPE in a simple and efficient way.

3DH [44] is a simple, implicitly authenticated key exchange used as the basis
of the X3DH protocol [45] that underlies the Signal protocol. It consists of a
plain Diffie-Hellman exchange authenticated via the session-key derivation that
combines the ephemeral and long-term key of both peers. Specifically, if (a,A)
and (b,B) are the long-term key pairs of two parties P1 and P2, and (x,X)
and (y, Y) are their ephemeral DH values, then 3DH combines these key pairs
to compute a (hash of) the triple of Diffie-Hellman values, σ = gxb‖gay‖gxy.
Security of 3DH is intuitively easy to see: It follows from the fact that to compute
σ the attacker must either (1) know (x, a) to attack party P2 who uses A as a
public key for its counterparty, or (2) know (y, b) to attack party P1 who uses
B as a public key for its counterparty. In other words, the attacker wins only if
it is an active man-in-the-middle attacker and it compromises the key used as
counterparty’s public key by the attacked party. (Recall that “compromising a
public key” stands for learning the corresponding private key.) The key-hiding
property comes from the fact that the values X and Y exchanged in the protocol
do not depend on long-term keys, and the fact that the only information about
the long-term keys used by any party can be gleaned only from the session key
they output and from H oracle queries on a σ value computed using these keys.
The formal proof of key-hiding in the UC model captures this argument, and we
present it below.

We note that 3DH is not the most efficient key-hiding AKE. 3DH costs one
fixed-base and three variable-base exponentiations per party, and in Section 4

10

we will show that HMQV, which preserves the bandwidth and round complexity
of 3DH but folds the three variable-base exponentiations of 3DH into a single
multi-exponentiation, realizes the key-hiding AKE functionality under the same
Gap CDH assumption (although with worse exact security guarantees). However,
HMQV can be seen as a modification of 3DH, and the security analysis of 3DH
we show below will form a blueprint for the analysis of HMQV in Section 4.

group G of prime order p with generator g
hash function H : {0, 1}∗ → {0, 1}κ

P1 on Init P2 on Init
a←R Zp , A← ga b←R Zp , B ← gb

store sk = a tagged by pk = A store sk = b tagged by pk = B
output pk = A output pk = B

P1 on (NewSession, sid,CP1,A,B) P2 on (NewSession, sid,CP2,B ,A)

(assume P1 <lex CP1) (assume CP2 <lex P2)

retrieve sk = a tagged by pk = A retrieve sk = b tagged by pk = B
x←R Zp , X ← gx y ←R Zp , Y ← gy

-X � Y

σ1 ← Bx‖Y a‖Y x σ2 ← Xb‖Ay‖Xy

k1 ← H(sid,P1,CP1, X, Y, σ1) k2 ← H(sid,CP2,P2, X, Y, σ2)
output k1 output k2

Fig. 2. Protocol 3DH: “Triple Diffie-Hellman” Key Exchange

Conventions.

(1) In Figure 2 we assume that each party runs 3DH using key pair (sk , pk)
previously generated via procedure Init. In Figure 2 these are resp. (a,A) for P1

and (b,B) for P2. Note that no such requirement is posed on the counterparty
public key each party uses, resp. public key B used by P1 and A used by P2.

(2) We implicitly assume that each party Pi uses its own identity as a protocol
input, together with the identity CPi of its assumed counterparty. These
identities could be e.g. domain names, user names, or any other identifiers.
They have no other semantics except that the two parties can establish the
same session key only if they assume matching identifiers, i.e.
(P1,CP1) = (CP2,P2).

(3) Protocol 3DH is symmetric except for the ordering of group elements in tuple
σ and the ordering of elements in the inputs to hash H. Each protocol party P
can locally determine this order based on whether string P is lexicographically
smaller than string CP. (In Figure 2 we assume that P1 <lex P2.) An equivalent
way to see it is that each party P computes a “role” bit role ∈ {1, 2} and follows

11

the protocol of party Prole in Figure 2: Party P sets this bit as role = 1, called
the “client role”, if P <lex CP, and role = 2, called the “server role”, otherwise.

(4) We assume that parties verify public keys and ephemeral DH values, resp.
B, Y for P1 and A,X for P2, as group G elements. Optionally, instead of group
membership testing one can use cofactor exponentiation to compute σ.

Cryptographic Setting: Gap CDH and RO Hash. Let g generate a cyclic
group G of prime order p. The Computational Diffie-Hellman (CDH) assumption
on G states that given (X,Y) = (gx, gy) for (x, y) ←R (Zp)2 it is hard to find
cdhg(X,Y) = gxy. The Gap CDH assumption states that CDH is hard even if
the adversary has access to a Decisional Diffie-Hellman oracle ddhg, which on
input (A,B,C) returns 1 if C = cdhg(A,B) and 0 otherwise.

Theorem 1. Protocol 3DH shown in Figure 2 realizes FkhAKE if the Gap CDH
assumption holds and H is a random oracle.

Initialization: Initialize an empty list KLP for each P

On (Init,P) from F :

pick sk ←R Zp , set pk ← gsk , add (sk , pk) to KLP, and send pk to F

On Z’s permission to send (Compromise,P, pk) to F :

if ∃ (sk , pk) ∈ KLP send sk to A and (Compromise,P, pk) to F

On (NewSession, sid,P,CP) from F :

if P <lex CP then set role← 1 else set role← 2
pick w ←R Zp , store 〈sid,P,CP, role, w〉, send W = gw to A

On A’s message Z to session Psid (only first such message counts):

if ∃ record 〈sid,P,CP, ·, w〉:
if ∃ no record 〈sid,CP,P, ·, z〉 s.t. gz = Z then send (Interfere, sid,P) to F
send (NewKey, sid,P, Z) to F

On query (sid,C, S, X, Y, σ) to random oracle H:

if ∃ 〈(sid,C, S, X, Y, σ), k〉 in TH then output k , else pick k ←R {0, 1}κ and:

if ∃ record 〈sid,C,S, 1, x〉 and (a,A) ∈ KLC s.t. (X,σ) = (gx, (Bx‖Y a‖Y x)) for
some B , send (SessionKey, sid,C,A,B , Y) to F , if F returns k∗ reset k ← k∗

if ∃ record 〈sid, S,C, 2, y〉 and (b,B) ∈ KLS s.t. (Y, σ) = (gy, (Xb‖Ay‖Xy)) for
some A, send (SessionKey, sid, S,B ,A, X) to F , if F returns k∗ reset k ← k∗

add 〈(sid,C, S, X, Y, σ), k〉 to TH and output k

Fig. 3. Simulator SIM showing that 3DH realizes FkhAKE (abbreviated “F”)

Proof Overview. We show that that for any efficient environment algorithm
Z, its view of the real-world security game, i.e. an interaction between the real-
world adversary and honest parties who follow protocol 3DH, is indistinguishable

12

Initialization: Initialize an empty list KLP for each P

On message Init to P:

pick sk ←R Zp , set pk ← gsk , add (sk , pk) to KLP, and output (Init, pk)

On message (Compromise,P, pk):

If ∃ (sk , pk) ∈ KLP then output sk

On message (NewSession, sid,CP, pkP, pkCP) to P:
if ∃ (sk , pkP)∈KLP, pick w ←R Zp , write 〈sid,P,CP, sk , pkCP, w〉, output W = gw

On message Z to session Psid (only first such message is processed):

if ∃ record 〈sid,P,CP, skP, pkCP, w〉, set σ ← ((pkCP)w‖ZskP‖Zw),
k ← H(sid, {P,CP,W,Z, σ}ord), output (NewKey, sid, k)

On H query (sid,C, S, X, Y, σ):

if ∃ 〈(sid,C, S, X, Y, σ), k〉 in TH then output k , else pick k ←R {0, 1}κ and:
add 〈(sid,C, S, X, Y, σ), k〉 to TH and output k

Fig. 4. 3DH: Environment’s view of real-world interaction (Game 0)

from its view of the ideal-world game, i.e. an interaction between the ideal-world
adversary, whose role is played by the simulator, with the functionality FkhAKE.
We show the simulator algorithm SIM in Figure 3. The real-world game, Game 0,
is shown in Figure 4, and the ideal-world game defined by a composition of
algorithm SIM and functionality FkhAKE, denoted Game 7, is shown in Figure 5.

As is standard, we assume that the real-world adversary A is a subroutine
of the environment Z, therefore the sole party that interacts with Games 0 or 7
is Z, issuing commands Init and NewSession to honest parties P, adaptively
compromising public keys, and using A to send protocol messages Z to honest
party’s sesssions and making hash function H queries. The proof follows a
standard strategy of showing a sequence of games that bridge between Game 0
and Game 7, where at each transition we argue that the change is
indistinguishable. We use Gi to denote the event that Z outputs 1 while
interacting with Game i, and the theorem follows if we show that
|Pr[G0]− Pr[G7]| is negligible under the stated assumptions.

Notation. To make the real-world interaction in Figure 4 more concise, we
adopt a notation which stresses the symmetric nature of 3DH protocol: We
use variable W = gw to denote the message which party P sends out, and
variable Z to denote the message it receives, e.g. (W,Z) = (X,Y) if P plays the
“client” role and (W,Z) = (Y,X) if P plays the “server” role. If σ = σ1‖σ2‖σ3

then let {σ}flip = σ2‖σ1‖σ3. We will use {P,CP,W,Z, σ}ord to denote string
P,CP,W,Z, σ if P <lex CP or string CP,P, Z,W, {σ}flip if CP <lex P. With this
notation each party’s 3DH protocol code can be restated in the symmetric way,
as in Figure 4, because session key computation of party P can be denoted in a
uniform way as k ← H(sid, {P,CP,W,Z, σ}ord) for σ = (pkCP)w‖ZskP‖Zw.

13

We use the same symmetric notation to describe simulator SIM in Figure 3
and the ideal-world game implied by SIM and FkhAKE in Figure 5, except for the
way SIM treats H oracle queries, which we separate into two cases based on the
roles played by the two parties whose sessions are potentially involved in any
H query. In H-handling code of SIM we denote the identifiers of the two parties
involved in a query as C and S, for the parties playing respectively the client
and server roles, and the code that follows uses role-specific notation to handle
attacks on the sessions executed respectively by C and S.

Throughout the proof we use Psid to denote a session of party P with identifier
sid. We use vsidP to denote a local variable v pertaining to session Psid or a message
v which this session receives, and whenever identifier sid is clear from the context
we write vP instead of vsidP . Note that session CPsid is uniquely defined for every

session Psid by setting CP = CPsid
P , and we will implicitly assume below that a

counterparty’s session is defined in this way.
For a fixed environment Z, let qK and qses be (the upper-bounds on) the

number of resp. keys and sessions initialized by Z, let qH be the number of H
oracle queries Z makes, and let εZg-cdh be the maximum advantage in solving
Gap CDH in G of an algorithm that makes qH DDH oracle queries and uses the
resources of Z plus O(qH + qses) exponentiations in G.

Define the following two functions for every session Psid:

3DHsid
P (pk , pk ′, Z) = cdhg(W, pk ′)‖cdhg(pk , Z)‖cdhg(W,Z) for W = W sid

P (1)

Rsid
P (pk , pk ′, Z) = H(sid, {P,CPsid

P ,W
sid
P , Z, 3DHsid

P (pk , pk ′, Z)}ord) (2)

If session Psid runs on its own private key skP, counterparty’s public key pkCP,
and receives message Z, then its output session key is k = Rsid

P (pkP, pkCP, Z)
for pkP = gskP . Note also that an adversary can locally compute function Rsid

P

for any pkP, any key pkCP which was either generated by the adversary or it
was generated by an honest party but it has been compromised, and any Z
which the adversary generates, because the adversary can then compute
functions cdhg(·, pkCP) and cdhg(·, Z) on any inputs.

Simulator. Simulator SIM, shown in Figure 3, picks all (sk , pk) pairs on
behalf of honest players and surrenders the corresponding private key whenever
an honestly-generated public key is compromised. To simulate honest party P
behavior the simulator sends W = gw for random w. When Psid receives Z the
simulator forks: If Z originated from honest session CPsid which runs on
matching identifiers (sid,CP,P), SIM treats this as a case of honest-but-curious
attack that connects two potentially matching sessions and sends NewKey to
FkhAKE. (Z included in this call is ignored by FkhAKE.) Otherwise SIM treats it
as an active attack on Psid and sends Interfere followed by (NewKey, ..., Z). Note
that in response FkhAKE will treat Psid as interfered and set its output key as
k ← Rsid

P (pkP, pkCP, Z) where (pkP, pkCP) are the (own,counterparty) pair of
public keys which Psid uses, and which is unknown to SIM (except if pkCP was
generated by the adversary, in which case it was leaked to SIM at NewSession).
Finally, SIM services H oracle queries (sid,C,S, X, Y, σ) by identifying those

14

that pertain to viable session-key computations by either session Csid or Ssid.
We describe it here only for Csid-side H queries since Ssid-side queries are
handled symmetrically. If H query involves σ = 3DHsid

C (A,B , Y) for some A,B
s.t. (1) A is one of the public keys generated by C, and (2) B is either some
compromised honestly generated public key or it is an adversarial key which
Csid uses for the counterparty (recall that if Csid runs on an adversary-generated
counterparty key pkCP then functionality FkhAKE leaks it to the adversary),
then SIM treats that query as a potential computation of a session key output
by Csid, queries (SessionKey, sid,C,A,B , Y) to FkhAKE. If B is compromised or
adverarial then FkhAKE responds with k∗ ← Rsid

C (A,B , Y) and SIM embeds k∗

into H output. Note that if (A,B) matches the (own,counterparty) keys used
by Csid, and Csid receives Z = Y in the protocol, then k∗ will match the session
key output by Csid. For all other triples (A,B , Y) the outputs of Rsid

C are
irrelevant except that (1) if the adversary learns the real session key output by
Csid then these H outputs inform the adversary that pair (A,B) is not the
(own,counterparty) key pair used by Csid, and (2) if the adversary bets on some
(A,B) pair used by Csid then it can use H queries to find an “optimal” protocol
response Y to Csid for which the resulting (randomly sampled) session key has
some properties the adversary likes, e.g. its last 20 bits are all zeroes, etc.

Game Sequence from Game 0 to Game 7. The full proof comprising the
transitions between these games is presented in the full version [28].

4 HMQV as Key-Hiding AKE

We show that protocol HMQV [41], presented in Figure 6, realizes the UC notion
of Key-Hiding AKE, as defined by functionality FkhAKE in Section 2, under the
Gap CDH assumption in ROM. It allows us to use HMQV with KHAPE, resulting
in its most efficient instantiation, and, to the best of our knowledge the most
efficient aPAKE protocol proposed. HMQV has been analyzed in [41] under
the game-based AKE model of Canetti and Krawczyk [18], but the analysis we
present is the first, to the best of our knowledge, to be done in the UC model.8

The logic of why HMQV is key hiding is similar to the case of 3DH. Namely,
the only way to attack the privacy of party P which runs HMQV on inputs
(sk , pk) = (a,B), is to compromise the private key b corresponding to the public
key B . (And symmetrically for the party that runs on (sk , pk) = (b,A).) The
HMQV equation, just like the 3DH key equation, involves both the ephemeral
sessions secrets (x, y) and the long-term keys (a, b), combining them in a DH-
like formula σ = g(x+da)·(y+eb) where d, e are hashes of (session state identifiers
and) resp. X = gx and Y = gy. Following essentially the same arithmetics as in
the proof due to [41] shows that the only way to compute σ is to know either
both x, a or both y, b, which means that the attacker must be (1) active, to chose
the ephemeral session state variable resp. x or y, and (2) it must know the
counterparty private key, resp. a or b.

8 However, we do not include adaptive session state compromise considered in [18, 41].

15

Initialization: Initialize empty lists: PK , CPK , and KLP for all P

On message Init to P:

set sk ←R Zp , pk ← gsk , send (Init, pk) to P, add pk to PK and (sk , pk) to KLP

On message (Compromise,P, pk):

If ∃ (sk , pk) ∈ KLP add pk to CPK and output sk

On message (NewSession, sid,CP, pkP, pkCP) to P:

if ∃ (sk , pkP) ∈ KLP then:

initialize random function Rsid
P : ({0, 1}∗)3 → {0, 1}κ

if P <lex CP then set role← 1 else set role← 2
pick w ←R Zp , write 〈sid,P,CP, pkP, pkCP, role, w,⊥〉 as fresh, output W = gw

On message Z to session Psid (only first such message is processed):

if ∃ record rec = 〈sid,P,CP, pkP, pkCP, role, w,⊥〉:
if ∃ record rec′ = 〈sid,CP,P, pk ′CP, pk

′
P, role′, z, k ′〉 s.t. gz = Z

then if rec′ is fresh, (pkP, pkCP) = (pk ′P, pk
′
CP), and k ′ 6= ⊥:

then k ← k ′

else k ←R {0, 1}κ
else set k ← Rsid

P (pkP, pkCP, Z) and re-label rec as interfered
update rec to 〈sid,P,CP, pkP, pkCP, role, w, k〉, send (NewKey, sid, k) to P

On H query (sid,C, S, X, Y, σ):

if ∃ 〈(sid,C, S, X, Y, σ), k〉 in TH then output k , else pick k ←R {0, 1}κ and:

1. if ∃ record 〈sid,C, S, ·, ·, 1, x, ·〉 s.t. (X,σ) = (gx, (Bx‖Y a‖Y x)) for some
(a,A) ∈ KLC and B s.t. B ∈ CPK or B 6∈ PK then reset k ← Rsid

C (A,B , Y)

2. if ∃ record 〈sid, S,C, ·, ·, 2, y, ·〉 s.t. (Y, σ) = (gy, (Xb‖Ay‖Xy)) for some
(b,B) ∈ KLS and A s.t. A ∈ CPK or A 6∈ PK then reset k ← Rsid

S (B ,A, X)

add 〈(sid,C, S, X, Y, σ), k〉 to TH and output k

Fig. 5. 3DH: Environment’s view of ideal-world interaction (Game 7)

16

group G of prime order p with generator g
hash functions H : {0, 1}∗ → {0, 1}κ, H′ : {0, 1}∗ → Zp

P1 on Init P2 on Init
a←R Zp , A← ga b←R Zp , B ← gb

store sk = a tagged by pk = A store sk = b tagged by pk = B
output pk = A output pk = B

P1 on (NewSession, sid,CP1,A,B) P2 on (NewSession, sid,CP2,B ,A)

(assume P1 <lex CP1) (assume CP2 <lex P2)

retrieve sk = a tagged by pk = A retrieve sk = b tagged by pk = B
x←R Zp , X ← gx y ←R Zp , Y ← gy

-X � Y

d1 ← H′(sid,P1,CP1, 1, X) d2 ← H′(sid,CP2,P2, 1, X)
e1 ← H′(sid,P1,CP1, 2, Y) e2 ← H′(sid,CP2,P2, 2, Y)

σ1 ← (Y · Be1)x+d1·a σ2 ← (X ·Ad2)y+e2·b

k1 ← H(sid,P1,CP1, X, Y, σ1) k2 ← H(sid,CP2,P2, X, Y, σ2)
output k1 output k2

Fig. 6. Protocol HMQV [41]

Theorem 2. Protocol HMQV shown in Figure 6 realizes FkhAKE if the Gap CDH
assumption holds and H,H′ are random oracles.

The proof of theorem 2 follows the template of the proof for the corresponding
theorem on 3DH security, i.e. theorem 1, and we present it in the full version
[28].

5 SKEME as Key-Hiding AKE

We present a KEM-based instantiation of the SKEME protocol [39] in Figure
7. For compliance with the UC notion of AKE modeled by functionality
FkhAKE, we derive the session key via a hash involving several additional
elements, including a session identifier sid, party identities C and S, public keys
A and B , and the transcript X, c, Y, d. We will also use
{P,CP,A,B , X, c, Y, d, σ}ord to denote (P,CP, A,B, gw, c, Z, d, (K,L,Zw)) if P
plays role = 1, and string (CP,P, A,B, Z, c, gw, d, (K,L,Zw)) if role = 2. Using
this notation each party P can derive its session key as
k ← H(sid, {P,CP,A,B , X, c, Y, d, σ}ord).

The security of the protocol relies on two properties of the underlying
KEM. First, we assume KEM to be One-Way under
Plaintext-Checking-Attack, abbreviated as OW-PCA[31], where the attacker is
given access to a Plaintext-Checking Oracle that on input a key K and

17

ciphertext c, it tells if c decapsulates to K under a given KEM key. Second, we
require the KEM to be perfectly key-private, namely, given two pairs of
private-public keys and a key encapsulation under one of them, one cannot
distinguish (information-theoretically) which pair generated that ciphertext.
Note the correspondence to the notion of key-hiding PKE [8]. See more details
in the full version [28].

group G of prime order p with generator g
hash function H : {0, 1}∗ → {0, 1}κ

KEM scheme KEM = (Gen,Enc,Dec)

P1 on Init P2 on Init
(a,A)← KEM.Gen (b,B)← KEM.Gen
store sk = a tagged by pk = A store sk = b tagged by pk = B
output pk = A output pk = B

P1 on (NewSession, sid,CP1,A,B) P2 on (NewSession, sid,CP2,B ,A)

(assume P1 <lex CP1) (assume CP2 <lex P2)

retrieve sk = a tagged by pk = A retrieve sk = b tagged by pk = B
x←R Zp , X ← gx y ←R Zp , Y ← gy

c,K ← KEM.Enc(B) d, L← KEM.Enc(A)

-X, c � Y, d

L← KEM.Dec(a, d) K ← KEM.Dec(b, c)
σ ← (K,L, Y x) σ ← (K,L,Xy)
k1 ← H(sid,P1,CP1, A,B,X, c, Y, d, σ) k2 ← H(st,CP2,P2, A,B,X, c, Y, d, σ)
output k1 output k2

Fig. 7. Protocol SKEME: KEM-authenticated Key Exchange

Theorem 3. Protocol SKEME shown in Figure 7 realizes FkhAKE if the Gap
CDH assumption holds, KEM is a OW-PCA secure and perfect key-private KEM,
and H is a random oracle.

Because of inherent similarities of SKEME and 3DH, the proof of the above
theorem follows a similar pattern as the proof of Theorem 1, and we present it
in [28].

6 Compiler from key-hiding AKE to asymmetric PAKE

We show that any UC Key-Hiding AKE protocol can be converted to a UC
asymmetric PAKE (aPAKE) with a very small computational overhead. We
call this AKE-to-aPAKE compiler construction KHAPE, which stands for
Key-Hiding Asymmetric PakE, shown in Figure 8. The compiler views each

18

party’s AKE inputs, namely its own private key and its counterparty public
key, as a single object, an AKE “credential”. The two parties participating in
aPAKE, the server and the user, a.k.a. the client, each will have such a
credential: The server’s credential contains the server’s private key and the
client’s public key, and the client’s credential contains the client’s private key
and the server’s public key. Running AKE on such matching pair of inputs
would establish a secure shared key, but while the server can store its
credential, the client’s only input is her password and it is not clear how one
can derive an AKE credential from a password. Protocol KHAPE enables
precisely this derivation: In addition to server’s credential, the server will also
store a ciphertext which encrypts, via an ideal cipher, the client’s credential
under the user’s password, and the aPAKE protocol consists of server sending
that ciphertext to the client, the client decrypting it using the user’s password
to obtain its certificate, and using that certificate to run an AKE instance with
the server.

• cipher (IC∗.E, IC∗.D) on space of private and public AKE keys (See Def. 1)
• pseudorandom function prf

Password File Initialization on S’s input (StorePwdFile, uid, pw):

S generates two AKE key pairs (a,A) and (b,B), sets e ← IC∗.E(pw , (a,B)),
stores file[uid, S]← (e, (b,A)), and discards all other values

C on (CltSession, sid, S, pw) S on (SvrSession, sid,C, uid)

(a,B)← IC∗.D(pw , e) � e
(e, (b,A))← file[uid,S]

-(sid,C,S, a,B) � (sid,S,C, b,A)

Key-Hiding AKE

� k1 -k2

τ ← prf(k1, 1) -τ
γ ← ⊥ if τ 6= prf(k2, 1)

else γ ← prf(k2, 2)
� γ

K1 ← ⊥ if γ 6= prf(k1, 2) K2 ← ⊥ if τ 6= prf(k2, 1)
else K1 ← prf(k1, 0) else K2 ← prf(k2, 0)
output K1 output K2

Fig. 8. Protocol KHAPE: Compiler from Key-Hiding AKE to aPAKE

Reduced-bandwidth variant. In the aPAKE construction in Figure 8,
ciphertext e password-encrypts a pair of the client’s secret key skC and the
server’s public key pkS. Without loss of generality every AKE key pair (sk , pk)
is generated by the key generation algorithm from uniformly sampled

19

randomness r. The aPAKE construction can be modified so that envelope e
password-encrypts only the server’s public key pkS, while the client derives its
private key skC using the key generation algorithm on randomness r ← H(pw)
via RO hash H. Note that if key-hiding AKE is either 3DH or HMQV then this
amounts to the client setting it’s secret exponent a ← H(pw) where H maps
onto range Zq.9 This change does not simplify the construction of the ideal
cipher by much because typically the public key is a group element and the
private key is a random modular residue, but it reduces the size of ciphertext
e. We believe that the security proof for the aPAKE protocol in Figure 8 can
be adjusted to show security of this reduced-bandwidth implementation.

Why we need key-hiding AKE. Note that anyone who observes the
credential-encrypting ciphertext e can decrypt it under any password. Each
password guess will decrypt e into some credential cred = (skC, pkS), where
skC is a client’s private key and pkS is a server’s public key. Let cred(pw)
denote the credential obtained by decrypting e using password pw . For any
password guess pw∗ the attacker can use credential cred(pw∗) as input to an
AKE protocol with the server, but that is equivalent to an on-line password
authentication attempt using pw∗ as a password guess (see below). Note that
the attacker can also either watch or interfere with AKE instances executed by
the honest user on credential cred(pw) that corresponds to the correct
password pw . Moreover, the attacker w.l.o.g. holds a list of credential
candidates cred(pw1), ..., cred(pwn) corresponding to offline password guesses.
However, the key-hiding property of AKE implies that even if cred(pw) is on
the attacker’s list, interfering or watching client’s AKE instances cannot help
the attacker decide which credential is the one that the client uses. The only
way to learn anything from client AKE instances on input cred(pw) would be
to engage them using a matching credential, i.e. (skS, pkC). This is possible if
the adversary compromises the server who holds exactly these keys, but
otherwise doing so is equivalent to breaking AKE security.

Why we need mutual key confirmation. To handle the server-side attack
we needed the key-hiding property of AKE to imply that the only way to decide
which keys (skS, pkC) the server uses is to engage in an AKE instance using
the matching counterparty keys (skC, pkS). The key-hiding property provided
by 3DH and HMQV, as modeled by functionality FkhAKE, actually does not
suffice for this by itself. Let the attacker hold a list of n possible decrypted
client credentials cred i = cred(pw i) = (ai,Bi) for i = 1, ..., n, and let S hold
credential credS = (b,A) which matches cred i, i.e. A = gai and Bi = gb , which
is the case if password guess pw i matches the correct password pw . If an active
attacker chooses x and sends X = gx to S then it can locally complete the 3DH or
HMQV equation using any key pair (ai,Bi) it holds, thus computing n candidate
session keys ki. By 3DH or HMQV correctness, since the i-th client credential
matches the server’s credential, key ki equals to the session key k computed by

9 If AKE is implemented as SKEME of Section 5 then the client must also derive the
public key pkC, since it is used in the key-derivation hash, see Figure 7.

20

S. Therefore, if S used key k straight away then the attacker could observe that
ki = k and hence that pw i = pw .

However, the fix is simple: To make the server’s session key output safe to use,
the client must first send a key confirmation message to the server, implemented
in Figure 8 by client’s final message τ . This stops the attack because the attacker
sending τ uniquely determines one of the keys ki on its candidate list, and since
this succeeds only if ki = k , this attack reduces to an on-line test of a single
password guess pw i, which is unavoidable in a (a)PAKE protocol. A natural
question is if there is no equivalent attack on the client-side, which would be
abetted by the client sending a key confirmation message τ . This is not the case
because of the following asymmetry: Off-line password guesses give the attacker
a list of possible client-side credentials, which by AKE rules can be tested against
server sessions. However, by the the key-hiding property of AKE such credentials
are useless in deciding which of them, if any, is used by the honest user. Moreover,
since the ciphertext e encrypts only the client-side keys, by the KCI property of
the AKE the knowledge of client-side keys is not helpful in breaking the security
of AKE instances executed by the honest client on such keys.

Server-to-client key confirmation is needed too, in this case to ensure forward
secrecy. Without it, an attacker could choose Y = gy (in the HMQV or 3DH
instantiations) and later, after the session is complete, compromise the server to
learn the private key b with which it can compute the session key. The client-to-
server key confirmation addresses this issue on the client side.

In addition to ensuring security, key confirmation serves as (explicit) entity
authentication in this aPAKE construction.

Why we need credential encryption to be an ideal cipher. Note that
the attacker can attack the client too, by sending an arbitrary ciphertext to the
client, but the ideal cipher property is that the ciphertext commits the attacker
to only one choice of key for which the attacker can decide a plaintext: for all
other keys the decrypted plaintext will be random.

For the above to work the encryption used to password-encrypt the client
credential needs to be an ideal cipher over the space of (private,public) key pairs
used in AKE. In all key-hiding AKE protocols examples we discuss in this paper,
i.e. 3DH, HMQV, as well as SKEME instantiated with Diffie-Hellman KEM, this
message space is Zp ×G where G is a group of order p. We refer to Section 8 for
several methods of instantiate an ideal cipher on this space. Here we will assume
the implementation of the following form, which is realized by the Elligator2 or
Elligator-squared encodings (see Section 8).

Definition 1. [(IC∗.E, IC∗.D) instantiation.] Let X be the Cartesian product of
the space of private keys and the space of public keys in AKE, let IC.E, IC.D
be an ideal cipher on n-bit strings, and let map be a (randomized) invertible
quasi-bijective map from X to X ′ = {0, 1}n. A randomized 1-1 function map :
X → X ′ is quasi-bijective if there is a negligible statistical difference between
a uniform distribution over X ′ and x′ ←R map(x) for random x in X. Instead
of a direct ideal cipher on message space X protocol KHAPE in Fig. 8 uses a
randomized cipher (IC∗.E, IC∗.D) on X ′ where IC∗.E(x) outputs IC.E(x′) where

21

x′ ← map(x; r) for random r used by map, and IC∗.D(y) outputs x = map−1(x′)
where x′ = IC.D(y).

Comparison with Encrypted Key Exchange of Bellovin-Merritt. It is
instructive to compare the KHAPE design to that of the “Encrypted Key
Exchange” (EKE) construction of Bellovin-Meritt [10]. The EKE compiler
starts from unauthenticated KE, uses an Ideal Cipher to encrypt each KE
protocol message under the password, and this results in UC PAKE in the IC
model (see e.g. [46]). By contrast, our compiler starts from Authenticated KE,
and uses IC to password-encrypt only the client’s inputs to the AKE protocol,
while the protocol messages themselves are exchanged without any change.
Just like EKE, our compiler adds only symmetric-key overhead to the
underlying KE, but it results in an aPAKE instead of just PAKE. However,
just like EKE, it imposes additional requirements on the underlying key
exchange protocol: Whereas EKE needs the key exchange to have a “random
transcript” property, i.e. KE protocol messages must be random in some
message space, in the case of KHAPE the underlying AKE needs to have the
key-hiding property we define in Section 2. Either condition also relies on an
Ideal Cipher (IC) modeling for a non-standard plaintext space: For EKE the
IC plaintext space is the space of KE protocol messages, while for KHAPE the
IC plaintext space is the Cartesian product of the space of private keys and the
space of public keys which form AKE protocol inputs.

UC aPAKE security model. The UC functionality FaPAKE with which we
model aPAKE security corresponds to the functionality from Gentry et al. [27]
with some slight modifications. The main notational change is that we use a user
account identifier uid, instead of generic session identifier sid, to index password
files held by a given server. Functionality FaPAKE also includes uni-directional
(client-to-server) entity authentication as part of the security definition. FaPAKE is
described in the full version of the paper [28] where we also discuss several subtle
issues involved in UC modeling of tight bounds on adversary’s local computation
during an offline dictionary attack.

Theorem 4. Protocol KHAPE realizes the UC aPAKE functionality FaPAKE if
the AKE protocol realizes the Key-Hiding AKE functionality FkhAKE, assuming
that prf is a secure PRF and (Enc,Dec) is an ideal cipher over message space of
private,public key pairs in AKE.

The proof of the theorem is presented in the full version of the paper [28].

7 Concrete aPAKE Instantiation: KHAPE-HMQV

We include a concrete aPAKE protocol we call KHAPE-HMQV, which results
from instantiating protocol KHAPE shown in Section 6 with HMQV as the
key-hiding AKE (as proved in Section 4). The resulting protocol is shown in
Figure 9. It uses only 1 fixed-base exponentiation plus 1 variable-base

22

• global hash functions H : {0, 1}∗ → {0, 1}κ, H′ : {0, 1}∗ → Zp

• group G of prime order p with generator g
• cipher (IC∗.E, IC∗.D) on space Zp ×G (see also page 21)

Password File Initialization on S’s input (StorePwdFile, uid, pw):

S picks two fresh AKE keys (a,A) and (b,B), sets e ← IC∗.E(pw , (a,B))
S stores file[uid, S]← (e, b,A) and discards all other ephemeral values

C on (CltSession, sid, S, pw) S on (SvrSession, sid,C, uid)

x←R Zp , X ← gx y ←R Zp , Y ← gy

(a,B)← IC∗.D(pw , e) �e, Y
(e, b,A)← file[uid, S]

dC ← H′(sid,C, S, 1, X)
eC ← H′(sid,C, S, 2, Y)

σC ← (Y · BeC)x+dC·a

k1 ← H(sid,C, S, X, Y, σC)
τ ← prf(k1, 1) -τ , X

dS ← H′(sid,C, S, 1, X)
eS ← H′(sid,C, S, 2, Y)

σS ← (X ·AdS)y+eS·b

k2 ← H(sid,C, S, X, Y, σS)

γ ← ⊥ if τ 6= prf(k2, 1)
� γ

else γ ← prf(k2, 2)

K1 ← ⊥ if γ 6= prf(k1, 2) K2 ← ⊥ if τ 6= prf(k2, 1)
else K1 ← prf(k1, 0) else K2 ← prf(k2, 0)
output K1 output K2

Fig. 9. KHAPE with HMQV: Concrete aPAKE protocol KHAPE-HMQV

(multi)exponentiation for each party, and 1 ideal cipher decryption for the
client. It has 3 flows if the server initiates and 4 if the client initiates. The
communication costs include one group element and a κ-bit key authenticator
for both sides plus an ideal cipher encryption of a field element a and another
group element B from server to client. Implementations of an ideal cipher over
field elements may expand the ciphertext by Ω(κ) bits and require a
hash-to-curve operation, see Sec. 8.

While we are showing the protocol with the encryption of credentials done
on the server side during password registration (initialization), this can be done
interactively by the server sending its public key and the user encrypting it
together with its private key under the password (or it can all be done on the
client side if the client chooses the server’s public key). It is important to highlight
that the server needs a random independent pair of private-public keys per user.
One optimization is to omit the encryption of the user’s private key, and instead
derive this key from the password. Our analysis can be adapted to this case.

23

We note that KHAPE can be made into a Strong aPAKE (saPAKE), secure
against pre-computation attacks, using the technique of [37]. Namely, running
an OPRF protocol on pw between client and server and deriving the credential
encryption key from the output of the OPRF. In addition to providing
saPAKE security, the OPRF strengthens the protocol against online client-side
attacks (the attacker cannot have a pre-computed list of passwords to try) and
it allows for distributing the server through a threshold OPRF. As discussed in
the introduction, the break of the OPRF in the context of KHAPE voids the
above benefits but does not endanger the password (a major advantage of
KHAPE over OPAQUE).

8 Curve Encodings and Ideal Cipher

8.1 Quasi bijections

Protocol KHAPE encrypts group elements (server’s public key pkS) using an
encryption function modeled as an ideal cipher which works over a space {0, 1}n
for some n. Thus, prior to encryption, group elements need to be encoded as
bitstrings of length n to which the ideal cipher will be applied. We require such
encoding, denoted map, from G to {0, 1}n to be a bijection (or close to it) so
that if e is an encryption of g ∈ G under password pw , its decryption under a
different pw ′ returns a random element in G. The following definition considers
randomized encodings.

Definition 2. A randomized ε-quasi bijection map with domain A, randomness
space R = {0, 1}ρ and range B consists of two algorithms map and map−1,
map : A×R→ B and map−1 : B → A with the following properties:

1. map−1 is deterministic and for all a ∈ A, r ∈ R,map−1(map(a, r)) = a;
2. map maps the uniform distribution on A×R to a distribution on B that is

ε-close to uniform.

The term ε-close refers to a statistical distance of at most ε between the
two distributions. It can also be used in the sense of computational
indistinguishability, e.g., if implementing randomness using a PRG. To
accommodate bijections whose randomized map from A to B may exceed a
given time bound in some inputs, one can consider the range of map to include
an additional element ⊥ to which such inputs are mapped. A simpler way is to
define that such inputs are mapped to a fixed element in B. The probability of
inputs mapped to that value is already accounted for in the statistical distance
bound ε. We use quasi bijection without specifying ε when we assume this
value to be negligible.

Quasi bijections from field elements to bitstrings. We are interested in
quasi-bijective encoding into the set {0, 1}n over which the IC encryption works.
Most mappings presented below have a field Zq as the range, in which case a
further transformation (preserving quasi-bijectiveness) may be needed. Note that

24

when representing elements of Zq as n-bit numbers for n = dlog qe, the uniform
distribution on Zq is ε-close to the uniform distribution over {0, 1}n for ε =
(2n mod q)/q. So when q is very close to 2n, one can use the bit representation
of field elements directly, and this is the case for many of the standardized elliptic
curves. When this is not the case, one maps u ∈ Zq to a (n+k)-bit integer selected
as u + tq for t randomly chosen as a non-negative integer < (2n+k − u)/q. The
resulting distribution is 2−k-close to the uniform distribution over {0, 1}n+k.

8.2 Implementing quasi-bijective encodings

We focus on the case where G is an elliptic curve. There is a large variety of
well-studied quasi-bijective encodings in the literature (cf. [50, 16, 26, 11, 53]).
We survey some representative examples for elliptic curve groups EC(q) over
fields of large prime-order q.

Note that we use both directions of these encodings in KHAPE: From pkS to
a bitstring when encrypting pkS at the time of password registration, and from
a bitstring to a curve point when the client decrypts pkS . This means that the
performance of the latter operation is more significant for the efficiency of the
protocol. Fortunately this is always the more efficient direction, even though the
other direction is quite efficient too for the maps discussed below.

Elligator-squared [53, 38]. This method applies to most elliptic curves and
accommodates ε-quasi bijections for the whole set of curve points with negligible
values of ε.

Curve points are encoded as a pair of field elements (u, v) ∈ Z2
q. There is a

deterministic function f from Zq to EC such that P ∈ EC is represented by
(u, v) if and only if P = f(u) + f(v). Given a point P there is a randomized
procedure Rf that returns such encoding (u, v).

In [53] (Theorem 1), it is proven that for suitable choices of f , Rf is an ε-
quasi bijection into (Zq)2, with ε = O(q−1/2) (see Definition 2). Since u, v are
field elements, a further bijection into bitstrings may be needed as specified in
Section 8.1.

In [38], the above construction is improved by allowing both u and v to
be represented directly as bit strings: u as a string of bqc bits and v can be
be shortened even further (the amount of shortening increases the statistical
distance for the quasi bijection from EC to the distribution of bitstrings (u, v)).
This encoding uses two functions f, g where a point P is recovered from (u, v)
as P = f(u) + g(v) (in this case, function g can be simply g(v) = v · P).

The performance of Elligator-squared depends on the functions f, g whose
cost with typical instantiations (e.g., Elligator, SWU) is dominated by a single
base-field exponentiation at the cost of a fraction (≈10-15%) of a scalar
multiplication. Implementing g(v) = v · P is also a low-cost option (also
allowing to shorten v [38]). The cost of the inverse map, from a curve point to
its bitstring encoding, for the curves analyzed in [53] is 3 base-field
exponentiations.

25

Elligator2. This mapping from [11] is of more restricted applicability than
Elligator-squared as it applies to a smaller set of curves (e.g., it requires an
element of order 2). Yet, this class includes some of the common curves used in
practice, particularly Curve25519. Eligator2 defines an injective mapping
between the integers {0, . . . , (q − 1)/2} and (about) half of the elements in the
curve. To be used in our setting, it means that when generating a pair
(skS , pkS=gskS) for the server during password registration, the key generation
procedure will choose a random skS and will test if the resultant pkS has a
valid encoding under Elligator2. If so, it will keep this pair, otherwise it will
choose another random pair and repeat until a representable point is found.
The expected number of trials is 2 and the testing procedure is very efficient
(and only used during registration, not for login).

The advantages of Ellligator2 include the use of a single field element as a
point representation (which requires further expansion into a bit string only if
q is not close to 2n) and the map is injective, hence quasi-bijective with ε = 0
over the subset of encodable curve elements. Both directions of the map are very
efficient, costing about a single base-field exponentiation (a fraction of the cost
of a scalar multiplication).

Detailed implementation information for the components of the above
transforms is found in [25, 11, 54]. See [7] for some comparison between
Elligator2 and Elligator-squared.

8.3 Ideal Cipher Constructions

Protocol KHAPE uses an ideal cipher to encrypt group elements, specifically a
pair (skC, pkS) where both elements are encoded as bitstrings to fit the ideal
cipher interface as described in previous subsections. Thus, we consider the
input to the encryption simply as a bitstring of a given fixed length, and
require implementations of ideal ciphers of sufficiently long block length. For
example, the combined input length for curves of 256 bits ranges between 512
and 1024 bits. Constructions of encryption schemes that are indifferentiable
from an ideal cipher have been investigated extensively in the literature.
Techniques include domain extension mechanisms (e.g., to expand the block
size for block ciphers, including AES) [19], Feistel networks and constructions
from random oracles [23, 32, 20], dedicated constructions such as those based
on iterated Even-Mansour and key alternating ciphers [22, 6, 24, 24], and basic
components such as wide-input (public) random permutations [13, 12, 21]. A
recent technique by McQuoid et al. [46], builds a dedicated transform that can
replace the ideal cipher in cases where encryption is “one-time”, namely, keys
(or cipher instances) are used to encrypt a single message (as in our protocols).
They build a very efficient transform using a random oracle with just two
Feistel rounds. A dedicated analysis for the use of this technique in our context
is left for future work.

Acknowledgments. We thank the anonymous referees for their insightful
comments.

26

References

1. Facebook stored hundreds of millions of passwords in
plain text, https://www.theverge.com/2019/3/21/18275837/

facebook-plain-text-password-storage-hundreds-millions-users.

2. Google stored some passwords in plain text for fourteen
years, https://www.theverge.com/2019/5/21/18634842/

google-passwords-plain-text-g-suite-fourteen-years.

3. M. Abdalla, M. Barbosa, T. Bradley, S. Jarecki, J. Katz, and J. Xu. Universally
composable relaxed password authenticated key exchange. In Advances in
Cryptology - CRYPTO 2020, pages 278–307, 2020.

4. M. Abdalla, D. Catalano, C. Chevalier, and D. Pointcheval. Efficient two-party
password-based key exchange protocols in the UC framework. In Topics in
Cryptology – CT-RSA 2008, pages 335–351. Springer, 2008.

5. M. Abdalla and D. Pointcheval. Simple password-based encrypted key exchange
protocols. In Topics in Cryptology – CT-RSA 2005, pages 191–208. Springer, 2005.

6. E. Andreeva, A. Bogdanov, Y. Dodis, B. Mennink, and J. P. Steinberger. On the
indifferentiability of key-alternating ciphers. In Advances in Cryptology – CRYPTO
2013, pages 531–550, 2013.

7. D. F. Aranha, P.-A. Fouque, C. Qian, M. Tibouchi, and J.-C. Zapalowicz. Binary
elligator squared. In SAC, 2014.

8. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key privacy in public-key
encryption. In Advances in Cryptology – ASIACRYPT 2001. Springer, 2001.

9. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In Advances in Cryptology – EUROCRYPT 2000, pages
139–155. Springer, 2000.

10. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In IEEE Computer Society Symposium on
Research in Security and Privacy – S&P 1992, pages 72–84. IEEE, 1992.

11. D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange. Elligator: elliptic-curve
points indistinguishable from uniform random strings. In ACM Conference on
Computer and Communications Security – CCS 2013, 2013.

12. D. J. Bernstein, S. Kölbl, S. Lucks, P. M. C. Massolino, F. Mendel, K. Nawaz,
T. Schneider, P. Schwabe, F.-X. Standaert, Y. Todo, and B. Viguier. Gimli: a
cross-platform permutation. Cryptology ePrint Archive, Report 2017/630, 2017.
http://eprint.iacr.org/2017/630.

13. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Keccak. In Advances in
Cryptology – EUROCRYPT 2013, pages 313–314, 2013.

14. T. Bradley, J. Camenisch, S. Jarecki, A. Lehmann, G. Neven, and J. Xu. Password-
authenticated public-key encryption. In ACNS, volume 11464 of Lecture Notes in
Computer Science, pages 442–462. Springer, 2019.

15. T. Bradley, S. Jarecki, and J. Xu. Strong asymmetric PAKE based on trapdoor
CKEM. In Advances in Cryptology - CRYPTO 2019, pages 798–825, 2019.

16. E. Brier, J.-S. Coron, T. Icart, D. Madore, H. Randriam, and M. Tibouchi. Efficient
indifferentiable hashing into ordinary elliptic curves. In Advances in Cryptology –
CRYPTO 2010, 2010.

17. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In IEEE Symposium on Foundations of Computer Science – FOCS 2001,
pages 136–145. IEEE, 2001.

27

https://www.theverge.com/2019/3/21/18275837/facebook-plain-text-password-storage-hundreds-millions-users
https://www.theverge.com/2019/3/21/18275837/facebook-plain-text-password-storage-hundreds-millions-users
https://www.theverge.com/2019/5/21/18634842/google-passwords-plain-text-g-suite-fourteen-years
https://www.theverge.com/2019/5/21/18634842/google-passwords-plain-text-g-suite-fourteen-years
http://eprint.iacr.org/2017/630

18. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In Advances in Cryptology – EUROCRYPT 2001, pages
453–474. Springer, 2001.

19. J.-S. Coron, Y. Dodis, A. Mandal, and Y. Seurin. A domain extender for the ideal
cipher. In Theory of Cryptography Conference – TCC 2010, pages 273–289, 2010.

20. D. Dachman-Soled, J. Katz, and A. Thiruvengadam. 10-round Feistel is
indifferentiable from an ideal cipher. In Advances in Cryptology – EUROCRYPT
2016, pages 649–678, 2016.

21. J. Daemen, S. Hoffert, G. V. Assche, and R. V. Keer. The design of Xoodoo and
Xoofff. 2018:1–38, 2018.

22. Y. Dai, Y. Seurin, J. P. Steinberger, and A. Thiruvengadam. Indifferentiability of
iterated Even-Mansour ciphers with non-idealized key-schedules: Five rounds are
necessary and sufficient. In Advances in Cryptology – CRYPTO 2017, 2017.

23. Y. Dai and J. P. Steinberger. Indifferentiability of 8-round Feistel networks. In
Advances in Cryptology – CRYPTO 2016, pages 95–120, 2016.

24. Y. Dodis, M. Stam, J. P. Steinberger, and T. Liu. Indifferentiability of confusion-
diffusion networks. In Advances in Cryptology – EUROCRYPT 2016, pages 679–
704, 2016.

25. A. Faz-Hernandez, S. Scott, N. Sullivan, R. Wahby, and C. Wood. Hashing to
elliptic curves draft-irtf-cfrg-hash-to-curve, https://datatracker.ietf.org/doc/
draft-irtf-cfrg-hash-to-curve/, June 2020.

26. P.-A. Fouque, A. Joux, and M. Tibouchi. Injective encodings to elliptic curves. In
Australasia Conference on Information Security and Privacy – ACISP 2013, 2013.

27. C. Gentry, P. MacKenzie, and Z. Ramzan. A method for making password-based
key exchange resilient to server compromise. In Advances in Cryptology – CRYPTO
2006, pages 142–159. Springer, 2006.

28. Y. Gu, S. Jarecki, and H. Krawczyk. KHAPE: Asymmetric PAKE from Key-
Hiding Key Exchange. IACR Cryptology ePrint Archive, June 2021. http://

eprint.iacr.org/2021.

29. S. Halevi and H. Krawczyk. Public-key cryptography and password protocols.
ACM Transactions on Information and System Security (TISSEC), 2(3):230–268,
1999.

30. F. Hao and S. F. Shahandashti. The SPEKE protocol revisited. Cryptology ePrint
Archive, Report 2014/585, 2014. http://eprint.iacr.org/2014/585.

31. D. Hofheinz, K. Hövelmanns, and E. Kiltz. A modular analysis of the fujisaki-
okamoto transformation. Cryptology ePrint Archive, Report 2017/604, 2017.
https://eprint.iacr.org/2017/604.

32. T. Holenstein, R. Künzler, and S. Tessaro. The equivalence of the random oracle
model and the ideal cipher model, revisited. In STOC 2011, 2011.

33. J. Y. Hwang, S. Jarecki, T. Kwon, J. Lee, J. S. Shin, and J. Xu. Round-reduced
modular construction of asymmetric password-authenticated key exchange. In
Security and Cryptography for Networks – SCN 2018, pages 485–504. Springer,
2018.

34. R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way
permutations. In STOC’89, pages 44–61, 1989.

35. D. P. Jablon. Extended password key exchange protocols immune to dictionary
attacks. In 6th IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE 1997), pages 248–255,
Cambridge, MA, USA, June 18–20, 1997. IEEE Computer Society.

28

https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
http://eprint.iacr.org/2021
http://eprint.iacr.org/2021
http://eprint.iacr.org/2014/585

36. S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu. TOPPSS: Cost-minimal password-
protected secret sharing based on threshold OPRF. In Applied Cryptology and
Network Security – ACNS 2017, pages 39–58. Springer, 2017.

37. S. Jarecki, H. Krawczyk, and J. Xu. OPAQUE: an asymmetric PAKE
protocol secure against pre-computation attacks. In Advances in Cryptology
- EUROCRYPT 2018, pages 456–486, 2018. IACR ePrint version at
http://eprint.iacr.org/2018/163.

38. T. Kim and M. Tibouchi. Invalid curve attacks in a GLS setting. In International
Workshop on Security (IWSEC 2015), 2015.

39. H. Krawczyk. SKEME: A versatile secure key exchange mechanism for internet.
In 1996 Internet Society Symposium on Network and Distributed System Security
(NDSS), pages 114–127, 1996.

40. H. Krawczyk. SIGMA: The “SIGn-and-MAc” approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In Advances in Cryptology – CRYPTO
2003, pages 400–425. Springer, 2003.

41. H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In
Advances in Cryptology – CRYPTO 2005, pages 546–566. Springer, 2005.

42. H. Krawczyk, D. Bourdrez, K. Lewi, and C. Wood. The opaque
asymmetric pake protocol, draft-irtf-cfrg-opaque, https://datatracker.ietf.

org/doc/draft-irtf-cfrg-opaque/, 2021.
43. P. MacKenzie. On the security of the SPEKE password-authenticated key exchange

protocol. Cryptology ePrint Archive, Report 2001/057, 2001. http://eprint.

iacr.org/2001/057.
44. M. Marlinspike. Simplifying OTR deniability, https://signal.org/blog/

simplifying-otr-deniability/, 2013.
45. M. Marlinspike and T. Perrin. The X3DH key agreement protocol, https://

signal.org/docs/specifications/x3dh/, 2016.
46. I. McQuoid, M. Rosulek, and L. Roy. Minimal symmetric PAKE and 1-

out-of-n OT from programmable-once public functions. In J. Ligatti, X. Ou,
J. Katz, and G. Vigna, editors, CCS ’20: 2020 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event, USA, November 9-13,
2020. https://eprint.iacr.org/2020/1043.

47. NIST Information Technology Lab. Post-quantum cryptography, https://csrc.
nist.gov/projects/post-quantum-cryptography.

48. D. Pointcheval and G. Wang. VTBPEKE: Verifier-based two-basis password
exponential key exchange. In ASIACCS 17, pages 301–312. ACM Press, 2017.

49. J. Schmidt. Requirements for password-authenticated key agreement (PAKE)
schemes, https://tools.ietf.org/html/rfc8125, Apr. 2017.

50. A. Shallue and C. van de Woestijne. Construction of rational points on elliptic
curves over finite fields. In ANTS, 2006.

51. V. Shoup. Security analysis of SPAKE2+. IACR Cryptol. ePrint Arch., 2020:313,
2020.

52. N. Sullivan, H. Krawczyk, O. Friel, and R. Barnes. Opaque with
tls 1.3, draft-sullivan-tls-opaque, https://datatracker.ietf.org/doc/

draft-sullivan-tls-opaque/, Feb. 2021.
53. M. Tibouchi. Elligator squared: Uniform points on elliptic curves of prime order as

uniform random strings. In Financial Cryptography – TCC 2014, pages 139–156,
2014.

54. R. S. Wahby and D. Boneh. Fast and simple constant-time hashing to the BLS12-
381 elliptic curve. 2019(4):154–179, 2019. https://tches.iacr.org/index.php/

TCHES/article/view/8348.

29

https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/
http://eprint.iacr.org/2001/057
http://eprint.iacr.org/2001/057
https://signal.org/blog/simplifying-otr-deniability/
https://signal.org/blog/simplifying-otr-deniability/
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/
https://eprint.iacr.org/2020/1043
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://tools.ietf.org/html/rfc8125
https://datatracker.ietf.org/doc/draft-sullivan-tls-opaque/
https://datatracker.ietf.org/doc/draft-sullivan-tls-opaque/
https://tches.iacr.org/index.php/TCHES/article/view/8348
https://tches.iacr.org/index.php/TCHES/article/view/8348

	KHAPE: Asymmetric PAKE from Key-Hiding Key Exchange

