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Abstract. The Fiat-Shamir transform is a general method for reduc-
ing interaction in public-coin protocols by replacing the random veri-
fier messages with deterministic hashes of the protocol transcript. The
soundness of this transformation is usually heuristic and lacks a formal
security proof. Instead, to argue security, one can rely on the random ora-
cle methodology, which informally states that whenever a random oracle
soundly instantiates Fiat-Shamir, a hash function that is “sufficiently
unstructured” (such as fixed-length SHA-2) should suffice. Finally, for
some special interactive protocols, it is known how to (1) isolate a con-
crete security property of a hash function that suffices to instantiate
Fiat-Shamir and (2) build a hash function satisfying this property under
a cryptographic assumption such as Learning with Errors.

In this work, we abandon this methodology and ask whether Fiat-
Shamir truly requires a cryptographic hash function. Perhaps surpris-
ingly, we show that in two of its most common applications — build-
ing signature schemes as well as (general-purpose) non-interactive zero-
knowledge arguments — there are sound Fiat-Shamir instantiations us-
ing extremely simple and non-cryptographic hash functions such as sum-
mod-𝑝 or bit decomposition. In some cases, we make idealized assump-
tions (i.e., we invoke the generic group model), while in others, we prove
soundness in the plain model.

On the negative side, we also identify important cases in which a
cryptographic hash function is provably necessary to instantiate Fiat-
Shamir. We hope this work leads to an improved understanding of the
precise role of the hash function in the Fiat-Shamir transformation.

1 Introduction

The Fiat-Shamir transform is a general-purpose method for converting public-
coin interactive protocols into non-interactive protocols with the same function-
ality. As a prototypical example, let 𝛱 denote a 3-message (public-coin) argu-
ment system with transcripts of the form (𝛼, 𝛽, 𝛾). Then, given any hash function
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ℎ, the Fiat-Shamir transform of 𝛱 using ℎ, denoted 𝛱FS,ℎ, is a one-message ar-
gument system in which the prover sends an entire transcript (𝛼, 𝛽 = ℎ(𝛼), 𝛾)
in one shot.

The Fiat-Shamir transform was introduced by [27] to remove interaction
from a 3-message identification scheme, but it was later realized1 that the trans-
formation is extremely general: it can plausibly be applied to any constant-
round public-coin interactive argument system (and more). Due to its general-
ity and its practical efficiency (it removes interaction with very low computa-
tional overhead), the transformation has been a cornerstone of both theoretical
and practical cryptography for over 30 years. Some of its applications include
the construction of efficient signature schemes [27, 52, 50], non-interactive zero-
knowledge arguments (NIZKs) [1, 12, 11, 49], and succinct non-interactive ar-
guments (SNARGs) [36, 43, 7, 2, 4, 3, 56, 6, 5].

However, the vast majority of applications of the Fiat-Shamir transform are
only heuristically sound. That is, the resulting non-interactive protocols do not
have proofs of soundness based on the computational intractability of a well-
studied mathematical problem [32]. Nonetheless, the protocols appear to be
sound in practice, so it has been a long-standing goal of theoretical cryptog-
raphy to justify the soundness of the transformation.

So far, there have been two main approaches for justifying soundness of Fiat-
Shamir.

– The Random Oracle Model [1]: In this design methodology, a Fiat-
Shamir hash function is first modeled as a random function 𝒪 to which
all parties (honest and dishonest) have public query access. Security is “ar-
gued” by showing that the protocol 𝛱FS,𝒪 is sound “in the random oracle
model” (i.e., against query-bounded adversaries). In reality, the hash func-
tion ℎ is instantiated by an “unstructured” hash function (such as SHA-2 on
bounded-length inputs), where the implicit expectation is that “Fiat-Shamir
for 𝛱” is not an application that can distinguish ℎ from a random oracle.

– Correlation Intractability: In a recent line of work [34, 12, 33, 11, 49, 9,
37], a different methodology was developed for provably instantiating Fiat-
Shamir in the standard model:

∙ Identify a special class 𝒞 of protocols and a cryptographic security prop-
erty 𝒫 of a hash function family ℋ such that if ℋ satisfies 𝒫, then ℋ
soundly instantiates Fiat-Shamir for every 𝛱 ∈ 𝒞. In all cases so far, 𝒫
has been a restricted form of correlation intractability [13].

∙ Construct a hash function family satisfying 𝒫 under reasonable (hope-
fully standard) cryptographic assumptions.

The first of these approaches attempts to justify the use of Fiat-Shamir in high
generality, while the second provides full security proofs for carefully chosen
protocols and hash functions.

1 See discussion in [1]
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Why Cryptographic Hash Functions? In both approaches above, it is essential
that the hash function ℎ possesses a form of cryptographic hardness. In the
random oracle methodology, it is heuristically assumed that ℎ is indistinguishable
from a truly random function (at least in any meaningful way), while in the
standard model, results so far have relied on correlation-intractable hash families
[47, 13] whose security can be based on standard cryptographic assumptions
[11, 49, 9].

All of these results support the intuition that the Fiat-Shamir hash family ℋ
provides a form of cryptographic hardness that ensures the soundness of 𝛱FS,ℋ.
In this work, we ask whether this intuition is accurate.

Is it possible to instantiate the Fiat-Shamir heuristic with a non-cryptographic
hash function?

We note that this question requires formalizing what it means to be a “non-
cryptographic” (rather than cryptographic) hash function; we partially address
this issue later, but this remains somewhat up to interpretation.

A related question concerns the design of Fiat-Shamir hash functions. What
should they look like? Again, prior works give us some possible answers:

– As originally proposed in [27], a Fiat-Shamir hash function could be in-
stantiated using a pseudorandom function family [31] (they give DES as an
example instantiation).

– As proposed in the random oracle methodology [1], the following design
advice is given. “When instantiating a random oracle by a concrete function
ℎ, care must be taken first to ensure that it is adequately conservative in its
design so as not to succumb to cryptanalytic attack, and second to ensure
that ℎ exposes no relevant ‘structure’ attributable to its being designed from
some lower-level primitive.” In other words, the hash function should be
unstructured and complex enough to be indistinguishable from a random
function.

– In the provably secure instantiations of [11, 49], the hash function families are
based on flavors of fully homomorphic encryption, which can be instantiated
from lattice assumptions [29, 10].

– In a recent work of [9], a (modified) trapdoor hash function [25] is used, which
has instantiations based on the DDH/LWE/QR/DCR assumptions.

A common theme is that all of the candidate Fiat-Shamir hash functions
above are complex. Indeed, they have to be complex enough to realize the de-
scribed security properties. In contrast, we ask:

Is it possible to instantiate Fiat-Shamir with a simple hash function?

As an example, can we hope to have a linear Fiat-Shamir hash function ℎ(𝑥) =
𝐴𝑥 + 𝑏?

We note that for various contrived protocols 𝛱, the answer is “yes” for un-
interesting reasons. For example, given any constant-round, public-coin inter-
active protocol 𝛱, there is a protocol �̃� that replaces all prover messages 𝛼𝑖
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with random-oracle commitments 𝒪(𝛼𝑖) and requires the prover to open these
commitments in the last round. For this protocol �̃�, even the identity function
can be used to instantiate Fiat-Shamir in the random oracle model, since we
have in effect already applied a random-oracle Fiat-Shamir transformation when
converting 𝛱 to �̃�.

To avoid these trivialities, we phrase our goal more specifically: for various
naturally occurring protocols (or classes of naturally occurring protocols), de-
termine if simple/non-cryptographic hash functions may suffice for Fiat-Shamir,
and give principled justification for this possibility or impossibility.

1.1 Our Contributions

We begin the systematic study of instantiating Fiat-Shamir with simple and
non-cryptographic hash functions. In particular, we focus on two common and
important use cases of Fiat-Shamir:

1. Round-compressing 3-message identification schemes [27, 52, 40], and
2. Round-compressing 3-message honest-verifier zero knowledge argument sys-

tems to obtain NIZK arguments for NP [1, 12, 11, 49, 21, 17, 9].

For these two use cases, we identify some common 3-message protocols to which
Fiat-Shamir is applied:

– Schnorr’s identification scheme [52].
– The Chaum-Pedersen interactive proof system for the Diffie-Hellman lan-

guage [15].
– Lyubashevsky’s lattice-based identification scheme [40].
– More generally, 𝛴-protocols [23], which are typically repeated in parallel to

obtain negligible soundness error.

In this work, we consider whether existing protocols from above can be round-
compressed using a simple/non-cryptographic hash function. We are able to show
both negative results and (perhaps surprisingly) positive results on this front.

Before stating our results more formally, we discuss (1) the specific problems
we want to solve and (2) what constitutes a solution to the problem.

Our Methodology There are two major issues to resolve in order to define our
problem:

(i) What does it mean for a hash function to be cryptographic?
(ii) How do we give evidence for the soundness (or lack thereof) of our round-

compressed protocols?

We first partially address question (i). One appealing intuitive definition of
a cryptographic hash function is as follows:
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Definition 1 (Cryptographic Hash Function, definition attempt). A
hash function ℎ (or hash function family ℋ) is cryptographic if there is a
game 𝒢 between a challenger and adversary (who is given ℎ or ℎ ← ℋ) with
a statistical-computational gap; that is, the maximum probability that a compu-
tationally bounded adversary can win 𝒢 is noticeably smaller than the maximum
probability that an unbounded adversary can win 𝒢.

Unfortunately, this definition has major issues. In particular, under a literal
interpretation of the definition, if NP ̸⊂ BPP, then every hash function is “cryp-
tographic”: just define the game 𝒢 that ignores the hash family ℋ and gives the
adversary an instance of a hard NP problem to solve.

More specific to our application, the soundness of 𝛱FS,ℋ is precisely a game
with a computational-statistical gap so long as an accepting proof exists but
is computationally hard to find. Therefore, no matter how “simple” or “non-
cryptographic” ℋ appears to be, as long as it can compile Fiat-Shamir for some
protocol, it is necessarily “cryptographic” under this definition.

Indeed, an important philosophical point in this work is that the “computa-
tional hardness” within the soundness property of 𝛱FS,ℋ can derive from two
different places: the hash family ℋ and the interactive protocol 𝛱.

For our purposes, we appeal to the following intuitive (non-technical) defini-
tion of a cryptographic hash function:

Definition 2 (Cryptographic Hash Function, intuition-level). Infor-
mally, a hash function ℎ (or hash function family ℋ) is cryptographic if there is
a game 𝒢 between a challenger and adversary with a statistical-computational
gap that does not derive from some separate hard problem.

Given this partial answer to question (i), we now describe how we handle (ii):

How We Give Positive Results. In order to obtain a positive result, we accom-
plish (at least) one of three things:

– We show that any hash function ℎ (or hash familyℋ) satisfying an information-
theoretic property (e.g., pairwise-independence) suffices to instantiate 𝛱FS,ℋ
soundly. We believe that in spirit, this says that Fiat-Shamir for 𝛱 does
not require a cryptographic hash function (Definition 2), as a purely infor-
mation theoretic property should be insufficient to establish computational
hardness.

– We show that a single fixed hash function ℎ (rather than a distribution
on hash functions) is enough to soundly instantiate 𝛱FS,ℎ. More specifi-
cally, we show “average-case soundness”, i.e., soundness on a random NO-
instance. This is at least enough to strongly distinguish our Fiat-Shamir in-
stantiations from random-oracle hash functions as well as correlation-intractable
hash functions, which crucially rely on the randomness of the hash function
to derive computational hardness.

– We instantiate 𝛱FS,ℎ with an extremely simple hash function ℎ, such as a
linear function modulo a prime 𝑝 or the bit decomposition function G−1 :
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Z𝑛
𝑞 → Z𝑛 log 𝑞

2 . This does not directly prove that ℎ is not cryptographic, but
it again distinguishes our constructions from prior work, in which the Fiat-
Shamir hash functions are comparatively complex (see above). Indeed, they
are sufficiently complex to guarantee security properties such as correlation
intractability.

While some of our positive results hold in the standard model, others are
shown to hold in the (auxiliary-input) generic group model [45, 53, 55, 18, 19].
One might ask why such a result is meaningful — after all, we are replacing one
random oracle (the hash function) with another (the generic group labeling).
However, the idealized assumptions in our constructions are used quite differ-
ently from assuming that a Fiat-Shamir hash function behaves like a random
oracle. Indeed, our hash functions are information-theoretic and do not make
any calls to the group oracle. As a result, our constructions are examples of nat-
urally occurring interactive protocols 𝛱 (unlike the contrived example from the
introduction) that possess enough hardness to guarantee that 𝛱FS,ℎ is sound for
simple choices of ℎ satisfying only information-theoretic properties.

Additionally, our lower bounds in the GGM suggest candidate schemes over
concrete groups (Z×𝑝 and elliptic curve groups) that are plausibly secure. Al-
though interpreting hardness results in the GGM in the standard model requires
care [28, 54, 24], we believe that it would be very interesting to understand the
real-world security of the resulting (extremely simple!) schemes. We do some
preliminary analysis of the concrete schemes — finding non-generic attacks for
one of our two GGM-based protocols but not the other — but largely leave these
questions open.

How We Give Negative Results. In order to obtain a negative result, we would
like to show that for a particular protocol 𝛱, if 𝛱FS,ℋ is sound, then ℋ nec-
essarily satisfies some concrete cryptographic security property 𝒫. However, as
already discussed, such a theorem is not meaningful — 𝒫 can just be “the sound-
ness of 𝛱FS,ℋ.” In other words, this fails to distinguish between hardness in the
hash function family ℋ from hardness in the protocol 𝛱.

Instead, we switch the order of quantifiers in the theorem statement: we show
that there exists a universal security property 𝒫 such that for any protocol 𝛱 ∈ 𝒞
in a large class, if a hash function family ℋ soundly instantiates Fiat-Shamir for
𝛱 then ℋ necessarily satisfies 𝒫. Since 𝒫 is independent of the protocol 𝛱, this
comes closer to distinguishing ℋ-hardness from hardness in 𝛱.

However, there is still one issue with the above strategy: NP-completeness
also gives a (trivial) universal property 𝒫. To avoid this problem, we prove a rel-
ativizing result: the same property 𝒫 is satisfied by ℋ even if it instantiates Fiat-
Shamir for various protocols 𝛱𝒪(·) that exist relative to an oracle distribution 𝒪.
This establishes that the property 𝒫 is not “cheating” using NP-completeness.
As an example, our negative results will capture the {0, 1}-challenge variant of
Schnorr’s identification scheme in the generic group model as well as Blum’s
Hamiltonicity protocol [8] instantiated in the random-oracle model.
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Finally, we show that hash functions satisfying our property 𝒫 imply the
existence of one-way functions, the quintessential cryptographic object. This
results in a formalization of the statement “one-way functions are necessary to
instantiate Fiat-Shamir hash functions for natural protocols.”

As an added bonus, we are also sometimes able to give direct attacks on
𝛱FS,ℋ relative to an oracle (i.e., in the generic group model or the random oracle
model). That is, for the idealized protocols, we show unconditional polynomial-
query attacks on the non-interactive protocol. This is further evidence that a
sound Fiat-Shamir instantiation must sometimes rely on hardness from the hash
function family ℋ, in direct contrast to our positive results.

Our Results With the above discussion in mind, we are now ready to formally
state our results. First, we give several positive results for soundly instantiating
Fiat-Shamir with non-cryptographic hash functions.

Fiat-Shamir for Lattice-Based Identification Schemes. We first describe our pos-
itive results in the standard model, which hold for lattice-based analogues of the
Schnorr protocol. In particular, we consider common variants of Lyubashevsky’s
identification schemes [38, 39, 40], which were designed to obtain efficient signa-
ture schemes in the random oracle model via Fiat-Shamir.

We obtain a sound Fiat-Shamir instantiation for the main protocol 𝛱 defined
in [40]. Our Fiat-Shamir hash function in 𝛱FS,ℎ maps Z𝑞 elements to their bit-
decomposition (also known as the G−1 function).

Theorem 1. Consider Lyubashevsky’s identification scheme over Z𝑞 in dimen-
sion 𝑛. Define the hash function ℎ : Z𝑛

𝑞 → Z𝑛 log 𝑞
2 as the bit decomposition

function
ℎ(𝑣) = G−1(𝑣).

Then, under the Short Integer Solution (SIS) assumption, Fiat-Shamir applied
to Lyubashevsky’s scheme using hash function ℎ is sound on random instances.

We note the following interesting details about our result.

– We obtain a meaningful soundness guarantee using a deterministic hash
function. This stands in contrast to typical Fiat-Shamir instantiations.

– More generally, we prove Theorem 1 for a class of Fiat-Shamir hash func-
tions (including bit-decomposition) satisfying an information-theoretic
property.

– Most importantly, and uniquely to the lattice setting, we emphasize that
soundness is proved in the standard model! More specifically, the SIS as-
sumption suffices to argue average-case soundness, where soundness requires
that a cheating prover cannot convince a verifier to accept on a random in-
stance. We stress that this is the typical soundness notion for the setting of
identification/signature schemes and a necessary relaxation for the case of
deterministic hash functions.
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To contrast this with prior work on Fiat-Shamir in the standard model [34,
12, 11, 49, 9], we note that (1) it was not known how to do Fiat-Shamir for the
[40] protocol in the correlation intractability framework, and (2) our Fiat-Shamir
compiler uses the bit decomposition function and not any form of CI.

Finally, as an extension of Theorem 1, we prove that variants of our protocol
𝛱FS show a surprising connection to Micciancio-Peikert lattice trapdoors [44, 41].
Namely, the prover algorithm in 𝛱FS can be interpreted as a preimage sampling
algorithm using a Micciancio-Peikert trapdoor.

Theorem 2 (Informal). Lattice-based Lyubashevsky signatures using the bit-
decomposition Fiat-Shamir hash function are equivalent to lattice-based Hash-
and-Sign signatures.

This highlights a strong connection between two seemingly orthogonal paths
to build signatures from lattice-based assumptions: one using lattice trapdoors
[30, 14, 44] and the other through the Fiat-Shamir heuristic [38, 39, 40]. To
the best of our knowledge (see [48]), no such connection was known before. We
discuss this connection in more detail in the technical overview.

Schnorr Signatures with a Linear Fiat-Shamir Hash Function. Our next result
concerns the Schnorr signature scheme, obtained by applying Fiat-Shamir to
Schnorr’s three-message protocol for proving knowledge of a discrete logarithm.
We show that for signing short messages (i.e. the message space is a sparse
subset of Z𝑝), this classic application of the Fiat-Shamir paradigm does not
seem to require any cryptographic properties from the underlying Fiat-Shamir
hash function.

Recall that the Schnorr protocol works over a cryptographic group 𝐺 of order
𝑝, and that the Fiat-Shamir hash function takes as input a group element 𝑔 ∈ 𝐺
along with a message 𝑚 ∈ℳ to be signed, and outputs an element in Z𝑝.

Theorem 3 (Schnorr Signatures with a Z𝑝-Linear Hash Function).
Consider the Schnorr signature scheme over a group 𝐺 of order 𝑝, where the
message space ℳ is a sparse subset of Z𝑝, i.e. ℳ⊂ Z𝑝 and |ℳ|/Z𝑝 ≤ negl(𝜆).
Let ℓ be the maximum bit-length representation of any group element, so that
any 𝑔 ∈ 𝐺 can be viewed as 𝑔 ∈ {0, 1}ℓ = [2ℓ]. Define the hash family

ℎ𝑘(𝑔, 𝑚) := 𝑔 + 𝑚 + 𝑘 (mod 𝑝),

where on the right-hand side, 𝑔 is the integer with binary representation 𝑔 ∈
{0, 1}ℓ.

In the auxiliary-input generic group model [55], the Schnorr signature scheme
instantiated using ℎ as the Fiat-Shamir hash function is existentially unforgeable
against chosen message attacks (EUF-CMA).

As in the lattice setting, we can actually prove that Fiat-Shamir for Schnorr is
sound whenever ℎ (or the family ℋ) satisfies an information-theoretic property.
However, our security proof relies on the GGM and does not seem to carry over
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to the standard model. Nonetheless, we view Theorem 3 as another interesting
example of a Fiat-Shamir instantiation whose soundness does not rely on any
cryptographic property of the hash function. Instead, strong cryptographic
hardness from the group turns out to be sufficient!

Another takeaway from Theorem 3 is that Schnorr-like signatures can plau-
sibly be obtained by combining a collision-resistant hash function (to imple-
ment hash-and-sign) with an information-theoretic Fiat-Shamir hash function
(for Schnorr signatures on short messages). While this does not appear signif-
icantly different from using a cryptographic Fiat-Shamir hash function in im-
plementation, it highlights the fact that cryptographic hashing is required for
signatures only to (computationally) avoid collisions between long messages,
and not for ensuring soundness of the Fiat-Shamir compilation.

Aside on Generic Groups. The Generic Group Model [53] models a crypto-
graphic group 𝐺 as a random injection 𝐺 → [𝐿] for a sufficiently large “label
space” 𝐿, by providing an oracle 𝒪 that computes group products and inverses
on (pairs of) labels.2 The auxiliary-input GGM [55, 18] gives the adversary the
additional power to record an arbitrary (𝑆-bounded) function of the group’s
truth table to use for solving computational problems later.

In the plain GGM, soundness of our variant of Schnorr signatures follows
from analysis due to [46]; this work characterized a security property of ℋ that
suffices for (long-message) signatures schemes in the GGM. For our purposes,
it turns out that an information-theoretic property of ℎ suffices; see Section 2
for details. In fact, using the even simpler (keyless) function ℎ(𝑔, 𝑚) = 𝑔 + 𝑚 is
secure in the GGM.

However, since soundness is proved in the GGM, it is reasonable to ask
whether the hardness result plausibly translates to concrete groups such as Z×𝑝
or elliptic curve groups. Indeed, it is known that GGM lower bounds sometimes
fail to carry over to these groups in cases of interest (see, e.g., [28, 54]). In this
work, we observe that this issue also comes up in the case of Schnorr signatures
as analyzed by [46]. In more detail, [46] proves that as long as a hash family ℋ
satisfies two (possibly computational) properties, then Schnorr signatures using
ℋ are secure in the GGM. On the other hand, we find choices of ℋ that satisfy
the premises of [46], but attacks exist over all concrete groups. This highlights
an important situation where GGM-based analysis spectacularly fails to capture
real-world attacks on a scheme.

On the other hand, we further observe that these non-generic attacks can be
captured by the auxiliary-input GGM; that is,

2 There is an alternative formulation of a Generic Group Model due to Maurer [42],
but the honest parties in Schnorr’s signature scheme execute non-generic algorithms
according to this definition (since Maurer’s GGM does not provide concrete repre-
sentations of group elements, which are necessary to evaluate the Fiat-Shamir hash
function), so a [42]-generic analysis is not applicable.
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– Given some (possibly hard-to-compute) short piece of information 𝑤 about
𝐺 (but independent of the Schnorr public parameters), Schnorr signatures
using ℋ are insecure, and

– Over important concrete groups such as Z×𝑝 or elliptic curve groups, this
information 𝑤 is actually efficiently computable.

For example, the short information could be a solution 𝑧 to the equation
𝑎𝑧 = ℓ, where ℓ ∈ [𝐿] is a fixed label such that ℓ ≡ −1 (mod 𝑝). To remedy
this problem, we prove a lower bound in the aux-input GGM, thus avoiding an
important class of “non-generic” attacks for the hash function in Theorem 3 (and
more). This proof is the new technical component of Theorem 3.

In fact, we know of no efficient attacks on the scheme from Theorem 3 over
the group Z×𝑝 . We find the question of whether this scheme is secure to be
interesting, as it would result in a signature scheme that is extremely simple to
write down — in fact, key generation, signing, and verifying only require random
sampling and arithmetic over Z𝑝. We do some preliminary analysis of the scheme
in the full version but leave the question largely out of the scope of this paper.

The Chaum-Pedersen Protocol and NIZKs for NP. Next, we consider a minor
variant of the interactive proof system due to Chaum and Pedersen [15] for prov-
ing membership in the Diffie-Hellman language ℒDH := {(𝑔, 𝑔𝑢, 𝑔𝑣, 𝑔𝑢𝑣)}𝑔∈𝐺,𝑢,𝑣∈Z𝑝

.
The protocol was originally introduced to instantiate a (special-purpose) blind
signature scheme, but it has since found other applications (e.g., to the Cramer-
Shoup cryptosystem [22]). Notably, a recent line of work [20, 35, 51, 21] has
shown that a non-interactive, adaptively sound, (single-theorem) zero-knowledge
argument for ℒDH (along with CDH) suffices to instantiate non-interactive zero-
knowledge (NIZK) arguments for all of NP.

We prove in the (auxiliary-input) GGM that a simple, fixed Fiat-Shamir
hash function ℎ suffices to compile the modified3 Chaum-Pedersen protocol into
an argument for ℒDH satisfying an intermediate (i.e., in between selective and
adaptive) notion of soundness we call semi-adaptive soundness. Here, the prover
is given a random 𝑔𝑢, and wins if it convinces the verifier to accept a NO-instance
of ℒDH of the form (𝑔, 𝑔𝑢, 𝑔𝑦, 𝑔𝑧).

Theorem 4. Let 𝛱CP denote the modified Chaum-Pedersen protocol over a
group 𝐺 of order 𝑝. Let ℓ be the maximum bit-length representation of any group
element, so that any 𝑔 ∈ 𝐺 can be viewed as 𝑔 ∈ {0, 1}ℓ = [2ℓ]. Define the hash
function

ℎ(𝑔1, 𝑔2, 𝑔3, 𝑔4) = 𝑔1 + 𝑔2 + 𝑔3 + 𝑔4 (mod 𝑝),

where on the right-hand side, each 𝑔𝑖 is the integer with binary representation
𝑔𝑖 ∈ {0, 1}ℓ.

In the auxiliary-input generic group model, (𝛱CP)FS,ℎ is a semi-adaptively
sound argument system for ℒDH.
3 Our modification simply requires the verifier to reject if the third message 𝑧 is equal

to 0 ∈ Z𝑝.
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In the full version, we prove a stronger result: as long as ℎ satisfies an (easily
satisfied but complicated to state) information theoretic property, (𝛱CP)FS,ℎ is
sound in the aux-input GGM.

By tweaking the hash function to be ℎ′(·) := ℎ(·) + 𝑟 where 𝑟 is a common
random string, (𝛱CP)FS,ℎ′ becomes a (single-theorem) NIZK argument for ℒDH
with semi-adaptive soundness. It turns out that semi-adaptive soundness suffices
to instantiate the hidden bits model of [26], and consequently NIZKs for NP in
the standard model [20, 35, 51, 21].

However, we also cryptanalyze this protocol over concrete groups such as Z×𝑝
and elliptic curve groups (see the full version), and unlike the case of Schnorr
signatures above, we find non-generic attacks (that fall outside the aux-input
GGM) on the scheme. Thus, Theorem 4 should be viewed as a theoretical result
that does not have direct implications over commonly used groups. This dispar-
ity between the GGM and the standard model appears to be quite subtle and
deserves further study, as further discussed in our conclusion (Section 1.2).

Negative Results. To complement our positive results, we also show that for some
protocols, Fiat-Shamir necessarily requires a cryptographic hash function. Our
negative results apply to a large class 𝒞 of three-message honest-verifier
zero-knowledge (HVZK) arguments (or proofs), in particular, those ob-
tained by taking parallel repetitions of sigma protocols with polynomial-size
challenge space. Two prototypical examples to have in mind are:

– Blum’s Hamiltonicity protocol [8], repeated in parallel to obtain negligible
soundness error.

– The one bit challenge variant 𝛱bit−Sch of Schnorr’s identification scheme,
again repeated in parallel.

We analyze Fiat-Shamir for these protocols in both the standard model
and in idealized models (the random-oracle model and the preprocessing GGM,
respectively). We give evidence that analogues to Theorem 3, Theorem 4, and
Theorem 1 do not exist for these protocols. Our two results are as follows.

– Polynomial-Query Attacks: First, we show that in idealized models, there
will (unconditionally) be a polynomial-query attack on 𝛱FS,ℋ, as long as ℋ
does not depend on the oracle. In other words, a (poly-query) sound Fiat-
Shamir instantiation requires that ℋ depends on the oracle, which is one
way of arguing that ℋ is cryptographic.
Theorem 5 (Informal). For 𝛱 = 𝛱bit−Sch instantiated in the generic
group model, if ℋ is a hash family that does not call the group oracle, then
𝛱𝑡

FS,ℋ is unsound in the GGM.
For any instantiation of the [8] protocol in the random oracle model, if ℋ is
a hash family that does not depend on the oracle 𝒪, then 𝛱FS,ℋ is unsound.
More generally, for any 𝛱 ∈ 𝒞 constructed relative to an oracle 𝒪, if ℋ does
not depend on 𝒪, then 𝛱FS,ℋ is unsound.
This is in contrast to Schnorr/Chaum-Pedersen reuslts, in which an oracle-
independent hash function suffices for a sound Fiat-Shamir instantiation.
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Generalization: What is the class 𝒞? In full generality (see the full verseion),
the class 𝒞 of protocols 𝛱 for which we give a polynomial-query attack on
𝛱FS,ℋ is informally characterized as follows.
∙ 𝛱 := 𝛱𝑡

Base is the parallel repetition of a 3-message public-coin HVZK
argument system 𝛱Base = 𝛱

𝒪(·)
Base (with simulator Sim) relative to an

oracle 𝒪.
∙ The Verifier’s challenge space 𝛴 in 𝛱Base is polynomial-size.
∙ The underlying language 𝐿 ̸∈ BPP.
∙ (𝛱Base, Sim) is challenge hiding (see the full verseion).

The last requirement (challenge hiding) is a technical condition that slightly
strengthens the standard notion of HVZK.
We emphasize that our result makes no assumptions about the way in which
the oracle 𝒪 is used in the construction of the interactive protocol 𝛱Base.
The most substantial requirement is that 𝛱 is the result of parallel repetition
applied to a protocol with a small (i.e., polynomial) challenge space. This
property distinguishes the protocols that we can attack from the protocols
for which we find sound Fiat-Shamir instantiations.

– Conditional Polynomial-time Attacks and Mix-and-Match Resis-
tance: We describe a concrete security property (which we call “mix-and-
match resistance” ) such that for any protocol 𝛱 in a large class 𝒞′ (again
including the two example protocols above, in the standard model), any hash
function (family) ℋ that instantiates Fiat-Shamir for 𝛱 must possess this
security property. In other words, we show:

Theorem 6 (Informal). If ℋ is not mix-and-match resistant, then for
any 𝛱 ∈ 𝒞, there is a polynomial-time attack on the soundness of 𝛱FS,ℋ.

At a high level, mix-and-match resistance is a security property asserting
the hardness of finding a combination of many partial inputs that hashes to
a corresponding combination of prescribed outputs. We also show that mix-
and-match resistant hash functions imply the existence of OWFs. Therefore,
Theorem 6 implies that (in the setting above) if 𝛱FS,ℋ is sound, then ℋ can
be used to build a OWF (obliviously to the protocol 𝛱).
This result also holds in the ROM and the GGM, in the sense that if ℋ does
not depend on the oracle 𝒪 and is not mix-and-match resistant, then the
polynomial-query attack from Theorem 5 can be upgraded to a polynomial-
time attack. As discussed above, this further establishes that the “mix-and-
match resistance” property of ℋ is not “borrowing hardness” from the proto-
col 𝛱, since our analysis applies to protocols whose security is unconditional.
Somewhat orthogonally, one might wonder whether mix-and-match resistant
hash functions (as introduced in this work) are known to exist under standard
cryptographic assumptions. The works of [11, 49] tell us that the answer is
“yes,” because they give a standard-model instantiation of Fiat-Shamir for
a protocol 𝛱 ∈ 𝒞 under standard assumptions. In the full verseion , we
explore this connection further by showing that correlation-intractable hash
functions (as constructed by [11, 49]) suffice to instantiate Fiat-Shamir for
(a variant of) the idealized Blum protocol.
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1.2 Conclusions

One of the main takeaways of this work is that our title question “Does Fiat-
Shamir require a cryptographic hash function?” is surprisingly deep and difficult
to resolve. We believe that our positive and negative results improve our under-
standing of the ground truth and point to fascinating new research directions.

Before now, the prevailing intuition was that for any natural protocol (Schnorr,
Lyubashevsky, Blum, etc.), sound Fiat-Shamir compilation necessitates a carefully-
constructed cryptographic hash function. In this methodology, the soundness of
Fiat-Shamir has been argued by either (1) treating the hash function as a ran-
dom oracle or (2) invoking some concrete security property of the function family.
That is, the computational hardness of some problem derived from 𝐻 guarantees
the soundness of the protocol.

In this work, we argue soundness of Fiat-Shamir (for certain protocols) by us-
ing an information-theoretic property of 𝐻 together with cryptographic hardness
from the interactive protocol. Despite the caveats in our results, the conceptual
point is clear: it is possible to prove meaningful notions of soundness for a Fiat-
Shamir protocol by using security properties of the interactive protocol itself
instead of security properties of the hash function.

Moreover, the instantiations of our positive results have noticeable qualitative
differences from prior approaches to Fiat-Shamir, such as being able to use a
single hash function ℎ (rather than a family), much simpler hash functions, and
ones that contain no associated cryptographic hardness. This constrasts strongly
with how we usually think of Fiat-Shamir; essentially all prior work required that
the hash function be complex and/or cryptographic.

On the other hand, we also show (and formalize a way to show) that some
protocols do require a cryptographic Fiat-Shamir hash function. This implies
that the ground truth is complicated and hard to characterize, but in our view,
worth understanding.

What about Fiat-Shamir in Practice? Since Schnorr signatures are heavily used
in practice, one might ask how our positive results over groups relate to the
use of Fiat-Shamir over concrete groups. The answer to this question crucially
depends on how accurately the generic group model (with preprocessing) reflects
the concrete security of these protocols.

While generic group analysis is often considered to be a meaningful reflection
of real-world attacks, we discovered multiple non-generic attacks on Fiat-Shamir
protocols over groups. Such attacks are therefore not covered by prior generic
analyses such as [46].

– In the case of Schnorr signatures over Z×𝑝 , all of the new attacks we found
were captured by the preprocessing generic group model, and so our new
analysis in the preprocessing model rules out all such attacks on many vari-
ants of Schnorr signatures. Therefore, we view our positive results for Schnorr
as a first step towards finding secure simple variants of Schnorr signatures,
such as the candidate given in Construction 11.
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– On the other hand, we have already discovered attacks (see the full version)
on certain variants of our Chaum-Pedersen protocol over groups such as F×𝑝 ,
even in settings where we have a valid (preprocessing) generic group analysis.

This results in a bizarre state of affairs in which it is unclear how to interpret
generic group analyses for Fiat-Shamir protocols over groups; this deserves fu-
ture attention and cryptanalytic effort. Nonetheless, we consider the conceptual
contributions of these aux-input GGM analyses to be valuable whether they turn
out to reflect real-world attacks or not.

Future Work. We believe that our framework can serve as a potential com-
plement to the correlation intractability framework for provable Fiat-Shamir
soundness. Towards this end, we broadly ask,

Which interactive protocols allow for “simple” Fiat-Shamir compilers?

To start with, we consider differences between the protocols in our positive
and negative results. Heuristically, we note that all protocols in our positive
results achieve negligible soundness error using a single non-separable large chal-
lenge. In contrast, the separability of the challenge in the parallel repetition of
a 𝛴-protocol appears to necessitate using a cryptographic hash function.

In this context, our contributions are a starting point for a more precise
understanding of when hardness is required from a Fiat-Shamir hash function.

2 Technical Overview

We give an overview of our positive results for lattice-based identification pro-
tocols in Section 2.1 and our positive results for group-based protocols in Sec-
tion 2.2. We then describe some of our negative results in Section 2.3.

2.1 A Non-Interactive Lattice-Based Identification Scheme

We describe how we obtain positive results in the lattice setting (Theorem 1).
We consider Lyubashevky’s three-message identification protocol [40], which can
be seen as a lattice analogue to the Schnorr protocol.

To sample an instance for the protocol, we sample a uniformly random wide
matrix A over Z𝑞 along with a wide matrix R with random small entries. The
shared instance is (A, Y = AR mod 𝑞), and the prover’s goal is to convince
the verifier it knows a short R satisfying AR = Y mod 𝑞.

The interactive protocol 𝛱 then executes as follows:

– The prover samples a short vector t and sends 𝛼 := At mod 𝑞.
– The verifier responds by sending a random vector c with small entries.
– The prover responds with z := t + Rc.
– The verifier accepts if A · z = 𝛼 + Y · c mod 𝑞 and z is short.
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As in [40], this interactive protocol is average-case sound under the SIS as-
sumption. We now analyze the non-interactive protocol 𝛱FS,h for a (vector-
valued) Fiat-Shamir hash function h. A malicious prover attacking the average-
case soundness of 𝛱FS,h must solve the following problem.

– Input: Random matrices (A, Y) and the description of a (vector-valued)
hash function h.4

– Output: Vectors 𝛼, z such that A · z = 𝛼 + Y ·h(𝛼) mod 𝑞 and z is short.

Our main insight is that this problem is provably hard for a fixed Fiat-Shamir
hash function h if simple information-theoretic conditions are satisfied.

Theorem 7. Suppose h satisfies the following properties:

1. h produces “short” output, i.e, the entries are small relative to the modulus
2. 𝛼 is a linear function of h(𝛼), i.e. there exists a matrix G such that for all

𝛼, G · h(𝛼) = 𝛼 mod 𝑞.

Then, 𝛱FS,h is one-time (average-case) sound.

Theorem 7 can be proved as follows. If the condition in Theorem 7 are sat-
isfied, then the relation A · z−𝛼−Y · h(𝛼) = 0 mod 𝑞 checked by the verifier
can be rewritten as [︀

A‖Y + G
]︀
·
[︂

z
−h(𝛼)

]︂
= 0 mod 𝑞. (1)

Since A, Y are (statistically) uniformly random and z, h(𝛼) are short, a
malicious prover outputting 𝛼, z is solving SIS for the random matrix [A‖Y+G].

A simple concrete instantiation of h is the bit-decomposition function that
maps (vectors of) Z𝑞 elements to (the concatenation of) their bit decomposition
in {0, 1}⌈log 𝑞⌉ (also called G−1(·) in the lattice literature). The corresponding
G is the “powers-of-two” gadget matrix of Micciancio-Peikert [44].

Connections to Lattice Signatures from Lattice Trapdoors. Interestingly, it turns
out the honest prover algorithm of the rejection sampling-based protocol exactly
matches the trapdoor preimage sampling algorithm of Lyubashevsky-Wichs [41]
using a Micciancio-Peikert trapdoor [44]. This can be seen by considering Eq. (1),
which implies that the transcript of the protocol gives a short preimage of 0
of a matrix with a Micciancio-Peikert trapdoor (here R). Average-case sound-
ness implies that this should be hard to do without knowledge of R (further
using that [A‖AR + G] looks uniformly random over the randomness of R),
and witness-indistinguishability implies that the preimage sampling algorithm
reveals no more information about the trapdoor R.

In fact, our protocol shows the connection between seemingly orthogonal
paths to obtain signatures from lattice-based assumptions: one relying on lat-
tice trapdoors and trapdoor preimage sampling [30, 44, 41] and another through
4 Y is technically sampled as A ·R for some a “short” matrix R, but parameters are

set so that Y is statistically close to uniform.
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Fiat-Shamir [38, 39, 40]. The lattice signature schemes constructed from lat-
tice trapdoors [30, 44, 41] can actually be derived by applying the Fiat-Shamir
heuristic (with aborts) using the bit-decomposition function (namely G−1(·)) as
the hash function to Lyubashevsky’s three-message identification scheme [40].
Let us start by describing the signature scheme for signing a short random mes-
sage v ∈ Z𝑛

𝑞 . The Fiat-Shamir hash function takes as input the first message 𝛼
from the protocol, and the message v, and outputs

ℎ(𝛼, v) = G−1(𝛼− v).

The signature consists of the challenge c = G−1(𝛼 − v) and z from the third
message of the protocol. The verifier of the signature takes v and its signature,
and accepts if A · z = 𝛼 + Y · c mod 𝑞 and z is short, that is:

[A ‖G + Y]
[︂

z
−c

]︂
= v (mod 𝑞). (2)

We now argue that this gives a signature scheme for random (short) messages,
where the adversary can receive signature of random messages, and seeks to forge
a signature for a random message given by the challenger. To handle signing

queries, one can sample (z, c), and set the message as v = [A ‖G + Y]
[︂

z
−c

]︂
.

Then, the hardness of signing a random message v is then equivalent to
breaking the SIS problem for a random target v. To sign an arbitrary long
message 𝜇, we replace v in the previous protocol by 𝐻(𝜇) where 𝐻 is a random
oracle. This exaclty recovers the trapdoor-based lattice signatures [30, 44, 41] in
the random oracle model. We stress that here, the only purpose of the random
oracle is to compress the message (in a hash-and-sign manner), as opposed to
collapse an interactive protocol. In particular the Fiat-Shamir hash function is
still the non-cryptographic G−1 function.

2.2 Fiat-Shamir for Schnorr in the Generic Group Model.

The following section on the generic group model (GGM) contains a number of
technical arguments, designed to motivate and provide intuition for our group-
based results. We provide a roadmap for the discussion:

1. First we explain why Fiat-Shamir for Schnorr is secure in the (plain) GGM,
even for simple, information-theoretic hash functions. We start with the case
of “no-message” signatures (non-interactive identification) and then extend
our reasoning to handle messages and signing queries.
We remark that our security claims for Schnorr in the plain GGM could have
been proven using prior analysis of [46]. However, we have two reasons for
“re-doing” the analysis here: (1) our goal is to provide clear intuition tailored
to information-theoretic Fiat-Shamir hash functions, and (2) our analysis will
readily extend to the auxiliary-input setting, which we motivate next.
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2. We will demonstrate that for Schnorr signatures, a (plain) GGM security
proof does not capture a class of non-uniform attacks that work on any
concrete group. In fact, we show that for common groups such as Z*𝑝, these
attacks do not even require non-uniform advice.

3. We address these issues by extending our analysis to hold in the auxiliary-
input GGM, albeit for a slightly more restricted class of Fiat-Shamir hash
functions. We show this class still contains simple, information-theoretic hash
functions, and we discuss potential implications of these results.

Non-Interactive Identification in the Generic Group Model. We begin by consid-
ering the classic Schnorr protocol for proving knowledge of a discrete logarithm.
Recall that the protocol relies on a cryptographic group 𝐺 = ⟨𝑔⟩ of prime order
𝑝. The prover and verifier share an instance 𝑔𝑢 for a random 𝑢 known to the
honest prover, and engage in the following interaction:

– The prover samples a random 𝑟 ← Z𝑝 and sends 𝑔𝑟.
– The verifier replies with a random 𝑐← Z𝑝.
– The prover sends 𝑧 = 𝑟 + 𝑐𝑢.
– The verifier accepts if 𝑔𝑧 = (𝑔𝑟)(𝑔𝑢)𝑐.

To build intuition, we will try to construct a (one-time secure) non-interactive
identification scheme using a simple Fiat-Shamir hash function. In a moment,
we will extend this (to handle messages and signing queries) to build full-fledged
digital signatures.

For a Fiat-Shamir hash function ℎ, a malicious prover for the non-interactive
Schnorr protocol must solve the following problem.

– Input: A group description 𝐺 = (𝑔, 𝑝), a hash function ℎ : 𝐺 → Z𝑝, and a
random group element 𝑔𝑢.

– Output: 𝑔𝑟, 𝑧 satisfying 𝑔𝑧 = (𝑔𝑟)(𝑔𝑢)ℎ(𝑔𝑟).
We want to identify simple choices of ℎ that make this problem hard in the
GGM. However, it will be illuminating to instead identify which choices of ℎ will
make this problem easy.

This problem is clearly easy if ℎ is a constant function, i.e. ℎ(𝑔𝑥) = 𝑐 for
all 𝑔𝑥; the malicious prover could always win by outputting 𝑧 = 0 and 𝑔𝑟 =
((𝑔𝑢)𝑐)−1 = 𝑔−𝑢𝑐. Taking this a step further, we can argue that for any constant
𝑐 ∈ Z𝑝, the hash function ℎ should not output 𝑐 on a 1/poly(𝜆) fraction of its
inputs. Otherwise, a malicious prover can pick a random 𝑧 and set 𝑔𝑟 = 𝑔−𝑢𝑐+𝑧.
Since 𝑔𝑟 is distributed randomly, ℎ(𝑔𝑟) = 𝑐 holds with 1/poly(𝜆) probability, in
which case 𝑧, 𝑔−𝑢𝑐+𝑧 is a solution.

Put another way, as long as the min-entropy of ℎ on a random input is
𝑂(log(𝜆)), the above is a completely generic method (i.e. one that works on any
cyclic group) for breaking the resulting non-interactive protocol.

It turns out that this simple class of ℎ — those functions which, on random
inputs, produce a low min-entropy output — are the only hash functions for
which generic group algorithms (in the sense of Shoup [53]) exist to solve the
above problem. That is, all hash functions ℎ with super-logarithmic min-entropy
can be proven to soundly compile non-interactive Schnorr in the GGM:
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Theorem 8. In the generic group model (GGM), the non-interactive Schnorr
protocol is one-time secure provided ℎ(·) on a random input has entropy 𝜔(log 𝜆).

Recall that in the generic group model, group elements 𝑔𝑥 are replaced by
labels 𝜎(𝑥) where 𝜎 is a random injection from Z𝑝 to an exponentially-larger
label space [𝐿] (say of size 𝛺(𝑝3), where 𝑝 itself is a 𝜆-bit prime). The attacker
interacts with an oracle (who knows the truth table of 𝜎) to perform honest group
operations such as raising a group element to a known exponent, performing the
group operation on any two group elements, and taking the inverse.

In this model, the only way an attacker can output a valid group label 𝜎(𝑟)
is to obtain this label from oracle queries (with overwhelming probability, any
other label it might choose to output will not have a preimage). Furthermore, if
the attacker is initialized with 𝜎(1), 𝜎(𝑢) for random 𝑢 ← Z𝑝, then any label it
obtains from the oracle is of the form 𝜎(𝛼 ·𝑢 + 𝛽), where 𝛼, 𝛽 can be determined
from prior oracle queries. In other words, the attacker must “know” 𝛼 and 𝛽.

The attacker is trying to find 𝑧 along with 𝜎(𝑟) such that 𝑧 = 𝑟 + 𝑢 ·ℎ(𝜎(𝑟)).
But the attacker knows 𝛼 and 𝛽 such that 𝑟 = 𝛼 · 𝑢 + 𝛽, so this equation can be
written as 𝑧 = 𝛼 · 𝑢 + 𝛽 + 𝑢 · ℎ(𝜎(𝛼 · 𝑢 + 𝛽)). If 𝛼 + ℎ(𝜎(𝛼 · 𝑢 + 𝛽)) ̸= 0, then the
attacker can solve for 𝑢. However, this means the attacker has found a discrete
log, which it can only do with negligible probability [53].

Therefore, it must be the case that 𝛼 + ℎ(𝜎(𝛼 · 𝑢 + 𝛽)) = 0. However, the
poly-query attacker only learns 𝜎(𝛼 · 𝑢 + 𝛽) for poly-many choices of (𝛼, 𝛽), and
for each distinct choice of (𝛼, 𝛽), the resulting label 𝜎(𝛼 · 𝑢 + 𝛽) is random.
ℎ evaluated on a random input has min-entropy 𝜔(log(𝜆)), so the probability
𝛼 + ℎ(𝜎(𝛼 ·𝑢 + 𝛽)) = 0 holds is negligible; a union bound over the polynomially-
many (𝛼, 𝛽) oracle queries completes the argument.

Schnorr Signatures in the Generic Group Model. We now consider a slightly
more difficult task: compiling Schnorr’s identification protocol into a digital sig-
nature scheme with existential unforgeability against chosen-message attacks
(EUF-CMA security).

Note that the semantics of the hash function itself are now different: the
standard Fiat-Shamir compiler for signatures takes as input a message 𝑚 ∈ ℳ
to be signed (in addition to the first message of the interactive protocol), i.e.
ℎ : 𝐺 ×ℳ → Z𝑝. For the purposes of this technical overview, we will restrict
to the case where ℳ is a poly(𝜆)-size set.5 We stress that a restriction to only
signing “short” messages will be crucial to the following discussion.

Furthermore, the EUF-CMA security experiment requires security in the
presence of an unbounded number of signing queries. So the EUF-CMA attacker
must solve following task:

– Input: A group description 𝐺 = (𝑔, 𝑝), a hash function ℎ : 𝐺 ×ℳ → Z𝑝,
and a random group element 𝑔𝑢.

5 This restriction can in fact be relaxed somewhat, but our positive statements for
information-theoretic Fiat-Shamir hash functions in the generic group model will
crucially rely on |ℳ|/𝑝 being negligible in 𝜆.
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– Oracle Queries: The attacker is free to make an unbounded number of
queries to a signing oracle who knows 𝑢. It submits any 𝑚 ∈ℳ, the signing
oracle samples a random 𝑟 ← Z𝑝, computes 𝑧 = 𝑟 + ℎ(𝑔𝑟, 𝑚) ·𝑢, and returns
the signature (𝑔𝑟, 𝑧).

– Output: Any (𝑚*, (𝑔𝑟*
, 𝑧*)) where 𝑚* ∈ℳ satisfying 𝑔𝑧* = (𝑔𝑟*)(𝑔𝑢)ℎ(𝑔𝑟*

,𝑚*)·𝑢

that was not the result of a signing query.

We would like to identify a class of hash functions ℎ for which this problem
is hard, and as in the previous section, we will start by identifying choices of ℎ
that make this problem easy.

Suppose that ℎ has the following undesirable property: for some choice of 𝑚 ∈
ℳ, the random variable obtained by sampling random 𝑔𝑟 ← 𝐺 and outputting
ℎ(𝑔𝑟, 𝑚) has min-entropy 𝑂(log 𝜆). In this case, breaking EUF-CMA security
can be done efficiently without any signing queries. Let 𝑐 ∈ Z𝑝 be such that
ℎ(𝑔𝑟, 𝑚) = 𝑐 holds with noticeable probability (guaranteed to exist by the low
min-entropy property). The attack is to a uniformly random value 𝑧 ← Z𝑝, and
then compute 𝑔𝑟 = 𝑔−𝑢𝑐+𝑧. Since 𝑔𝑟 is randomly distributed, then ℎ(𝑔𝑟, 𝑚) = 𝑐
with noticeable probability, and the resulting (𝑔𝑟, 𝑧) constitutes a valid signature
on 𝑚. To prevent this attack, we must require that for all 𝑚 ∈ ℳ, the random
variable ℎ(𝑔𝑟, 𝑚)𝑔𝑟←𝐺 has min-entropy 𝜔(log 𝜆).

Another undesirable property of ℎ is the following: suppose for some choice of
distinct 𝑚, 𝑚′ ∈ ℳ, the random variable (𝜒ℎ(𝑔𝑟,𝑚)=ℎ(𝑔𝑟,𝑚′))𝑔𝑟←𝐺 (where 𝜒𝑥=𝑦

is the indicator function that equals 1 if 𝑥 = 𝑦 and 0 otherwise) has noticeable
expected value, i.e. ℎ(𝑔𝑟, 𝑚) = ℎ(𝑔𝑟, 𝑚′) occurs with noticeable probability. If ℎ
satisfies this property, there is a straightforward attack using one signing query:
the attacker queries on 𝑚, learns a random valid signature (𝑔𝑟, 𝑧), and then
submits (𝑚′, (𝑔𝑟, 𝑧)) as its forgery. Since the signing oracle provides a randomly
generated valid signature (i.e. 𝑔𝑟 is random in 𝐺), the Fiat-Shamir challenge for
the 𝑚 and 𝑚′ executions will be identical with noticeable probability, meaning
the signature (𝑔𝑟, 𝑧) for 𝑚 is a valid signature for 𝑚′ with noticeable probability.
To prevent this attack, we must require that for all distinct 𝑚, 𝑚′ ∈ ℳ, the
random variable (𝜒ℎ(𝑔𝑟,𝑚)=ℎ(𝑔𝑟,𝑚′))𝑔𝑟←𝐺 has negligible expectation.

To recap, we have the following minimum requirements on ℎ:6.

1. For all 𝑚 ∈ℳ, we the min entropy of ℎ(𝑔𝑟, 𝑚)𝑔𝑟←𝐺 is 𝜔(log 𝜆).
2. For all distinct 𝑚, 𝑚′ ∈ℳ, we have 𝐸𝑔𝑟←𝐺[(𝜒ℎ(𝑔𝑟,𝑚)=ℎ(𝑔𝑟,𝑚′))] ≤ negl(𝜆).

It turns out that these minimum requirements on ℎ are sufficient to guarantee
EUF-CMA security of Schnorr in the GGM:
6 This is the characterization for the case |ℳ| = poly(𝜆). For larger message spaces

(that still satisfy |ℳ|/𝑝 ≤ negl(𝜆)), the requirements are mildly strengthened: we
require that (1) for all targets 𝑐 ∈ Z𝑝, the probability over a random choice of 𝑟
that ℎ(𝑔𝑟, 𝑚) = 𝑐 for any 𝑚 is negligible, and that for any 𝑚 ∈ ℳ, the probability
over a random choice of 𝑟 that ℎ(𝑔𝑟, 𝑚′) = ℎ(𝑔𝑟, 𝑚) for any 𝑚′ is negligible (i.e., we
reversed an order of quantifiers in each requirement). These are exactly information-
theroetic analogues of the RPP and RPSP properties defined in [46].
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Theorem 9. Suppose ℳ ⊂ Z𝑝 and ℳ = poly(𝜆). Let ℎ : 𝐺 ×ℳ → Z𝑝 be
any function satisfying conditions (1) and (2) above. Then the resulting Schnorr
signature scheme is EUF-CMA secure in the generic group model.

We first note that our proof of Theorem 8 implies that an attacker can-
not generate a valid forgery before it has received any signing queries. That
is, given 𝜎(𝑢), the attacker cannot output (𝑚*, (𝜎(𝑟*), 𝑧*)) where 𝑚* ∈ ℳ and
𝑧* = 𝑟*+ℎ(𝜎(𝑟*), 𝑚*)·𝑢. To see this, note that for any fixed 𝑚, the hash function
ℎ(·, 𝑚) satisfies the same min-entropy property required for non-interactive iden-
tification (by condition (1) on ℎ). A union bound over ℳ implies the attacker
cannot provide a forgery for any 𝑚.

Given this analysis, we prove Theorem 9 in two steps.

– Step 1: Generate signing queries without knowledge of 𝑢. In this
step, we write down a hybrid experiment in which the adversary’s view has
no explicit dependence on the discrete logarithm 𝑢. We accomplish this by
instead programming the group oracle.
In more detail, when signing queries are answered honestly, the adversary
receives (𝜎(𝑟), 𝑟 + 𝑢 · ℎ(𝜎(𝑟), 𝑚)). However, these signing queries can be
simulated in the following way:
∙ Sample a random label ℓ← [𝐿]
∙ Sample a random exponent 𝑧 ← Z𝑝.
∙ Program the value 𝜎(𝑧𝑖 − 𝑥 · ℎ(ℓ, 𝑚)) = ℓ. If the oracle 𝜎 was already

programmed at ℓ, abort.
∙ Output the signature (ℓ, 𝑧, 𝑚)

Moreover, this gives us an implicit representation of the group element cor-
responding to label ℓ as a publicly known linear combination of 𝑔𝑢 and 𝑔,
namely, (𝑔𝑧 ·(𝑔𝑢)−ℎ(ℓ,𝑚)). These group elements will all be distinct with high
probability over the choice of 𝑢.
Essentially, this simulated experiment is indistinguishable from the real se-
curity game as long as the programmed values 𝜎(𝑧𝑖 − 𝑢 · ℎ(ℓ, 𝑚))) do not
contradict any of the adversary’s previous queries to the group oracle. One
can show that the probability of this is negligible because of the randomness
of 𝑢 according to the adversary’s view. This is effectively an invocation of
the generic group hardness of computing discrete logs.

– Step 2: Invoke the statistical properties of ℎ. Now that we have simu-
lated all of the signature queries, we consider a potential forgery (𝜎(𝑟*), 𝑧* =
𝑟* + 𝑢 · ℎ(𝜎(𝑟*), 𝑚*), 𝑚*) and break into two cases.
∙ Case 1: ℓ* := 𝜎(𝑟*) matches one of the signing queries. In this case,

we claim that a forgery allows us to compute the discrete logarithm 𝑢.
Indeed, this is because we have a signing query equation of the form

𝑧 = 𝑟* + ℎ(ℓ*, 𝑚)𝑢

and a forgery equation of the form

𝑧* = 𝑟* + ℎ(ℓ*, 𝑚*)𝑢.
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Moreover, the two hash values (ℎ(ℓ*, 𝑚), ℎ(ℓ*, 𝑚*)) must be distinct be-
cause (1) the marginal distribution on ℓ* is random, and (2) we assumed
that for a random ℓ*, there will not exist an ℎ-collision with prefix ℓ*.

∙ Case 2: ℓ* does not match any signing query. In this case, we
also claim that a forgery allows us to compute the discrete logarithm 𝑢.
Indeed, the forgery equation

𝑧* = 𝑟* + ℎ(ℓ*, 𝑚*)𝑢

along with the adversary’s implicit representation of the exponent

𝑟* = 𝛼 + 𝛽𝑢

(which follows from the fact that the advesary’s view can be computed
generically given only 𝑔𝑢) implies that

𝑧* = 𝛼 + (𝛽 + ℎ(ℓ*, 𝑚*))𝑢.

Then, either 𝛽 + ℎ(ℓ*, 𝑚*) ̸= 0, in which case the adversary can indeed
compute 𝑢, or 𝛽 + ℎ(ℓ*, 𝑚*) = 0. We claim that the high min-entropy
of ℎ(ℓ, 𝑚) for random ℓ implies that this event is unlikely. Indeed, ℓ*

must have been obtained by some group oracle query, so this follows by
a union bound over all group oracle queries made by the adversary.

This completes our proof sketch of Theorem 9.

Preprocessing Attacks. We next show how the [46] characterization of Schnorr
signature security in the GGM fails to capture security in concrete groups. Since
the attacks that we discover fall into the framework of the auxiliary-input GGM
[55, 18], we then analyze Schnorr signatures in this stronger adversary model.

We first describe an attack in the case of Schnorr signatures for short mes-
sages, using the hash function ℎ(𝑔𝑟, 𝑚) = 𝑔𝑟 + 𝑚 (mod 𝑝) over the group7

𝐺 = Z×𝑝 . We showed above that this signature scheme is secure in the generic
group model, but we will nonetheless give an attack over Z×𝑝 .

In order to have a well-specified protocol, we need to fix a mapping Int :
𝐺→ Z from group elements to integers. For simplicity, we choose our mapping
so that 𝑅 ∈ Z×𝑝 maps to the unique integer 𝑎 ∈ [−𝑝−1

2 , 𝑝−1
2 ] such that 𝑅 ≡ 𝑎

(mod 𝑝).
The attack proceeds as follows: we are given a random group element 𝑔𝑢 and

want to output 𝑚, 𝑔𝑟, 𝑧 satisfying 𝑔𝑧 = (𝑔𝑟)(𝑔𝑢)Int(𝑔𝑟)+𝑚. We do this by picking
𝑟, 𝑚 such that Int(𝑔𝑟) + 𝑚 = 0 (mod 𝑝 − 1) and then setting 𝑟 = 𝑧. So, for
example, if the message spaceℳ contains 𝑚 = 𝑝−2, then we can pick 𝑟 = 0, so
that 𝑔𝑟 ≡ 1 (mod 𝑝) and 1 + 𝑝− 2 ≡ 0 (mod 𝑝− 1). This choice is by no means
special; if 1 ∈ℳ, then we can pick 𝑟 = 𝑝−1

2 and obtain another forgery.
This strategy readily generalizes to groups beyond Z×𝑝 : for a cyclic group 𝐺

of order 𝑝, all that is required to produce a forgery is knowledge of an exponent
7 This group does not have prime order, but this detail is not relevant to our analysis.
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𝑟 ∈ Z𝑝 and a message 𝜇 ∈ ℳ ⊂ Z𝑝 such that Int(𝑔𝑟) = −𝜇 (mod 𝑝). It also
generalizes to the case of full Schnorr signatures over 𝐺, using hash functions of
the form ℎ(𝑔𝑟, 𝑚) = Int(𝑔𝑟) + 𝐻(𝑚) for a collision-resistant hash function 𝐻.
One can check that the hash function (family) ℎ satisfies the hypotheses of [46],
so Schnorr signatures using ℎ are secure in the GGM. However, if 𝐺 has a known
equation of the form

Int(𝑔𝑟) = −𝜇,

and 𝐻 additionally satisfies 𝐻(0) = 𝜇 (which can be arranged without sacrificing
collision resistance by hard-coding this value into a hash function 𝐻 whose range
excludes 𝜇), then again (𝑟, 𝑟) is a valid signature. Thus, we see that for every
group 𝐺 with some hard-coded equation Int(𝑔𝑟) = −𝜇, there exists a hash
family ℎ satisfying the [46] hypotheses which leads to an insecure instantiation
of Schnorr signatures.

We now observe that one can view this attack as an attack in the auxiliary-
input generic group model. The Aux-Input GGM is the following adversary model
for some problem 𝒫 over a group 𝐺.

– The adversary is given the description of a group 𝐺 as a random injection
from 𝐺 → [𝐿] (i.e., the adversary is given the full truth tables of the group
operation).

– The adversary then stores 𝑆 bits of information about this group 𝐺 (and
forgets everything else).

– The adversary then receives an instance of 𝒫 (as characterized by a security
game with a challenger). As in the GGM, the adversary can also query the
group oracle.

In other words, an aux-input GGM adversary is a GGM adversary that is
augmented with some 𝑆 bits of non-uniform advice about the group.

Given this definition, it is easy to see that the attacks described above fall
into the aux-input GGM. Indeed, as long as the adversary “remembers” one
equation of the form Int(𝑔𝑟) = −𝜇 (of which many are guaranteed to exist), it
will be able to execute an attack. Thus, one can view the attacks on Z×𝑝 and
other groups as the result of the following three-step process:

– There exist attacks on the schemes above in the auxiliary-input GGM. This
means that for every concrete group 𝐺, there exists a non-uniform attack
on the scheme.

– In the case of specific groups such as Z×𝑝 , the non-uniform advice necessary to
carry out the attack can be computed efficiently given the group description.

Security in the Aux-Input GGM. Given the existence of preprocessing attacks as
above, in order to have confidence in the concrete security of a Schnorr signature
scheme using hash family ℎ, it is necessary to prove security in the auxiliary-
input GGM.

Just as in the case of our GGM lower bounds, we give a characterization
of hash functions (and hash function families) ℎ that lead to secure Schnorr

22



signatures in the auxiliary-input GGM. We state a special case of our theorem
for the purposes of this overview; we refer to the full version for a more general
statement.

Theorem 10. Let ℳ ⊂ Z𝑝 and |ℳ|/Z𝑝 ≤ negl(𝜆). Suppose the (keyed) Fiat-
Shamir hash function 𝐻𝑘 : [𝐿]×ℳ→ Z𝑝 satisfies the following properties:

– For any 𝑚 ∈ ℳ, ℎ(𝑔𝑢, 𝑚) has min-entropy log(|ℳ|) · log 𝜆 on a random
𝑔𝑢 ← 𝐺.

– Zero-avoidance: For any (stateful, potentially unbounded) adversary 𝒜:

Pr
[︀
𝐻𝑘(ℓ, 𝑚) = 0 | ℓ← 𝒜(1𝜆), 𝑘 ← 𝒦, 𝑚← 𝒜(𝑘)

]︀
≤ negl(𝜆);

Then Schnorr signatures with Fiat-Shamir hash function 𝐻𝑘 are EUF-CMA
secure in the AI-GGM against adversaries (𝒜1,𝒜2) with advice of size 𝑆 =
poly(𝜆), 𝑇 = poly(𝜆) oracle queries, 𝑄 = poly(𝜆) signing queries.

The first of the two hypotheses is the same as in Theorem 9; the second rules
out the preprocessing attacks described above. Similarly to before, Theorem 10
says that once these attacks are avoided, no further attacks in the Aux-Input
GGM exist.

We prove Theorem 10 using the framework of [18], who show a rough equiva-
lence between the auxiliary-input GGM and an a priori weaker adversary model
called the bit-fixing GGM (BF-GGM). Informally, in the BF-GGM, instead of
learning an arbitrary 𝑆 bits of information about a random group 𝐺, the adver-
sary can only remember the labels of 𝑃 group elements (and their corresponding
exponents with respect to the canonical generator). In [18], it is shown that for
any (efficient and generic) challenger-adversary game, security in the AI-GGM
follows from security in the (ostensibly weaker) BF-GGM with a slight loss in
parameters. We can apply this result directly to the soundness of Schnorr sig-
natures, reducing our problem to proving a lower bound in the BF-GGM.

Now, we can conveniently extend all of our GGM analysis (i.e., the proof of
Theorem 9 to apply in the BF-GGM (and therefore to the AI-GGM via [18]).
The BF-GGM lower bound will look very similar to before:

– Step 1: Generate signing queries without knowledge of 𝑢. We simu-
late signing queries in exactly the same way as before. Some care is required
to argue that indistinguishability still holds, because the adversary addition-
ally has access to a short list of hard-coded group labels.

– Step 2: Invoke the statistical properties of ℎ. We again consider a
potential forgery (𝜎(𝑟*), 𝑧* = 𝑟* + ℎ(𝜎(𝑟*), 𝑚*)𝑢, 𝑚*). This time, we break
into three cases:
∙ Case 0: ℓ* appears in the adversary’s auxiliary information. This

case is unique to the BF-GGM setting; however, the forgery equation

𝑧* = 𝑟* + ℎ(ℓ*, 𝑚)𝑢

allows us to solve for 𝑢 unless ℎ(ℓ*, 𝑚) = 0, which cannot happen (except
with negligible probability) because we assumed that ℎ was 0-avoiding.
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∙ Case 1: ℓ* := 𝜎(𝑟*) matches one of the signing queries. This case
matches our GGM analysis above.

∙ Case 2: ℓ* does not match any signing query. This case also
matches our GGM analysis above.

This completes our proof sketch of Theorem 10.

Application: (Candidate) Simple Schnorr Signatures. One takeaway of our anal-
ysis is that it might be possible that simple compilations of Schnorr signatures
(for small message space) are secure. The appeal of such a signature scheme is
that all of the operations are extremely simple, and can be implemented with
random sampling and modular arithmetic. We stress that the only evidence we
have for security is that this scheme resists generic preprocessing attacks, and
that so far, we have been unable to leverage non-generic properties of Z×𝑝 to
break this scheme. Further analysis of this simple scheme is beyond the imme-
diate scope of this work, and we strongly recommend against considering this
scheme “secure” unless it withstands significant cryptanalytic effort.

Construction 11. Consider the Schnorr signature scheme for group Z×𝑝 , where
the Fiat-Shamir hash function has random 𝑘 ← Z𝑞, and outputs 𝑔𝑟 +𝑚+𝑘( mod
𝑞) on input (𝑔𝑟, 𝑚):

– Group: Z×𝑝 with a generator 𝑔 of a cyclic subgroup of order 𝑞, where 𝑝 =
2𝑞 + 1.

– Message space: Any subset 𝑀 ⊂ Z𝑞 of poly(𝜆) size.
– Signing key: 𝑠𝑘 ← Z𝑞.
– Verification key: (𝑘, 𝑔𝑠𝑘) where 𝑘 ← Z𝑞.
– Sign(sk, 𝑚): Sample 𝑟 ← Z𝑞. Let 𝑧 = 𝑟 + (𝑔𝑟 + 𝑚 + 𝑘) · 𝑠𝑘(mod 𝑞). Output

(𝑔𝑟, 𝑧).
– Ver(vk, 𝑚, (𝑔𝑟, 𝑧)): Accept if 𝑔𝑧 = 𝑔𝑟 · (𝑔𝑠𝑘)𝑔𝑟+𝑚+𝑘(mod 𝑝).

Extensions to Chaum-Pedersen and NIZKs for NP. Our analysis for Schnorr
signatures in the AI-GGM easily extends to prove semi-adaptive soundness of
the Chaum-Pedersen protocol for proving validity of a Diffie-Hellman tuple. As
the security analysis is extremely similar to our analysis for Schnorr, we defer
this result (and its implications for NIZKs for NP) to the full version.

2.3 Negative Results

In this section, we give a simple example of a negative result that we can prove
using our methods. In particular, we consider an idealized variant of Blum’s
Hamiltonicity protocol [8] in which the commitment scheme is instantiated with
a random oracle.

The Blum protocol 𝛱 = 𝛱Blum is described in Fig. 1. For this example,
we instantiate Com(𝑏; 𝑟) = 𝒪(𝑏, 𝑟) as an idealized bitwise commitment scheme
in the random oracle model. 𝛱 then is repeated 𝑡 times in parallel to obtain
soundness error 2−𝑡.
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𝑃 (𝐺, 𝜎) 𝑉 (𝐺)
𝜋 ← 𝑆𝑛, 𝐺′ = 𝜋(𝐺)
𝛼← Com(𝐺′)

𝛼

𝛽 𝛽 ← {0, 1}

If 𝛽 = 0:
decommit to 𝐺′ and reveal 𝜋.
If 𝛽 = 1:
reveal 𝜋 ∘ 𝜎 and decommit to
the edges in 𝐺′ corresponding
to the cycle 𝜋 ∘ 𝜎.

𝛾

Accept if
all decommitments are valid and:
either 𝛽 = 0 and 𝐺′ = 𝜋(𝐺)
or 𝛽 = 1 and all decommitments are 1.

Fig. 1. The Zero Knowledge Proof System 𝛱Blum for Graph Hamiltonicity.

At first glance, especially given our positive results for Schnorr and Chaum-
Pedersen, one might hypothesize that since we have made the commitment
scheme “super-secure”, Fiat-Shamir for 𝛱𝑡 might be instantiable with a sim-
ple hash function ℎ. In fact, we show that even for this idealized variant of
the Blum protocol, a (successful) Fiat-Shamir hash function ℎ for this protocol
necessarily satisfies a cryptographic security property.

As discussed earlier, there are two variants of this result. First, we give a
polynomial-query attack on 𝛱𝑡

FS,ℎ for any hash function ℎ that does not in-
voke the random oracle 𝒪. Then, we extend this polynomial-query attack to a
polynomial-time attack assuming the easiness of some computational problem
depending on ℎ.

To understand our attack, we first consider an “obviously broken” choice of
hash function ℎ: define ℎ(𝛼1, . . . , 𝛼𝑡) = (𝑓(𝛼1), . . . , 𝑓(𝛼𝑡)) to be a fixed function
applied to each commitment separately. This corresponds to a parallel repetition
of 𝛱FS,𝑓 , which is the application of Fiat-Shamir to a protocol with constant
soundness error. We know that such a non-interactive protocol is unsound via
a reset attack: given an instance 𝐺, it is possible to prepare a commitment 𝛼1
that can successfully answer either a “0” challenge or a “1” challenge. Therefore,
if 𝛼1 is prepared to answer the challenge 𝑏 (for a uniformly random bit 𝑏),
we have that 𝑓(𝛼1) = 𝑏 with probability 1/2 (since 𝛼1 hides 𝑏) and so after an
expected constant number of string commitment queries, we obtain an accepting
transcript (𝛼1, 𝑏1, 𝛾1) for the first repetition. This can be done for each “slot”,
giving a polynomial-query break of soundness for the overall protocol.

To rephrase the attack, for our example choice of ℎ, if one prepares enough
“fake commitments” {𝛼(𝑖)

1 }, {𝛼
(𝑖)
2 }, . . . , {𝛼(𝑖)

𝑡 } for each of the 𝑡 repetitions, then
with high probability, there exists a combination of the individual commitments
that hashes to the “bad challenge” whose answer was generated along with the
commitments. We show that the above argument generalizes to all hash functions
ℎ. The poly-query attack is as follows.
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1. For 1 ≤ 𝑖 ≤ 𝑡, 1 ≤ ℓ ≤ 𝑞, sample a random bit 𝑦
(𝑖)
ℓ ← {0, 1} and sample

message 𝛼
(𝑖)
ℓ : if 𝑦

(𝑖)
ℓ = 0, sample 𝛼

(𝑖)
ℓ as in the honest protocol, while if

𝑦
(𝑖)
ℓ = 1, and sample 𝛼

(ℓ)
𝑖 as a commitment to a cycle graph.

2. Find 𝑣 ∈ [𝑞]𝑡 such that ℎ(𝛼[𝑣]) = 𝑦[𝑣]. Abort if no such 𝑣 exists.
3. Output 𝛼[𝑣] as well as the necessary decommitments to 𝛼[𝑣] (either the entire

graph or just the edges in the cycle).

This constitutes a poly-query attack on the protocol 𝛱𝑡
FS,𝐻 in the random

oracle model as long as Step (2) has a solution with high probability over (𝛼, 𝑦).
In the case ℎ = (𝑓, . . . , 𝑓) as above, this condition follows immediately. We show
in the full version that for any ℎ, as long as 𝑞 = 𝜔(𝑡), Step (2) has a solution
with high probability over (𝛼, 𝑦).

To obtain a (conditional) polynomial-time attack on the protocol, we note
that if the solution to the problem in Step (2) can be found efficiently, then the
above attack can be implemented in polynomial time.

Crucially, the above analysis generalizes well because the computational
problem in Step (2) does not depend on the protocol. We accomplish this by
reducing breaking the soundness of 𝛱𝑡

FS,ℎ to solving a “mix-and-match” prob-
lem of the following form: given many strings {𝛼(𝑖)

ℓ } (𝑞 strings for each slot)
which are each associated with a random bit 𝑏

(𝑖)
ℓ , find a concatenation 𝛼[𝑣] of 𝑡

different 𝛼
(𝑖)
ℓ (one for each slot) such that ℎ(𝛼[𝑣]) = 𝑏[𝑣] (the corresponding com-

bination of bits). This motivates our definition of “mix-and-match resistance”
(see the full version), a security property which captures the analogous problems
for a wide class of protocols 𝛱.

While the analysis above is tailored to (parallel repeated) 𝛱Blum, it turns out
that the argument only relies on a couple of (basic) properties of the protocol,
namely:

– Given a challenge 𝛽, it is possible to sample a (pseudorandom) first message 𝛼
along with an accepting response 𝛾 for 𝛼, even when the statement 𝑥 is false.
This property is used to construct a mix-and-match problem in our attack,
and essentially follows from an honest-verifier zero knowledge property of
the protocol.

– The protocol is obtained by applying parallel repetition to a protocol with
polynomial-size challenge space. This independence property is enough to
guarantee that the “mix-and-match” problem information-theoretically has
a solution.

We refer the reader to the full version for more details on the extent to which
the result generalizes.
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