
Non-Interactive Secure Multiparty Computation
for Symmetric Functions, Revisited:

More Efficient Constructions and Extensions

Reo Eriguchi1,2, Kazuma Ohara2, Shota Yamada2, and Koji Nuida2,3

1 The University of Tokyo, Tokyo, Japan
reo-eriguchi@g.ecc.u-tokyo.ac.jp

2 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
{ohara.kazuma,yamada-shota}@aist.go.jp

3 Kyushu University, Fukuoka, Japan
nuida@imi.kyushu-u.ac.jp

Abstract. Non-interactive secure multiparty computation (NIMPC) is
a variant of secure computation which allows each of n players to send
only a single message depending on his input and correlated randomness.
Abelian programs, which can realize any symmetric function, are defined
as functions on the sum of the players’ inputs over an abelian group and
provide useful functionalities for real-world applications. We improve and
extend the previous results in the following ways:
– We present NIMPC protocols for abelian programs that improve

the best known communication complexity. If inputs take any value
of an abelian group G, our protocol achieves the communication
complexity O(|G|(log |G|)2) improving O(|G|2n2) of Beimel et al.
(Crypto 2014). If players are limited to inputs from subsets of size at
most d, our protocol achieves |G|(log |G|)2(max{n, d})(1+o(1))t where
t is a corruption threshold. This result improves |G|3(nd)(1+o(1))t of
Beimel et al. (Crypto 2014), and even |G|logn+O(1)n of Benhamouda
et al. (Crypto 2017) if t = o(log n) and |G| = nΘ(1).

– We propose for the first time NIMPC protocols for linear classifiers
that are more efficient than those obtained from the generic con-
struction.

– We revisit a known transformation of Benhamouda et al. (Crypto
2017) from Private Simultaneous Messages (PSM) to NIMPC, which
we repeatedly use in the above results. We reveal that a sub-protocol
used in the transformation does not satisfy the specified security. We
also fix their protocol with only constant overhead in the communi-
cation complexity. As a byproduct, we obtain an NIMPC protocol
for indicator functions with asymptotically optimal communication
complexity with respect to the input length.

1 Introduction

Secure multiparty computation enables n players Pi (i ∈ [n] := {1, 2, . . . , n}),
each holding an input xi ∈ X0, to jointly compute a function while keeping

their inputs as secret as possible. NIMPC (Non-Interactive secure Multi-Party
Computation) [2, 3] is a variant of secure computation with a restricted interac-
tion pattern, which assumes an external output player called an evaluator and
allows each player to send only a single message depending on his input and
pre-distributed correlated randomness to the evaluator.

Since it requires no interaction between the players, this model is especially
well suited to a situation where the players cannot simultaneously participate
in a protocol due to physical limitations. In spite of its limitations, NIMPC still
provides useful functionalities in real-world scenarios such as voting, auctions,
and statistical surveys using histograms. NIMPC is also of theoretical interest
due to its various applications to other important models of secure computation
[10, 4, 11].

To define the notion of security, an adversary is supposed to collude with
a set of players C ⊆ [n] as well as the evaluator. In NIMPC for a function h,
it is impossible to prevent him from computing h on all possible inputs of the
corrupted players combined with the inputs of the honest players. More formally,
for the inputs of the honest players xC = (xi)i∈C , the adversary can always eval-
uate the function h|C,xC

(xC) = h(xC , xC) for all possible xC = (xi)i∈C , which

is called the residual function [12]. Thus, the security requirement of NIMPC
is that the adversary learns the residual function h|C,xC

and nothing more. An

NIMPC protocol is called t-robust if it can withstand collusion of at most t
players and the evaluator. If t = n, we say that it is fully robust. The efficiency
of NIMPC protocols is measured by the communication complexity defined as
the maximum bit length of randomness and messages.

Fully robust NIMPC for the class of all the functions with input domain Xn
0

is known to be possible [3, 17, 15, 1]. However, due to the lower bound [17], it
necessarily has the communication complexity proportional to |X0|n, which is
very inefficient when n is large. Therefore, it is important to construct efficient
NIMPC protocols for specific functions of practical use. The aim of this paper
is reducing the communication complexity as much as possible and specifically,
making it as close as possible to the lower bound [17].

Above all, symmetric functions realize useful functionalities including voting
and statistical surveys using histograms. The notion of abelian programs is a
generalization of symmetric functions introduced in [3]. Technically, an abelian
program h takes n elements from an abelian group G as inputs and outputs
h(x1, . . . , xn) = f(

∑
i∈[n] xi) for some function f : G→ {0, 1}.

The authors of [3] propose a fully robust NIMPC protocol with communi-
cation complexity O(|G|2n2) for abelian programs allowing inputs to take any
value of G. Since NIMPC protocols do not satisfy the same level of robust-
ness in general if players are limited to inputs from smaller domains, they also
propose a t-robust protocol with communication complexity |G|3(nd)t+O(1) for
abelian programs with input domains of size at most d. Benhamouda, Krawczyk,
and Rabin [6] construct a fully robust protocol with communication complexity
|G|log n+O(1)n when input spaces are arbitrary subsets. However, from the view-
point of the lower bound n−1|G| [17], there is still room for improvement espe-

2

cially in the exponent with respect to |G|. To evaluate a histogram for m inter-
vals, for example, we have to choose d = m and the direct product G = (Zn+1)

m

of m copies of the cyclic group of size n + 1 [3], which is of size n(1+o(1))m.
Hence, reducing the exponent with respect to |G| will have a large effect on the
communication complexity.

Abelian programs are also applicable to linear classifiers, which perform clas-
sification based on a weighted sum of inputs and cover popular methods such
as support vector machines [7, 8] and logistic regression. Indeed, if the weights
are public, the players can locally multiply their inputs by the weights and then
execute a protocol for a certain abelian program. However, the weights are often
kept private to protect the intellectual property of learned models in practice. To
the best of our knowledge, there is no NIMPC protocol for linear classifiers that
does not reveal weights to players other than those obtained from the generic
construction.

1.1 Our Results

The contributions of this paper are threefold. First, we present efficient NIMPC
protocols for abelian programs that improve the best known communication
complexity. Secondly, we propose for the first time NIMPC protocols for linear
classifiers that are more efficient than those obtained from the generic construc-
tion. Thirdly, we revisit a known transformation [6] (hereinafter referred to as
the BKR transformation), which transforms any 0-robust NIMPC protocol, also
known as PSM (Private Simultaneous Messages) protocol [9, 13], into a t-robust
one. The transformation is repeatedly used in the above two results to limit
players to inputs from smaller domains. We reveal that their NIMPC protocol
used in the transformation does not satisfy even 1-robustness and we also fix
their protocol.

Efficient NIMPC Protocols for Abelian Programs. We propose a fully
robust NIMPC protocol with communication complexity O(|G|(log |G|)2) for
abelian programs allowing inputs to take any value of G. Our protocol improves
the previous result O(|G|2n2) [3]. Note that it is impossible to cut down on the
exponent with respect to |G| anymore due to the lower bound [17]. For abelian
programs with limited input domains, we apply the BKR transformation to our
protocol with the extended input domain in a non-straightforward way. This
is the first time that the BKR transformation, which originally aims at lifting
the level of robustness, has been used to restrict input domains. As a result, we
obtain a t-robust protocol with communication complexity |G|(log |G|)2pt+O(1)

if input domains are of size at most d, where p is the smallest prime power such
that p ≥ max{n, d}. This protocol is more efficient than the previous protocol
of [3] and even than that of [6] if t = o(log n) and |G| = nΘ(1).

New NIMPC Protocols for Linear Classifiers. We define the class of
linear classifiers as functions computing f(

∑
i∈[n] wixi) on a weighted sum of

3

Table 1. Comparison of the existing t-robust NIMPC protocols for abelian programs.
Let n be the number of players, G be an abelian group, d be a positive integer at most
|G|, and p be the smallest prime power such that p ≥ max{n, d}. We suppose t = n if
the symbol t does not appear in the complexity.

Reference Input domain Communication complexity

[3]
Gn

O(|G|2n2)

Ours (Theorem 1) O(|G|(log |G|)2)

[3] ∏
i∈[n] Si,

where Si ⊆ G and |Si| ≤ d

|G|3(nd)t+O(1)

[6] |G|logn+O(1)n

Ours (Corollary 1) |G|(log |G|)2pt+O(1)

inputs for some weights w = (wi)i∈[n] over a finite field Fq and some function
f : Fq → {0, 1}. Our definition can be naturally extended to functions outputting
many bits and can also deal with real-valued inputs by choosing a sufficiently
large prime q. We propose a fully robust NIMPC protocol with communication
complexity O(q log q) for this class when inputs take any value of Fq. Note that
the multiplicative factor of q is unavoidable due to the lower bound from [17]. In
our protocol, no information on the weights is leaked other than what is implied
by the residual function. Applying the BKR transformation, we also obtain a
t-robust protocol with communication complexity pt+O(1)q log q for linear clas-
sifiers with input domains of size at most d, where p is the smallest prime power
such that p ≥ max{n, d}.

Revisiting the BKR Transformation. We have used the BKR transfor-
mation in the above two results to restrict input domains. However, we revisit
the transformation and reveal that their fully robust NIMPC protocol for what
they call outputting-message functions, which is used as a building block in the
transformation, does not satisfy even 1-robustness. We also fix their protocol
with only constant overhead in the communication complexity. Therefore, the
statements of [6] still hold true but it is necessary to use our modified protocol
for outputting-message functions when applying the BKR transformation. As a
byproduct of that modification, we obtain a fully robust NIMPC protocol for
the class of indicator functions. An indicator function decides whether a tuple
of inputs x ∈ Xn

0 is equal to some fixed a ∈ Xn
0 , where X0 is a fixed domain.

Our protocol has communication complexity O((log |X0|)n) improving the best
known result O((log |X0|)2n) [17] and is asymptotically optimal with respect to
the input length according to the lower bound [17].

1.2 Related Work

It is known that NIMPC for indicator functions is used as a building block to con-
struct protocols for any given class of functions [3]. For the class of all the func-
tions from Xn

0 to a finite set Z, our result on indicator functions implies a fully

4

robust protocol with communication complexity O(|X0|n(log |X0|)(log |Z|)n) im-
proving the previous results [3, 17, 15]. Recently, however, the authors of [1]
propose an asymptotically optimal protocol achieving O(|X0|n(log |Z|)) with-
out using indicator functions. For the class consisting only of a single function
f : Xn

0 → {0, 1}, a t-robust protocol has been proposed in [5] by applying the
BKR transformation to an efficient PSM protocol for f . If t < n/2, it is more
efficient than the protocol obtained from indicator functions. Nevertheless, it
makes sense to construct efficient protocols for indicator functions if we aim at
an intermediate class of functions rather than the above two extreme ones.

For boolean symmetric functions, the authors of [6] devise a more efficient t-
robust NIMPC protocol with communication complexity nlog log n+log t+O(1) than
those obtained from abelian programs.

2 Technical Overview

In this section, we provide an overview of our NIMPC protocols. We give more
detailed descriptions and security proofs in the following sections.

2.1 Efficient NIMPC Protocols for Abelian Programs

An abelian program h takes n inputs from an abelian group G and outputs
h(x1, . . . , xn) = f(

∑
i∈[n] xi) for some function f : G → {0, 1}. We start by

explaining how to construct an efficient fully robust NIMPC protocol for the
class of abelian programs in which inputs take any value of G. Our protocol is in
part based on the result of Beimel et al. [3, Theorem 7.2], which has presented a
protocol tailored to abelian programs over the cyclic group Zn+1 = {0, 1, . . . , n}
of size n + 1. They consider a special map σ : x 7→ x + 1 mod (n + 1) from
Zn+1 to itself and view every element g ∈ Zn+1 as the g-th iteration of σ,
i.e., σg := σ ◦ · · · ◦ σ (g times). They then reduce computing abelian programs
to composing the maps σxi corresponding to the players’ inputs xi. To hide the
inputs and achieve robustness, they randomize the operation of that composition
by using Kilian’s technique [14]. However, there is no such map as σ in a general
abelian group, which is why the previous result is only applicable to Zn+1.

Construction Based on the Regular Representation. To represent ele-
ments of an abelian group G, we make the most use of the regular representation
of G. Observe that the g-th iteration of σ is equivalent to the map x 7→ x + g
mod (n + 1). Generalizing it, we view an element g ∈ G as a permutation
σg : G 3 x 7→ x + g ∈ G, which is further viewed as a linear map from the
|G|-dimensional vector space over F2 = {0, 1} to itself translating every basis

ex to ex+g, where ex ∈ F|G|
2 is the unit vector such that the entry indexed by

x ∈ G is one. Then, the summation of inputs corresponds to the composition
of the associated linear maps. Furthermore, if we appropriately represent the
associated function f : G → {0, 1} as a vector, we can express the whole com-
putation of the abelian program as a certain matrix-vector product. As in [3],

5

we use the randomization technique [14] to securely perform that linear alge-
bra operation. However, there still remain two problems in the above protocol:
(1) the resultant communication complexity is O(|G|2 log |G|) since the protocol
has to communicate O(|G|) permutations over G, each of which is expressed as
O(|G| log |G|) bits and (2) it only works for the specific abelian program since it
reveals partial information on the truth table, e.g., |f−1(1)|. Regarding the first
problem, we cut down the number of matrices with the help of the fundamental
theorem of finite abelian groups. Since it implies that all the group elements are
generated by O(log |G|) elements, players can compute their messages from only
O(log |G|) permutations corresponding to the generators. To hide the value of
|f−1(1)|, we carefully choose a group extension H ⊋ G and extend f : G→ {0, 1}
to f̃ : H → {0, 1} so that |f̃−1(1)| is constant regardless of f . The details are
given in Section 4.

Limiting Inputs. To construct a protocol for abelian programs with limited
input domains, we use the BKR transformation in a non-straightforward way.
Note that it has been originally devised to obtain t-robust NIMPC protocols
from 0-robust ones. Clearly, the above fully robust protocol for abelian pro-
grams with the extended input domain satisfies 0-robustness. Since 0-robustness
is not affected by what the input domain is, that protocol is itself a 0-robust
protocol for abelian programs with limited input domain. We then apply the
BKR transformation and lift the level of robustness to t > 0 with some overhead
in communication complexity.

2.2 New NIMPC Protocols for Linear Classifiers

We formally define linear classifiers as the class of all the functions of the form
hf,w : Fn

q 3 (xi)i∈[n] 7→ f(
∑

i∈[n] wixi) ∈ {0, 1}, where Fq is the fixed finite field

of size q, f : Fq → {0, 1}, and w = (wi)i∈[n] ∈ Fn
q .

To begin with, we fix f and treat k = |f−1(1)| as public information. We
show a construction of a fully robust protocol for the class consisting only of the
specific function {hf,w}. Let f−1(1) = {u1, . . . , uk} and set u = (uj)j∈[k] ∈ Fk

q .
The main idea of our construction is to use the fact that f(

∑
i∈[n] wixi) = 1

if and only if at least one entry of u0 = (uj −
∑

i∈[n] wixi)j∈[k] is zero. We
must ensure that the evaluator learns the number of zeros in u0 and nothing
more. We randomly choose a permutation π over [k] and k non-zero elements
ri ∈ Fq \ {0} (i ∈ [k]) and define ũ = (rjuπ(j))j∈[k]. We then send each Pi

the vector ũi = (rjwi)j∈[k] along with a random vector si ∈ Fk
q for masking

his input, who in turn sends his message ũixi + si to the evaluator. We let the
evaluator receive ũ +

∑
i∈[n] si in advance and after receiving the messages, he

outputs f(
∑

i∈[n] wixi) according to the number of zeros in ũ−
∑

i∈[n] ũixi.
However, as mentioned above, this protocol assumes the dimension k =

|f−1(1)| of the vectors is public, which is why it does not work for the class
of all the linear classifiers. Our solution to hide k is padding the vector u with
certain q − k elements uj (k < j ≤ q) to ensure that its dimension should be q.

6

Specifically, we carefully select these q−k elements from an extension field of Fq

so that the protocol satisfies correctness. We also propose a protocol for linear
classifiers with limited input domains by applying the BKR transformation as
in the case of abelian programs. The details are given in Section 5.

2.3 Revisiting the BKR Transformation

As a building block for the BKR transformation, the authors of [6] propose a
fully robust NIMPC protocol for what they call outputting-message functions.
We reveal that their protocol does not satisfy even 1-robustness. Technically,
they define an outputting-message function for a message m, a vector u, and
a matrix A = [a1, . . . ,an] as the function outputting m if u = A[x1, . . . , xn]

⊤

holds and ⊥ otherwise.
The main issue is in their procedures for securely testing the equality u =

A[x1, . . . , xn]
⊤. In their protocol, each Pi receives a random vector si and sends

νi := aixi+si as part of his message. The evaluator receives ν0 := u+
∑

i∈[n] si
in advance and then tests whether ν0 =

∑
i∈[n] νi holds. However, consider

the collusion of the player P1 and the evaluator. If d := u −
∑

i ̸=1 aixi and
a1 are linearly independent, they should learn nothing at all since the residual
function outputs nothing but ⊥. Nevertheless, they actually obtain the vector
d = ν0 −

∑
i ̸=1 νi − s1.

We fix their protocol with only constant overhead in the communication
complexity. Our main idea is randomizing d to ensure for P1 and the evaluator
not to learn more than the linear independence relation between d and a1, which
is the only information revealed by the residual function. Specifically, we choose
an invertible matrix T uniformly at random and redefine ν0 = Tu+

∑
i∈[n] si.

We additionally give Tai to each Pi as randomness. Now, P1 and the evaluator
only learns ν0−

∑
i ̸=1 νi− s1 = Td, which does not reveal more than the linear

independence relation between d and a1 due to the randomness of T . Note that
our modification increases the communication complexity of their protocol only
by a constant factor. We present the formal statements in Section 6.

Finally, as a byproduct of that modification, we obtain a fully robust protocol
for indicator functions with asymptotically optimal communication complexity
with respect to the input length. Roughly speaking, we embed every input do-
main to a subset of a fixed finite field and translate the condition (xi)i∈[n] =

(ai)i∈[n] to the equality test u = In[x1, . . . , xn]
⊤, where u = [a1, . . . , an]

⊤ and
In is the identity matrix of size n. We show that an NIMPC protocol for that
equality test is obtained from our modified protocol for outputting-message func-
tions.

3 Preliminaries

Notations. For a set X = X1× · · · ×Xn and C ⊆ [n], we define XC =
∏

i∈C Xi.

For x ∈ X , we define xC as the restriction (xi)i∈C of x to XC . Let C be the
complement of C ⊆ [n] and xC ∈ XC . For a function h : X → Z, we define

7

the residual function h|C,xC
: XC → Z of h for C and xC as the sub-function

of h obtained by restricting the input variables indexed by C to xC , that is,
h|C,xC

(xC) = h(xC , xC).

For a finite set S, we write s←$S if we choose a uniformly random element s
from S. For two distributions D,D′ on S, we write D ≡ D′ if they are perfectly
identical to each other. Define SS as the set of all the permutations over S. We
simply write SN if S is clear from the context, where N = |S|. For π ∈ SS and
a finite field K, we define a permutation matrix Uπ as the square matrix over
K of size |S| whose (i, j)-th entry is 1 if j = π(i) and 0 otherwise, where we
assume that the sets indexing the rows and columns are both S. It holds that
U−1

π = Uπ−1 = U⊤
π and UπUτ = Uτ◦π, where π−1 is the inverse of π and τ ◦ π

is the composition of π, τ ∈ SS , i.e., (τ ◦ π)(i) = τ(π(i)) for all i ∈ S. For i ∈ S,
let ei = (aj)j∈S ∈ KN denote the i-th unit vector, i.e., ai = 1 and aj = 0 for all
j 6= i.

For ri ∈ K (i ∈ [N]), let diag(r1, . . . , rN) ∈ KN×N denote a diagonal matrix
whose (i, i)-th entry is ri for i ∈ [N]. Throughout the paper, all vectors are
column vectors unless otherwise indicated. For a tuple of vectors (vi)i∈[N] where

vi ∈ Kk, we define Ker((vi)i∈[N]) = {(xi)i∈[N] ∈ KN |
∑

i∈[N] vixi = 0} . For a
subset S ⊆ KN , we denote by S⊥ the orthogonal complement of S, i.e., S⊥ =
{(δi)i∈[N] ∈ KN | ∀(xi)i∈[N] ∈ S,

∑
i∈[N] δixi = 0}. We define GLk(K) as the set

of all the invertible k-by-k matrices, i.e., GLk(K) = {T ∈ Kk×k | det(T) 6= 0}.

3.1 Non-Interactive Secure Multiparty Computation

In NIMPC, we consider n players Pi (i ∈ [n]), each holding an input, and an
external output player P0 called an evaluator. In this paper, we focus on NIMPC
with correlated randomness, in which each player locally computes a message
from his input and randomness and then sends it to the evaluator.

Definition 1 (NIMPC: syntax and correctness). Let Xi (i ∈ [n]) and Z
be finite sets. Let X =

∏
i∈[n] Xi and H be a class of functions from X to Z. Let

Ri (i ∈ {0} ∪ [n]) and Mi (i ∈ [n]) be finite sets. An NIMPC protocol for H is
a triplet Π = (Gen,Enc,Dec), where:

– Gen : H → R0 ×R1 × · · · × Rn is a randomized function;

– Enc is an n-tuple of deterministic functions (Enc1, . . . ,Encn), where Enci :
Xi ×Ri →Mi;

– Dec : R0 ×M1 × · · · ×Mn → Z is a deterministic function satisfying the
following correctness requirement: for any x = (x1, . . . , xn) ∈ X and any
h ∈ H, it holds that

Pr[(R0, R1, . . . , Rn)← Gen(h) : Dec(R0,Enc(x,R)) = h(x)] = 1,

where Enc(x,R) = (Enc1(x1, R1), . . . ,Encn(xn, Rn)).

8

The online communication complexity CCon(Π) of Π is the maximum of
log |M1|, . . . , log |Mn|. The offline communication complexity CCoff(Π) of Π is
log |R0|, log |R1|, . . . , log |Rn|. The communication complexity CC(Π) of Π is
defined as the maximum of CCon(Π) and CCoff(Π).

To define the security requirements of NIMPC, we consider an adversary who
colludes with a set of players C ⊆ [n] as well as the evaluator. In this setting, it is
impossible to prevent the adversary from learning the residual function h|C,xC

for

the inputs xC of the honest players. Indeed, he is allowed to compute h(xC , xC)
for every input xC from the correlated randomness of C and the messages of C.
We say that an NIMPC protocol is C-robust if the adversary’s view is perfectly
simulated by some simulator with oracle access to the residual function.

Definition 2 (NIMPC: robustness). For a subset C ⊆ [n], we say that an
NIMPC protocol Π for H is C-robust if there exists a simulator Sim with oracle
access to a residual function such that, for every h ∈ H and xC ∈ XC , we have

Sim
h|C,x

C (C) ≡ (R0, RC = (Ri)i∈C ,MC = (Mi)i∈C), where (R0, R1, . . . , Rn) ←
Gen(h) and Mi = Enci(xi, Ri).

For an integer 0 ≤ t ≤ n, we say that Π is t-robust if it is C-robust for every
C ⊆ [n] of size at most t. We say that Π is fully robust if it is n-robust.

3.2 Abelian Programs

Let G be a finite abelian group and S1, . . . , Sn be subsets of G. Let Xi = Si for
i ∈ [n] and X = X1 × · · · × Xn. Define the abelian program hf : X → {0, 1}
associated with f : G→ {0, 1} as hf (x1, . . . , xn) = f(

∑
i∈[n] xi). We then define

AS1,...,Sn

G be the class of all the abelian programs, that is, AS1,...,Sn

G = {hf : X →
{0, 1} | f : G→ {0, 1}}. We simply write AG if S1 = · · · = Sn = G.

The class of abelian programs with limited input domains includes symmetric
functions. A function h : [d]n → {0, 1} is called symmetric if h(xπ(1), . . . , xπ(n)) =
h(x1, . . . , xn) for all (x1, . . . , xn) ∈ [d]n and π ∈ Sn. Following [3], let G =
(Zn+1)

d and S1 = · · · = Sn = {e1, . . . , ed} ⊆ G, where ei ∈ (Zn+1)
d is the

i-th unit vector. Then, we can see that AS1,...,Sn

G is equivalent to the class of all
symmetric functions over [d]n identifying xi ∈ [d] with exi

∈ G since the outputs
h(x1, . . . , xn) of symmetric functions only depend on

∑
i∈[n] exi

.
Although assuming above that abelian programs output only one bit, it is

possible to extend them to the ones outputting m bits by computing each output
bit separately [3]. Specifically, given an NIMPC protocol Π for AS1,...,Sn

G , we can
construct a protocol Πm for Hm := {h : X → {0, 1}m | h = (h1, . . . , hm), hi ∈
AS1,...,Sn

G } with m times higher communication complexity by running Π for
each hi separately.

We note that limiting players to inputs from smaller domains is not a straight-
forward task for NIMPC. For example, a t-robust NIMPC protocol for AG does
not directly imply a t-robust protocol for AS1,...,Sn

G . This is because in a 1-robust
protocol for h ∈ AG, any player Pi colluding with the evaluator learns the value

9

of h on the honest inputs and every possible choice of xi from G while in a
protocol for h ∈ AS1,...,Sn

G , Pi is allowed to evaluate the residual function only
on xi from Si.

4 Efficient NIMPC Protocols for Abelian Programs

4.1 The Design of Our Protocol

First, we design an efficient fully robust NIMPC protocol for the class AG of
abelian programs in which inputs take any value of G. We have already explained
a high-level idea of our construction in Section 2.1.

Construction Based on the Regular Representation. Recall that via the
regular representation of G, we identify every element g ∈ G with the linear map
from FN

2 to itself translating every basis ex ∈ FN
2 to ex+g ∈ FN

2 for x ∈ G. Here,
N = |G| and we assume that G is the index set for N -dimensional vectors and for
the rows and columns of N -by-N matrices. The linear map is in turn expressed as
the permutation matrix Ag := Uσg

∈ GLN (F2), where σg : G 3 x 7→ x+ g ∈ G.
The summation of inputs xi is now reduced to the multiplication of the Axi

’s.
To evaluate a function f : G→ {0, 1} on the sum s =

∑
i∈[n] xi, we associate f

with the vector vf :=
∑

x∈f−1(1) ex ∈ FN
2 . Then, we can translate the evaluation

of f into the matrix-vector product e⊤0GAsvf = f(s), where 0G is the identity
of G. We use the randomization technique [14] to securely perform these linear
algebra operations. Note that all the permutation matrices can be represented
by O(N logN) bits.

To obtain a concrete protocol, suppose that we compute an abelian program
hf associated with f : G→ {0, 1}. We first randomly select n− 1 permutations
π1, . . . , πn−1 over G. Then, we give Uπ1

to the player P1, (U
−1
πi−1

AgUπi
)g∈G to

Pi (1 < i < n), and (U−1
πn−1

Agvf)g∈G to Pn. If P1 sends e⊤0GAx1
Uπ1

and the
other players send the matrices corresponding to their inputs, the evaluator can
compute f(

∑
i∈[n] xi) = e⊤0G(

∏
i∈[n] Axi

)vf . However, there remain the following

two problems: (1) the communication complexity of this protocol is O(N2 logN)
since it needs to communicate at most N permutation matrices and (2) it only
works for the class {hf} consisting only of the specific abelian program associated
with the fixed function f , not for AG, since the randomness of Pn reveals partial
information on the truth table of hf , i.e., the value of |f−1(1)|.

Reducing Communication Complexity and Hiding the Truth Table.
To cut down the number of permutation matrices to communicate, we recall the
fundamental theorem of finite abelian groups, e.g., [16, Theorem 6.44]. For any
abelian group G of size N , there exists a generating set {sj | j ∈ [m]} of size
m = O(logN). For each x ∈ G, we fix m integers ℓj(x) (j ∈ [m]) such that
x =

∑
j∈[m] ℓj(x)sj in G.

10

We now give U−1
πi−1

Uπi
and (U−1

πi−1
AsjUπi

)j∈[m] to the player Pi with 1 < i <

n. Then, Pi can compute U−1
πi−1

AsjUπi−1 for every j ∈ [m]. For an input xi ∈ G,

he computes
∏

j∈[m](U
−1
πi−1

AsjUπi−1
)ℓj(xi) = U−1

πi−1
Axi

Uπi−1
. Finally, he obtains

U−1
πi−1

Axi
Uπi

by multiplying U−1
πi−1

Uπi
. Similarly, we give Pn the randomness

U−1
πn−1

Uπn
, (U−1

πn−1
AsjUπn

)j∈[m], and U−1
πn

vf , where πn←$SG. This protocol
only communicates O(m) = O(logN) permutation matrices and hence achieves
the communication complexity O(N(logN)2).

Next, to hide the value of |f−1(1)|, we augment the vector vf of Hamming
weight |f−1(1)| by a vector of weight N − |f−1(1)| to ensure that the number of
ones in the augmented vector is N regardless of f . Specifically, we consider the
group extension H := G × F2 = {(x, b) | x ∈ G, b ∈ F2} of G and replace the
|G|-dimensional vectors and matrices introduced above by some |H|-dimensional
ones. Since |H| = 2N , the communication complexity is still O(N(logN)2).

4.2 Abelian Programs with the Extended Input Domain

Now, we present the formal description of our protocol for AG. Let H = G×F2 be

the direct product of G and F2. Instead of vf , we redefine the vector wf ∈ F|H|
2

representing a function f as wf =
∑

x∈f−1(1) e(x,0) +
∑

x∈f−1(0) e(x,1), where

e(x,b) ∈ F|H|
2 is the unit vector such that the entry indexed by (x, b) is 1. Here,

H is the index set for 2N -dimensional vectors and for the rows and columns of
2N -by-2N matrices. It can be seen that the Hamming weight of wf is now N
regardless of f .

According to that modification, we sample each permutation at random from
SH rather than SG. We also replace the permutation σx ∈ SG representing
x ∈ G with τx ∈ SH defined as τx(g, b) = (g + x, b) for (g, b) ∈ H. We define
Bx = Uτx ∈ F2N×2N

2 instead of Ax. Note that the Bx’s also satisfy the following
homomorphic property: B−1

x = B−x and BxBy = ByBx = Bx+y for x, y ∈ G.

Theorem 1. Let G be a finite abelian group. Let S ⊆ G be a generating set of
G. Let X1 = · · · = Xn = G and X = X1 × · · · × Xn. Then, the protocol Π1

described in Fig. 1 is a fully robust NIMPC protocol for AG such that

CCon(Π1) = 2|G| · dlog |G|+ 1e
and CCoff(Π1) = 2|G| · dlog |G|+ 1e · (|S|+ 1) + 2|G|.

In particular, it holds that CC(Π1) = O(|G|(log |G|)2).

Proof. Correctness. The message of P1 is e(0G,0)
⊤Bx1

Uπ1
. The message of Pi

with 1 < i < n is

Mi = (
∏

j∈[m]

(U−1
πi−1

BsjUπi−1
)ℓj(xi))(U−1

πi−1
Uπi

) = U−1
πi−1

Bxi
Uπi

.

11

Protocol Π1 for AG

Gen(hf):
1. Choose π1, . . . , πn ←$SH.
2. Output R0 = ⊥, R1 = Uπ1 , Ri = (U−1

πi−1
Uπi , (U

−1
πi−1

BsjUπi)j∈[m]) for 1 <

i < n, and Rn = (U−1
πn−1

Uπn , (U
−1
πn−1

BsjUπn)j∈[m],U
−1
πn

wf).
Enci(xi, Ri):

– i = 1:
1. Output M1 = e(0G,0)

⊤Bx1Uπ1 .
– 1 < i < n:

1. Parse Ri as (L0, (Lj)j∈[m]), where Lj ∈ F|H|×|H|
2 .

2. Output Mi = (
∏

j∈[m](LjL
−1
0)ℓj(xi))L0.

– i = n:
1. Parse Rn as (L0, (Lj)j∈[m], r), where Lj ∈ F|H|×|H|

2 and r ∈ F|H|
2 .

2. Output Mn = (
∏

j∈[m](LjL
−1
0)ℓj(xn))L0r.

Dec(M1, . . . ,Mn):
1. Output

∏
i∈[n] Mi.

Fig. 1. The NIMPC protocol Π1 for the class of abelian programs AG.

The message of Pn is

Mi = (
∏

j∈[m]

(U−1
πn−1

BsjUπn−1
)ℓj(xn))(U−1

πn−1
Uπn

)(U−1
πn

wf) = U−1
πn−1

Bxi
wf .

Therefore, letting a =
∑

i∈[n] xi, we have∏
i∈[n]

Mi = e(0G,0)
⊤Bawf

= e(0G,0)
⊤Ba(

∑
g∈G

e(g,1−f(g)))

= e(0G,0)
⊤(

∑
g∈G

e(g−a,1−f(g)))

= e(0G,0)
⊤e(0G,1−f(a))

= f(a).

Robustness. Let C ⊆ [n]. In the following, we show that for functions f, f ′ :
G→ {0, 1} and inputs xC , x

′
C

such that hf |C,xC
= hf ′ |C,x′

C

, the messages of C

and the correlated randomness of C are equally distributed in the protocol Π1.
Based on that observation, we can construct the simulator with oracle access
to hf |C,xC

as follows: the simulator finds f ′ and x′
C

giving the same residual

function as hf |C,xC
and then executes Π1 on hf ′ and x′

C
. Since hf ′ |C,x′

C

=

12

Simulator Sim
h|

C,x
C (C) for Π1

Input. A set of colluding players C.
Oracle access. The residual function h|C,x

C
for the inputs xC of honest players.

Output. Correlated randomness R0 and (Ri)i∈C of the colluding players and messages
(Mi)i∈C of the honest players.

Algorithm.

– If C = ∅:
1. Define f ′ : G → {0, 1} as f ′(a) = h(x1, . . . , xn) for all a ∈ G using the

oracle.
2. Define h′ : Gn → {0, 1} as h′(a1, . . . , an) = f ′(

∑
i∈[n] ai) for all

a1, . . . , an ∈ G.
3. Let (R0 = ⊥, R1, . . . , Rn)← Gen(h′).
4. Set Mi = Enci(0G, Ri) for i ∈ [n].
5. Output R0 = ⊥ and (M1, . . . ,Mn).

– If C ̸= ∅:
1. Fix i0 ∈ C.
2. Define f ′ : G→ {0, 1} as follows. For every a ∈ G:

(a) Define xC as xi0 = a and xi = 0G for i ∈ C \ {i0}.
(b) Let f ′(a) = h|C,x

C
(xC) using the oracle h|C,x

C
.

3. Define h′ : Gn → {0, 1} as h′(a1, . . . , an) = f ′(
∑

i∈[n] ai) for all
a1, . . . , an ∈ G.

4. Let (R0 = ⊥, R1, . . . , Rn)← Gen(h′).
5. Set Mi = Enci(0G, Ri) for i ∈ [n].
6. Output R0 = ⊥, Ri for i ∈ C, and Mi for i ∈ C.

Fig. 2. The simulator for the NIMPC protocol Π1 for the class of abelian programs
AG.

13

hf ′′ |C,0C
where f ′′(x) = f ′(x+

∑
i∈C x′

i) and 0C = (0G)i∈C , the actual simulator

Sim
h|C,x

C (C) described in Fig. 2 sets x′
C
= 0C for simplicity.

We denote by (RC ,MC)(r) the joint distribution of the correlated random-
ness of C and the messages of C when Π1 is executed on f and xC , where
we specify the randomness r←$Sn

H used by the protocol. Similarly, we define
(R′

C ,M
′
C
)(r) for r←$Sn

H as the joint distribution when Π1 is executed on f ′

and x′
C
. It is sufficient to prove that there is a bijection ϕ : Sn

H → Sn
H such that

(RC ,MC)(r) = (R′
C ,M

′
C
)(ϕ(r)) for all r ∈ Sn

H.
The case of C = ∅. Let a =

∑
i∈[n] xi and a′ =

∑
i∈[n] x

′
i. Let di =

∑
j>i xj

and d′i =
∑

j>i x
′
j for i ∈ [n], where we define dn = d′n = 0G. Let Sf =

{(g, 1 − f(g)) ∈ H | g ∈ G} and Sf ′ = {(g, 1 − f ′(g)) ∈ H | g ∈ G}. From the
definition, we have that |Sf | = |Sf ′ | = |G|. It also follows from hf (x1, . . . , xn) =
hf ′(x′

1, . . . , x
′
n) that (a, 0) ∈ Sf if and only if (a′, 0) ∈ Sf ′ . Therefore, there

is a permutation ρ ∈ SH such that ρ(a′, 0) = (a, 0) and ρ(Sf ′) = Sf . Define
ϕ : Sn

H → Sn
H as ϕ(π1, . . . , πn) = (π′

1, . . . , π
′
n), where π′

i = πi ◦ τ−di
◦ ρ ◦ τd′

i

for i ∈ [n − 1] and π′
n = πn. Recall that τx is defined as τx(g, b) = (g + x, b)

for (g, b) ∈ H. From the definition of Bx’s and permutation matrices, we have
that Uπ′

i
= Bd′

i
UρB−di

Uπi
. We fix r = (π1, . . . , πn) ∈ Sn

H and simply write
Mi = Mi(r) and M ′

i = M ′
i(ϕ(r)).

Then, we have Mi = M ′
i for all i ∈ [n] from the following:

– i = n: From the definition of ρ, we have∑
s∈Sf

es =
∑

s′∈Sf′

eρ(s′) ⇐⇒ wf = U−1
ρ wf ′

⇐⇒ Bxn
wf = (Bxn

U−1
ρ B−x′

n
)Bx′

n
wf ′

⇐⇒ U−1
πn−1

Bxn
wf = U−1

π′
n−1

Bx′
n
wf ′ .

– 1 < i < n: We have

U−1
π′
i−1

Bx′
i
Uπ′

i
= U−1

πi−1
Bdi−1U

−1
ρ B−d′

i−1
Bx′

i
Bd′

i
UρB−diUπi

= U−1
πi−1

Bdi−1−di
Uπi

= U−1
πi−1

BxiUπi .

– i = 1: From the definition of ρ, we have

(a, 0) = ρ(a′, 0) ⇐⇒ e(a,0)
⊤ = e(a′,0)

⊤Uρ

⇐⇒ e(x1,0)
⊤Bd1

= e(x′
1,0)

⊤Bd′
1
Uρ

⇐⇒ e(x1,0)
⊤ = e(x′

1,0)
⊤Uπ′

1
U−1

π1

⇐⇒ e(0G,0)
⊤Bx1Uπ1 = e(0G,0)

⊤Bx′
1
Uπ′

1

The case of C 6= ∅. Let a =
∑

j∈C(xj − x′
j) ∈ G, di =

∑
j>i,j∈C(x

′
j −

xj) + a ∈ G for i ∈ [n], where we define dn = a. Since the residual functions

14

hf |C,xC
, hf ′ |C,x′

C

are identical to each other, we have

f(g′ +
∑
j∈C

xj) = f ′(g′ +
∑
j∈C

x′
j) (∀g′ ∈ G)

⇐⇒ f(g) = f ′(g − a) (∀g ∈ G).

Define ϕ : Sn
H → Sn

H as ϕ(π1, . . . , πn) = (π′
1, . . . , π

′
n), where π′

i = πi ◦ τdi
for

i ∈ [n]. Then, from the above observation we have that Bawf = wf ′ since

Bawf = wf ′ ⇐⇒
∑
g∈G

e(g−a,1−f(g)) =
∑
g′∈G

e(g′,1−f ′(g′))

⇐⇒
∑
g′∈G

(e(g′,1−f(g′+a)) − e(g′,1−f ′(g′))) = 0

⇐⇒ f(g) = f ′(g − a) (∀g ∈ G).

Observe that for any 1 < i ≤ n and any x ∈ G,

U−1
π′
i−1

BxUπ′
i
= U−1

πi−1
B−di−1

BxBdi
Uπi

= U−1
πi−1

Bx+(di−di−1)Uπi
. (1)

We also have that

di − di−1 =

{
xi − x′

i, if i ∈ C,

0G, otherwise.

We fix r = (π1, . . . , πn) ∈ Sn
H and simply write Ri = Ri(r), R

′
i = R′

i(ϕ(r))
for i ∈ C and Mi = Mi(r),M

′
i = M ′

i(ϕ(r)) for i ∈ C. Now, we have Ri = R′
i for

i ∈ C and Mi = M ′
i for i ∈ C from the following:

– i = n:
• If n ∈ C, then dn = dn−1. Therefore, substituting x = 0G and x = sj into

(1), we haveU−1
π′
n−1

Uπ′
n
= U−1

πn−1
Uπn

andU−1
π′
n−1

BsjUπ′
n
= U−1

πn−1
BsjUπn

for j ∈ [m], respectively. Furthermore, since dn = a, we also have

U−1
π′
n
wf ′ = U−1

πn
B−dn

wf ′ = U−1
πn

wf .

• If n ∈ C, then dn− dn−1 = xn− x′
n, i.e., x

′
n− dn−1 = xn− a. Therefore,

U−1
π′
n−1

Bx′
n
wf ′ = U−1

πn−1
Bx′

n−dn−1
Bawf = U−1

πn−1
Bxn

wf .

– 1 < i < n:
• If i ∈ C, then di = di−1. Therefore, substituting x = 0G and x = sj into

(1), we have U−1
π′
i−1

Uπ′
i
= U−1

πi−1
Uπi

and U−1
π′
i−1

BsjUπ′
i
= U−1

πi−1
BsjUπi

for j ∈ [m], respectively.
• If i ∈ C, then di − di−1 = xi − x′

i. Therefore, substituting x = x′
i into

(1), we have U−1
π′
i−1

Bx′
i
Uπ′

i
= U−1

πi−1
BxiUπi .

– i = 1:

15

• If 1 ∈ C, then d1 = 0G and hence Uπ′
1
= Uπ1

.

• If 1 ∈ C, then d1 = x1 − x′
1 and hence

e(0G,0)
⊤Bx′

1
Uπ′

1
= e(0G,0)

⊤Bx′
1
Bx1−x′

1
Uπ1 = e(0G,0)

⊤Bx1Uπ1 .

Communication complexity. The maximum component of on-line communi-
cation is the messages Mi of the players i with 1 < i < n, each of which consists
of one permutation matrix over F2 of size |H|. The maximum component of
off-line communication is the randomness Rn of the player n, which consists of
|S|+1 permutation matrices over F2 of size |H| and a vector over F2 of dimension
|H|. Note that every permutation matrix can be expressed by |H|dlog |H|e bits.
Since |H| = 2|G|, the protocol achieves the communication complexity in the
statement. ut

4.3 Abelian Programs with Limited Input Domains

Next, we present a t-robust protocol for the class AS1,...,Sn

G of abelian programs
with limited input domains. As mentioned in Section 3.2, NIMPC protocols for
AG is not directly applicable to AS1,...,Sn

G . Nevertheless, it is possible to obtain

protocols for AS1,...,Sn

G from the ones for AG with the help of the BKR trans-
formation [6]. Note that we will show in Section 6 that their NIMPC protocol
for outputting-message functions used in the transformation does not satisfy
the desired security. Therefore, it is necessary to replace their protocol with
our modified protocol given also in Section 6 when actually applying the BKR
transformation.

Proposition 1 ([6]). If there is a 0-robust NIMPC protocol for a class of func-
tions H with communication complexity α, then for any t, there is a t-robust
NIMPC protocol for H with communication complexity pt+O(1)α, where d is the
maximum size of the input domains of functions in H and p is the smallest prime
power such that p ≥ max{n, d}.

Clearly, the protocol in Theorem 1 satisfies 0-robustness for AG. Since the
simulator to prove 0-robustness only receives the output of the function rather
than a residual function, the simulation works regardless of whether the input
domains are limited or not. Consequently, the 0-robust protocol also satisfies
0-robustness even for AS1,...,Sn

G . By applying the BKR transformation to it, we

obtain a t-robust protocol for AS1,...,Sn

G with some overhead in communication
complexity.

Corollary 1. Let G be a finite abelian group and S1, . . . , Sn be subsets of G.
Then, there exists a t-robust NIMPC protocol Π for AS1,...,Sn

G such that CC(Π) =
|G|(log |G|)2pt+O(1), where p is a prime power with p ≥ max{n, |S1|, . . . , |Sn|}.

The authors of [3] present another method to limit the inputs of players
while it only works for abelian programs. However, this method applied to
Theorem 1 only provides us with a protocol with communication complexity
|G|2(log |G|)2(nd)t+O(1) and hence the protocol in Corollary 1 is more efficient.

16

Example 1. We apply our protocol for AS1,...,Sn

G to symmetric functions. We
have noted in Section 3.2 that the class of all symmetric functions over [d]n is

equivalent to AS1,...,Sn

G for G = (Zn+1)
d and S1 = · · · = Sn = {e1, . . . , ed} ⊆ G,

where ei ∈ (Zn+1)
d is the i-th unit vector. Note that G can be generated by

at most d elements. Therefore, we obtain a t-robust NIMPC protocol Π for the
class of all symmetric functions over [d]n such that

CC(Π) = pt+O(1) ×O((n+ 1)dd2(log n)) = (max{n, d})(1+o(1))tn(1+o(1))d.

Here, p is the smallest prime power such that p ≥ max{n, d}, which is chosen
as p = O(max{n, d}). This result is better than (nd)(1+o(1))tn(3+o(1))d [3] and
also improves n(log n+O(1))d [6] if t = o(log n). In the case of boolean symmetric
functions, i.e., d = 2, our protocol is more efficient than another t-robust protocol
with communication complexity nlog log n+log t+O(1) [6] if t = o(log log n).

5 New NIMPC Protocols for Linear Classifiers

5.1 Formalization of Linear Classifiers

Let Fq be a finite field and S1, . . . , Sn be subsets of Fq. Let Xi = Si for i ∈ [n]
and X = X1 × · · · × Xn. We say that a function f : Fq → {0, 1} is proper if
|f−1(1)| /∈ {0, q}. Define the linear classifier hf,w : X → {0, 1} associated with
f : Fq → {0, 1} and w = (wi)i∈[n] ∈ Fn

q as hf,w(x1, . . . , xn) = f(
∑

i∈[n] wixi).

We then define LS1,...,Sn

Fq
be the class of all the linear classifiers, that is,

LS1,...,Sn

Fq
= {hf,w | f : Fq → {0, 1} is proper and w ∈ Fn

q }.

We simply write LFq
if S1 = · · · = Sn = Fq.

We note that focusing on proper functions does not limit the expressive power
of linear classifiers. If |f−1(1)| = 0, i.e., f(x) = 0 for all x ∈ Fq, then the linear
classifier hf,w for any w ∈ Fn

q is equivalent to hf0,0, where f0(x) outputs 0 if and
only if x = 0. Similarly, any linear classifier hf,w with |f−1(1)| = q is equivalent
to a linear classifier associated with some proper function.

In the same manner as abelian programs, we can extend linear classifiers to
the ones outputting more than one bits by computing each output bit separately.
Specifically, we first extend the definition of proper functions as follows. A func-
tion f : Fq → {0, 1}m is said to be proper if pi ◦ f : Fq → {0, 1} is proper (in the
above sense) for every i ∈ [m], where pi : {0, 1}m 3 (bj)j∈[m] 7→ bi ∈ {0, 1} is the
i-th projection. Now, for S1, . . . , Sn ⊆ Fq, we define the class of linear classifiers
outputting m bits as

Hm := {hm
f,w : X → {0, 1}m | f : Fq → {0, 1}m is proper and w ∈ Fn

q },

where X =
∏

i∈[n] Si and hm
f,w(x1, . . . , xn) = f(

∑
i∈[n] wixi). From the definition

of proper functions, we have Hm = {h : X → {0, 1}m | h = (h1, . . . , hm), hi ∈
LS1,...,Sn

Fq
} for LS1,...,Sn

Fq
. Hence, given an NIMPC protocol Π for LS1,...,Sn

Fq
, we can

17

construct a protocol Πm for Hm with m times higher communication complexity
by running Π for each hi ∈ LS1,...,Sn

Fq
.

We assume in the above that all the arithmetic operations are performed in
a finite field. For real-world applications, it is necessary to deal with weights and
inputs expressed as real numbers. We can still use the above linear classifiers by
embedding these values into a sufficiently large prime field using a fixed-point
number representation.

5.2 NIMPC protocols for Linear Classifiers

We first propose a fully robust protocol for LFq
(Theorem 2) and then construct

a protocol for LS1,...,Sn

Fq
by applying the BKR transformation (Corollary 2).

Let f : Fq → {0, 1} be a proper function and w ∈ Fn
q be a vector of weights.

In Section 2.2, we have already shown a construction of a fully robust protocol for
the class consisting only of the specific linear classifier {hf,w} ⊆ LFq

. In that pro-
tocol, if f−1(1) = {u1, . . . , uk}, the evaluator outputs f(

∑
i∈[n] wixi) according

to the number of zeros of u0 = u−
∑

i∈[n] 1kwixi, where u = [u1, . . . , uk]
⊤ ∈ Fk

q

and 1N denotes the vector of dimension N whose entries are all one. It can be
seen that the technique for randomizing u0 is equivalent to multiplying u0 by
T = diag(r1, . . . , rk)Uπ ∈ Fk×k

q for ri←$Fq \ {0} (i ∈ [k]) and π←$S[k]. How-
ever, there remains the problem that the dimension k = |f−1(1)| is assumed to
be constant, which is why it does not work for the class of all the linear classifiers.

A simple solution to hide k is padding the vector u with some q−k elements
uj ∈ Fq (k < j ≤ q) to ensure that its dimension should be q. Accordingly, we
redefine u0 as u0 = u −

∑
i∈[n] 1qwixi. In this solution, however, there would

exist some inputs xi such that
∑

i∈[n] wixi /∈ f−1(1) but uk+1 =
∑

i∈[n] wixi

and then the protocol incorrectly outputs 1. To overcome it, we consider an
extension field K of Fq and randomly choose uj (k < j ≤ q) from K \ Fq.
Since

∑
i∈[n] wixi ∈ Fq, the above error never happens. Accordingly, we now

uniformly select a permutation π and elements ri (i ∈ [q]) from S[q] and K\{0},
respectively, and set T = diag(r1, . . . , rq)Uπ. We also sample si (i ∈ [n]) from
Kq. The important point is that regardless of whether x ∈ Fq \{0} or x ∈ K\Fq,
the product rx is uniformly distributed over K \ {0} if r←$K \ {0}. This is
why we consider an extension field of Fq rather than an extension ring. The
above modified protocol communicates at most two vectors over K of dimension
q. Since we can choose K as any extension field of Fq, we may assume that
|K| = q2. Therefore, the communication complexity is at most O(q log q).

Theorem 2. Let Fq be a finite field. Let X1 = · · · = Xn = Fq and X = X1 ×
· · · × Xn. Then, the protocol Π2 described in Fig. 3 is a fully robust NIMPC
protocol for LFq

such that CCon(Π2) = 2qd2 log qe and CCoff(Π2) = qd2 log qe.

Proof. Correctness. Let h = hf,w be a function to compute. Let S = f−1(1) =
{u1, . . . , uk}, where k = |S| and ui ∈ Fq for i ∈ [k]. Correctness follows from
the following observation: h(x1, . . . , xn) = 1 if and only if the number of 0’s in

18

Protocol Π2 for LFq

Gen(hf,w):
1. Set S = f−1(1) = {u1, . . . , uk} ⊆ Fq and choose uj ←$K \ Fq (k < j ≤ q).
2. Set u = [u1, . . . , uq]

⊤ ∈ Kq.
3. Choose ri ←$K \ {0} (i ∈ [q]), π←$S[q], and si ←$Kq (i ∈ [n]).
4. Set T = diag(r1, . . . , rq)Uπ ∈ Kq×q.
5. Output R0 = Tu+

∑
i∈[n] si and Ri = (T1qwi, si) for i ∈ [n].

Enci(xi, Ri):
1. Parse Ri as (ρi1,ρi2), where ρi1,ρi2 ∈ Kq.
2. Output Mi = ρi1xi + ρi2.

Dec(R0,M1, . . . ,Mn):
1. If at least one entry of R0 −

∑
i∈[n] Mi is zero, then output 1 and otherwise

output 0.

Fig. 3. The NIMPC protocol Π2 for the class of linear classifiers LFq .

u −
∑

i∈[n] 1qwixi is at least one, which is in turn equivalent to the condition

that the number of 0’s in R0−
∑

i∈[n] Mi = T (u−
∑

i∈[n] 1qwixi) is at least one.

Robustness. Let C ⊆ [n]. The adversary’s view is

(Tu+
∑
i∈[n]

si; (T1qwi)i∈C , (si)i∈C ; (T1qwixi + si)i∈C),

where T = diag(r1, . . . , rq)Pπ, ri←$K\{0} (i ∈ [q]), π←$Sq, u = [u1, . . . , uq]
⊤,

uj ←$K \Fq (k < j ≤ q), and si←$Kq (i ∈ [n]). It is sufficient to show that the
following distribution can be perfectly simulated:

(Tv; (T1qwi)i∈C , (si)i∈C ; (T1qwixi + si)i∈C), (2)

where we set γ = w⊤
C
xC =

∑
i∈C wixi and v = u − 1qγ. This is because the

original view can be obtained by computing Tu+
∑

i∈[n] si = Tv +
∑

i∈C si +∑
i∈C(T1qwixi + si).
The case of C = ∅. We can see below that the distribution of (2) is simulated

by the simulator described in Fig. 4:

– If h(x1, . . . , xn) = 0, then uj 6= γ for all j ∈ [k]. In addition, uj 6= γ for
all k < j ≤ q since the uj ’s are selected from K \ Fq and γ is an element
of Fq. Therefore, v ∈ (K \ {0})q and hence Tv is uniformly distributed
over (K \ {0})q. Since the si’s are chosen independent of T , we have that
(Tv; (T1qwixi + si)i∈[n]) ≡ (ṽ; (s̃i)i∈[n]) for vectors ṽ and s̃i (i ∈ [n]) sam-
pled by the simulator.

– If h(x1, . . . , xn) = 1, then there is the unique index j ∈ [k] such that uj = γ.
Again, it holds that uj 6= γ for all k < j ≤ q. Therefore, the number of 0’s
in v is exactly one and Tv is uniformly distributed over the set of all the

19

Simulator Sim
h|

C,x
C (C) for Π2

Input. A set of colluding players C.
Oracle access. The residual function h|C,x

C
for the inputs xC of honest players.

Output. Correlated randomness R0 and (Ri)i∈C of the colluding players and messages
(Mi)i∈C of the honest players.

Algorithm.

– If C = ∅:
1. Choose (ṽj)j∈[q] ∈ Kq uniformly at random from (K \ {0})q if

h(x1, . . . , xn) = 0 and otherwise from {0} × (K \ {0})q−1.
2. Choose π←$Sq and set ṽ = (ṽπ(j))j∈[q].
3. Choose s̃i ←$Kq (i ∈ [n]).
4. Output R0 = ṽ +

∑
i∈[n] s̃i and Mi = s̃i for i ∈ [n].

– If C ̸= ∅:
1. For xC = (xi)i∈C ∈ F|C|

q , construct a set ∆xC using the oracle h|C,x
C

as

∆xC = {α ∈ Fq | h|C,x
C
(xCα) = 1}.

2. Construct a set Γ as Γ = {xC ∈ F|C|
q | |∆xC | ∈ {0, q}}.

3. Do the following.

• If |Γ | = q|C|:
(a) Set w̃C = 0.
(b) Choose (ṽj)j∈[q] ∈ Kq uniformly at random from (K \ {0})q if
|∆xC | = 0 for all xC and otherwise from {0} × (K \ {0})q−1.

(c) Choose π←$Sq and set ṽ = (ṽπ(j))j∈[q].
(d) Choose s̃i ←$Kq (i ∈ [n]).
(e) Output R0 = ṽ +

∑
i∈[n] s̃i, Ri = (0q, s̃i) for i ∈ C, and Mi = s̃i

for i ∈ C.
• If |Γ | ̸= q|C|:
(a) Fix w̃C = (w̃i) ∈ Γ⊥ \ {0}.
(b) Fix xC = (xi)i∈C ∈ F|C|

q \ Γ and write ∆xC = {α1, . . . , αk}, where
k = |∆xC |.

(c) Set ṽj = αj(
∑

i∈C w̃ixi) (j ∈ [k]), choose ṽj ←$K \ Fq (k < j ≤ q),
and set ṽ = (ṽj)j∈[q].

(d) Choose r̃j ←$K \ {0} (j ∈ [q]), π̃←$S[q], and s̃i ←$Kq (i ∈ [n])

and set T̃ = diag(r̃1, . . . , r̃q)Uπ̃

(e) Output R0 = T̃ ṽ +
∑

i∈[n] s̃i, Ri = (T̃1qw̃i, s̃i) for i ∈ C, and

Mi = s̃i for i ∈ C.

Fig. 4. The simulator for the NIMPC protocol Π2 for the class of linear classifiers LFq .

20

vectors of Kq of Hamming weight q−1. Since the si’s are chosen independent
of T , we have that (Tv; (T1qwixi + si)i∈[n]) ≡ (ṽ; (s̃i)i∈[n]) for vectors ṽ
and s̃i (i ∈ [n]) sampled by the simulator.

The case of C 6= ∅. To begin with, observe that ∆xC
constructed by the sim-

ulator described in Fig. 4 satisfies |∆xC
| ∈ {0, q} if and only if

∑
i∈C wixi = 0

for any xC = (xi)i∈C . Indeed, if
∑

i∈C wixi = 0, then for every α ∈ Fq, we have
that

h|C,xC
(xCα) = 1 ⇐⇒

∑
i∈C

wixiα = uj − γ (∃j ∈ [k])

⇐⇒ 0 = uj − γ (∃j ∈ [k])

⇐⇒ h|C,xC
(0) = 1.

Therefore, h|C,xC
(xCα) = h|C,xC

(0) for all α ∈ Fq and hence |∆xC
| is either q or

0 depending on whether h|C,xC
(0) = 1 or not. Conversely, if

∑
i∈C wixi = δ 6= 0,

then for every α ∈ Fq, we have that

h|C,xC
(xCα) = 1 ⇐⇒

∑
i∈C

wixiα = uj − γ (∃j ∈ [k])

⇐⇒ α = δ−1(uj − γ) (∃j ∈ [k]).

Therefore, |∆xC
| = k = |S| = |f−1(1)| /∈ {0, q}.

It is then possible to determine wC up to a scalar multiple from the size
of the set Γ . Indeed, if wC = 0, then |∆xC

| ∈ {0, q} for all xC and hence
|Γ | = q|C|. If wC 6= 0, then a vector xC satisfies |∆xC

| ∈ {0, q} if and only if
it is orthogonal to wC and hence |Γ | = q|C|−1. In the latter case, we have that
Γ⊥ = wC · Fq := {wCβ | β ∈ Fq} and so any non-zero vector in Γ⊥ is a salar
multiple of wC .

Now, we can see that the simulator in Fig. 4 simulates the distribution of
(2):

– If Γ = q|C|, we surely know that wC = 0 and particularly, w̃C = wC . In
this case, we should have either |∆xC

| = 0 for all xC or |∆xC
| = q for all xC

since |∆xC
| only depends on h|C,xC

(0) regardless of xC . If |∆xC
| = 0 for all

xC , then it should hold that h|C,xC
(0) = 0 and γ /∈ S. Then, v ∈ (K \ {0})q

and hence Tv is uniformly distributed over (K \ {0})q. Otherwise, it should
hold that h|C,xC

(0) = 1 and γ ∈ S. Then, the number of 0’s in v is exactly

one and Tv is uniformly distributed over the set of all the vectors of Kq

of Hamming weight q − 1. Since the si’s are chosen independent of T , the
distribution of (2) is simulated by (ṽ; (0q)i∈C , (s̃i)i∈C ; (s̃i)i∈C) for ṽ and
s̃i (i ∈ [n]) sampled by the simulator.

– If Γ 6= q|C|, we surely know that Γ⊥ = wC · Fq. The vector w̃C sampled
by the simulator can be expressed as w̃C = wC · β for some β ∈ Fq \ {0}.
Let vj = uj − γ for j ∈ [k]. Let xC be inputs chosen by the simulator
such that xC /∈ Γ and write ∆xC

= {α1, . . . , αk} for the inputs xC . Let

21

γ =
∑

i∈C w̃ixi 6= 0 and δ =
∑

i∈C wixi. It holds that γ = δβ. Note that the
simulator knows k = |S|, w̃C , αj (j ∈ [k]), and γ.
We have that the values ṽj := αjγ set by the simulator determine the vj ’s
up to a scalar and a permutation. Specifically, there exists τ ∈ S[k] ⊆ S[q]

such that ṽj = βvτ(j) for all j ∈ [k] since for every α ∈ ∆xC
= {α1, . . . , αk},

it holds that

α ∈ ∆xC
⇐⇒ δα = vj (∃j ∈ [k])

⇐⇒ α = δ−1vj = βγ−1vj (∃j ∈ [k])

⇐⇒ αγ = βvj (∃j ∈ [k])

Since ṽj and vj for k < j ≤ q are both uniformly distributed over K \ Fq,
we have (vj)j∈[q] ≡ (β−1ṽτ−1(j))j∈[q]. We also have 1qwi = 1qw̃iβ

−1 for all
i ∈ C.
Since the si’s are chosen independent of T , we have the following:

(Tv; (T1qwi)i∈C , (si)i∈C ; (T1qwixi + si)i∈C)

≡ ((rjvπ(j))j∈[q]; ((rjwi)j∈[q])i∈C , (s̃i)i∈C ; (s̃i)i∈C)

≡ ((rjβ
−1ṽ(τ−1◦π)(j))j∈[q]; ((rjβ

−1w̃i)j∈[q])i∈C , (s̃i)i∈C ; (s̃i)i∈C)

≡ ((r̃j ṽπ̃(j))j∈[q]; ((r̃jw̃i)j∈[q])i∈C , (s̃i)i∈C ; (s̃i)i∈C)

≡ (T̃ ṽ; (T̃1qw̃i)i∈C , (s̃i)i∈C ; (s̃i)i∈C),

where r̃j (j ∈ [q]), π̃, T̃ = diag(r̃1, . . . , r̃q)Uπ̃, and s̃i (i ∈ [n]) are elements
sampled by the simulator.

Communication complexity. The maximum component of on-line and off-line
communication is the randomness Ri for i ∈ [n], which consists of two vectors
over K of dimension q. Since K can chosen as any extension field of Fq, the
protocol achieves the communication complexity in the statement. ut

As in the case of abelian programs, NIMPC protocols for LFq
is not directly

applicable to LS1,...,Sn

Fq
. Nevertheless, from the same reason presented in Corol-

lary 1, it is possible to obtain a protocol for LS1,...,Sn

Fq
by applying the BKR

transformation to the protocol for LFq
.

Corollary 2. Let Fq be a finite field and S1, . . . , Sn be subsets of Fq. Then,

there exists a t-robust NIMPC protocol Π for LS1,...,Sn

Fq
such that CC(Π) =

pt+O(1)q log q, where p is a prime power with p ≥ max{n, |S1|, . . . , |Sn|}.

6 Revisiting the BKR Transformation

6.1 Analyzing and Fixing the NIMPC Protocol of [6] for
Outputting-Message Functions

To realize the BKR transformation, the authors of [6] introduce the class of
outputting-message functions. Let M be a finite set and let ⊥ be the special

22

symbol not in M. Let X1 = · · · = Xn = Fq and X = X1 × · · · × Xn. Let
A = [a1, . . . ,an] ∈ Fk×n

q be a fixed matrix. Define the outputting-message

function hu,m : X →M∪ {⊥} associated with u ∈ Fk
q and m ∈M as

hu,m(x1, . . . , xn) =

{
m, if u = A[x1, . . . , xn]

⊤,

⊥, otherwise.

DefineOM,A be the class of all the outputting-message functions, that is, OM,A =
{hu,m | u ∈ Fk

q ,m ∈M}.
The authors of [6] propose a fully robust NIMPC protocol for OM,A with

communication complexity O(k(log q)(log |M|)) and use it as a building block
for the BKR transformation. However, we show that their protocol does not
satisfy even 1-robustness if the matrix A satisfies a certain condition. We first
recall their protocol for OM,A. We denote by ai ∈ Fk

q the i-th column vector of

A ∈ Fk×n
q . We may assume M = Fq since a protocol for an arbitrary message

space M is obtained by expressing an element of M as a vector over Fq of
dimension dlogq |M|e.

Protocol ΠBKR for OM,A

Gen(hu,m):
1. Choose s←$Fk

q , ri ←$Fq (i ∈ [n]) and set µ0 = m− s⊤u−
∑

i∈[n] ri.

2. Choose si ←$Fk
q (i ∈ [n]) and set ν0 = u+

∑
i∈[n] si.

3. Output R0 = (µ0,ν0) and Ri = (s⊤ai, ri, si) for i ∈ [n].
Enci(xi, Ri):

1. Parse Ri as (µi1, µi2,ρi), where µi1, µi2 ∈ Fq and ρi ∈ Fk
q .

2. Output Mi = (µi1xi + µi2,aixi + ρi).
Dec(R0,M1, . . . ,Mn):

1. Parse R0 as (µ0,ν0) and Mi as (µi,νi), where µi ∈ Fq and νi ∈ Fk
q .

2. If ν0 =
∑

i∈[n] νi, then output µ0 +
∑

i∈[n] µi and otherwise output ⊥.

Fig. 5. The NIMPC protocol ΠBKR of [6] for the class of outputting-message functions
OM,A.

Proposition 2. Let C ⊆ [n]. If there exists j ∈ C such that aj 6= 0 and {ai | i ∈
C ∪ {j}} does not span Fk

q , then the protocol ΠBKR described in Fig. 5 is not
C-robust.

Proof. Let u ∈ Fk
q be a vector that is not in the space spanned by {ai | i ∈

C ∪ {j}}. Fix any m ∈ Fq and set h = hu,m ∈ OM,A. Let xC ,yC be two
inputs such that xj 6= yj and xi = yi = 0 for all i ∈ C \ {j}. Then, it holds
that h|C,xC

(zC) = h|C,yC
(zC) = ⊥ for any zC ∈ XC . Assume that ΠBKR is

23

C-robust and that there is a simulator Sim satisfying Definition 2. Since Sim
simulates the adversary’s view with oracle access to the same residual function
h|C,xC

= h|C,yC
, the views of the execution of ΠBKR on xC and yC should be

identical to each other.
On the other hand, the adversary can compute d := ν0−

∑
i∈C νi−

∑
i∈C si

from his view. If xC is inputted to ΠBKR, then d = u− ajxj . If yC is inputted,
then d = u − ajyj 6= u − ajxj , from which it follows that the two views are
different. This is a contradiction. ut

We note that the condition of Proposition 2 holds even for the matrix A used
in the BKR transformation. Indeed, to transform a 0-robust NIMPC protocol
into a t-robust one, it is necessary to choose k = t+1 and A = [H⊤, ei]

⊤, where
H ∈ Ft×n

q is a matrix such that every t column vectors is linearly independent.

For any set C of size at most t − 1 and any j ∈ C, the column vectors of A
indexed by C∪{j} span a subspace of Fk

q of dimension t, which therefore implies
that the condition of Proposition 2 holds.

Next, we fix their protocol ΠBKR. The main issue is that the adversary is
able to compute d = ν0 −

∑
i∈C νi −

∑
i∈C si = u −

∑
i∈C aixi while the

only information on d revealed by the residual function is whether it is in the
space spanned by {ai | i ∈ C}. We therefore randomize the vectors d and
ai (i ∈ C) to ensure for the adversary not to learn more than their linear
independence relation. Specifically, we choose a matrix T uniformly at random
from GLk(Fq) and redefine ν0 = Tu +

∑
i∈[n] si. We additionally give Tai

to each Pi as randomness. Then, the adversary only learns ν0 −
∑

i∈C νi −∑
i∈C si = T (u −

∑
i∈C aixi), which leaks the linear independence relation

among d and ai (i ∈ C) and nothing more. Note that our modification increases
the communication complexity of ΠBKR only by a constant factor and hence the
statements of [6] still hold true.

Theorem 3. Let M be a finite set and A ∈ Fk×n
q be a matrix. Let X1 = · · · =

Xn = Fq and X = X1 × · · · × Xn. Then, the protocol Π∗
BKR described in Fig. 6

is a fully robust NIMPC protocol for OM,A such that

CCon(Π
∗
BKR) = (k + dlogq |M|e) · dlog qe

and CCoff(Π
∗
BKR) = (2k + 2dlogq |M|e) · dlog qe.

To begin with, we show a lemma used in the proof of Theorem 3.

Lemma 1. Let A = (ai)i∈[ℓ] be a tuple of ℓ vectors, where ai ∈ Fk
q . Let Γ =

Ker(A). Then, the distribution of (Tai)i∈[ℓ] induced by T ←$GLk(Fq) is the
uniform distribution over FΓ = {(vi)i∈[ℓ] | Ker((vi)i∈[ℓ]) = Γ}.

Proof. Fix Wj = [wj1, . . . ,wjℓ] ∈ FΓ for j = 1, 2. Note that TA ∈ FΓ for any
T ∈ GLk(Fq). It is sufficient to show that the probabilities of TA being Wj are
equal to each other.

Let I1 ⊆ [ℓ] be such that {w1i | i ∈ I1} is a basis of W1, that is, {w1i | i ∈ I1}
is linearly independent and for every j ∈ [ℓ] \ I1, there exist cij ∈ Fq such

24

Protocol Π∗
BKR for OM,A

Gen(hu,m):
1. Choose s←$Fk

q , ri ←$Fq (i ∈ [n]) and set µ0 = m− s⊤u−
∑

i∈[n] ri.

2. Choose T ←$GLk(Fq), si ←$Fk
q (i ∈ [n]) and set ν0 = Tu+

∑
i∈[n] si.

3. Output R0 = (µ0,ν0) and Ri = (s⊤ai, ri,Tai, si) for i ∈ [n].
Enci(xi, Ri):

1. Parse Ri as (µi1, µi2,ρi1,ρi2), where µi1, µi2 ∈ Fq and ρi1,ρi2 ∈ Fk
q .

2. Output Mi = (µi1xi + µi2,ρi1xi + ρi2).
Dec(R0,M1, . . . ,Mn):

1. Parse R0 as (µ0,ν0) and Mi as (µi,νi), where µi ∈ Fq and νi ∈ Fk
q .

2. If ν0 =
∑

i∈[n] νi, then output µ0 +
∑

i∈[n] µi and otherwise output ⊥.

Fig. 6. The NIMPC protocol Π∗
BKR for the class of outputting-message functions

OM,A.

that w1j =
∑

i∈I1
w1icij . Then, {w2i | i ∈ I1} is a basis of W2. Indeed, if∑

i∈I1
w2idi = 0 for some di ∈ Fq, then (di)i∈I1 ∈ Γ . Hence

∑
i∈I1

w1idi = 0 and
di = 0 for every i ∈ I1. If {w2i | i ∈ I2} is linearly independent for some I2 ⊇ I1,
then there is no non-zero d ∈ Γ such that supp(d) ⊆ I2. Then, {w1i | i ∈ I2} is
linearly independent and hence I2 = I1. Note that w2j =

∑
i∈I1

w2icij .

Due to the linear independence, there exists S ∈ GLk(Fq) such that Sw1i =
w2i for every i ∈ I1. Then, Sw1j =

∑
i∈I1

Sw1icij =
∑

i∈I1
Sw2icij = w2j for

every j ∈ [ℓ] \ I1. Therefore,

Pr[T ←$GLk(Fq) : TA = W1] = Pr[T ←$GLk(Fq) : STA = W2]

= Pr[T ←$GLk(Fq) : TA = W2] .

ut

Proof (of Theorem 3). We assume that M = Fq. It is possible to construct a
protocol for any message spaceM in the same manner as [6].

Correctness. Let h = hu,m be a function to compute. Correctness follows from
the following observation: the protocol outputs a message other than ⊥ if and
only if ν0 −

∑
i∈[n] νi = T (u −

∑
i∈[n] aixi) = 0, which in turn occurs if and

only if u =
∑

i∈[n] aixi since T ∈ GLk(Fq). Then, the output is µ0+
∑

i∈[n] µi =

m− s⊤(u−
∑

i∈[n] aixi) = m.

Robustness. Let C ⊆ [n] and C0 = C ∪ {0}. The adversary’s view can be
decomposed into the following two parts:

(Tu+
∑
i∈[n]

si; (Tai)i∈C , (si)i∈C ; (Taixi + si)i∈C),

25

Simulator Sim
h|

C,x
C (C) for Π∗

BKR

Input. A set of colluding players C.
Oracle access. The residual function h|C,x

C
for the inputs xC of honest players.

Output. Correlated randomness R0 and (Ri)i∈C of the colluding players and messages
(Mi)i∈C of the honest players.

Algorithm.

– If C = ∅:
1. Set δ0 = m and ∆0 = 0 if h(x1, . . . , xn) = m ̸= ⊥ and otherwise choose

δ0 ←$Fq, ∆0 ←$Fk
q \ {0}.

2. Choose r̃i ←$Fq (i ∈ [n]), s̃i ←$Fk
q (i ∈ [n]).

3. Output R0 = (δ0−
∑

i∈[n] r̃i,∆0+
∑

i∈[n] s̃i) and Mi = (r̃i, s̃i) for i ∈ [n].

– If C ̸= ∅:
1. Construct Γ0 and Γ ′

0 as

Γ0 = {xC ∈ F|C|
q |

∑
i∈C

aixi = 0} and Γ ′
0 = {(0,xC) ∈ F|C|+1

q | xC ∈ Γ0}.

2. Construct Γ1 and Γ ′
1 using the oracle h|C,x

C
as

Γ1 = {xC ∈ F|C|
q | h|C,x

C
(xC) ̸= ⊥}

and Γ ′
1 = {(x0,xCx0) ∈ F|C|+1

q | x0 ∈ Fq \ {0}, xC ∈ Γ1}.

3. Set Γ ′ = Γ ′
0 ∪ Γ ′

1 and define

FΓ ′ = {(∆i)i∈C∪{0} ∈ (Fk
q)

|C|+1 | Ker((∆i)i∈C∪{0}) = Γ ′}.

4. Choose (δi)i∈C∪{0} ←$ (Γ ′)⊥, (∆i)i∈C∪{0} ←$FΓ ′ , r̃i ←$Fq (i ∈ [n]), and
s̃i ←$Fk

q (i ∈ [n]).
5. If Γ1 = ∅, output

R0 = (δ0 −
∑
i∈[n]

r̃i,
∑
i∈[n]

s̃i −∆0), Ri = (δi, r̃i,∆i, s̃i) for i ∈ C,

and Mi = (r̃i, s̃i) for i ∈ C.

Otherwise, fix xC ∈ Γ1 and set m = h|C,x
C
(xC). Then, output

R0 = (δ0 +m−
∑
i∈[n]

r̃i,
∑
i∈[n]

s̃i −∆0), Ri = (δi, r̃i,∆i, s̃i) for i ∈ C,

and Mi = (r̃i, s̃i) for i ∈ C.

Fig. 7. The simulator for the NIMPC protocol Π∗
BKR for the class of outputting-

message functions OM,A.

26

where T ←$GLk(Fq) and si←$Fk
q (i ∈ [n]), and

(m− s⊤u−
∑
i∈[n]

ri; (s
⊤ai)i∈C , (ri)i∈C ; (s

⊤aixi + ri)i∈C),

where s←$Fk
q and ri←$Fq (i ∈ [n]). We separately show that each of the two

distributions is perfectly simulated by the simulator described in Fig. 7.
As for the first part, it is sufficient to show that the distribution of

(Ta0; (Tai)i∈C , (si)i∈C ; (Taixi + si)i∈C) (3)

is perfectly simulated, where a0 =
∑

i∈C aixi − u. This is because the original
view can be obtained by computing ν0 = −Ta0+

∑
i∈C si+

∑
i∈C(Taixi+si).

The case of C = ∅. We have the following:

– If h(x1, . . . , xn) = ⊥, then a0 6= 0 and Ta0 is uniformly distributed over
Fk
q \ {0}. Since the si’s are chosen independent of T , letting ∆0←$Fk

q \ {0}
and s̃i←$Fk

q (i ∈ [n]), we have (Ta0; (Taixi + si)i∈[n]) ≡ (∆0; (s̃i)i∈[n]).
– If h(x1, . . . , xn) = m 6= ⊥, then a0 = 0 and Ta0 = 0. Since the si’s are

chosen independent of T , letting ∆0 = 0 and s̃i←$Fk
q (i ∈ [n]), we have

(Ta0; (Taixi + si)i∈[n]) ≡ (∆0; (s̃i)i∈[n]).

The case of C 6= ∅. Let B = (ai)i∈C0 and Γ = Ker(B). We show that Γ ′
0

and Γ ′
1 constructed by the simulator satisfy Γ ′

0 ∪ Γ ′
1 = Γ . Indeed, let xC0

=
(x0,xC) ∈ Γ . If x0 = 0, then

∑
i∈C aixi = 0 and hence xC0

= (0,xC) ∈ Γ ′
0. If

x0 6= 0, then
∑

i∈C aixi +
∑

i∈C ai(xix
−1
0) = u and h|C,xC

(xCx
−1
0) = m 6= ⊥.

Hence, xC0
= (x0, (xCx

−1
0)x0) ∈ Γ ′

1. Conversely, any (0,xC) ∈ Γ ′
0 is clearly an

element of Γ . Any element of Γ ′
1 can be expressed as (x0,xCx0) for some x0 6= 0

and xC = (xi)i∈C with h|C,xC
(xC) 6= ⊥, i.e.,

∑
i∈C aixi +

∑
i∈C aixi = u.

Therefore, it holds that a0x0 +
∑

i∈C ai(xix0) = 0 and hence (x0,xCx0) ∈ Γ .
It follows from Lemma 1 that (Tai)i∈C0

is uniformly distributed over FΓ =
{(∆i)i∈C0

| Ker((∆i)i∈C0
) = Γ} when T ←$GLk(Fq). Note that the si’s are cho-

sen independent of T . Therefore, letting (∆i)i∈C0
←$FΓ ′ = FΓ and s̃i←$Fk

q (i ∈
[n]), we have

(Ta0, (Tai)i∈C , (si)i∈C ; (Taixi + si)i∈C) ≡ (∆0; (∆i)i∈C , (s̃i)i∈C ; (s̃i)i∈C).

As for the second part, it is sufficient to show that the distribution of

(m+ s⊤a0; (s
⊤ai)i∈C , (ri)i∈C ; (s

⊤aixi + ri)i∈C) (4)

is perfectly simulated, where a0 =
∑

i∈C aixi − u. This is because the original

view can be obtained by computing µ0 = (m+s⊤a0)−
∑

i∈C ri−
∑

i∈C(s
⊤aixi+

ri).
The case of C = ∅. We have the following:

– If h(x1, . . . , xn) = ⊥, then a0 6= 0. It follows that s⊤a0 and hence m+ sa0

are uniformly distributed over Fq. Since the ri’s are chosen independent of
s, letting δ0←$Fq and r̃i←$Fq (i ∈ [n]), we have (m + s⊤a0; (s

⊤aixi +
ri)i∈[n]) ≡ (δ0; (r̃i)i∈[n]).

27

– If h(x1, . . . , xn) = m 6= ⊥, then a0 = 0 and s⊤a0 = 0 for all s ∈ Fk
q . Since

the ri’s are chosen independent of s, letting δ0 = m and r̃i←$Fq (i ∈ [n]),
we have (m+ s⊤a0; (s

⊤aixi + ri)i∈[n]) ≡ (δ0; (r̃i)i∈[n]).

The case of C 6= ∅. For s←$Fk
q , we have that (m+s⊤a0, (s

⊤ai)i∈C) ≡ s⊤B+

me1. Define row(B) = {s⊤B = (s⊤ai)i∈C0
| s ∈ Fk

q}. It then holds that

(Γ ′)⊥ = Γ⊥ = row(B) since Γ ′ = Γ = Ker(B).
Now, we can see below that the distribution of (4) is perfectly simulated:

– If h|C,xC
(xC) = ⊥ for all xC , then a0 is not in the space spanned by

{ai | i ∈ C}. In particular, there exists a vector s0 ∈ Fk
q such that s⊤0 B =

e⊤1 = [1, 0, . . . , 0]. Therefore, s⊤B +me⊤1 = (s+ s0m)⊤B is uniformly dis-
tributed over row(B) if s←$Fk

q . Since the ri’s are chosen independent of
s, the distribution of (4) is identical to (δ0; (δi)i∈C , (r̃i)i∈C ; (r̃i)i∈C), where

(δi)i∈C0 ←$ (Γ ′)⊥ and r̃i←$Fq (i ∈ [n]) are sampled by the simulator.
– If h|C,xC

(xC) 6= ⊥ for some xC , then the simulator actually gets the mes-

sage m ∈ Fq. We know that (s⊤ai)i∈C0
is uniformly distributed over row(B)

if s←$Fk
q . Therefore, since the ri’s are chosen independent of s, the distribu-

tion of (4) is identical to (δ0+m; (δi)i∈C , (r̃i)i∈C ; (r̃i)i∈C), where (δi)i∈C0
←$ (Γ ′)⊥

and r̃i←$Fq (i ∈ [n]) are sampled by the simulator.

Communication complexity. The maximum component of on-line and off-
line communication is the randomness Ri for i ∈ [n], which consists of two
scalars of Fq for outputting messages and two vectors over Fq of dimension k for
checking the equality u = Ax. If elements of M are expressed as vectors over
Fq of dimension ℓ, the communication complexity of the first two entries of Ri

increases ℓ times. Therefore, the protocol achieves the communication complexity
in the statement. ut

6.2 An Asymptotically Optimal NIMPC Protocol for Indicator
Functions

As a byproduct of our modified protocol Π∗
BKR, we obtain a fully robust NIMPC

protocol for indicator functions with asymptotically optimal communication
complexity with respect to the input length.

We recall the definition of indicator functions [3]. Let Xi (i ∈ [n]) be finite sets
and X = X1×· · ·×Xn. Define the indicator function ha : X → {0, 1} for a ∈ X as
ha(x) = 1 if and only if x = a for x ∈ X . In addition, we define id0 : X → {0, 1}
as id0(x) = 0 for any x ∈ X . Define IX be the class of all the indicator functions
together with id0, that is, IX = {ha | a ∈ X} ∪ {id0}. Indicator functions are
fundamental building blocks to realize NIMPC for an arbitrary class of functions.
Actually, based on the fact that any function h : X → {0, 1} is expressed as
h(x) =

∑
a∈X :h(a)=1 ha(x), it is shown that an NIMPC protocol for any given

class H can be obtained from any protocol for IX with a multiplicative overhead
of maxh∈H |h−1(1)| [3]. The reason why we incorporate id0 in IX is to prevent
the equality h =

∑
a∈X :h(a)=1 ha from revealing |h−1(1)|.

28

We show that the protocol Π∗
BKR can be used as a protocol for IX with

a slight modification. Let q be a prime power such that q > maxi∈[n] |Xi|. We
identify each Xi with a subset of Fq \ {0}. Let A = [e1, . . . , en] be the identity
matrix of size n. Note that computing ha for a = (ai)i∈[n] ∈ X is reduced to

testing the equality u = Ax, where u = [a1, . . . , an]
⊤. We also see that testing

Ax = 0 is equivalent to computing id0 since the inputs are represented as non-
zero field elements. Therefore, we can realize NIMPC for IX by running the
protocol Π∗

BKR for OM,A except that we skip the procedures to reveal messages.

Corollary 3. Let X1, . . . ,Xn be finite sets and X = X1 × · · · × Xn. Let q be
a prime power such that q > maxi∈[n] |Xi|. Then, the protocol Π3 described in
Fig. 8 is a fully robust NIMPC protocol for IX such that CCon(Π) = ndlog qe
and CCoff(Π) = 2ndlog qe.

Protocol Π3 for IX

Gen(h):
– h = id0:

1. Choose T ←$GLn(Fq), si ←$Fn
q (i ∈ [n]) and set ν0 =

∑
i∈[n] si.

2. Output R0 = ν0 and Ri = (Tei, si) for i ∈ [n].
– h = ha for a = (a1, . . . , an):

1. Set u = [a1, . . . , an]
⊤ ∈ Fn

q .
2. Choose T ←$GLn(Fq), si ←$Fn

q (i ∈ [n]) and set ν0 = Tu+
∑

i∈[n] si.

3. Output R0 = ν0 and Ri = (Tei, si) for i ∈ [n].
Enci(xi, Ri):

1. Parse Ri as (ρi1,ρi2), where ρi1,ρi2 ∈ Fn
q .

2. Output Mi = ρi1xi + ρi2.
Dec(R0,M1, . . . ,Mn):

1. If R0 =
∑

i∈[n] Mi, then output 1 and otherwise output 0.

Fig. 8. The NIMPC protocol Π3 for the class of indicator functions IX .

According to the lower bound [17], any NIMPC protocol for IX has commu-
nication complexity at least n−1

∑
i∈[n] log |Xi|. Therefore, if the input domains

all have the same size, i.e., |X1| = · · · = |Xn|, our protocol is asymptotically
optimal with respect to the input length.

Acknowledgements

This research was partially supported by JSPS KAKENHI Grant Numbers
JP20J20797 and 19H01109 and JST CREST JPMJCR19F6 and JPMJCR14D6.

29

References

1. Agarwal, N., Anand, S., Prabhakaran, M.: Uncovering algebraic structures in the
MPC landscape. In: Advances in Cryptology – EUROCRYPT 2019, Part II. pp.
381–406 (2019)

2. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-
Cherniavsky, A.: Non-interactive secure multiparty computation. In: Advances in
Cryptology – CRYPTO 2014, Part II. pp. 387–404 (2014)

3. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-
Cherniavsky, A.: Non-interactive secure multiparty computation. Cryptology
ePrint Archive, Report 2014/960 (2014), full version of [2]

4. Beimel, A., Ishai, Y., Kushilevitz, E.: Ad hoc PSM protocols: Secure computation
without coordination. In: Advances in Cryptology – EUROCRYPT 2017, Part III.
pp. 580–608 (2017)

5. Beimel, A., Kushilevitz, E., Nissim, P.: The complexity of multiparty PSM proto-
cols and related models. In: Advances in Cryptology – EUROCRYPT 2018, Part
II. pp. 287–318 (2018)

6. Benhamouda, F., Krawczyk, H., Rabin, T.: Robust non-interactive multiparty com-
putation against constant-size collusion. In: Advances in Cryptology – CRYPTO
2017, Part I. pp. 391–419 (2017)

7. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal mar-
gin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational
Learning Theory. pp. 144–152. COLT ’92 (1992)

8. Cortes, C., Vapnik, V.: Support-vector networks. Machine learning 20(3), 273–297
(1995)

9. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: Proceedings of the Twenty-Sixth Annual ACM Symposium on The-
ory of Computing. pp. 554–563. STOC ’94 (1994)

10. Halevi, S., Ishai, Y., Jain, A., Kushilevitz, E., Rabin, T.: Secure multiparty com-
putation with general interaction patterns. In: Proceedings of the 2016 ACM Con-
ference on Innovations in Theoretical Computer Science. pp. 157–168. ITCS ’16
(2016)

11. Halevi, S., Ishai, Y., Kushilevitz, E., Rabin, T.: Best possible information-theoretic
MPC. In: Theory of Cryptography, Part II. pp. 255–281 (2018)

12. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: Computing
without simultaneous interaction. In: Advances in Cryptology – CRYPTO 2011.
pp. 132–150 (2011)

13. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applica-
tions. In: Proceedings of the Fifth Israeli Symposium on Theory of Computing and
Systems. pp. 174–183 (1997)

14. Kilian, J.: Founding crytpography on oblivious transfer. In: Proceedings of
the Twentieth Annual ACM Symposium on Theory of Computing. pp. 20–31.
STOC ’88 (1988)

15. Obana, S., Yoshida, M.: An efficient construction of non-interactive secure multi-
party computation. In: Cryptology and Network Security. pp. 604–614 (2016)

16. Shoup, V.: A computational introduction to number theory and algebra. Cam-
bridge university press (2009)

17. Yoshida, M., Obana, S.: On the (in)efficiency of non-interactive secure multiparty
computation. Designs, Codes and Cryptography 86(8), 1793–1805 (2018)

30

