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Abstract. We present the first pairing-based ciphertext-policy attribute-based
encryption (CP-ABE) scheme for the class of degree 3 polynomials with com-
pact parameters: the public key, ciphertext and secret keys comprise O(n) group
elements, where n is input length for the function. As an immediate corollary, we
obtain a pairing-based broadcast encryption scheme for N users with O(N1/3)-
sized parameters, breaking the long-standing

√
N barrier for pairing-based broad-

cast encryption. All of our constructions achieve adaptive security against un-
bounded collusions, and rely on the (bilateral) k-Lin assumption in prime-order
bilinear groups.

1 Introduction

In this work, we study broadcast encryption [15] as well as attribute-based encryption
schemes [26,20,8]. In ciphertext-policy attribute-based encryption (CP-ABE), cipher-
texts ct are associated with a predicate f and a message m and keys sk with an attribute
x, and decryption returns m when x satisfies f . Broadcast encryption is a special case
of CP-ABE where the predicate is specified by a set S ⊆ [N ], and decryption returnsm
when x ∈ S. In both cases, we require security against unbounded collusions, so that
an adversary that sees a ciphertext along with secret keys for an arbitrary number of
attributes x1, x2, . . . learns nothing about m as long as none of these attributes satisfies
f .

Broadcast encryption has been an active area of research since their introduction in
the 1990s, where a major goal is to obtain schemes with short parameters, notably short
ciphertexts ct and short public keys mpk. In a celebrated work from 2005, Boneh, Gen-
try and Waters (BGW) [9] presented a pairing-based broadcast encryption scheme with
constant-size ciphertext (ignoring the contribution from the set S) and secret keys; how-
ever, the scheme has large public keys mpk which is linear in the total number of users
N , and moreover, decryption requires access to mpk. To address these shortcomings,
the authors also showed how to modify their scheme to achieve O(

√
N)-sized public

keys, at the cost of a O(
√
N)-sized ciphertext. A series of follow-up works [10,18,13]

showed how to achieve O(
√
N)-sized parameters (i.e., |mpk|+ |ct|+ |sk| = O(

√
N))

under the standard k-Lin assumption, improving upon the q-type assumption used in
BGW, while additionally strengthening the security guarantees from selective to adap-
tive security.

In a recent remarkable break-through, Agrawal and Yamada [4,3] constructed a
broadcast encryption scheme with poly(logN)-sized parameters from pairings and
LWE. Nonetheless, the following basic problem remains open since the work of BGW:



Scheme |mpk| |ct| |sk| Assumption Remark Security
BGW05 [9] N1−δ Nδ 1 † q-type δ ≤ 1/2 selective√

N
√
N 1 †

[10,18,13] Nmax{δ,1−δ} Nδ N1−δ k-Lin, k ≥ 1 δ ≤ 1 adaptive√
N

√
N

√
N

this work N1−2δ Nδ N1−2δ bi-k-Lin∗, k ≥ 2 δ ≤ 1/3 adaptive
N1/3 N1/3 N1/3

Fig. 1. Comparison with prior pairing-based broadcast encryption schemes for N users, where
the sizes refer to number of group elements, ignoring O(1) factors. Note that |ct| ignores the
contribution from the set S, which is “public”.
† In BGW05, decryption requires knowledge of mpk in addition to sk. Indeed, if we incorporate
mpk into sk, then the secret key sizes matches those in the second row.
∗ Here, bi-k-Lin (bilateral k-Lin) is a strengthening of k-Lin.

Can we build a broadcast encryption scheme with o(
√
N)-sized parameters

(that is, |mpk|+ |ct|+ |sk| = o(
√
N)) from (just) pairings?

Prior approaches for pairing-based broadcast encryption requires |ct|·max{|sk|, |mpk|} =
Ω(N), which in turn implies a Ω(

√
N) bound on the parameter size. Moreover, this

is essentially optimal for a large class of approaches for pairing-based broadcast en-
cryption [17], indicating that breaking the

√
N barrier would require substantially new

ideas. As an aside –and an indication of our limited understanding of broadcast encryp-
tion with small parameters– we note that building a broadcast encryption scheme with
o(N)-sized ciphertext from just LWE is also an open problem.

1.1 Our Results

We present a pairing-based broadcast encryption scheme with O(N1/3)-sized parame-
ters, breaking the long-standing

√
N barrier. Our broadcast encryption scheme achieves

adaptive security against unbounded collusions, and rely on the bilateral k-Lin assump-
tion in prime-order bilinear groups. In addition, our construction offers a range of trade-
offs between ciphertext and key sizes (see Fig 1). We stress that prior to this work, it
was not known how to achieve o(

√
N)-sized parameters with selective security even

with q-type assumptions or generic bilinear groups.
More generally, we present a CP-ABE for degree 3 polynomials over {0, 1}n (and

more generally, Znp ) where the public key, ciphertext and secret keys comprise of O(n)
group elements; this scheme also achieves adaptive security against unbounded col-
lusions under the bilateral k-Lin assumption. Our broadcast encryption scheme then
follows as an immediate corollary, since we can encode set membership in S ⊆ [N ] as
a degree 3 polynomial over {0, 1}O(N1/3). Prior to this work, CP-ABE schemes with
O(n)-sized parameters from pairings was only known for the class of degree 2 polyno-
mials [25]. We refer to Fig 2 for a summary of prior works on pairing-based CP-ABE
for degree 3 polynomials.
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Scheme |mpk| |ct| |sk| Assumption
inner product [21,13] n3 n3 1 k-Lin, k ≥ 1

n3 1 n3

degree 2 polynomials [25] n2 n2 n k-Lin, k ≥ 1

n2 n n2

this work n n n bi-k-Lin, k ≥ 2

Fig. 2. Prior pairing-based CP-ABE for degree 3 polynomials f : Znp×Znp×Znp → Zp, where the
sizes refer to number of group elements, ignoring O(1) factors. These constructions follow from
the fact that we can encode degree 3 polynomials as inner product of vectors of length Zn

3

p or
as degree 2 polynomials, and then combined with the appropriate ABE schemes in the literature.
All of these schemes achieve adaptive security.

The design of our schemes departs quite significantly from existing pairing-based
ABE schemes, in that we exploit the power of “quadratic reconstruction”. This idea
was previously used by Liu, Vaikuntanathan and Wee [25] to construct an information-
theoretic, private-key analogue of broadcast construction –formally, conditional dis-
closure of secrets (CDS) for index– with O(N1/3)-sized parameters. However, the
scheme only works over fields of characteristic 2, which are incompatible with bilinear
groups operations “in the exponent”. Instead, we provide new techniques for instanti-
ating quadratic reconstruction that are inspired in part by recent works on functional
encryption for degree 2 polynomials [29,24,16].

2 Technical Overview

We proceed to provide an overview of our constructions. We focus on our CP-ABE
scheme for degree 3 polynomials over Znp × Znp × Znp given by

(x1,x2,x3) 7→ (x1 ⊗ x2 ⊗ x3) · f>

where f ∈ Zn3

p is the coefficient vector. Throughout, we use boldface lower case to
denote row vectors. In our CP-ABE scheme,

– encryption takes as input f ∈ Zn3

p and a message M and outputs a ciphertext ct;
– key generation takes as input x1,x2,x3 ∈ Znp and outputs a key sk, and
– decryption takes as input ct, sk along with f ,x1,x2,x3 and outputs M whenever
(x1 ⊗ x2 ⊗ x3)f

> 6= 0.

We rely on an asymmetric bilinear group (G1,G2,GT , e) of prime order p where e :
G1×G2 → GT . We use [·]1, [·]2, [·]T to denote component-wise exponentiations in re-
spective groups G1,G2,GT . The k-Lin assumption in G1 asserts that ([A]1, [sA]1) ≈c
([A]1, [u]1) where s ← Zkp,A ← Zk×(k+1)

p ,u ← Zk+1
p . The bilateral k-Lin assump-

tion (as used in this work, and slightly weaker than that used in [16,29]) asserts that
([A]1, [A]2, [sA]2) ≈c ([A]1, [A]2, [u]2), and is a strengthening of the k-Lin assump-
tion in G2. In symmetric bilinear groups, the bilateral k-Lin and the standard k-Lin
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assumption are equivalent. Note that 1-Lin = DDH/SXDH, and that bilateral 1-Lin is
false, for the same reason DDH is false in symmetric bilinear groups. We will describe
our construction based the k-Lin assumption and the bilateral k′-Lin assumption, and
set k = 1, k′ = 2 for optimal concrete efficiency.

Following [1,29], we make extensive use of tensor products (cf. Section 3). This
enables a more compact description of our schemes, and avoids triple summations to
compute a degree 3 polynomial. Moreover, we will be replacing scalars with vectors as
our schemes get increasingly complex, upon which some scalar-vector products trans-
late naturally to a tensor product of two vectors, whereas some other ones translate to a
vector-matrix product.

Roadmap. We will begin our overview by describing two candidate CP-ABE schemes
for degree 3 polynomials. We refer to these schemes as “candidates” because we do not
in fact prove “full fledged” security of these two schemes (though it does seem quite
plausible that both schemes are secure in the generic group model).

– The first achieves

|mpk| = O(n2), |ct| = O(n), |sk| = O(n)

In comparison, prior constructions based on degree 2 polynomials requires either
|ct| = O(n2) or |sk| = O(n2) (cf. Fig 2).

– The second is a variant of the first with |mpk| = O(n) and thus achieves O(n)-
sized parameters.

We then describe in Section 2.4 how to modify the second candidate to obtain our final
CP-ABE scheme, which achieves O(n)-sized parameters as well as adaptive security
under the bi-k-Lin assumption.

2.1 CP-ABE for Degree 2 Polynomials

We begin with (a simplified variant of) the CP-ABE scheme in [25] for the class of
degree 2 polynomials over Znp × Znp given by

(x1,x2) 7→ (x1 ⊗ x2) · f>

where f ∈ Zn2

p is the coefficient vector and decryption is possible whenever (x1 ⊗
x2)f

> 6= 0:

mpk = [α]T , [w2]1, [w1]1, w1 ← Znp ,w2 ← Znp , α← Zp
ct = [s]1, [((In1 ⊗w2)f

> +w>1)s]1, [αs]T ·M, s← Zp
sk = [r]2, [x1rw

>
1]2, [x2α− rw2]2, r ← Zp

(1)

Note that the scheme achieves

|mpk| = O(n), |ct| = O(n), |sk| = O(n)
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Decryption uses

(x1 ⊗ x2)f
> · αs = (x1 ⊗ ((

sk︷ ︸︸ ︷
x2α− rw2)

ct︷︸︸︷
s ))f> (2)

+x1

sk︷︸︸︷
r ·

ct︷ ︸︸ ︷
((In1

⊗w2) · f> +w>1)s

−
sk︷ ︸︸ ︷

x1rw
>
1 ·

ct︷︸︸︷
s

Following the dual system encryption methodology [27,22,23,28,5], security boils down
to showing that M is hidden given a single ciphertext-key pair. In particular, it suffices
to show that if (x1 ⊗ x2)f

> = 0, then α is hidden given

ĉt = [(In ⊗w2) · f> +w>1]1,

ŝk = [x1w
>
1]2, [x2α−w2]2,

(3)

where ĉt, ŝk are derived from ct, sk by setting r = s = 1 and omitting [αs]T . Hiding of
α then follows from

(ĉt, ŝk) ≡
(
w̃>1, ((x1 ⊗ w̃2)f

> + x1w̃
>
1 −

=0︷ ︸︸ ︷
(x1 ⊗ x2)f

> · α, w̃2)
)

2.2 Our First Candidate CP-ABE

Next, we describe a candidate CP-ABE for degree 3 polynomials with parameter sizes

|mpk| = O(n2), |ct| = O(n), |sk| = O(n)

To arrive at this scheme, we first replace x2 and w2 in (1) with x2 ⊗ x3 and w2 ⊗w3

respectively, where w3 ← Znp . The ciphertext size remains unchanged, but the secret
key size increases to O(n2) due to the term

(x2 ⊗ x3)α− r(w2 ⊗w3)

To achieve |sk| = O(n), we will compute the above expression using

x2 ⊗ x3α− rw2 ⊗w3 = x2 ⊗
sk︷ ︸︸ ︷

(x3α+ r3w3)−
sk︷ ︸︸ ︷

(x2r3 + rw2)⊗
ct︷︸︸︷
w3

This yields the following scheme:

mpk = [α]T [w1]1, [w3]1, [w2 ⊗w3]1, w1,w2,w3 ← Znp , α← Zp
ct = [s]1, [αs]T ·M, [((In ⊗w2 ⊗w3) · f> +w>1)s]1, [w3s]1, s← Zp,
sk = [r2]2, [x1r2w

>
1]2, [x2r3 + r2w2]2, [x3α+ r3w3]2, r2, r3 ← Zp

(4)

Here, we publish [w2 ⊗w3]1 in mpk so that we can compute [(w2 ⊗w3)s]1 in ct.
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Compressing mpk. To get to a CP-ABE scheme with O(n)-sized parameters, we will
compress mpk in the previous scheme as follows: instead of having set-up pick w3, the
encryptor will sample a random w3; this eliminates [w2 ⊗ w3]1 in mpk and reduces
mpk to O(n) group elements. Next, we explain how this modification impacts ct and
sk in (4):

– Given [w2]1,w3, s, f , it is easy to compute [(In⊗w2⊗w3s) ·f>]1 and thus [((In⊗
w2 ⊗w3) · f> +w>1)s]1 in ct.

– Now, key generation can no longer compute [x3α + r3w3]2, which was used to
compute [(x3α+ r3w3)s]T during decryption. Instead, we will compute the latter
using the equation

(x3α+ r3w3)s =

sk︷ ︸︸ ︷
(r3 + r2v0) ·

ct︷︸︸︷
w3s+

sk︷ ︸︸ ︷
(x3α+ r2v) ·

ct︷︸︸︷
s −r2 ·

ct︷ ︸︸ ︷
(v0w3 + v)s

where v0,v are chosen by the set-up algorithm.

Putting these modifications together, we obtain our next candidate.

2.3 Our Second Candidate CP-ABE

Here is our candidate CP-ABE scheme with O(n)-sized parameters, where the terms
not present in the previous scheme are shaded in gray:

mpk = [α]T [w2]1, [w1]1, [v]1, [v0]1 w1,w2,v← Znp , α, v0 ← Zp
ct = [s]1, [αs]T ·M, [((In ⊗w2 ⊗w3)f

> +w>1)s]1, [w3s]1, [(v0w3 + v)s]1 , w3 ← Znp , s← Zp,
sk = [r2]2, [x1r2w

>
1]2, [x2r3 + r2w2]2, [r3 + r2v0]2, [x3α+ r2v]2 r3, r2 ← Zp

(5)

The decryption algorithm on input ct = ([s]1, [αs]T ·M, [c>1]1, [c2]1, [c3]1) and sk =
([r2]2, [d1]2, [d2]2, [d3]2, [d4]2), computes [(x1 ⊗ x2 ⊗ x3)f

> · αs]T using

(x1 ⊗ x2 ⊗

(i)︷ ︸︸ ︷
(d3c2 + d4s− r2c3)︸ ︷︷ ︸

=(x1⊗x2⊗(x3α+r3w3))s

)f> − ( x1 ⊗ (

(ii)︷ ︸︸ ︷
d2(In ⊗ c2))︸ ︷︷ ︸

=(x1⊗x2⊗r3w3)s+(x1⊗r2w2⊗w3)s

)f> +

(iii)︷ ︸︸ ︷
r2x1c

>
1 −

(iv)︷ ︸︸ ︷
d1s︸ ︷︷ ︸

=(x1⊗r2w2⊗w3)f>s

where

(i) = (r3 + r2v0)(w3s) + (x3α+ r2v)s− r2(v0w3 + v)s = (x3α+ r3w3)s

(ii) = (x2r3 + r2w2) · (In ⊗w3s) = (x2 ⊗ r3w3)s+ (r2w2 ⊗w3)s

(iii) = x1r2((In ⊗w2 ⊗w3)f
> +w>1)s = (x1 ⊗ r2w2 ⊗w3)f

>s+ x1r2w
>
1s

(iv) = x1r2w
>
1s

Security warm-up. As before in Section 2.1, it suffices to show that α is computation-
ally hidden given

ĉt = [(In ⊗w2 ⊗w3)f
> +w>1]1, [w3]1, [v0w3 + v]1,

ŝk = [x1w
>
1]2, [x2r3 +w2]2, [r3 + v0]2, [x3α+ v]2

(6)

Here, we allow adaptive choices of f and x1,x2,x3 subject to the constraint (x1⊗x2⊗
x3)f

> = 0. In this overview, we focus on the case f is queried before x1,x2,x3.
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Step 1. We start by sampling random w̃1, ṽ and programming

w̃>1 = (In ⊗w2 ⊗w3)f
> +w>1, ṽ = v0w3 + v

We can then rewrite ct, sk as:

ct = [w̃>1]1, [w3]1, [ṽ]1
sk = [x1w̃

>
1 − (x1 ⊗w2 ⊗w3)f

>]2, [x2r3 +w2]2, [r3 + v0]2, [x3α+ ṽ − v0w3]2

Step 2. Next, we sample random w̃2, ṽ0 and program

w̃2 = x2r3 +w2, ṽ0 = r3 + v0

We can then rewrite sk as:

sk = [x1w̃
>
1 − (x1 ⊗ w̃2 ⊗w3)f

> + (x1 ⊗ x2 ⊗ r3w3)f
>]2, [w̃2]2, [ṽ0]2, [x3α+ ṽ − ṽ0w3 + r3w3]2

Step 3. At this point, all of the leakage on α comes from the following terms in ct, sk:

[w3]1

[(x1 ⊗ x2 ⊗ r3w3)f
>]2, [x3α+ r3w3]2

If we can argue that [r3w3]2 is pseudorandom, then we have

{[(x1⊗x2⊗r3w3)f
>]2, [x3α+r3w3]2} ≈c [(x1⊗x2⊗d̃4)f

>−
=0︷ ︸︸ ︷

(x1 ⊗ x2 ⊗ x3)f
> α]2, [d̃4]2, d̃4 ← Znp

and then we are done. Unfortunately, [r3w3]2 is not pseudorandom given [w3]1 for
the same reason DDH is false in symmetric bilinear groups; however, an analogous
statement does hold if we replace r3,w3 with their k′-dimensional analogues (k′ ≥ 2).
Concretely, the bilateral k′-Lin assumption tells us that [r3W3]2 is pseudorandom given
[W3]1, where r3 ← Zk′p ,W3 ← Zk′×np .

Modifications. In addition to replacing r3,w3 with r3 ← Zk′p ,W3 ← Zk′×np ,

– we replace x2r3 in sk with x2 ⊗ r3, which in turns require increasing the width of
w2 to k′n (so that x2 ⊗ r3 + r2w2 is well-defined);

– we replace w2 ⊗w3 = w2(In ⊗w3) in ct with w2(In ⊗W3);
– we replace v0 with v0 ∈ Zk′p .

This means that when we program w̃2 = x2 ⊗ r3 + w2 in Step 2, we have w2(In ⊗
W3) = w̃2(In ⊗W3) − x2 ⊗ r3W3, upon which we could invoke the bi-k′-Lin
assumption. The case f is queried after x1,x2,x3 uses similar ideas, except we would
instead rely on the k′-Lin assumption in G1. Putting the modifications together, we
arrive at the following variant of the scheme in (6):

ĉt = [(In1
⊗w2(In2

⊗W3))f
> +w>1]1, [W3]1, [v0W3 + v]1, W3 ← Zk′×np

ŝk = [x1w
>
1]2, [x2 ⊗ r3 +w2]2, [r3 + v0]2, [x3α+ v]2 r3 ← Zk′p , r2 ← Zp

(7)

In Lemma 1, we show that the above scheme hides α given ĉt, ŝk for adaptive choices
of f and x1,x2,x3 subject to the constraint (x1 ⊗ x2 ⊗ x3)f

> = 0. This holds under
the k′-Lin assumption in G1 and the bi-k′-Lin assumption.
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2.4 Our Final CP-ABE

We now describe how we arrive at our final CP-ABE for the class of degree 3 polyno-
mials, which achieves adaptive security against unbounded collusions under the k-Lin
assumption in G1,G2 and the bilateral k′-Lin assumption, where k ≥ 1, k′ ≥ 2. Fol-
lowing the dual system encryption methodology and the “compiler” in [13], we sample
A← Z(k+1)×k

p ,B← Zk×(k+1)
p and make the following substitutions to the scheme in

(5) combined with (7):

s 7→ As> ∈ Z1×(k+1)
p , α 7→ k ∈ Zk+1

p , r 7→ rB ∈ Zk+1
p

w2 7→W2 ∈ Z(k+1)×(k+1)k′n
p , w>1 7→W1 ∈ Z(k+1)n×(k+1)

p ,

v 7→ V ∈ Z(k+1)×(k+1)n
p , v0 7→ V0 ∈ Z(k+1)×(k+1)k′

p

That is, we increase the width and heights of each of w2,w
>
1,v,v0 by a multiplicative

factor of k + 1. We refer to Section 4.1 for a complete description of the scheme.
In the security proof, we rely on the following fact: for any m, ` ≥ 1, with proba-

bility 1− 2/p over c← Zk+1
p ,d← Zk+1

p , the matrix

(Im ⊗ d)M(I` ⊗ c>) ∈ Zm`p

is uniformly random given M(I`⊗A), (Im⊗B)M, where M← Z(k+1)m×(k+1)`
p . This

was first observed in [13] for the special case m = ` = 1. In our security reduction, we
would then essentially “embed” w2,w

>
1,v,v0 from the scheme in (7) into dW2(In2

⊗
c>), (In1 ⊗ d)W1c

>,dV(In3 ⊗ c>),dV0(Ik′ ⊗ c>).
In the body of the paper, we consider a broader class of degree 3 polynomials over

Zn1
p × Zn2

p × Zn3
p . By varying n1, n2, n3, we obtain trade-offs between ciphertext and

key sizes as described in Fig 1.

2.5 Discussion

We describe some additional related works as well as open problems.

The GKW lower bound. Gay, Kerendis and Wee showed a N1/(d+1) lower bound for
information-theoretically secure conditional disclosure of secrets (CDS) protocols for
broadcast encryption with degree d reconstruction [17]. The scheme in (3) constitutes
such a CDS scheme with

√
N parameters and linear reconstruction, where the scheme

in (6) constitutes a CDS scheme with computational security andN1/3 parameters with
quadratic reconstruction “in the exponent”. Given that quadratic reconstruction seems
to be the best we can hope for with bilinear maps, beating the N1/3 parameter size
achieved in this work for pairing-based broadcast encryption would be a remarkable
break-through.

poly(logN)-sized broadcast encryption. In 2014, Boneh, Waters and Zhandry con-
structed such a broadcast encryption scheme with poly(logN)-sized parameters as-
suming multi-linear maps [11]. As mentioned earlier, Agrawal and Yamada [4,3] re-
cently obtained the same result from pairings and LWE. Independently, Brakerski and
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Vaikuntathan [12] presented a “lattice-inspired” candidate broadcast encryption with
poly(logN)-sized parameters, but they were unable to provide a reduction to LWE or
any simple lattice assumption. These latter two works derived the broadcast encryp-
tion scheme as a special case of a more general result, namely CP-ABE for boolean
formula/circuits over {0, 1}n with poly(n)-sized parameters.

N1/3-sized traitor-tracing. Zhandry [30] recently constructed the first pairing-based
traitor-tracing scheme for N users with O(N1/3)-sized parameters that is secure in
the generic group model. While the work also constructed traitor-tracing schemes with
broadcast, these additional schemes do not improve upon the state-of-the-art for broad-
cast encryption (see Table 1 in [30]), except for adding traitor-tracing capabilities. While
Zhandry’s results did motivate us to revisit the LVW conjecture regarding a O(N1/3)-
sized broadcast encryption scheme, the techniques there-in appear to be largely unre-
lated to those developed in this work. In a way, broadcast encryption is harder than
traitor-tracing in that we do have poly(logN)-sized traitor-tracing from just LWE [19],
but not for broadcast encryption.

Open problems. We describe two open problems:

– Can we build a pairing-based CP-ABE for degree 2 polynomials with |mpk| =
O(n) and either |ct| = O(1), |sk| = O(n) or |ct| = O(n), |sk| = O(1)? The
former would imply a pairing-based broadcast encryption scheme for N users with
|mpk| = O(

√
N), |ct| = O(1), |sk| = O(

√
N).

– Another important open problem is to build broadcast encryption with O(
√
N)-

sized parameters, or CP-ABE for degree 2 polynomials withO(n)-sized parameters
from just LWE. All known approaches for LWE-based ABE has ciphertext size at
least linear in the length of the attribute, which in the case of broadcast encryption
means an Ω(N)-sized ciphertext. Much of the prior research efforts towards LWE-
based CP-ABE has focused on the class of circuits, and perhaps it would be easier
to make progress by focusing on the simple class of degree 2 polynomials.

Perspective. To conclude, our results provide the first indication that we could lever-
age techniques and insights from FE for degree 2 polynomials to achieve surprising
asymptotic efficiency improvements in the broader setting of pairing-based ABE. We
are optimistic that this connection could yield further (asymptotic) efficiency improve-
ments in other pairing-based schemes, both within ABE and beyond.

3 Preliminaries

Notations. We denote by s ← S the fact that s is picked uniformly at random from a
finite set S. We use ≈s to denote two distributions being statistically indistinguishable,
and ≈c to denote two distributions being computationally indistinguishable. We use
lower case boldface to denote row vectors and upper case boldface to denote matrices.
For any positive integer N , we use [N ] to denote {1, 2, . . . , N}.
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Tensor product. The tensor product (Kronecker product) for matrices A = (ai,j) ∈
Z`×m, B ∈ Zn×p is defined as

A⊗B =

a1,1B, . . . , a1,mB

. . . , . . . , . . .

a`,1B, . . . , a`,mB

 ∈ Z`n×mp.

The mixed-product property for tensor product says that

(A⊗B)(C⊗D) = (AC)⊗ (BD)

A useful corollary of the mixed-product property says that for any pair of row vectors
u,v ∈ Zn,

u⊗ v = (u⊗ 1)(In ⊗ v) = (1⊗ v)(u⊗ In)

= u(In ⊗ v) = v(u⊗ In)

We adopt the convention that matrix multiplication takes precedence over tensor prod-
uct, so that we can write A⊗BC to mean A⊗ (BC).

3.1 Prime-order Bilinear Groups

A generator G takes as input a security parameter 1λ and outputs a description G :=
(p,G1,G2,GT , e), where p is a prime of Θ(λ) bits, G1, G2 and GT are cyclic groups
of order p, and e : G1×G2 → GT is a non-degenerate bilinear map. We require that the
group operations in G1, G2, GT and the bilinear map e are computable in deterministic
polynomial time in λ. Let g1 ∈ G1, g2 ∈ G2 and gT = e(g1, g2) ∈ GT be the respective
generators. We employ the implicit representation of group elements: for a matrix M
over Zp, we define [M]1 := gM1 , [M]2 := gM2 , [M]T := gMT , where exponentiation
is carried out component-wise. Also, given [A]1, [B]2, we let e([A]1, [B]2) = [AB]T .
We recall the matrix Diffie-Hellman (MDDH) assumption on G1 [14]:

Assumption 1 (MDDHdk,` Assumption) Let k, `, d ∈ N. We say that the MDDHdk,`
assumption holds if for all PPT adversaries A, the following advantage function is
negligible in λ.

Adv
MDDHd

k,`

A (λ) :=
∣∣Pr[A(G, [M]1, [MS]1 ) = 1]− Pr[A(G, [M]1, [U]1 ) = 1]

∣∣
where G := (p,G1,G2,GT , e)← G(1λ), M← Z`×kp , S← Zk×dp and U← Z`×dp .

The MDDH assumption on G2 can be defined in an analogous way. Escala et al. [14]
showed that

k-Lin⇒ MDDH1
k,k+1 ⇒ MDDHdk,` ∀ k, d ≥ 1, ` > k

with a tight security reduction. (In the setting where ` ≤ k, the MDDHdk,` assumption
holds unconditionally.)
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The bilateral MDDH assumption is defined analogously with the advantage func-
tion:∣∣Pr[A(G, [M]1, [MS]1 , [M]2, [MS]2 ) = 1]−Pr[A(G, [M]1, [U]1 , [M]2, [U]2 ) = 1]

∣∣
Note that the bilateral MDDH and bilateral k-Lin assumptions are false for k = 1.
In this paper, we only require a weaker variant of the bilateral MDDH assumption, as
defined with the advantage function:∣∣Pr[A(G, [M]1, [M]2, [MS]2 ) = 1]− Pr[A(G, [M]1, [M]2, [U]2 ) = 1]

∣∣
3.2 Attribute-Based Encryption

We define attribute-based encryption in the framework of key encapsulation. A attribute-
based encryption scheme for a predicate P( · , · ) consists of four algorithms (Setup,Enc,KeyGen,Dec):

Setup(1λ,X ,Y) → (pp,mpk,msk). The setup algorithm gets as input the security
parameter λ, the the predicate domainsX ,Y and outputs the public parameter mpk,
and the master key msk.

Enc(mpk, x) → (ct, κ). The encryption algorithm gets as input mpk and x ∈ X . It
outputs a ciphertext ct and a symmetric key kem ∈ {0, 1}λ.

KeyGen(msk, y)→ sk. The key generation algorithm gets as input msk and y ∈ Y . It
outputs a secret key sk.

Dec(sk, y, ct, x) → κ. The decryption algorithm gets as input sk, ct, x, y such that
P(x, y) = 1. It outputs a symmetric key kem.

In our schemes, we would actually compute kem ∈ GT , which can then be hashed to
{0, 1}λ.

Correctness. We require that for all (x, y) ∈ X × Y such that P(x, y) = 1,

Pr[(ct, kem)← Enc(mpk, x);Dec(sk, y, ct, x) = kem)] = 1,

where the probability is taken over (mpk,msk) ← Setup(1λ,X ,Y) and the coins of
Enc.

Security definition. For a stateful adversary A, we define the advantage function

AdvABE
A (λ) := Pr

b = b′ :

(mpk,msk)← Setup(1λ,X ,Y);
x← AKeyGen(msk,·)(mpk);

b←R {0, 1}; kem1 ←R {0, 1}λ
(ct, kem0)← Enc(mpk, x);

b′ ← AKeyGen(msk,·)(ct, kemb)

−
1

2

with the restriction that all queries y thatAmakes to KeyGen(msk, ·) satisfies P(x, y) =
0. An attribute-based encryption scheme is adaptively secure if for all PPT adversaries
A, the advantage AdvABE

A (λ) is a negligible function in λ.
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CP-ABE for degree 3 polynomials. Here,

X = Zn1n2n3
p ,Y = Zn1

p × Zn2
p × Zn3

p

and
P(f , (x1,x2,x3)) = 1⇐⇒ (x1 ⊗ x2 ⊗ x3) · f> 6= 0

Broadcast Encryption. Here,

X = {0, 1}N ,Y = [N ]

where we think of {0, 1}N as the power set of [N ] (i.e., set of all subsets of [N ]), and

P(S, y) = 1⇐⇒ y ∈ S

4 CP-ABE for Degree 3 Polynomials

In this section, we present an adaptively secure CP-ABE for degree 3 polynomials
against unbounded collusions, under the k-Lin assumption in G1,G2 and the bilateral
k’-Lin assumption, where k ≥ 1, k′ ≥ 2. Our scheme achieves

|mpk| = (k(k + 1) + k(k + 1)(n1 + k′n2 + n3) + k′)|G1|+ |GT |
|ct| = (k + 1 + (k + 1)n1 + (k + 1)k′n3 + (k + 1)n3)|G1|
|sk| = (2k + 1 + (k + 1)k′n2 + (k + 1)k′ + (k + 1)n3)|G2|

Setting k = 1, k′ = 2, we obtain

|mpk| = (2n1+4n2+2n3+4)|G1|+|GT |, |ct| = (2n1+6n3+2)|G1|, |sk| = (4n2+2n3+7)|G2|

4.1 Our Scheme

– Setup(p, 1n1 , 1n2 , 1n3): Run G = (G1,G2,GT , e)← G(p). Sample

A← Z(k+1)×k
p ,k← Zk+1

p ,W2 ← Z(k+1)×(k+1)k′n2
p ,W1 ← Z(k+1)n1×(k+1)

p ,

V← Z(k+1)×(k+1)n3
p ,V0 ← Z(k+1)×(k+1)k′

p ,B← Zk×(k+1)
p

For a matrix M ∈ Z(k+1)m×(k+1)`
p , we write M := M(I`⊗A) ∈ Z(k+1)m×k`

p . In
particular, we have

k = kA, W2 = W2(Ik′n2
⊗A), W1 = W1A, V = V(In3

⊗A), V0 = V0(Ik′⊗A)

Output

mpk =
(
G, [A]1, [k]T , [W2]1, [W1]1, [V]1, [V0]1

)
, msk = (k,W1,W2,V,V0,B)
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– Enc(mpk, f): Sample

s← Zkp,W3 ← Zk
′×n3
p

and output

ct =
(
[As>︸︷︷︸

c>0

]1, [(In1 ⊗ (W2(In2
⊗W3 ⊗ s>)))f> +W1s

>︸ ︷︷ ︸
c>1

]1,

[W3 ⊗As>︸ ︷︷ ︸
C2

]1, [V0(W3 ⊗ s>) +V(In3
⊗ s>)︸ ︷︷ ︸

C3

]1
)
, kem = [ks>]T

– KeyGen(msk,x1,x2,x3): Sample

r2 ← Zkp, r3 ← Z(k+1)k′

p

and output

sk =
(
[r2B︸︷︷︸

d0

]2, [(x1 ⊗ r2B)W1︸ ︷︷ ︸
d1

]2, [x2 ⊗ r3 + r2BW2︸ ︷︷ ︸
d2

]2, [r3 + r2BV0︸ ︷︷ ︸
d3

]2, [x3 ⊗ k+ r2BV︸ ︷︷ ︸
d4

]2
)

– Dec(sk, (x1,x2,x3), ct, f): Output

[
(x1 ⊗ x2 ⊗

(i)︷ ︸︸ ︷
(d3C2 + d4(In3

⊗ c>0)− d0C3))f
> − (x1 ⊗

(ii)︷ ︸︸ ︷
(d2(In2

⊗C2)))f
>

+

(iii)︷ ︸︸ ︷
(x1 ⊗ d0)c

>
1−

(iv)︷︸︸︷
d1c

>
0

]((x1⊗x2⊗x3)f
>)−1

T

where the terms in (i), (ii), (iii), (iv) are computed in GT using the pairing.

4.2 Correctness

Step 1. First, observe that we can rewrite ct, kem in terms of msk and [c0]1 (where
c>0 = As>), namely:

ct =
(
[As>︸︷︷︸

c>0

]1, [((In1
⊗W2(In2

⊗W3 ⊗ Ik+1))(f
> ⊗ Ik+1) +W1)c

>
0︸ ︷︷ ︸

c>1

]1 (8)

[(W3 ⊗ Ik+1)(In3
⊗ c>0)︸ ︷︷ ︸

C2

]1, [(V0(W3 ⊗ Ik+1) +V)(In3
⊗ c>0)︸ ︷︷ ︸

C3

]1
)
,

kem = [kc>0]T

To see that this is equivalent to the output of Enc, we will use

(Ik′ ⊗A)(W3 ⊗ s>) = (W3 ⊗ Ik+1)(In3
⊗As>) (9)
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We start with the first summand in c>1:

(In1
⊗ (

=W2(In2
⊗Ik′⊗A)︷ ︸︸ ︷

W2 (In2
⊗W3 ⊗ s>)))f> = (In1

⊗W2(In2
⊗W3 ⊗ Ik+1)(In2n3

⊗As>))f> using (9)
= (In1

⊗W2(In2
⊗W3 ⊗ Ik+1))(In1n2n3

⊗As>)(f> ⊗ 1)

= (In1
⊗W2(In2

⊗W3 ⊗ Ik+1))(f
> ⊗ Ik+1)As>

For the remaining terms, we have:

W1s
> = W1As>

W3 ⊗As> = (W3 ⊗ Ik+1)(In3 ⊗As>)

=V0(Ik′⊗A)︷ ︸︸ ︷
V0 (W3 ⊗ s>) = (V0(W3 ⊗ Ik+1))(In3

⊗As>) using (9)
V(In3

⊗ s>) = V(In3
⊗As>)

Step 2. Next, we show that

(x1 ⊗ x2 ⊗ x3)f
> · kc>0

= (x1 ⊗ x2 ⊗

(i)︷ ︸︸ ︷
(d3C2 + d4(In3 ⊗ c>0)− d0C3))f

> − (x1 ⊗

(ii)︷ ︸︸ ︷
(d2(In2 ⊗C2)))f

> +

(iii)︷ ︸︸ ︷
(x1 ⊗ d0)c

>
1−

(iv)︷︸︸︷
d1c

>
0

This follows readily from the following calculations:

(i) = (r3 + d0V0)(W3 ⊗ Ik+1)(In3 ⊗ c>0) + (x3 ⊗ k+ d0V)(In3 ⊗ c>0)− d0(V0(W3 ⊗ Ik+1) +V)(In3 ⊗ c>0)

= (r3(W3 ⊗ Ik+1) + x3 ⊗ k)(In3 ⊗ c>0)

= r3(W3 ⊗ c>0) + x3 ⊗ kc>0

(ii) = (x2 ⊗ r3 + d0W2) · (In2 ⊗W3 ⊗ c>0)

= x2 ⊗ (r3(W3 ⊗ c>0)) + d0W2(In2 ⊗W3 ⊗ c>0)

(iii) = (x1 ⊗ d0)((In1 ⊗W2(In2 ⊗W3 ⊗ Ik+1))(f
> ⊗ Ik+1) +W1)c

>
0

= (x1 ⊗ (d0W2(In2 ⊗W3 ⊗ c>0)))f
> + (x1 ⊗ d0)W1c

>
0

(iv) = (x1 ⊗ d0)W1c
>
0

and thus

(x1 ⊗ x2 ⊗

(i)︷ ︸︸ ︷
(d3C2 + d4(In3

⊗ c>0)− d0C3))f
> − (x1 ⊗

(ii)︷ ︸︸ ︷
(d2(In2

⊗C2)))f
> +

(iii)︷ ︸︸ ︷
(x1 ⊗ d0)c

>
1−

(iv)︷︸︸︷
d1c

>
0

= (x1 ⊗ x2 ⊗ (r3(W3 ⊗ c>0))) · f> + (x1 ⊗ x2 ⊗ x3 ⊗ kc>0) · f>

−(x1 ⊗ x2 ⊗ (r3(W3 ⊗ c>0))) · f> − (x1 ⊗ d0W2(In2
⊗W3 ⊗ c>0)) · f>

+(x1 ⊗ (d0W2(In2
⊗W3 ⊗ c>0)))f

> + (x1 ⊗ d0)W1c
>
0

−(x1 ⊗ d0)W1c
>
0

Correctness then follows readily.
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4.3 Core of Security Proof

As described in the technical overview in Section 2.3, the core of the security of lies in
proving adaptive security of the scheme in (7) where the adversary is given just a single
ciphertext and a single key and no mpk and with s = r2 = 1. We formalize and prove
this statement next.

Given α0, α1 ∈ Zp, we define the distribution Db over (ct, sk) where:

ct = [(In1
⊗w2(In2

⊗W3))f
> +w>1]1, [W3]1, [v0W3 + v]1,

sk = [x1w
>
1]2, [x2 ⊗ r3 +w2]2, [r3 + v0]2, [x3αb + v]2

and

w1 ← Zn1
p ,w2 ← Zk

′n2
p ,v← Zn3

p ,v0 ← Zk
′

p ,W3 ← Zk
′×n3
p , r3 ← Zk

′

p

and we allow adaptive choices of f and (x1,x2,x3) subject to the constraint (x1⊗x2⊗
x3)f

> = 0.

Lemma 1. For all α0, α1 ∈ Zp, we have D0 ≈c D1, under the k′-Lin assumption in
G1 and the bi-k′-Lin assumption.

Proof. We bound the advantage of guessing b given Db, b ← {0, 1} by a negligible
function. We proceed via a case analysis, following the “doubly selective” framework
[5,23]:

Case 1 (selective). f is queried before x1,x2,x2.

Step 1. We start by sampling random w̃1 ← Zn1
p , ṽ← Zn3

p and programming

w̃>1 = (In1
⊗w2(In2

⊗W3))f
> +w>1, ṽ = v0W3 + v

We can then rewrite ct, sk as:

ct = [w̃>1]1, [W3]1, [ṽ]1
sk = [x1w̃

>
1 − (x1 ⊗w2(In2

⊗W3))f
>]2, [x2 ⊗ r3 +w2]2, [r3 + v0]2, [x3αb + ṽ − v0W3]2

Step 2. Next, we sample random w̃2 ← Zk′n2
p , ṽ0 ← Zk′p and program

w̃2 = x2 ⊗ r3 +w2, ṽ0 = r3 + v0

We can then rewrite ct, sk as:

ct = [w̃>1]1, [W3]1, [ṽ]1
sk = [x1w̃

>
1 + (x1 ⊗ x2 ⊗ r3W3)f

> − (x1 ⊗ w̃2(In2
⊗W3))f

>]2, [w̃2]2, [ṽ0]2, [x3αb + r3W3 + ṽ − ṽ0W3]2
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Step 3. Next, by the bilateral k′-Lin assumption, we have:{
[W3]1, [r3W3 + x3αb]2

}
≈c
{
[W3]1, [d̃4]2

}
, d̃4 ← Zn3

p ,

This means that

sk ≈c [x1w̃
>
1 + (x1 ⊗ x2 ⊗ d̃4)f

> −
=0︷ ︸︸ ︷

(x1 ⊗ x2 ⊗ x3)f
>αb−(x1 ⊗ w̃2(In2

⊗W3))f
>]2, [w̃2]2, [ṽ0]2, [d̃4 + ṽ − ṽ0W3]2

That is, the distribution Db is computationally indistinguishable from:

ct = [w̃>1]1, [W3]1, [ṽ]1
sk = [x1w̃

>
1 + (x1 ⊗ x2 ⊗ d̃4)f

> − (x1 ⊗ w̃2(In2 ⊗W3))f
>]2, [w̃2]2, [ṽ0]2, [d̃4 + ṽ − ṽ0W3]2

which is independent of the bit b.

Case 2: (co-selective). x1,x2,x2 is queried before f .

Step 1. We start by sampling random ṽ0 ← Zk′p , ṽ← Zn3
p , w̃2 ← Zk′n2

p and program-
ming

w̃2 = x2 ⊗ r3 +w2, ṽ0 = r3 + v0, ṽ = x3αb + v

We can then rewrite ct, sk as:

ct = [−(In1
⊗ x2 ⊗ r3W3)f

> +w>1 + (In1
⊗ w̃2(In2

⊗W3))f
>]1, [W3]1, [−(r3W3 + x3αb) + ṽ0W3 + ṽ]1

sk = [x1w1
>]2, [w̃2]2, [ṽ0]2, [ṽ]2

Step 2. Next, by the k′-Lin assumption in G1, we have:{
[W3]1, [r3W3 + x3αb]1

}
≈c
{
[W3]1, [c̃3]1

}
, c̃3 ← Zn3

p ,

This means that

ct ≈c [(In1
⊗ x2 ⊗ x3αb)f

> +w>1 − (In1
⊗ x2 ⊗ c̃3)f

> + (In1
⊗ w̃2(In2

⊗W3))f
>]1, [W3]1, [−c̃3 + ṽ0W3 + ṽ]1

Step 3. At this point, the view of the adversary is given by:

ct = [ (In1
⊗ x2 ⊗ x3αb)f

> +w>1 − (In1
⊗ x2 ⊗ c̃3)f

> + (In1
⊗ w̃2(In2

⊗W3))f
>]1, [W3]1, [−c̃3 + ṽ0W3 + ṽ]1

sk = [ x1w
>
1 ]2, [w̃2]2, [ṽ0]2, [ṽ]2

where all of the leakage on αb comes from the boxed terms. We claim that the advantage
of the adversary is 0 here. It suffices to prove this for the case f is fixed in advance; then,
a random guessing (also referred to as complexity leveraging) argument tells us that the
advantage is still 0 even for an adaptively chosen f .

Sample a random w̃1 ← Zn1
p and program

w̃1 = (In1
⊗ x2 ⊗ x3αb)f

> +w>1
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Then, we can write

x1w
>
1 = x1w̃

>
1 − x1(In1 ⊗ x2 ⊗ x3αb)f

> = x1w̃
>
1 −

=0︷ ︸︸ ︷
(x1 ⊗ x2 ⊗ x3)f

> αb

This means that the view of the adversary (for a fixed f ) is identically distributed to

ct = [ w̃>1 − (In1
⊗ x2 ⊗ c̃3)f

> + (In1
⊗ w̃2(In2

⊗W3))f
>]1, [W3]1, [−c̃3 + ṽ0W3 + ṽ]1

sk = [ x1w̃
>
1 ]2, [w̃2]2, [ṽ0]2, [ṽ]2

The above distribution is independent of the bit b, and hence the advantage is 0.

4.4 Security Proof

The rest of the proof is a routine application of the dual system encryption methodology
[27,22,23,28,5,13], apart from the substitutions in (11), which slightly generalizes that
in [13], as described at the end of Section 2.4.

Auxiliary distributions. We define the following additional ciphertext and key distri-
butions used in the security proof. Sample δ ← Zp.

– (ĉt, ˆkem) is the same as (ct, kem) in (8), except we replace As> with c> ← Z(k+1)×1
p :

ĉt =
(
[c>]1, [((In1

⊗W2(In2
⊗W3 ⊗ Ik+1))(f

> ⊗ Ik+1) +W1)c
>]1,

[(W3 ⊗ Ik+1)(In3 ⊗ c>)]1, [(V0(W3 ⊗ Ik+1) +V)(In3 ⊗ c>)]1
)

ˆkem = [kc>]T

Henceforth, let a⊥ ∈ Zk+1
p satisfying a⊥ ·A = 0,a⊥ · c> = 1, which exists with

probability 1− 1/p over c.
– ŝk is the same as sk except we replace k with k+ δa⊥:

ŝk =
(
[r2B︸︷︷︸

d0

]2, [(x1 ⊗ r2B)W1︸ ︷︷ ︸
d1

]2, [x2 ⊗ r3 + r2BW2︸ ︷︷ ︸
d2

]2, [r3 + r2BV0︸ ︷︷ ︸
d3

]2, [x3 ⊗ (k+ δa⊥) + r2BV︸ ︷︷ ︸
d4

]2
)

– sk[1] is the same as sk except we replace r2B with d← Zk+1
p :

sk[1] =
(
[ d︸︷︷︸

d0

]2, [(x1 ⊗ d)W1︸ ︷︷ ︸
d1

]2, [x2 ⊗ r3 + dW2︸ ︷︷ ︸
d2

]2, [r3 + dV0︸ ︷︷ ︸
d3

]2, [x3 ⊗ k+ dV︸ ︷︷ ︸
d4

]2
)

– sk[2] is the same as sk[1] except we replace k with k+ δa⊥:

sk[2] =
(
[ d︸︷︷︸

d0

]2, [(x1 ⊗ d)W1︸ ︷︷ ︸
d1

]2, [x2 ⊗ r3 + dW2︸ ︷︷ ︸
d2

]2, [r3 + dV0︸ ︷︷ ︸
d3

]2, [x3 ⊗ (k+ δa⊥) + dV︸ ︷︷ ︸
d4

]2
)

Following the terminology in prior works, (ĉt, ˆkem) is the semi-functional (SF) cipher-
text; ŝk is the SF secret key; sk[1] is the pseudo-normal secret key, and sk[2] is the
pseudo-SF secret key.
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Game sequence. We present a series of games. We write Advxx to denote the advantage
ofA in Gamexx. SupposeAmakes q queries to KeyGen: let (xi1,x

i
2,x

i
3) denote the i’th

query, and let one of ski, ski[1], ski[2], ŝk
i

denote the i’th key.

– Game0: is the real security game.

– Game1: is the same as Game0 except we replace (ct, kem) with (ĉt, ˆkem).

– Game2,i for i = 1, . . . , q: is the same as Game1, except the first i − 1 keys are

given by ŝk
1
, . . . , ŝk

i−1
(semi-functional) and the last q − i keys are given by

ski+1, . . . , skq (normal). There are 4 sub-games, where the i’th key transitions from
ski in Game2.i.0, to ski[1] in Game2.i.1, to ski[2] in Game2.i.2, to ŝk

i
in Game2.i.3.

Note that Game1 = Game2.1.0 and Game2.i.3 = Game2.(i+1).0.

– Game3: is the same as Game2,q,3, except that kem0 ←R GT .

In Game3, the view of A is statistically independent of the challenge bit b. Hence,
Adv3 = 0. We complete the proof by establishing the following claims:

Game0 ≈c Game1. This follows readily from the k-Lin assumption in G1, where the
reduction on input [A]1, [c0]1 where c>0 ∈ {As>, c>}, c← Zk+1

p :

– runs the honest Setup to generate all the terms in (mpk,msk) apart from A;
– uses msk, c>0 to compute the challenge ciphertext and KEM:(

[c>0]1, [((In1
⊗W2(In2

⊗W3 ⊗ Ik+1))(f
> ⊗ Ik+1) +W1)c

>
0]1,

[(W3 ⊗ Ik+1)(In3 ⊗ c>0)]1, [(V0(W3 ⊗ Ik+1) +V)(In3 ⊗ c>0)]1
)

[kc>0]T

By (8), this is (ct, kem) when c>0 = As>, and (ĉt, ˆkem) when c>0 = c>;
– uses msk to simulate the KeyGen oracle.

Game2.i.0 ≈c Game2.i.1,Game2.i.2 ≈c Game2.i.3. This follows readily from
the k-Lin assumption in G2, where the reduction on input [B]1, [d0]1 where d0 ∈
{rB,d},d← Zk+1

p :

– runs the honest Setup to generate all the terms in (mpk,msk) apart from B;
– samples a random δ ∈ Zp;
– samples a random c ← Zk+1

p and uses msk, c to compute the challenge ciphertext
using (8);

– uses msk and δ to generate the first i− 1 keys ŝk
1
, . . . , ŝk

i−1
and the last q− i keys

ski+1, . . . , skq;
– computes the i’th key using [d0] and msk, δ using:(

[d0]2, [(x
i
1 ⊗ d0)W1]2, [x

i
2 ⊗ r3 + d0W2]2, [r3 + d0V0]2, [x

i
3 ⊗ k+ d0V]2

)
This is ski when d0 = rB, and ski[1] when d0 = d.
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Game2.i.1 ≈c Game2.i.2. To prove Game2.i.1 ≈c Game2.i.2, it suffices to show

(aux, ĉt, ski[1]) ≈c (aux, ĉt, ski[2]) (10)

where

aux :=
(
G, A, c,B,k, δ,W2, W1, V, V0

BW2, (In1
⊗B)W1, BV, BV0

)
This is because given aux, we can compute mpk, ˆkem as well as both sk (for the last
q − i key queries) and ŝk (for the first i− 1 key queries).

– To compute sk, we sample r2 ← Zkp, r3 ← Z(k+1)k′

p and output

sk =
(
[r2B︸︷︷︸

d0

]2, [(x1 ⊗ r2) · (In1 ⊗B)W1︸ ︷︷ ︸
d1

]2, [x2 ⊗ r3 + r2 ·BW2︸ ︷︷ ︸
d2

]2, [r3 + r2 ·BV0︸ ︷︷ ︸
d3

]2, [x3 ⊗ k+ r2 ·BV︸ ︷︷ ︸
d4

]2
)

– To compute ŝk, we would first compute a⊥ given A, c, and then proceed as in sk,
except we replace k with k+ δa⊥.

We proceed to prove (10) using Lemma 1. Henceforth, let b⊥ ∈ Zk+1
p satisfying

B · b⊥> = 0,d · b⊥> = 1, which exists with probability 1− 1/p over d, where [d]2 is
the first component of ski[1] and ski[2]. Sample

W′
1 ← Z(k+1)n1×(k+1)

p ,W′
2 ← Z(k+1)×(k+1)k′n2

p , V′ ← Z(k+1)×(k+1)n3
p , V′0 ← Z(k+1)×(k+1)k′

p

w1 ← Zn1
p , w2 ← Zk′n2

p , v← Zn3
p , v0 ← Zk′p ,

k′ ← Zk+1
p r′3 ← Z(k+1)k′

p

α← Zp, r3 ← Zk′p

and substitute

W1 7→W′
1 + (In1 ⊗ b⊥

>
) ·w>1 · a⊥ (11)

W2 7→W′
2 + b⊥

> ·w2 · (In2 ⊗ a⊥)

V 7→ V′ + b⊥
> · v · (In3 ⊗ a⊥)

V0 7→ V′0 + b⊥
> · v0 · (Ik′ ⊗ a⊥)

k 7→ k′ + α · a⊥

r3 7→ r′3 + r3(Ik′ ⊗ a⊥)

where in the last line, we have r3 ∈ Z(k+1)k′

p on the left, and r3 ∈ Zk′p on the right. We
can then write

aux =
(
G, A, c,B,k,W′

2, W
′
1, V

′
, V

′
0

BW′
2, (In1

⊗B)W′
1, BV′, BV′0

)
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and

ĉt = [c>]1, [((In1 ⊗W′
2(In2 ⊗W3 ⊗ Ik+1))(f

> ⊗ Ik+1) +W′
1)c
>

+(In1
⊗ b⊥

>
) · ( (In1

⊗w2(In2
⊗W3))f

> +w>1 )]1,

[(W3 ⊗ Ik+1)(In3
⊗ c>)]1, [(V

′
0(W3 ⊗ Ik+1) +V′)(In3

⊗ c>) + b⊥
> · ( v0W3 + v )]1

ˆkem = [k′c> + α]T

ski[1] = [d]2, [(x
i
1 ⊗ d)W′

1 + xi1w
>
1 · a⊥]2

[xi2 ⊗ r′3 + dW′
2 + ( xi2 ⊗ r3 +w2 ) · (In2

⊗ a⊥)]2,

[r′3 + dV′0 + ( r3 + v0 ) · (Ik′ ⊗ a⊥)]2,

[xi3 ⊗ k′ + dV′ + ( xi3α+ v ) · (In3 ⊗ a⊥)]2

ski[2] = [d]2, [(x
i
1 ⊗ d)W′

1 + xi1w
>
1 · a⊥]2

[xi2 ⊗ r′3 + dW′
2 + ( xi2 ⊗ r3 +w2 ) · (In2

⊗ a⊥)]2,

[r′3 + dV′0 + ( r3 + v0 ) · (Ik′ ⊗ a⊥)]2,

[xi3 ⊗ k′ + dV′ + ( xi3(α+ δ) + v ) · (In3
⊗ a⊥)]2

Given the boxed terms together with (c,d,W′
1,W

′
2,V

′,V′0,k
′, α,a⊥,b⊥, δ, r′3), we

can simulate ĉt, ski[1], ski[2] as well as aux. Therefore, it suffices to show that the boxed
terms in Game2.i.1 and Game2.i.2 are computationally indistinguishable, which follows
from Lemma 1. Concretely, the reduction on input (ct, sk) from Db corresponding to f
and (xi1,x

i
2,x

i
3) and where α0 = α, α1 = α+ δ:

1. samples random A,B, c,d,W′
1,W

′
2,V

′,V′0,k
′, α, δ, r′3, and call these values aux′;

2. computes a⊥,b⊥ using A, c,B,d;
3. computes aux using aux′,a⊥,b⊥, which it then uses to compute mpk as well as the

first i− 1 and the last q − i key queries;
4. computes ĉt by using ct fromDb for the boxed terms, and computing the remaining

non-boxed terms using aux′,a⊥,b⊥;
5. computes ˆkem using aux′;
6. computes either ski[1] or ski[2] by using sk from Db for the boxed terms, and com-

puting the remaining non-boxed terms using aux′,a⊥,b⊥;

The output of the reduction is exactly Game2.i.(b+1).

Game2.i.2 ≈c Game2.i.3. Analogous to Game2.i.0 ≈c Game2.i.1.

Game2.q.3 ≡ Game3. In Game2.q , we have kem0 = [kc>], whereas mpk only leaks

[kA]T and ŝk
1
, . . . , ŝk

q
only leaks k + δa⊥. The claim follows from the fact that kc>

is uniformly random in Zp given kA and k+ δa⊥.
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5 Broadcast Encryption with Size N1/3

We can encode broadcast encryption forN parties as CP-ABE for degree 3 polynomials
whenever n1n2n3 ≥ N , by using the folklore encoding of set membership in S ⊆ [N ]
as a degree 3 polynomial over {0, 1}n1 × {0, 1}n2 × {0, 1}n3 :

– given a set S ⊆ [N ], let f = (f1, . . . , fN ) ∈ {0, 1}N denote the characteristic
vector for the set S (that is, fi = 1 iff i ∈ S);

– given y ∈ [N ], we can pick x1 ∈ {0, 1}n1 ,x2 ∈ {0, 1}n2 ,x3 ∈ {0, 1}n3 such that
x1 ⊗ x2 ⊗ x3 ∈ {0, 1}n1n2n3 is the characteristic vector of the set {y}.

– then, (x1 ⊗ x2 ⊗ x3)f
> = 1 iff y ∈ S.

We can then set n1 = Nδ, n2 = N1−2δ, n3 = Nδ for any 0 ≤ δ ≤ 1/3, which yields

|mpk| = O(N1−2δ), |ct| = O(Nδ), |sk| = O(N1−2δ)

In particular, when δ = 1/3, we achieve

|mpk| = O(N1/3), |ct| = O(N1/3), |sk| = O(N1/3)

A concrete example. While the main focus of this work is on asymptotically more
efficient pairing-based broadcast encryption, our scheme does achieve pretty concrete
good efficiency. We can instantiate our scheme with the popular BLS12-381 curve with
|G1| being 48 bytes and |G2| being 96 bytes. Now, recall an application for broadcast
encryption in BGW05 [9], namely file sharing in encrypted file systems. The Windows
EFS has a limit of 256KB in the file header for the EFS meta-data, and supports a
maximum of 800 individual users. Assuming 32-bit users IDs, we can support 1000
users with a file header (S, ct) of size 4 × 1000 + 82 × 48 = 7936 bytes, where each
user holds a secret key of size 67×96 = 6432 bytes. We can do slightly better by setting
n1 = 20, n2 = 10, n3 = 5, which yields a header of size 4× 1000 + 72× 48 = 7456
bytes and a secret key of size 57×96 = 5482 bytes. However, sinceN = 1000 is fairly
small, the broadcast encryption scheme with O(

√
N) parameters would also achieve

similar performances: a file header of size 4× 1000+ 66× 48 = 7168 and a secret key
of size 68× 96 = 6528 bytes.

Acknowledgments. I am extremely grateful to Junqing Gong for meticulous proof-
reading and constructive feedback. I would also like to thank Tianren Liu for helpful
discussions on the challenges of extending our N1/3 CDS scheme in [25] to general
fields while preserving degree 2 reconstruction.
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