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Abstract. We construct the first constant-round protocols for secure
quantum computation in the two-party (2PQC) and multi-party (MPQC)
settings with security against malicious adversaries. Our protocols are
in the common random string (CRS) model.

– Assuming two-message oblivious transfer (OT), we obtain (𝑖) three-
message 2PQC, and (𝑖𝑖) five-round MPQC with only three rounds
of online (input-dependent) communication; such OT is known from
quantum-hard Learning with Errors (QLWE).

– Assuming sub-exponential hardness of QLWE, we obtain (𝑖) three-
round 2PQC with two online rounds and (𝑖𝑖) four-round MPQC with
two online rounds.

– When only one (out of two) parties receives output, we achieve
minimal interaction (two messages) from two-message OT; classi-
cally, such protocols are known as non-interactive secure computa-
tion (NISC), and our result constitutes the first maliciously-secure
quantum NISC.
Additionally assuming reusable malicious designated-verifier NIZK
arguments for NP (MDV-NIZKs), we give the first MDV-NIZK for
QMA that only requires one copy of the quantum witness.

Finally, we perform a preliminary investigation into two-round secure
quantum computation where each party must obtain output. On the
negative side, we identify a broad class of simulation strategies that suf-
fice for classical two-round secure computation that are unlikely to work
in the quantum setting. Next, as a proof-of-concept, we show that two-
round secure quantum computation exists with respect to a quantum
oracle.

1 Introduction

Secure computation allows mutually distrusting parties to compute arbitrary
functions on their private inputs, revealing only the outputs of the computation
while hiding all other private information [40,27,12,18]. With the emergence of
quantum computers, it becomes important to understand the landscape of secure
quantum computation over distributed, private quantum (or classical) states. In
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the most general setting, 𝑛 parties hold (possibly entangled) quantum inputs
x1, . . . , x𝑛, and would like to evaluate a quantum circuit 𝑄(x1, . . . , x𝑛). The
output is of the form (y1, . . . , y𝑛), so at the end of the protocol party 𝑖 holds
state y𝑖.

Secure computation with classical inputs and circuits forms a centerpiece of
classical cryptography. Solutions to this problem in the classical setting were
first obtained nearly 35 years ago, when [40] built garbled circuits to enable se-
cure two-party computation, and [27,12,18] obtained the first secure multi-party
computation protocols. Since then, there has been an extensive body of work
in this area, of which a large chunk focuses on understanding the amount of
back-and-forth interaction required to implement these protocols. Notably, the
work of Beaver, Micali and Rogaway [9] obtained the first constant-round classi-
cal multi-party computation protocols in the dishonest majority setting. There
have been several subsequent works including but not limited to [31,25,5,14,7,19]
that have nearly completely characterized the exact round complexity of classical
secure computation.

The problem of secure quantum computation on distributed quantum states
is not nearly as well-understood as its classical counterpart. The quantum set-
ting was first studied by [20,11], who obtained unconditional maliciously-secure
multi-party quantum computation with honest majority. Just like the classical
setting, when half (or more) of the players are malicious, secure quantum com-
putation also requires computational assumptions due to the impossibility of
unconditionally secure quantum bit commitment [35,32,21].

In the dishonest majority setting, [23] gave a two-party quantum compu-
tation (2PQC) protocol secure against the quantum analogue of semi-honest
adversaries (specious adversaries); this was later extended to the malicious set-
ting by [24]. A work of [22] constructed maliciously-secure multi-party quantum
computation (MPQC) with dishonest majority from any maliciously-secure post-
quantum classical MPC, where the round complexity grows with the size of the
circuit and the number of participants. Very recently, [4] constructed MPQC
with identifiable abort, and with round complexity that does not grow with the
circuit size but grows with the number of participants.

However, the feasibility of maliciously-secure MPQC with constant rounds
has remained open until this work. In addition to settling this question, we also
make several headways in understanding the exact round complexity of secure
quantum computation with up to all-but-one malicious corruptions.

1.1 Our Results

We assume that parties have access to a common random string (CRS), and
obtain answers to a range of fundamental questions, as we discuss next1.
1 We point out that the post-quantum MPC protocol of [1] can be used to generate a

CRS in constant rounds. This, combined with our results, yields the first constant
round multi-party quantum computation protocols without trusted setup in the
standard model.
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Quantum Non-Interactive Secure Computation Our first result pertains
to the most basic setting for secure (quantum) computation: a sender holds input
y, a receiver holds input x, and the goal is for the receiver to obtain 𝑄(x, y) for
some quantum circuit 𝑄. We construct a protocol achieving minimal interaction
— commonly known as non-interactive secure computation (NISC) [30] — where
the receiver publishes an encryption of x, the sender replies with an encryption
of y, and the receiver subsequently obtains 𝑄(x, y). Our result constitutes the
first maliciously-secure NISC for quantum computation (Q-NISC).

Theorem 1. (Informal) Maliciously-secure NISC for quantum computation ex-
ists assuming post-quantum maliciously-secure two-message oblivious transfer
(OT) with straight-line simulation.

Such OT protocols are known from the post-quantum hardness of Learning
with Errors (LWE) [36]. We remark that our Q-NISC result also extends to the
reusable setting where the receiver has a classical input that they would like to
reuse across multiple quantum computations on different sender inputs.

Application: Malicious Designated-Verifier NIZK Arguments for QMA. As an
application of our maliciously-secure Q-NISC, we construct (reusable) malicious
designated-verifier non-interactive zero-knowledge arguments (MDV-NIZKs) for
QMA in the common random string model. Specifically, our MDV-NIZK enables
the following interaction for any QMA language: a verifier can publish a classical
public key pk that enables a prover to send an instance 𝑥 and quantum message
m, such that the verifier holding the corresponding secret key sk can determine
if 𝑥 is a valid instance.

Theorem 2. (Informal) There exists a reusable MDV-NIZK for QMA with a
classical CRS and classical proving key assuming the existence of post-quantum
maliciously-secure two-message oblivious transfer with straight-line simulation
in the CRS model, and post-quantum (adaptively sound) reusable MDV-NIZK
for NP. All of the underlying primitives exist assuming the quantum hardness of
learning with errors.

We briefly elaborate on the security guarantees of our reusable MDV-NIZK.
Reusability means that soundness holds for multiple proofs (of potentially dif-
ferent statements) computed with respect to the same setup (i.e., the common
random string and the public key), even if the prover learns whether or not
the verifier accepted each proof; we remark that reusable security is sometimes
referred to as multi-theorem security. Malicious security means that the zero-
knowledge property holds even against verifiers that generate the public key ma-
liciously. Previously, such a reusable MDV-NIZK for QMA required the prover to
have access to multiple copies of the quantum witness [37], while our MDV-NIZK
only requires the prover to have a single copy.

Constant-round 2PQC and MPQC Our next set of results concerns the
general setting for 2PQC and MPQC where all parties obtain output. We focus
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on minimizing total round complexity as well as online round complexity, where
the latter refers to the number of input-dependent rounds; if a protocol has round
complexity 𝑑 and online round complexity 𝑘, then the parties can perform the
first 𝑑− 𝑘 rounds before they receive their inputs.2

We obtain various results, some from the generic assumption of quantum
polynomially-secure two-message oblivious transfer, and others from the specific
assumption of sub-exponential QLWE. Our results in this section are summa-
rized in Table 1.3

Table 1. Maliciously-Secure Quantum Computation in the CRS Model

From OT From sub-exp QLWE
Two-party 3 rounds (3 online) 3 rounds (2 online)

Multi-party 5 rounds (3 online) 4 rounds (2 online)

In order to prove the security of these protocols, we develop a delayed simu-
lation technique, which we call “simulation via teleportation”, which may be of
independent interest.

Is Two-Round Secure Quantum Computation Possible? A natural next
question is whether it is possible to construct two-round secure quantum com-
putation without pre-processing. This appears to be a challenging question to
resolve, either positively or negatively. We provide some preliminary results on
both fronts: we give a negative result indicating that common simulation strate-
gies from the classical setting will not suffice in the quantum setting, but we
also provide a proof-of-concept positive result, with a new simulation strategy,
assuming virtual-black-box obfuscation of quantum circuits. We stress that the
latter result is primarily to give intuition, as virtual-black-box obfuscation is
known to be impossible even for classical circuits [8]. We limit the scope of this
preliminary investigation to the two-party setting.

First, we give some intuition for why it seems hard to design a two-round
two-party protocol by showing that, under a plausible quantum information-
theoretic conjecture, a large class of common simulation techniques would not
suffice. We consider any simulator that learns which player (between Alice and
Bob) is corrupted only after it has generated the simulated CRS. We call such
a simulator an oblivious simulator. To the best of our knowledge, all existing
2 We remark that a 𝑘-online round protocol can also be viewed as a 𝑘-round protocol

in a quantum pre-processing model, i.e. a model where parties receive some quantum
correlations as setup.

3 The results below are in the setting of security with abort, as opposed to security
with unanimous abort (which is only a distinction in the multi-party setting). If one
wants security with unanimous abort, the overall round complexity will not change,
but one more round of online communication will be required.
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classical and quantum two-party computation protocols in the CRS model either
(1) already admit oblivious simulation, or (2) can generically be transformed to
admit oblivious simulation via post-quantum NIZK proofs of knowledge for NP.

In the quantum setting, we show, roughly, that any two-round 2PQC protocol
for general quantum functionalities with an oblivious simulator would yield an
instantaneous nonlocal quantum computation protocol [39,10,38,28] for general
quantum functionalities, with polynomial-size pre-processing.

Instantaneous nonlocal quantum computation is well-studied in the quantum
information literature [39,10,38,28], and the best known protocols for general
functionalities require exponential-size pre-processing [10]. Thus, a two-round
2PQC for general functionalities with oblivious simulation would immediately
yield an exponential improvement in the size of the pre-processing for this task.

Theorem 3. (Informal) Under the conjecture that there exists a quantum func-
tionality that does not admit an instantaneous nonlocal quantum computation
protocol with polynomial-size pre-processing, there exists a quantum functional-
ity that cannot be securely computed in two rounds in the classical CRS model
with an oblivious simulator.

Towards getting around this potential barrier, we give a proof-of-concept
construction of a protocol with non-oblivious simulation. Specifically, we assume
a (strong) form of VBB obfuscation for quantum circuits that contain unitary
and measurement gates, where the former may be classically controlled on the
outcome of measurement gates. We point out, however, that VBB-obfuscation of
circuits with measurement gates is potentially even more powerful than the VBB
obfuscation for unitaries that was formalized in [3] (further discussion on this
is available in the full version). Under this assumption, we obtain a two-round
two-party secure quantum computation protocol in the CRS model.

Theorem 4. (Informal) Two-round two-party secure quantum computation in
the common reference string model exists assuming a strong form of VBB or
ideal obfuscation for quantum circuits as discussed above.

We remark that while there exist (contrived) examples of functionalities that
cannot be VBB obfuscated [3,2,6], it is still plausible that many quantum func-
tionalities can be obfuscated. However, without any candidate constructions of
obfuscation for quantum circuits, we stress that our result should only be taken
as a proof-of-concept.

1.2 Paper Organization

In Section 2, we provide technical intuition for all of our results. In Section 3, we
give a full technical specification of our three-message 2PQC protocol. We prove
that security holds against a malicious Alice, and we defer a security proof for
malicious Bob to the full version (as will become clear in Section 2, handling ma-
licious Alice is the more challenging case). We defer the remainder of our results
to the full version, which includes the two-round 2PQC with preprocessing, the
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MPQC results, the technical formalization of [15] C+M garbling, MDV-NIZKs
for QMA, our oblivious simulation barrier, and our VBB-based proof-of-concept
construction.

2 Technical Overview

2.1 Quantum Background

We briefly recap some relevant concepts from quantum computation.

Notation. We use bold letters to write the density matrix of a quantum state
x. We use the shorthand 𝑈(x) to mean 𝑈x𝑈†, the result of applying unitary 𝑈
to x. The notation (x, y) denotes a state on two registers, where x and y are
potentially entangled. The 𝑘-fold tensor product of a state x ⊗ x ⊗ · · · ⊗ x will
be written as x𝑘.

The Pauli Group. The Pauli group on a single qubit, denoted by P1, is gen-
erated by the unitary operations 𝑋 (bit flip) and 𝑍 (phase flip), defined as

𝑋 =
[︂
0 1
1 0

]︂
, 𝑍 =

[︂
1 0
0 −1

]︂
. The Pauli group on 𝑛 qubits, denoted by P𝑛, is the

𝑛-fold tensor product of the single qubit Pauli group. Any unitary in the Pauli
group P𝑛 can be written (up to global phase) as

⨂︀
𝑖∈[𝑛] 𝑋𝑟𝑖𝑍𝑠𝑖 for 𝑟, 𝑠 ∈ {0, 1}𝑛.

The Clifford Group. The Clifford group on 𝑛 qubits, denoted by C𝑛, is the group
of unitaries that normalize P𝑛, i.e. 𝐶 ∈ C𝑛 if and only if for all 𝑈 ∈P𝑛, we have
𝐶𝑈𝐶† ∈P𝑛. Alternatively, we can think of a Clifford unitary 𝐶 as an operation
where for any choice of 𝑟, 𝑠 ∈ {0, 1}𝑛, there exists a choice of 𝑟′, 𝑠′ ∈ {0, 1}𝑛 such
that

𝐶

⎛⎝⨂︁
𝑖∈[𝑛]

𝑋𝑟𝑖𝑍𝑠𝑖

⎞⎠ =

⎛⎝⨂︁
𝑖∈[𝑛]

𝑋𝑟′
𝑖𝑍𝑠′

𝑖

⎞⎠ 𝐶.

Intuitively, this means that with a suitable update of the Pauli operation,
one can swap the order in which a Clifford and a Pauli are applied.

Clifford Authentication Codes. We will make extensive use of Clifford authenti-
cation codes. Clifford authentication codes are an information-theoretic encoding
scheme for quantum states that provides both secrecy and authentication. An
𝑛-qubit quantum state x can be encoded in a Clifford authentication code as fol-
lows: prepare a 𝜆-qubit all 0’s state which we denote as 0𝜆 (where 𝜆 is a security
parameter), sample a random Clifford unitary 𝐶 ← C𝑛+𝜆, and output 𝐶(x, 0𝜆).
The Clifford 𝐶 serves as a secret key, while the 0𝜆 qubits enable authentication,
and are called “trap” qubits. A party without knowledge of 𝐶 cannot modify the
encoding without modifying the trap qubits (except with negligible probability).
Therefore, decoding works by applying 𝐶† and then measuring the 𝜆 trap qubits
in the computational basis. If these measurements are all 0, this ensures that
with all but negligible probability, the 𝑛 remaining registers hold the originally
encoded state x.
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Clifford + Measurement Circuits. We will rely heavily on the “Clifford + Mea-
surement” representation of quantum circuits (henceforth “C+M circuits”) due
to [16]. In this representation, a quantum circuit can be decomposed into lay-
ers. Each layer consists of a Clifford unitary whose output wires are partitioned
into wires that will be fed as inputs into the next layer, and wires that will
be measured. The latter group of wires are measured in the computational ba-
sis, resulting in a classical bitstring that is used to select the Clifford unitary
to be applied in the subsequent layer. The first layer takes in all of the in-
puts to the quantum circuit, ancilla 0 states, and “magic” T states defined as
T := (|0⟩ + 𝑒𝑖𝜋/4 |1⟩)/

√
2. The final layer only produces output wires (i.e. its

output registers have no wires to be measured), which are interpreted as the
output of the circuit. [16] demonstrate that, with constant multiplicative factor
overhead in size, any quantum circuit can be written as a “C + M circuit” or
equivalently, in a magic state representation.

Therefore, for the purposes of this technical overview, we will assume that
any quantum circuit 𝐹 is written as a C+M circuit 𝐹CM, and its evaluation on
an input x is computed as 𝐹 (x) = 𝐹CM(x, T𝑘, 0𝑘). For simplicity, we use the
same 𝑘 to denote the number of T states and the number of ancilla 0 states.

Magic State Distillation. In settings where malicious parties are tasked with
providing the T states, we will use cryptographic techniques such as “cut-and-
choose” to ensure that 𝐹CM is evaluated on an input of the form (x, ̂︁T𝑘, 0𝑘) wherê︁T𝑘 is a state guaranteed to be “somewhat” close to T𝑘. However, correctness
of 𝐹CM will require states that are negligibly close to real magic states. To that
end, we will make use of a magic state distillation C+M circuit 𝐷 due to [22]
which takes in somewhat-close magic states ̂︁T𝑘 and outputs states negligibly
close to T𝑘′ , for 𝑘′ < 𝑘. Therefore, the representation of any functionality 𝐹 will
in fact be a C+M circuit 𝐹CM,𝐷 that first applies 𝐷 to ̂︁T𝑘, and then runs 𝐹CM.

2.2 Why is Malicious Security Hard to Achieve?

We begin this technical overview by describing our results in the two-party set-
ting. Before this, we briefly explain why malicious security does not follow read-
ily from existing techniques. Indeed, a candidate two-message 2PQC (where one
party receives output) with specious security (the quantum analogue of classical
semi-honest security [23]) was recently proposed in [15]. Alternatively, any con-
struction of quantum fully-homomorphic encryption (QFHE) naturally yields a
two-message 2PQC protocol: (1) Alice QFHE-encodes her input and sends it to
Bob, (2) Bob evaluates the functionality on his input and Alice’s encoded input,
and (3) Bob sends Alice the encryption of her output.

One might hope to compile this QFHE-based protocol or the [15] protocol
into a maliciously secure protocol by having the parties include proofs that their
messages are well-formed. Unfortunately, it is unclear how to implement this
in the quantum setting. In both of these approaches, the parties would have to
prove (in zero-knowledge) statements of the form “y is the result of evaluating
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quantum circuit 𝐶 on x.” Crucially, the statement the parties need to prove
explicitly makes reference to a quantum state. This is beyond the reach of what
one can prove with, say, NIZKs for QMA, in which witnesses are quantum but
the statements are entirely classical.

Therefore, we design our malicious 2PQC so that parties do not have to prove
general statements about quantum states. A core ingredient in our protocol is
a quantum garbled circuit construction sketched in [15, §2.5], where the circuit
garbling procedure is entirely classical.4 Combining this with a post-quantum
maliciously-secure classical 2PC, we will ensure valid circuit garbling against
malicious quantum adversaries.

2.3 A Garbling Scheme for C + M Circuits

Our first step is to formalize the proposal sketched in [15, §2.5] for garbling
C + M circuits. The starting point for the [15, §2.5] construction is a simple
technique for garbling any quantum circuit that consists of a single Clifford
unitary 𝐹 .5 The idea is to sample a random Clifford 𝐸 and give out 𝐹𝐸† as the
garbled circuit; note that the description of 𝐹𝐸† will be entirely classical. Since
the Clifford unitaries form a group, 𝐹𝐸† is a uniformly random Clifford unitary
independent of 𝐹 . To garble the input quantum state x, simply compute 𝐸(x).
The construction in [15, §2.5] extends this simple construction to any circuit.

To build intuition, we will consider a two-layer C + M circuit 𝑄 = (𝐹1, 𝑓),
where 𝐹1 is the first layer Clifford unitary, and 𝑓 is a classical circuit that takes
as input a single bit measurement result 𝑚, and outputs a classical description of
𝐹2, the second layer Clifford unitary. On input x, the circuit operates as follows:

1. Apply 𝐹1 to x.
2. Measure the last output wire in the computational basis to obtain 𝑚 ∈ {0, 1},

and feed the remaining wires to the next layer. Compute the second layer
Clifford unitary 𝐹2 = 𝑓(𝑚).

3. Apply 𝐹2 to the non-measured output wires from the first layer. Return the
result.

One could try to extend the simple idea for one-layer garbling to this circuit.
We still sample a random input-garbling Clifford 𝐸0 and compute 𝐹1𝐸†0. To hide
the second layer Clifford, a natural idea is to sample yet another random Clifford
𝐸1 to be applied to the non-measured output wires of 𝐹1. That is, we replace
𝐹1𝐸†0 with (𝐸1 ⊗ I)𝐹1𝐸†0, and release the description of a function 𝑔 such that
𝑔(𝑚) = 𝑓(𝑚)𝐸†1.

4 We remark that the 2PQC proposed in [15] is based on their “main” quantum gar-
bled circuit construction, which crucially does not have a classical circuit garbling
procedure. The advantage of their main construction is that garbling can be done in
low depth, whereas the alternative construction requires an expensive but classical
garbling procedure.

5 [15] call this group-randomizing quantum randomized encoding.
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However, this may in general be insecure. Let 𝐹
(0)
2 be the Clifford output by

function 𝑓 when 𝑚 = 0, and 𝐹
(1)
2 the Clifford output by function 𝑓 when 𝑚 = 1.

Suppose 𝐹
(0)
2 − 𝐹

(1)
2 = 𝐴 for some invertible matrix 𝐴. Then, an attacker with

access to 𝑔 could obtain 𝐹
(0)
2 𝐸†1 − 𝐹

(1)
2 𝐸†1, and multiplying the result by 𝐴−1

yields 𝐴−1(𝐹 (0)
2 𝐸†1 − 𝐹

(1)
2 𝐸†1) = 𝐴−1𝐴𝐸†1 = 𝐸†1.

Therefore, instead of giving out 𝑔, the construction of [15, §2.5] gives out a
classical garbling of 𝑔. To accommodate this, the output wire from the first layer
that is measured to produce 𝑚 ∈ {0, 1} must be replaced by a collection of wires
that produces the corresponding label lab𝑚 for the garbled circuit. This can be
easily achieved by applying a suitable “label unitary” to the 𝑚 wire (and ancilla
wires) within the garbled gate for the first layer.

There is one last issue with this approach: an attacker that chooses not
to measure the wires containing lab𝑚 can obtain a superposition over two valid
labels. Recall that the standard definition of security for classical garbled circuits
only guarantees simulation of one label, not a quantum superposition of both
labels. To ensure the attacker cannot get away with skipping the computational
basis measurement, the [15, §2.5] construction applies a 𝑍-twirl to 𝑚 before the
“label unitary” is applied. Recall that a 𝑍-twirl is simply a random application
of a Pauli 𝑍 gate, i.e. 𝑍𝑏 for a uniformly random bit 𝑏; applying 𝑍𝑏 to a wire is
equivalent to performing a computational basis measurement (without recording
the result).

To recap, a garbled 2-layer C + M circuit 𝑄 consists of three components: an
“input garbling” Clifford 𝐸0, an initial Clifford unitary to be applied to the gar-
bled input 𝐷0 := (𝐸1 ⊗ I)𝐹1𝐸†0, and a classical garbled circuit ̃︀𝑔. Extrapolating,
we see that in general a garbled C + M circuit takes the form

(𝐸0, 𝐷0, ̃︀𝑔1, . . . , ̃︀𝑔𝑑) := (𝐸0, ̃︀𝑄),

where the ̃︀𝑔𝑖’s are garblings of classical circuits. Crucially, all of these components
can be generated by an entirely classical circuit. The only quantum operation
involved in the garbling process is the application of 𝐸0 to the input x to garble
the input. Next, we show how we can take advantage of this mostly classical
garbling procedure to obtain maliciously-secure 2PQC.

2.4 A Three-Message Protocol with Malicious Security

In this section, we describe a three-message 2PQC protocol where both parties
obtain output. This implies the two-message 2PQC result with one-sided output
described in the first part of our results section, and fills in the upper left corner
of Table 1.

We begin with a plausible but insecure construction of a three-message 2PQC
based on the above quantum garbled circuit construction. We will then highlight
the ways a malicious attacker might break this construction, and arrive at our
final construction by implementing suitable modifications.

Our protocol relies only on a classical two-message 2PC with one-sided out-
put that is (post-quantum) secure against malicious adversaries; this can be
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realized by combining (post-quantum) classical garbled circuits [40] with (post-
quantum) two-message oblivious transfer [36] following eg. [30].

We will consider two parties: Alice with input x𝐴 and Bob with input x𝐵 .
They wish to jointly compute a quantum circuit 𝑄 on their inputs whose output
is delivered to both players. 𝑄 is represented as a Clifford+Measurement circuit
that takes input (x𝐴, x𝐵 , T𝑘, 0𝑘). We denote by (y𝐴, y𝐵) the joint outputs of
Alice and Bob. At a high level, the parties will use the first two messages (Bob
→ Alice, Alice → Bob) to jointly encode their quantum inputs, while in parallel
computing a two-message classical 2PC that outputs the classical description of
a quantum garbled circuit to Bob. By evaluating the garbled circuit, Bob can
learn his own output, as well as Alice’s encoded output, which he sends to Alice
in the 3rd message.

In more detail, the classical functionality ℱ [𝑄] to be computed by the classi-
cal 2PC is defined as follows. It takes as input (the classical description of) a Clif-
ford unitary 𝐶𝐵,in from Bob and Clifford unitaries (𝐶𝐴,in, 𝐶𝐴,out) from Alice. Let
𝑄𝐵 be a modification of 𝑄 that outputs (𝐶𝐴,out(y𝐴, 0𝜆), y𝐵) in place of (y𝐴, y𝐵);
looking ahead, this will enable Bob to evaluate (a garbling of) 𝑄𝐵 on (a garbling
of) their joint inputs without learning Alice’s output. The functionality computes
a garbling (𝐸0, ̃︂𝑄𝐵) of 𝑄𝐵 . Finally, it computes 𝑊 := 𝐸0 · (I⊗𝐶−1

𝐵,in ⊗ I) ·𝐶−1
𝐴,in

(where the registers implied by the tensor product will become clear below), and
outputs (𝑊, ̃︂𝑄𝐵) to Bob.

The (insecure) protocol template is as follows:

– First Message (Bob → Alice). Bob picks a random Clifford 𝐶𝐵,in and
uses it to encrypt and authenticate his input x𝐵 as m1 := 𝐶𝐵,in(x𝐵 , 0𝜆). He
also computes the first round message 𝑚1 of the classical 2PC, using 𝐶𝐵,in
as his input. He sends (m1, 𝑚1) to Alice.

– Second Message (Alice → Bob). After receiving (m1, 𝑚1), Alice picks a
random Clifford 𝐶𝐴,in and uses it to encrypt her input x𝐴 along with Bob’s
encoding m1, 𝑘 copies of a T state, and 𝑘 + 𝜆 copies of a 0 state. The result
of this is m2 := 𝐶𝐴,in(x𝐴, m1, T𝑘, 0𝑘+𝜆). Alice also samples another random
Clifford 𝐶𝐴,out that will serve to encrypt and authenticate her output, and
computes the second round message 𝑚2 of the classical 2PC using input
(𝐶𝐴,in, 𝐶𝐴,out). She sends (m2, 𝑚2) to Bob.

– Third Message (Bob → Alice). After receiving (m2, 𝑚2), Bob can com-
pute his output of the classical 2PC, which is (𝑊, ̃︂𝑄𝐵). He computes

𝑊 (m2) = 𝐸0·(I⊗𝐶−1
𝐵,in⊗I)·𝐶

−1
𝐴,in

(︀
𝐶𝐴,in(x𝐴, m1, T𝑘, 0𝑘+𝜆)

)︀
= 𝐸0(x𝐴, x𝐵 , T𝑘, 0𝑘+𝜆).

Recall that 𝐸0(x𝐴, x𝐵 , T𝑘, 0𝑘+𝜆) corresponds to a garbled input for ̃︂𝑄𝐵 . He
evaluates ̃︂𝑄𝐵 on this garbled input and obtains (𝐶𝐴,out(y𝐴, 0𝜆), y𝐵).
At this point, Bob has his output y𝐵 in the clear. Next he sets m3 =
𝐶𝐴,out(y𝐴, 0𝜆), and sends m3 to Alice. Upon receiving m3, Alice can re-
cover her output by computing 𝐶−1

𝐴,out(m3).

The above protocol can already be shown to be secure against malicious Bob
by relying on security of the classical two-party computation protocol against
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malicious adversaries. But malicious Alice can break security by generating ill-
formed auxiliary states. We now describe this issue in some more detail and then
present modifications to address the problem.

Malicious Generation of Auxiliary States. In the second message of the protocol,
Alice is instructed to send a quantum state 𝐶𝐴,in(x𝐴, m1, T𝑘, 0𝑘+𝜆). A malicious
Alice can deviate from honest behavior by submitting arbitrary states in place of
the magic T states and the auxiliary 0 states, either of which may compromise
security.

We therefore modify the classical 2PC to include randomized checks that will
enable Bob to detect if Alice has deviated from honest behavior.

We check validity of 0 states using the “random linear map” technique of [22].
The classical 2PC will sample a uniformly random matrix 𝑀 ∈ F𝑘×𝑘

2 , and apply
a unitary 𝑈𝑀 that maps the quantum state v = |𝑣⟩ ⟨𝑣| for any 𝑣 ∈ F𝑘

2 to the
state Mv = |𝑀𝑣⟩ ⟨𝑀𝑣|. For any 𝑀 ∈ F𝑘×𝑘

2 , there exists an efficient Clifford
unitary 𝑈𝑀 implementing this map. This check takes advantage of the fact that
𝑈𝑀 (0𝑘) = 0𝑘 for any 𝑀 , but on any other pure state v = |𝑣⟩ ⟨𝑣| for non-zero
𝑣 ∈ F𝑘

2 , we have 𝑈𝑀 (v) ̸= 0𝑘 with overwhelming probability in 𝑘.
More precisely, our protocol will now ask Alice to prepare twice (2𝑘) the

required number of 0 states. The classical 2PC will generate a Clifford unitary
𝑈𝑀 implementing a random linear map 𝑀 ∈ F2𝑘×2𝑘

2 , and incorporate 𝑈𝑀 into
its output Clifford 𝑊 , which is now 𝑊 = (𝐸0⊗I) ·(I⊗𝐶−1

𝐵,in⊗I) ·(I⊗𝑈𝑀 ) ·𝐶−1
𝐴,in.

Now when Bob applies 𝑊 to Alice’s message 𝐶𝐴,in(x𝐴, 𝐶𝐵,in(x𝐵 , 0𝜆), T𝑘, 02𝑘),
it has the effect of stripping off 𝐶𝐴,in by applying 𝐶−1

𝐴,in, and then applying
𝑈𝑀 to the last 2𝑘 registers. The rest of the application of 𝑊 has the same
effect as before the modification, so it undoes the application of 𝐶𝐵,in, and then
re-encodes all but the last 𝑘 registers under the input garbling Clifford 𝐸0 to
produce a garbled input. Crucially, the last 𝑘 registers are designated “0-state
check registers”, which Bob can simply measure in the computational basis to
detect if Alice prepared the 0 states properly.

Unfortunately, this technique does not extend to checking validity of T states.
To do so, we would have to map T states to 0 states, but there is no Clifford
unitary that realizes this transformation.6 The problem with using a non-Clifford
unitary is that security of 𝑊 relies on the fact that it is the product of a random
Clifford 𝐶𝐴,in and some other Clifford 𝑊 ′. Since the Clifford unitaries form a
group, multiplication by a random 𝐶𝐴,in perfectly masks the details of 𝑊 ′, but
only when 𝑊 ′ is Clifford.

We will therefore employ the “cut-and-choose” technique from [22]. The pro-
tocol will now have Alice prepare 𝜆(𝑘 + 1)-many T states instead of just 𝑘. The
classical 2PC will generate a random permutation 𝜋 on [𝜆(𝑘 + 1)], which will
move a random selection of 𝜆 of the T states into “T-state check registers.” The
application of 𝜋 will be implemented by a unitary 𝑈𝜋 incorporated into 𝑊 . Af-
6 The existence of such a Clifford would imply that Clifford + Measurement circuits

without magic states are universal for quantum computing, contradicting the Gottes-
man–Knill theorem (assuming BPP ̸= BQP).
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ter applying 𝑊 , Bob will apply a projective measurement onto T to each of the
T-state check registers, and will abort if any of the 𝜆 measurements fails.

If all of the 𝜆 measurements pass, this means the remaining 𝜆𝑘 un-tested T
states are “somewhat close” to being real T states. However, being “somewhat
close” will not be sufficient; for instance, an attacker who prepares exactly one
completely invalid T state will only be caught with 1/(𝑘 + 1) probability.

We will therefore need to apply magic-state distillation to transform these
into states which are negligibly close to real T states. For this, we use a magic-
state distillation circuit of [22, §2.5] (which builds on [16]). This circuit consists
solely of Clifford gates and computational basis measurements. To apply this
circuit we modify our underlying functionality, so that we now give out a garbling
of a circuit that first implements magic-state distillation and only then applies
𝑄𝐵 .

This completes an overview of our protocol, and a formal construction and
analysis can be found in Section 3.

2.5 Application: Reusable MDV-NIZK for QMA

Now we briefly describe how the above techniques readily give a reusable mali-
cious designated-verifier NIZK for QMA in the CRS model. Note that NIZK for
QMA is a special case of two-party quantum computation, where the function-
ality being computed is the verification circuit 𝒱 for some QMA language, the
prover (previously Alice) has the quantum witness w as input, and the verifier
(previously Bob) has no input and receives a binary output indicating whether
𝒱(𝑥, w) accepts or rejects, where 𝑥 is the (classical) description of the instance
they are considering.

Since the prover does not receive output, there is no need for the third mes-
sage in the protocol of Section 2.4. Furthermore, since the verifier has no input,
there is no need for any quantum message from him in the first message. The ver-
ifier only needs to send a first-round classical 2PC message which then functions
as a proving key. The (classical) left-over state is the verifier’s secret verification
key. After this, the prover just sends one quantum message (the Second Message
in the above protocol), proving that 𝒱(𝑥, w) = 1.

In order to make the above template reusable, we can first instantiate the
underlying classical 2PC with a reusable 2PC. Once this is in place, the verifier’s
first-round message is necessarily instance-indepedent. Then, to ensure that a
cheating prover cannot break soundness by observing whether the verifier accepts
its proofs or not, we modify the classical functionality to take as input a PRF
key from the verifier, and generate all required randomness (used for the 0 and
T checks, and the quantum garbling procedure) by applying this PRF to the
(classical) description of the instance 𝑥. By security of the reusable 2PC and the
PRF, a verifier will never accept a maliciously sampled proof for any instance 𝑥
not in the language.
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2.6 Challenges in Achieving a Two-Round Protocol in the Quantum
Setting

The previous sections show that we can achieve 2PQC in two messages if only
one party receives output, which is optimal in terms of round complexity. Now we
ask whether both parties can obtain output with just two rounds of simultaneous
exchange. Indeed, in the classical setting, there is a natural approach to obtain-
ing a two-round protocol, given a two-message protocol where one party receives
output. The parties simply run two parallel executions of the two-message proto-
col on the same inputs - one in which Alice speaks first and the functionality only
computes her part of the output, and another in which Bob speaks first and the
functionality only computes his part of the output. Unfortunately, this natural
approach completely fails in the quantum setting, for at least two reasons.

– Running two parallel executions of the same protocol on the same set of
inputs seems to require cloning those inputs, which is in general impossible
if the inputs may be arbitrary quantum states.

– Running two parallel executions of a randomized functionality requires the
parties to fix the same random coins to be used in each execution, as oth-
erwise their outputs may not be properly jointly distributed. This is not
possible in the quantum setting, since randomness can come from measure-
ment, and measurement results cannot be fixed and agreed upon beforehand.

These issues motivate the rest of our work. Since running two protocols in
parallel on the same inputs is problematic, we take as our guiding principle
that one party must be performing the actual computation at some point in the
protocol, and then distributing the outputs.

Interestingly, while the first issue mentioned above is unique to the setting
of quantum inputs, the second issue applies even if the parties wish to compute
a quantum circuit over just classical inputs, which we regard as a very natural
setting. Thus, while this paper focuses on the most general case of secure quan-
tum computation over potentially quantum inputs, we stress that all the results
we achieve are the best known even for the classical input setting. Furthermore,
note that both issues also exist in the specious setting, so it doesn’t appear to be
straightforward to achieve two-round 2PQC even in this setting. While the focus
of this paper is on the setting of malicious security, exploring these questions in
the specious setting is also an interesting direction.

2.7 A Two-Round Protocol with Pre-Processing
Our next result is a three-round protocol for 2PQC which requires only two
online rounds of communication, filling in the upper right corner of Table 1.

In fact, we construct a protocol in which the pre-input phase only consists
of a single message from Bob to Alice (computed with respect to a CRS). We
take our three sequential message protocol as a starting point, and introduce
several modifications. The first modification will immediately achieve the goal
of removing input-dependence from Bob’s first message, and all the subsequent
modifications will be necessary to restore correctness and security.
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Modification 1: Removing Input-Dependence via Teleportation. Before sending
his first message, Bob samples 𝑛 EPR pairs, where 𝑛 is the number of qubits
of the input x𝐵 . We denote these EPR pairs by (epr1, epr2), where epr1 de-
notes the left 𝑛 qubits, and epr2 denotes the right 𝑛 qubits. In place of sending
𝐶𝐵,in(x𝐵 , 0𝜆), Bob sends m𝐵,1 := 𝐶𝐵,in(epr1, 0𝜆). Note that the classical 2PC
only requires input 𝐶𝐵,in, which is a random Clifford that Bob samples for him-
self, so Bob’s entire first round message (m𝐵,1, 𝑚𝐵,1) can now be sent before
Bob receives his input. The idea is that later on, when Bob learns his input x𝐵 ,
he will perform Bell measurements on (x𝐵 , epr2) to teleport x𝐵 into epr1.

Issue: Incorporating Bob’s Teleportation Errors. Teleporting x𝐵 into epr1 will
require Bob to somehow correct epr1 later in the protocol using the results of
his Bell measurements on (x𝐵 , epr2). But enabling Bob to do this in a way that
does not compromise security will be tricky, as we now explain.

After receiving the second round message from Alice in our original malicious
2PQC protocol, Bob learns the output of the classical 2PC, which includes (1) a
(classical description of a) quantum garbled circuit ̃︀𝑄, and (2) a Clifford unitary
𝑊 . Bob applies 𝑊 to Alice’s quantum message m𝐴,2, performs the appropriate 0
and T state checks, and conditioned on the checks passing, is left with a state of
the form 𝐸0(x𝐴, x𝐵 , ̂︀T, 0), where ̂︀T is a state “somewhat close” to T𝑘. But at this
point in our newly modified protocol, Bob is holding the state 𝐸0(x𝐴, epr1, ̂︀T, 0).
To restore correctness, we somehow need to modify the protocol so that Bob can
apply 𝑋𝑥inp𝑍𝑧inp to epr1 “inside” the 𝐸0 mask, where 𝑥inp, 𝑧inp are the result
of Bell basis measurements on (x𝐵 , epr2).

Recall that the structure of 𝑊 is 𝑊 = 𝐸0 · 𝑈†dec−check, where 𝐸0 is the
input garbling Clifford for the quantum garbled circuit, and 𝑈dec−check is the
matrix that undoes 𝐶𝐴,in, undoes 𝐶𝐵,in, and then applies a permutation 𝜋 and
a random linear map 𝑀 , and rearranges all the to-be-checked registers to the
last few (rightmost) register slots. The multiplication by 𝐸0 is applied only to
the non-checked registers.

Thus, it seems like correctness would have to be restored by inserting the
unitary (I⊗𝑋𝑥inp𝑍𝑧inp ⊗ I) in between 𝐸0 and 𝑈†dec−check. But if Bob can learn
𝐸0(I ⊗ 𝑋𝑥inp𝑍𝑧inp ⊗ I)𝑈†dec−check for even two different values of 𝑥inp and 𝑧inp,
security of the input garbling Clifford 𝐸0 may be lost entirely.

Modification 2: Classical Garbling + Quantum Multi-Key Fully Homomorphic
Encryption In order to resolve this issue, we will split up the matrix 𝐸0(I ⊗
𝑋𝑥inp𝑍𝑧inp ⊗ I)𝑈†dec−check into two matrices

𝑈𝑥inp,𝑧inp := 𝐸0(I⊗𝑋𝑥inp𝑍𝑧inp ⊗ I)𝑈†rand

𝑈check := 𝑈rand𝑈†dec−check

where 𝑈rand is a “re-randomizing” Clifford.
The matrix 𝑈check is independent of Bob’s teleportation errors, and will

now be output to Bob by the classical 2PC. But to preserve security, we will
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have Bob obtain 𝑈𝑥inp,𝑧inp by evaluating a classical garbled circuit ̃︀𝑓inp where
𝑓inp(𝑥inp, 𝑧inp) := 𝑈𝑥inp,𝑧inp ; the garbled circuit ̃︀𝑓inp is included in the output of
the classical 2PC.

But now we are faced with a new problem: how does Bob obtain the (classical)
labels for ̃︀𝑓inp? Since we only have one round of interaction remaining, Bob won’t
be able to run an OT to learn the correct labels (Bob could learn the labels by
the end of the two online rounds, but then we would still need another round
for Bob to send Alice her encrypted output).

We resolve this problem with quantum multi-key fully-homomorphic encryp-
tion (QMFHE), which we will use in tandem with our classical garbled circuit̃︀𝑓inp to enable Bob to compute (a homomorphic encryption of) 𝑈𝑥inp,𝑧inp without
leaking anything else. Before we continue, we give a brief, intuition-level recap
of QMFHE (we refer the reader to the full version for a formal description). Re-
call that a standard fully-homomorphic encryption (FHE) allows one to apply
arbitrary efficient computation to encrypted data (without needing to first de-
crypt). Multi-key FHE (MFHE) extends FHE to enable computation over multiple
ciphertexts encrypted under different keys; the output of such a homomorphic
computation is a “multi-key” ciphertext which can only be decrypted given all
the secret keys for all of the ciphertexts involved in the computation [33]. Fi-
nally, QMFHE extends MFHE a step further to allow arbitrary efficient quantum
computation over encrypted (classical or quantum) data [29,13,34,1].

We will encrypt each of the garbled circuit labels for ̃︀𝑓inp under an indepen-
dent QMFHE key. All of these encrypted labels along with the corresponding
QMFHE public keys (to enable quantum computations over these ciphertexts)
will also be output to Bob as part of the classical 2PC. We remark that this
requires a QMFHE scheme where encryptions of classical plaintexts are them-
selves classical; such schemes are known assuming the quantum hardness of the
learning with errors (QLWE) assumption [1].7

To recap, Bob obtains from the classical 2PC a collection of QMFHE ci-
phertexts, one for each of the garbled circuit labels for ̃︀𝑓inp. Bob picks out the
ciphertexts corresponding to 𝑥inp, 𝑧inp and performs quantum multi-key evalua-
tion of ̃︀𝑓inp over these ciphertexts, obtaining a QMFHE encryption of the output
of ̃︀𝑓inp, i.e. QMFHE.Enc(pk𝑥inp,𝑧inp , 𝑈𝑥inp,𝑧inp) where pk𝑥inp,𝑧inp denotes the col-
lection of QMFHE public keys corresponding to 𝑥inp, 𝑧inp. The classical 2PC
output also includes 𝑈check in the clear, which Bob can apply to m𝐴,2 to obtain
𝑈rand(x𝐴, epr1, ̂︀T, 0) (after performing appropriate measurement checks). Then
Bob can homomorphically compute the ciphertext QMFHE.Enc(pk𝑥inp,𝑧inp , 𝐸0(x𝐴, x𝐵 , ̂︀T, 0)),
and proceed to homomorphically evaluate his quantum garbled circuit to obtain
QMFHE.Enc(pk𝑥inp,𝑧inp , (𝐶𝐴,out(y𝐴, 0𝜆), y𝐵)).

In order for Bob to obtain his final output in the clear, we will have Bob
send Alice 𝑥inp, 𝑧inp in the first online round. In response, in the second on-
line round Alice will reply with sk𝑥inp,𝑧inp ; security of the QMFHE will guar-

7 We only require leveled QMFHE, which can be based solely on the QLWE assumption.
Unleveled QMFHE requires an additional circularity security assumption.
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antee that Bob cannot decrypt ciphertexts corresponding to any other choice
of the teleportation errors. In the second online round, Bob will send Alice
QMFHE.Enc(pk𝑥inp,𝑧inp , (𝐶𝐴,out(y𝐴, 0𝜆)), which she can decrypt to obtain y𝐴. Fi-
nally, Bob produces his output by performing QMFHE decryption with sk𝑥inp,𝑧inp .

Issue: Simulating a Quantum Garbled Circuit with Unknown Output. At this
point, we have a correct protocol whose first round is completely input-independent.
However, we will run into issues when attempting to prove malicious security.

The problem arises in the security proof for a malicious Bob. In the original
three-round maliciously secure protocol, the simulator is able to extract x𝐵 from
Bob’s first round message to Alice; this is done by first extracting 𝐶𝐵,in from
Bob’s first round classical message for the classical 2PC, and then applying 𝐶−1

𝐵,in
to Bob’s first round quantum message. Extracting x𝐵 from Bob’s first round
message to Alice is crucial for proving security, since it enables the simulator to
query the ideal functionality on x𝐵 , learn the output y𝐵 , and finally simulate
the quantum garbled circuit using Bob’s output y𝐵 before computing Alice’s
simulated second round message to be sent to Bob. This second round message
reveals to Bob the quantum garbled circuit, so it is crucial that the quantum
garbled circuit simulator has been executed at this point.

Not surprisingly, this simulation strategy runs into a major problem in our
newly modified protocol. Bob’s first message is independent of x𝐵 , so the simula-
tor cannot query the ideal functionality, and therefore seemingly cannot simulate
the quantum garbled circuit before computing Alice’s message, which in particu-
lar reveals the quantum garbled circuit to Bob. In summary, the simulator must
provide Bob with the quantum garbled circuit (part of Alice’s first online round
message), before it has enough information to extract Bob’s input. This appears
quite problematic since simulating a garbled circuit certainly requires knowing
the output. However, since Bob can only obtain an encryption of the output of
the garbled circuit after receiving Alice’s first message, it is still reasonable to
expect that the protocol is secure.

Modification 3: Simulation via Teleportation. We fix this problem through a new
technique we call simulation via teleportation. The idea is as follows. Instead
of running the quantum garbled circuit simulator on the output of the circuit
(which the simulator does not yet know), the simulator will first prepare fresh
EPR pairs epr′1, epr′2 and then run the quantum garbled circuit simulator on
(𝐶𝐴,out(0, 0𝜆), epr′1) (where 0 takes the place of Alice’s input x𝐴 and epr′1 takes
the place of Bob’s output y𝐵). In the following round, after Bob has teleported
over his input state x𝐵 , the simulator will query the ideal functionality, learn
y𝐵 , and then teleport y𝐵 into epr′1.

Implementing the final teleportation step requires some care. When the sim-
ulator learns y𝐵 , it performs Bell measurements on (y𝐵 , epr′2), obtaining mea-
surement outcomes 𝑥out, 𝑧out. It must then find some way to apply 𝑥out, 𝑧out to
the state epr′1 so that Bob can obtain his correct output.

So we further modify the protocol so that the garbled circuit Bob receives
from the classical 2PC is modified to output (𝐶𝐴,out(y𝐴, 0𝜆), 𝑋𝑥out𝑍𝑧outy𝐵) in-
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stead of (𝐶𝐴,out(y𝐴, 0𝜆), y𝐵), as before. That is, in the real protocol, an honest
Alice will sample random 𝑥out, 𝑧out, and then the 2PC will output the circuit
implementing this functionality. Alice will send 𝑥out, 𝑧out to Bob in the second
online round, and Bob will first apply Pauli corrections 𝑋𝑥out𝑍𝑧out to his out-
put to obtain y𝐵 . In the simulated protocol, however, 𝑥out, 𝑧out are not sampled
by the simulator. Instead, they are the result of the simulator’s Bell measure-
ments on (y𝐵 , epr′2). The simulator thus simulates a garbled circuit that outputs
(𝐶𝐴,out(0, 0𝜆), epr′1), and then sends 𝑥out, 𝑧out in the second online round. Note
that this teleportation step occurs exclusively within the simulation.

Modification 4: Alice (Equivocally) Commits to Pauli Corrections. To arrive at a
fully secure protocol, we need to address one last issue. As currently described,
there is nothing that prevents a malicious Alice from misreporting her choice
of 𝑥out, 𝑧out. This can introduce arbitrary Pauli errors into Bob’s output that
he has no way of detecting. However, this can easily be fixed using equivocal
commitments. That is, Alice inputs 𝑥out, 𝑧out to the classical 2PC, along with
commitment randomness 𝑠. Bob obtains the commitment as part of the output
of the classical 2PC, and later when Alice sends 𝑥out, 𝑧out in the second online
round, she must also send along 𝑠. The equivocality property enables the simu-
lation strategy to work as before, as the simulator will have the power to send
Bob a commitment to an arbitrary value, and after learning 𝑥out, 𝑧out from its
Bell measurements, use equivocation to produce a valid opening.

2.8 The Multi-Party Setting

In this section, we describe our results in the multi-party setting, filling in the
bottom row of Table 1.

We begin by describing our approach to obtaining a five-round protocol from
quantum-secure OT. Our approach follows the same high-level idea as the three-
message 2PQC protocol described in Section 2.4, where one party (the “desig-
nated party”, or 𝑃1) will evaluate a quantum garbled circuit on encodings of each
party’s input, and then distribute the encoded outputs to each party. However,
implementing this template in the multi-party setting requires resolving a host
of new challenges.

Input Encoding. Recall that in our two-party protocol, Alice received an encod-
ing of Bob’s input, concatenated their own input, re-randomized the entire set
of registers with a random Clifford 𝐶, and then sent the re-randomized state to
Bob. This re-randomization ensures that the only meaningful computation Bob
can perform is to apply the quantum garbled circuit, whose classical description
is re-randomized with 𝐶†. A natural extension of this idea to the multi-party
setting goes as follows. First, each party sends their encoded input to 𝑃1. Then
𝑃1 concatenates all inputs together and re-randomizes the resulting set of regis-
ters with their own random Clifford 𝐶1. Then, these registers are passed around
in a circle, each party 𝑃𝑖 applying their own re-randomizing Clifford 𝐶𝑖. Finally,
𝑃1 receives the fully re-randomized state, along with some classical description
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of a quantum garbled circuit obtained via classical MPC, and re-randomized
with 𝐶†1 . . . 𝐶†𝑛. The fact that each party applies their own re-randomizing Clif-
ford is necessary, since we are in the dishonest majority setting. Indeed, if only
one party 𝑃𝑖 is honest, their security will crucially rely on the fact that the
adversary does not know their re-randomizing Clifford 𝐶𝑖. This approach of en-
crypting and sending a state around the circle of parties for re-randomization
is similar to [22]’s “input encoding” protocol, in which each individual party’s
input is sent around the circle of parties for re-randomization.

Unfortunately, the round complexity of this encoding step will grow linearly
with the number of parties. To obtain a constant-round protocol, our idea is to
round-collapse this input-encoding via the use of quantum teleportation. In the
first round, parties will send EPR pairs to each other following the topology of
the computation described above. That is, each party sets up EPR pairs with
𝑃1 that will be used to teleport their encoded inputs to 𝑃1, and each consecutive
pair of parties will set up EPR pairs that will be used to teleport the encoded
state around the circle. After this setup, the parties can simultaneously apply
re-randomization Cliffords and teleport the encoded state around the circle. This
will introduce teleportation errors, but since the re-randomization operations are
Clifford, these can be later corrected. Indeed, this correction will be facilitated
by a classical MPC protocol that takes as input each party’s Clifford and set of
teleportation errors.

0 and T State Checks. The next challenge is how to enforce 0 and 𝑇 state checks
in the multi-party setting. Recall that in the two-party setting, we had the non-
evaluator party (Alice) prepare the 0 and 𝑇 states, which were then checked
by the garbled circuit evaluator (Bob). This approach works because we know
that if Alice is malicious and tried to cheat during preparation of these states,
then Bob must be honest and will then refuse to evaluate the garbled circuit.
However, this does not carry over to the multi-party setting. If we try to fix
some party 𝑃𝑖 to prepare the 0 and 𝑇 states and then have the evaluator 𝑃1
check them, it may be the case that both 𝑃𝑖 and 𝑃1 are malicious, which would
be problematic.

Thus, we take a different approach, instructing 𝑃1 to prepare the 0 and 𝑇
states, and designing a distributed checking protocol, similar to that of [22].
We now briefly describe the 𝑇 state check, leaving a description of the 0 state
check to the body. 𝑃1 will be instructed to concatenate all parties’ inputs with
their own 𝑇 states, and then send the resulting state around the circle for re-
randomization. Later, they receive the re-randomized state, along with a unitary
from the classical MPC that i) undoes the re-randomization, ii) samples a dif-
ferent subset of 𝑇 states for each party, iii) Clifford-encodes each subset, and
iv) garbles the inputs together with the remaining 𝑇 states. Thus, 𝑃1 obtains
𝑛 encoded subsets of 𝑇 states, and is supposed to send one to each party. Each
party will then receive their encoded subset, decode (using information obtained
from the classical MPC), and measure in the 𝑇 -basis. Each party will then abort
the protocol if their check failed. Only if no parties abort will the classical MPC
send information to each party allowing them to decrypt their output from the
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quantum garbled circuit. It is crucial that no party receives output until all hon-
est parties indicate that their 𝑇 state check passed, because using malformed 𝑇
states in the quantum garbled circuit could result in outputs that leak informa-
tion about honest party inputs.

The Five-Round Protocol. We give a high-level overview of the five rounds of
the protocol.

– Round 1: Each party 𝑃𝑖 generates EPR pairs and sends half of each pair
to its neighbor 𝑃𝑖+1. Additionally, party 𝑃1 generates enough EPR pairs so
that it can send EPR pair halves to every other party 𝑃𝑖 for 𝑖 ̸= 1.

– Round 2: Teleport inputs to 𝑃1 and teleport the resulting state around the
circle (with re-randomization Cliffords 𝐶𝑖 applied along the way). Input tele-
portation errors and {𝐶𝑖}𝑖∈[𝑛] to the classical MPC.

– Round 3: Classical MPC delivers unitary to 𝑃1 that samples subsets of 𝑇
states and garbles inputs, along with classical description of the quantum
garbled circuit.

– Round 4: 𝑃1 evaluates the unitary and garbled circuit, then delivers encoded
subsets of 𝑇 states and encrypted outputs to each party.

– Round 5: If no parties abort after their 𝑇 state check, the classical MPC
delivers key to each party allowing them to decrypt their output.

Note that the distributed 𝑇 state check is the reason that the protocol re-
quires five rounds. The first round is used for setting up EPR pairs. At this
point the parties can perform quantum teleportation and obtain their Pauli er-
rors. Now, these must be corrected by the classical MPC, which takes a minimum
of two rounds. Thus, 𝑃1 can only obtain output from the MPC, and thus from
the quantum garbled circuit, after Round 3. Then, Round 4 must be used to
distribute subsets of 𝑇 states, and Round 5 must be used to deliver decryption
keys conditioned on all parties being happy with their 𝑇 states. As we describe
in the body, the actual computation of the garbled circuit can be delayed one
round (at the cost of settling for security with abort rather than unanimous
abort), giving a five-round protocol with three online rounds.

Now we discuss how to instantiate the classical MPC. We are going to need
an MPC that supports reactive functionalities, where inputs may depend on
previous outputs obtained from the MPC. Moreover, we need the MPC to be
round-optimal, in the sense that outputs delivered in round 𝑖 may depend on
inputs from round 𝑖 − 1. We observe that the round-collapsing compiler of [26]
gives exactly this — an ℓ + 1 round MPC for a reactive functionality with ℓ
rounds of output. Thus, we can rely solely on quantum-secure two-message OT
to construct the above five-round quantum MPC.

The Four-Round Protocol. Finally, we observe that there is some slack in the
aforementioned protocol. Indeed, 𝑃1 does not obtain any output from the clas-
sical MPC until after round 3, when in principle the classical MPC can be used
to compute some output in only two rounds. The reason we waited three rounds
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is that we wanted to include the parties’ teleportation errors in the computation
performed by the MPC, and these are not known until the beginning of the
second round.

However, we can use ideas similar to those in Section 2.7 in order to allow
the MPC to compute something meaningful during the first two rounds without
yet knowing the teleportation errors. In particular, we make use of classical
garbled circuits and quantum multi-key FHE to provide a mechanism by which
the classical MPC can output information allowing 𝑃1 to (homomorphically)
compute a function of the teleportation errors after Round 2. This allows us to
collapse the total number of required rounds to 4. Moreover, a similar idea allows
the parties to delay teleportation of their inputs another round, giving a four-
round protocol with (optimal) two rounds of online interaction. Equivalently, our
protocol can be seen as two-round MPQC in a quantum pre-processing model.

2.9 Two Round 2PQC Without Pre-Processing: Challenges and
Possibilities

In this section, we explore the possibility of achieving a two-round 2PQC protocol
in the CRS model without pre-processing. We stress that this model does not
permit pre-shared entanglement between the two parties, as we consider sharing
of entanglement to be a pre-processing step.

The Challenge of Oblivious Simulation. In the classical setting, all known two-
round two-party computation protocols (in the CRS model) can be modified so
that security is proven via (what we call) an oblivious simulator.8 That is, the
simulator (1) only makes black-box queries to the adversary, (2) is straight-line
(meaning it only runs the adversary a single time without rewinding), and (3)
it generates the simulated CRS independently of the choice of corrupted party
(between Alice and Bob).

By focusing on protocols with oblivious simulation, we can highlight an ap-
parent difficulty of building secure two-round protocols for quantum functionali-
ties in the CRS model. Assume without loss of generality that Alice is adversarial
(the identical argument applies to Bob). Observe that if the first message that
Alice sends is not computationally binding to her input x𝐴, she can potentially
cheat by equivocating, i.e. acting as if she had received a different input, and
subsequently learn multiple outputs of the functionality. If the simulation is
oblivious, then this reasoning applies simultaneously to Alice and Bob — that
is, both parties must, in the first round, send computationally-binding commit-
ments to their respective inputs. This is immediately problematic for quantum
inputs, since no-cloning implies that their leftover states will have no (computa-
tionally) useful information about their original inputs. Thus, it is unclear how
a general computation can be performed on their joint inputs before the start
8 Each party will use a NIZK proof of knowledge to prove that their first message is

well-formed, using their input and randomness as witness. Then, a simulator pro-
gramming the CRS may extract either party’s input.

20



of the second round, as the parties have effectively swapped their initial states.
And somehow, after just one more round of messaging, they must hold their
correctly computed output states.

Our negative result formalizes this intuitive difficulty. If the simulator is
oblivious, then by roughly following the above reasoning, at the end of the first
round:

– Alice holds a computationally binding commitment to Bob’s input x𝐵 ,
– Bob holds a computationally binding commitment to Alice’s input x𝐴, and
– Neither party has information about their original inputs.

Moreover, the correctness of oblivious simulation implies that for a computation-
ally indistinguishable CRS, there exists a “trapdoor” that would enable Alice
to extract x𝐵 and would enable Bob to extract x𝐴. But now their states can
be viewed as the states of two parties at the beginning of a one-round protocol
with polynomial-size pre-processing in which the parties’ inputs are swapped; the
pre-processing step is necessary to give both parties the trapdoor information of
the simulator. The resulting one-round protocol no longer satisfies any meaning-
ful security guarantees, but crucially, it still satisfies correctness. Moreover, the
one-round protocol falls into a model of “instantaneous non-local computation”
that has been previously studied in the quantum information literature [10]. It is
currently open whether this model enables general quantum computation with
only polynomial-size preprocessing, and a positive result for two-round 2PQC
with oblivious simulation would affirmatively answer this question.

A Proof-of-Concept Construction from Quantum VBB Obfuscation. Given the
above barrier, one could attempt to construct a two-round protocol whose secu-
rity relies crucially on a non-oblivious simulation strategy. In this work, we take
an initial step in this direction by providing a proof-of-concept construction from
a strong form of quantum VBB obfuscation that handles obfuscation of quan-
tum circuits that include both unitary gates and measurement gates (further
discussion is available in the full version).

In our construction, Alice will send an encryption of her input to Bob in
round 1, who will then homomorphically compute the functionality over their
joint inputs and respond with Alice’s encrypted output in round 2. Alice will also
send a message in round 2 that allows Bob to decrypt his output. However, the
key is that this interaction will actually be indistinguishable from an interaction
in which the opposite flow of computation is occuring. In particular, if the CRS
if sampled differently (but in an indistinguishable way), it will be the case that
Bob is actually sending his encrypted input to Alice in the first round, and then
Alice homomorphically computes the functionality and sends Bob’s encrypted
output back in the second round.

To instantiate this template, we provide a number of quantum obfuscations
in the CRS, three per party. First, there are the “input” obfuscations 𝒪𝐴,inp and
𝒪𝐵,inp. 𝒪𝐴,inp will take as input Alice’s input x𝐴 along with a “dummy” input
d𝐴, and output Clifford encodings of each. Alice is instructed to send the first
output of this obfuscation as her first message, and keep the second output as
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her state. In the real protocol, the obfuscated functionality will be such that the
first output will be the Clifford encoding of the first input (Alice’s real input x𝐴),
and the second output will be the Clifford encoding of the second input (Alice’s
dummy input d𝐴). On the other hand, 𝒪𝐵,inp will obfuscate the functionality
that does the exact opposite, setting its first output to be a Clifford encoding
of its second input, and its second output to be a Clifford encodings of its first
input. Thus, in round 1, Alice sends a Clifford encoding of her real input and
keeps a Clifford encoding of her dummy input in her state, while Bob sends a
Clifford encoding of his dummy input and keeps a Clifford encoding of his real
input in his state.

The next obfuscations 𝒪𝐴,cmp and 𝒪𝐵,cmp share secret randomness with the
input obfuscations (in the form of PRF keys) and can thus decrypt Clifford
encodings output by the input obfuscations. They each are defined to decrypt
and check the authenticity of their inputs, apply the functionality 𝑄 that the
parties wish to compute, and then encode the outputs with freshly sampled
Cliffords. Each party will run their respective obfuscation on their state and the
other party’s first round message. Note that then Alice is just using 𝒪𝐴,cmp to
compute 𝑄 over dummy inputs, while Bob is using 𝒪𝐵,cmp to compute 𝑄 over
their real inputs. Alice will send an encrypted dummy output to Bob in round
2, while Bob will send an encrypted real output to Alice.

Finally, each party applies their respective output obfuscation 𝒪𝐴,out and
𝒪𝐵,out to their final state and other party’s second round message. 𝒪𝐴,out will
ignore Alice’s state (which contains Alice’s dummy output) and decrypt and
output Bob’s second round message (which contains Alice’s real output). On
the other hand, 𝒪𝐵,out will ignore Alice’s second round message and decrypt
and output Bob’s state.

Now, it is possible to argue (under the assumption that the obfuscations in
the CRS are in fact VBB obfuscations) that, because all intermediate states and
messages are Clifford-encoded, “switching the direction” of the input and output
obfuscations cannot be noticed by the parties. Note that if each of 𝒪𝐴,inp and
𝒪𝐵,inp are re-defined to permute the order of their outputs, then the flow of
computation will be completely reversed. In particular, Alice will be computing
the functionality over real inputs with 𝒪𝐴,cmp, and Bob will be computing the
functionality over dummy inputs with 𝒪𝐵,cmp. Thus, depending on how the
simulator programs the CRS, it can either extract directly from Alice’s first
round message OR it can extract directly from Bob’s first round message, but
it could never extract from both simultaneously.

Thus, this template represents a potential method for securely computing
a quantum functionality in two rounds, where one of the two parties actually
performs the computation between rounds 1 and 2 and then distributes the
output in round 2. In other words, it is an instantiation of our guiding principle
mentioned in Section 2.6 in a model without pre-processing.
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3 Quantum Non-Interactive Secure Computation

3.1 Useful Lemmas

Lemma 1 (Magic State Distillation [16,22]). Let 𝑝(·) be a polynomial.
Then there exists a poly(𝜆) size C + M circuit 𝑄 from 𝜆𝑝(𝜆) input qubits to 𝑝(𝜆)
output qubits such that the following holds. Take any state x on 𝜆𝑝(𝜆)+𝜆 qubits.
Apply a uniformly random permutation to the registers of x and then measure
the final 𝜆 qubits in the 𝑇 -basis to obtain a bitstring 𝑠. Let ̃︀x be the remaining
𝜆𝑝(𝜆) registers. Then there exist negligible functions 𝜇, 𝜈 such that

Pr
[︁
(𝑠 = 0) ∧

(︁⃦⃦⃦
𝑄(̃︀x)−T𝑝(𝜆)

⃦⃦⃦
1

> 𝜇(𝜆)
)︁]︁
≤ 𝜈(𝜆).

Proof. This follows from applying [22, Lemma I.1] with parameters 𝑛 = 𝜆𝑝(𝜆),
𝑘 = 𝜆, 𝛿 = 1/2 followed by [22, Lemma 2.7] with parameters 𝑚 = 𝜆𝑝(𝜆),
ℓ = 𝑚/2, 𝑡 = 𝑝(𝜆).

Lemma 2 ([22]). For any 𝑛 ∈ N and projector 𝛱 on 2𝑛 qubits, define the
quantum channel ℒ𝛱 by

ℒ𝛱(x) := 𝛱x𝛱 + |⊥⟩ ⟨⊥|Tr[(I2𝑛 −𝛱)x],

where |⊥⟩ is a distinguished state on 2𝑛 qubits with 𝛱 |⊥⟩ = 0. For any 𝑡 ∈
{0, 1}𝑛, let 𝛱𝑡,Full := |02𝑛⟩ ⟨02𝑛| if 𝑡 = 0𝑛 and 𝛱𝑡,Full := 0 otherwise. Let 𝛱𝑡,Half :=
I𝑛 ⊗ |𝑡⟩ ⟨𝑡|. Then for any QRV x on 2𝑛 registers and 𝑡 ∈ {0, 1}𝑛,⃦⃦⃦⃦

ℒ𝛱𝑡,Full(x)− E
𝑈←GL(2𝑛,F2)

[︀
ℒ𝛱𝑡,Half (𝑈(x))

]︀⃦⃦⃦⃦
1

= negl(𝑛).

3.2 The Protocol

In what follows, we describe our protocol for two-party quantum computation
in the setting of sequential messages. This protocol requires three messages of
interaction when both players desire output, and two messages in a setting where
only one party obtains an output, which can be seen as a Q-NISC (Quantum
Non-interactive Secure Computation) protocol.

Ingredients. Our protocol will make use of the following cryptographic primi-
tives: (1) Quantum-secure two-message two-party classical computation in the
CRS model (2PC.Gen, 2PC1, 2PC2, 2PCout) with a straight-line black-box simu-
lator (see Section 3.4 of the full version), and (2) a garbling scheme for C + M
circuits (QGarble, QGEval, QGSim). (see Section 4 of the full version)
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Notation. The protocol below computes a two-party quantum functionality rep-
resented by a C + M circuit 𝑄 that takes 𝑛𝐴+𝑛𝐵 input qubits, produces 𝑚𝐴+𝑚𝐵

output qubits, and requires 𝑛𝑍 auxiliary 0 states and 𝑛𝑇 auxiliary T states. Let
𝜆 be the security parameter. The total number of quantum registers used will
be 𝑠 = 𝑛𝐴 + (𝑛𝐵 + 𝜆) + (2𝑛𝑍 + 𝜆) + (𝑛𝑇 + 1)𝜆, and we’ll give a name to different
groups of these registers.

Given a C + M circuit 𝑄 and a Clifford 𝐶out ∈ C𝑚𝐴+𝜆, we define another
C + M circuit 𝑄dist[𝐶out]. This circuit takes as input 𝑛𝐴 + 𝑛𝐵 + 𝑛𝑍 + 𝜆 + 𝑛𝑇 𝜆
qubits (x𝐴, x𝐵 , zinp, trap𝐴, tinp) on registers (A, B, Zinp, TrapA, Tinp). It will first
apply the magic state distillation circuit from Lemma 1 with parameters (𝑛𝑇 𝜆, 𝜆)
to tinp to produce QRV t of size 𝑛𝑇 . It will then run 𝑄 on (x𝐴, x𝐵 , zinp, t) to
produce (y𝐴, y𝐵). Finally, it will output (𝐶out(y𝐴, trap𝐴), y𝐵).

Protocol 1: Classical Functionality ℱ [𝑄]

Common Information: Security parameter 𝜆, and C + M circuit 𝑄 to be
computed with 𝑛𝐴 + 𝑛𝐵 input qubits, 𝑚𝐴 + 𝑚𝐵 output qubits, 𝑛𝑍 auxiliary 0
states, and 𝑛𝑇 auxiliary T states. Let 𝑠 = 𝑛𝐴 + (𝑛𝐵 + 𝜆) + (2𝑛𝑍 + 𝜆) + (𝑛𝑇 + 1)𝜆.

Party A Input: Classical descriptions of 𝐶𝐴 ∈ C𝑠 and 𝐶out ∈ C𝑚𝐴+𝜆.
Party B Input: Classical description of 𝐶𝐵 ∈ C𝑛𝐵+𝜆.

The Functionality:

1. Sample the unitary 𝑈dec−check as follows:
– Sample a random permutation 𝜋 on (𝑛𝑇 + 1)𝜆 elements.
– Sample a random element 𝑀 ← GL(2𝑛𝑇 ,F2).
– Compute a description of the Clifford 𝑈check that operates as follows on

registers (A, B, TrapB, ZA, TrapA, TA).
(a) Rearrange the registers of TA according to the permutation 𝜋 and

then partition the registers into (Tinp, Tcheck).
(b) Apply the linear map 𝑀 to the registers ZA and then partition the

registers into (Zinp, Zcheck).
(c) Re-arrange the registers to (A, B, Zinp, TrapA, Tinp, Zcheck, TrapB, Tcheck).

– Define 𝑈dec−check as:

𝑈dec−check := 𝑈check
(︀
I𝑛𝐴 ⊗ 𝐶†

𝐵 ⊗ I(2𝑛𝑍 +𝜆)+(𝑛𝑇 +1)𝜆
)︀

𝐶†
𝐴.

2. Sample (𝐸0, 𝐷0, ̃︀𝑔1, . . . , ̃︀𝑔𝑑)← QGarble(1𝜆, 𝑄dist[𝐶out]).
3. Compute a description of 𝑈dec−check−enc :=

(︀
𝐸0 ⊗ I(𝑛𝑍 +𝜆)+𝜆

)︀
𝑈†

dec−check.

Party B Output: (1) A unitary 𝑈dec−check−enc on 𝑠 qubits (to be applied on reg-
isters (A, B, TrapB, ZA, TrapA, TA)), and (2) A QGC (𝐷0, ̃︀𝑔1, . . . , ̃︀𝑔𝑑) (to be applied
to registers (A, B, Zinp, TrapA, Tinp)).

Fig. 1. Classical functionality to be used in Protocol 2.
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Protocol 2: Three-message two-party quantum computation

Common Information: (1) Security parameter 𝜆, and (2) a C + M circuit 𝑄
over 𝑛𝐴 + 𝑛𝐵 input qubits, 𝑚𝐴 + 𝑚𝐵 output qubits, 𝑛𝑍 auxiliary 0 states, and
𝑛𝑇 auxiliary T states. Let 𝑠 = 𝑛𝐴 + (𝑛𝐵 + 𝜆) + (2𝑛𝑍 + 𝜆) + (𝑛𝑇 + 1)𝜆.

Party A Input: x𝐴

Party B Input: x𝐵

The Protocol:
Setup. Run classical 2PC setup: crs← 2PC.Gen(1𝜆).

Round 1. Party 𝐵:

1. Sample 𝐶𝐵 ← C𝑛𝐵+𝜆 and compute m𝐵,1 := 𝐶𝐵(x𝐵 , 0𝜆).
2. Compute (𝑚𝐵,1, st)← 2PC1(1𝜆,ℱ [𝑄], crs, 𝐶𝐵).
3. Send to Party 𝐴: (𝑚𝐵,1, m𝐵,1).

Round 2. Party 𝐴:

1. Sample 𝐶𝐴 ← C𝑠 and 𝐶out ← C𝑚𝐴+𝜆.
2. Compute m𝐴,2 := 𝐶𝐴(x𝐴, m𝐵,1, 02𝑛𝑍 , 0𝜆, T(𝑛𝑇 +1)𝜆).
3. Compute 𝑚𝐴,2 ← 2PC2(1𝜆,ℱ [𝑄], crs, 𝑚𝐵,1, (𝐶𝐴, 𝐶out)).
4. Send to Party 𝐵: (𝑚𝐴,2, m𝐴,2).

Round 3. Party 𝐵:

1. Compute (𝑈dec−check−enc, 𝐷0, 𝑔1, . . . , 𝑔𝑑)← 2PCout(1𝜆, st, 𝑚𝐴,2).
2. Compute (minp, zcheck, trap𝐵 , tcheck) := 𝑈dec−check−enc(m2), where

– minp is on registers (A, B, Zinp, TrapA, Tinp),
– (zcheck, trap𝐵 , tcheck) is on registers (Zcheck, TrapB, Tcheck).

3. Measure each qubit of (zcheck, trap𝐵) in the standard basis and abort if any
measurement is not zero.

4. Measure each qubit of tcheck in the 𝑇 -basis and abort if any measurement is
not zero.

5. Compute (̂︀y𝐴, y𝐵) ← QGEval((𝐷0, 𝑔1, . . . , 𝑔𝑑), minp), where ̂︀y𝐴 consists of
𝑚𝐴 + 𝜆 qubits and y𝐵 consists of 𝑚𝐵 qubits.

6. Send to Party 𝐴: ̂︀y𝐴.

Output Reconstruction.

– Party 𝐴: Compute (y𝐴, trap𝐴) := 𝐶†
out(̂︀y𝐴), where y𝐴 consists of 𝑚𝐴 qubits

and trap𝐴 consists of 𝜆 qubits. Measure each qubit of trap𝐴 in the standard
basis and abort if any measurement is not zero. Otherwise, output y𝐴.

– Party 𝐵: Output y𝐵 .

Fig. 2. Three-message two-party quantum computation.
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3.3 Security

Theorem 5. Assuming post-quantum maliciously-secure two-message oblivious
transfer, there exists maliciously-secure NISC for quantum computation and
maliciously-secure three-message two-party quantum computation.

Proof. Let 𝛱 be the protocol described in Protocol 2 computing some quantum
circuit 𝑄. Here, we only show security against a malicious party 𝐴 and defer the
remainder of the proof to the full version.

The simulator. Consider any QPT adversary Adv = {Adv𝜆}𝜆∈N corrupting party
A. The simulator Sim is defined as follows. Whenever we say that the simulator
aborts, we mean that it sends ⊥ to the ideal functionality and to the adversary.

Simℐ[x𝐵 ](·)(x𝐴, auxAdv):

– Compute (crs, 𝜏, 𝑚𝐵,1) ← 2PC.Sim(1)
𝐴 (1𝜆), sample 𝐶𝐵 ← C𝑛𝐵+𝜆, compute

m𝐵,1 := 𝐶𝐵(0𝑛𝐵 , 0𝜆), and send (crs, 𝑚𝐵,1, m𝐵,1) to Adv𝜆(x𝐴, auxAdv).
– Receive (𝑚𝐴,2, m𝐴,2) from Adv𝜆 and compute out← 2PC.Sim(1)

𝐴 (1𝜆, 𝜏, 𝑚𝐴,2).
If out = ⊥ then abort. Otherwise, parse out as (𝐶𝐴, 𝐶out).

– Using (𝐶𝐴, 𝐶𝐵), sample 𝑈dec−check as in the description of ℱ [𝑄]. Compute

(x′𝐴, x′𝐵 , zinp, trap𝐴, tinp, zcheck, trap𝐵 , tcheck) := 𝑈dec−check(m𝐴,2).

Measure each qubit of zcheck and trap𝐵 in the standard basis and each qubit
of tcheck in the 𝑇 -basis. If any measurement is non-zero, then abort.

– Forward x′𝐴 to ℐ[x𝐵 ](·) and receive back y𝐴. Compute ̂︀y𝐴 := 𝐶out(y𝐴, trap𝐴),
send ̂︀y𝐴 to Adv𝜆, send ok to ℐ[x𝐵 ], and output the output of Adv𝜆.

We consider a sequence of hybrid distributions, where the first hybrid ℋ0 is
REAL𝛱,Q(Adv𝜆, x𝐴, x𝐵 , auxAdv), i.e. the real interaction between the adversary
Adv𝜆(x𝐴, auxAdv) and an honest party 𝐵(1𝜆, x𝐵). In each hybrid, we describe
the differences from the previous hybrid.

– ℋ1: Simulate 2PC as described in Sim, using 2PC.Sim(1)
𝐴 to compute 𝑚𝐵,1

and 2PC.Sim(2)
𝐴 to extract an input (𝐶𝐴, 𝐶out) (or abort). Use (𝐶𝐴, 𝐶out) to

sample an output (𝑈dec−check−enc, 𝐷0, ̃︀𝑔1, . . . , ̃︀𝑔𝑑) of the classical functionality.
Use this output to run party 𝐵’s honest Message 3 algorithm.

– ℋ2: In this hybrid, we change how 𝐵’s third round message ̂︀y𝐴 is sampled.
In particular, rather than evaluating the quantum garbled circuit on minp,
we will directly evaluate 𝑄dist[𝐶out] on the input. In more detail, given m𝐴,2
returned by Adv𝜆, (𝐶𝐴, 𝐶out) extracted from Adv𝜆, and 𝐶𝐵 sampled in Mes-
sage 1, ̂︀y𝐴 is sampled as follows. Sample 𝑈dec−check as in Step 1 of ℱ [𝑄].
Compute

(x′𝐴, x′𝐵 , zinp, trap𝐴, tinp, zcheck, trap𝐵 , tcheck) := 𝑈dec−check(m𝐴,2)
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and carry out the checks on zcheck, trap𝐵 , tcheck as described in Steps 3.(c)
and 3.(d) of Protocol 2, aborting if needed. Then, compute

(̂︀y𝐴, y𝐵)← 𝑄dist[𝐶out](x′𝐴, x′𝐵 , zinp, trap𝐴, tinp)

and return ̂︀y𝐴 to Adv𝜆.
– ℋ3: Compute m𝐵,1 as 𝐶𝐵(0𝑛𝐵 , 0𝜆), and substitute x𝐵 for x′𝐵 before apply-

ing 𝑄dist[𝐶out] to the registers described above in ℋ2.
– ℋ4: Rather than directly computing 𝑄dist[𝐶out], query the ideal functionality

with x′𝐴, receive y𝐴, and send ̂︀y𝐴 := 𝐶out(y𝐴, trap𝐴) to Adv𝜆. This hybrid
is IDEAL𝛱,Q,𝐴(Sim, 𝜌𝜆, x𝐴, x𝐵 , aux).

We show indistinguishability between each pair of hybrids.

– ℋ0 ≈𝑐 ℋ1: This follows from the security against corrupted 𝐴 of 2PC.
– ℋ1 ≈𝑠 ℋ2: This follows from the statistical correctness of QGC.
– ℋ2 ≈𝑠 ℋ3: First, by the security of the Clifford authentication code, con-

ditioned on all measurements of qubits in trap𝐵 returning 0, we have that
x′𝐵 ≈𝑠 x𝐵 . Next, switching x𝐵 to 0𝑛𝐵 in 𝐵’s first message is perfectly indis-
tinguishable due to the perfect hiding of the Clifford authentication code.

– ℋ3 ≈𝑠 ℋ4: First, by Lemma 2, conditioned on all measurements of qubits in
zcheck returning 0, we have that zinp ≈𝑠 0𝑛𝑍 .
Next, the above observation, along with Lemma 1, implies that, condi-
tioned on all 𝑇 -basis measurements of qubits in tcheck returning 0, it holds
that the output of 𝑄dist[𝐶out](x′𝐴, x𝐵 , zinp, trap𝐴, tinp) is statistically close
to the result of computing (y𝐴, y𝐵) ← 𝑄(x′𝐴, x𝐵 , 0𝑛𝑍 , T𝑛𝑇 ) and returning
(𝐶out(y𝐴, trap𝐴), y𝐵). This is precisely what is being computed in ℋ4.

On Reusable Security against Malicious A. We remark that the two-message
special case of the above protocol, that is, our Quantum NISC protocol, can
be lightly modified to also achieve reusable security. A reusable classical NISC
protocol (see, eg. [17]) retains security against malicious A in a setting where A
and B execute many instances of secure computation that reuse the first mes-
sage of B. A natural quantum analogue of this protocol enables computation
of quantum circuits while guaranteeing security against malicious A, in a set-
ting where A and B execute many instances of secure computation that reuse
the first message of B. Here we assume that B’s input is classical, and so func-
tionality will hold over repeated executions. We note that our protocol can be
lightly modified to achieve reusable security against malicious A, by replacing
the underlying classical 2PC with a reusable classical 2PC. The proof of security
remains identical, except that the indistinguishability between hybrids 0 and 1
relies on the reusable security of the underlying classical two-party computation
protocol. In the full version, we discuss how to achieve reusable MDV-NIZKs for
NP, which can be viewed as a special case of reusable Q-NISC.
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