
Efficient Information-Theoretic Multi-Party
Computation over Non-Commutative Rings

Daniel Escudero1 and Eduardo Soria-Vazquez2

1 Dept. Computer Science, Aarhus University, Denmark.
2 Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi,

UAE.†

escudero@cs.au.dk, eduardo.soria-vazquez@tii.ae

Abstract. We construct the first efficient, unconditionally secure MPC
protocol that only requires black-box access to a non-commutative ring
R. Previous results in the same setting were efficient only either for a
constant number of corruptions or when computing branching programs
and formulas. Our techniques are based on a generalization of Shamir’s
secret sharing to non-commutative rings, which we derive from the work
on Reed Solomon codes by Quintin, Barbier and Chabot (IEEE Transac-
tions on Information Theory, 2013 ). When the center of the ring contains
a set A = {α0, . . . , αn} such that ∀i 6= j, αi−αj ∈ R∗, the resulting secret
sharing scheme is strongly multiplicative and we can generalize existing
constructions over finite fields without much trouble.
Most of our work is devoted to the case where the elements of A do
not commute with all of R, but they just commute with each other. For
such rings, the secret sharing scheme cannot be linear “on both sides”
and furthermore it is not multiplicative. Nevertheless, we are still able to
build MPC protocols with a concretely efficient online phase and black-
box access to R. As an example we consider the ring Mm×m(Z/2kZ),
for which when m > log(n+ 1), we obtain protocols that require around
dlog(n + 1)e/2 less communication and 2dlog(n + 1)e less computation
than the state of the art protocol based on Circuit Amortization Friendly
Encodings (Dalskov, Lee and Soria-Vazquez, ASIACRYPT 2020 ).
In this setting with a “less commutative” A, our black-box preprocessing
phase has a less practical complexity of poly(n). We fix this by addition-
ally providing specialized, concretely efficient preprocessing protocols for
Mm×m(Z/2kZ) that exploit the structure of the matrix ring.

1 Introduction

Multiparty Computation, or MPC for short, is a collection of techniques that
enable a set of mutually distrustful parties P1, . . . , Pn to securely compute a
given function f on private inputs x1, . . . , xn, while revealing only the output
of the computation. Security is formalized by considering an adversary that
corrupts t of the parties, and aims at learning as much as possible from the honest

†Work partially done while at Aarhus University, Denmark.



parties’ inputs either by only seeing the messages corrupt parties send/receive
without changing their behavior (passive adversary), or by arbitrarily deviating
from the protocol specification (active adversary). Security requires that the
adversary does not learn anything about the honest parties’ inputs beyond what
is possibly leaked by the output of the computation. MPC protocols exist in
a wide variety of settings, and some very interesting ones are the settings in
which t < n/2 and the stronger one in which t < n/3. It is well known that in
these scenarios, MPC protocols whose security is completely independent of the
hardness of any computational problem can be devised, and with the lack of these
computational problems typically more efficiency is gained. These protocols are
called information-theoretic protocols.

Many information-theoretic protocols exist in the t < n/2 and t < n/3
regimes, for which computation is primarily represented as an arithmetic circuit
whose gates involve additions and multiplications over a finite ring. Traditionally,
this ring has been restricted to be a finite field, since the lack of zero divisors
simplifies protocol design and opens for a vast literature of algebraic tricks which
can ensure that an active adversary does not cheat during the protocol. A recent
line of work [ACD+19, DLS20, CRX19, ED20] designs protocols that operate
over non-field rings, namely Z2k (integers modulo 2k), and Galois ring extensions
GR(2k, d) of these. The use of these rings is well motivated in practice due to their
direct compatibility with hardware and their natural affinity with binary-based
protocols like binary decomposition, secure comparison or secure truncation for
fixed-point arithmetic. It is not hard to generalize the techniques presented in
[ACD+19] to more general commutative rings, as long as the so-called Lenstra
constant1 of the ring is large enough. However, in spite of the recent progress in
the design of MPC protocols over non-field rings, non-commutative rings have
been mostly overlooked in the literature.

Studying non-commutative rings is a well motivated theoretical question,
since it explores what are the minimal assumptions required on an algebraic
structure so that MPC protocols can be naturally defined over it. Furthermore,
there are some non-commutative rings that are very suitable for practical appli-
cations. For instance, matrix rings are very useful for applications based on linear
algebra, which include statistics as well as the training and evaluation of different
kinds of machine learning models. Another example are quaternion rings, which
are particularly advantageous for describing rotations in a three-dimensional
space. Due to this feature, quaternions are a useful tool in the domains of com-
puter graphics, robotics and aerospace, including satellite navigation.

Motivated by the above, in this work we attack the question of designing
efficient information-theoretic MPC protocols which work directly over not-
necessarily-commutative finite rings.

1An exceptional set is a subset of ring elements whose non-zero pairwise differences
are invertible. The Lenstra constant of a ring is the size of the largest exceptional set.

2



1.1 Theoretical Contributions

First, we observe that feasibility results for MPC have been established already
since the 80s (e.g. [BGW88]), so in principle we could make use of any existing
MPC protocol that allows computing any function in order to emulate arithmetic
over any given ring R. However, we notice that this requires white-box access
to the representation of elements in R, and moreover, it is unlikely to lead to
efficient protocols if there is no certain “compatibility” between the ring R and
the domain used for the underlying MPC protocol. For example, if R is a matrix
ring over the integers modulo a prime, and the domain of computation of the
given protocol is Z2, then there is a large overhead incurred in emulating each
single addition and multiplication modulo a prime using binary circuits.

Given the above, we propose efficient unconditionally secure MPC protocols
over rings containing big enough exceptional sets A which satisfy some additional
commutativity properties. Our most general results only requires black-box ac-
cess to the ring, which we start by precisely defining.

Definition 1. We say that a protocol has black-box access to a ring R, or sim-
ply that it is black-box, if it only requires black-box access to the ring operations
and the elements of a particular exceptional set A. Furthermore, we assume that
it is efficient both to sample elements from R and to invert elements from R∗.

Our protocols are based on a generalization of Shamir’s linear secret shar-
ing scheme to non-commutative rings. Prior to our work, Quintin, Barbier and
Chabot [QBC13] showed how to construct Reed Solomon codes over rings that
do not need to be commutative. By reinterpreting their results under the lenses
of linear secret-sharing schemes (LSSS’s), we first obtain the following result.

Theorem 1 (Theorem 4, restated). Let R be a ring such that Z(R) contains
an exceptional set of size at least n + 1 and let t < n/3. Then, we can define a
Shamir-style strongly multiplicative linear secret sharing scheme over R.

This is discussed in Section 3. Given a ring satisfying the hypothesis of the
previous theorem, we can adapt the perfectly secure protocol by Beerliova and
Hirt [BTH08].

Corollary 1 (Corollary 2, restated). Let R be a ring such that Z(R) contains
an exceptional set of size at least 2n. Let A be an active adversary corrupting
t < n/3 parties. There exists a perfectly secure, black-box MPC protocol with an
amortized communication complexity of O(n) ring elements per gate.

While interesting, the previous result leaves out of the picture several non-
commutative rings. For example, the centre of the ring of matrices over Z2k ,
which is widely used in applications involving linear algebra, like machine learn-
ing, has a Lenstra constant of 2, which is not large enough to apply the results
highlighted above. We fix this by relaxing the commutativity requirements for
the elements of the exceptional set: instead of requiring this exceptional set to
be a subset of the centre of the ring, we only ask the elements of the exceptional
set to commute with each other. It is in this setting that the previous results on

3



Reed-Solomon codes [QBC13] do not help us as much. The resulting code (i.e.
secret sharing scheme) is not linear “on both sides”, but rather only when mul-
tiplied by scalars either on the left or on the right. Even more disastrously, the
left-or-right LSSS that we obtain is not multiplicative, which rules out standard
techniques to achieve unconditionally secure MPC. Considering all of this, most
of our work relates to proving the following Theorem:

Theorem 2 (Informal). Let R be a ring and A = {α0, . . . , αn} ⊆ R an excep-
tional set such that ∀αi, αj ∈ A,αi · αj = αj · αi. Let A be an active adversary
corrupting t parties. For t < n/2 and t < n/3, there exist efficient, information-
theoretically secure, black-box MPC protocols over R. The amortized communi-
cation complexity of their online phase is O(n) ring elements per gate.

The black-box online phase of our protocol is described in Section 4, while
the black-box offline phase is presented in Section 5.1.

1.2 Concretely Efficient Protocols for Mm×m(Z2k)

Beyond their theoretical interest, our techniques also have relevance in the con-
text of concretely efficient MPC. As an example for this, we provide constructions
for the important ring R =Mm×m(Z2k), the ring of m×m matrices with entries
modulo 2k, which improve upon the concrete efficiency of the online phase of
the state of the art protocols in the same setting but without black-box access
to R. As mentioned before, the centre of this ring does not have a large enough
exceptional set, so the MPC techniques based on the multiplicativity of Shamir
secret sharing (which are quite efficient) cannot be applied.

Given this, our approach is to make use of the black-box protocol from The-
orem 2. First, we show that, whenever m ≥ log(n + 1), the hypothesis of this
theorem is satisfied. This is due to the fact that GR(2k,m) is a (commutative)
subring of R and the Lenstra constant of GR(2k,m) is precisely 2m. Second, we
show how to replace the black-box preprocessing from Theorem 2, which achieves
only poly(n) communication complexity, by a more tailored preprocessing pro-
tocol for R =Mm×m(Z2k). This is done in Section 5.2. Finally, we also show in
the full version of this work how to do efficient error-correction of Shamir shares
in this setting.

By following Theorem 2 we obtain a very efficient online phase, as described
by the (generic) protocols we provide in Section 4. For this part of the proto-
col execution, the fact of having a secret sharing scheme directly over R is a
significant efficiency advantage: each share of a secret is a single element of R,
and arithmetic happens at the level of R. However, the price to pay for such an
efficient online phase, which overcomes the issues of lacking multiplicativity, is
that the offline phase becomes much more complex.

In Section 5.2 we show how to compute the required preprocessing material
for R = Mm×m(Z2k) by, intuitively, secret-sharing each entry of a matrix and
then leveraging existing works on MPC over Z2k [ACD+19, DLS20]. As we need
to compute the product between secret-shared matrices and retain information-
theoretic security, this is our best approach for concrete efficiency. Secret-sharing

4



each entry of a matrix inMm×m(Z2k) individually would require us to move to a
Galois extension of Z2k of degree d ' log(n+1), which would add such overhead
in terms of communication and a worse one for computation. Instead of naively
secret-sharing each entry, we amortize the asymptotic communication cost of
working over such Galois extension by using the Circuit Amortization Friendly
Encodings (CAFEs) introduced in [DLS20]. Intuitively, what this means is that
chunks of every row/column of each matrix will be secret-shared as a single
Galois Ring element.

At this point, one could ask why not work with this type of secret-sharing
for the whole protocol execution, rather than just the preprocessing phase. The
CAFE for inner products that we use in our preprocessing phase allows to “pack”
approximately d/2 elements from Z2k into GR(2k, d), so that seems to be a small
overhead. Some arguments for not following this route are as follows. First of all,
the protocol from [DLS20] is only fully detailed for double sharings and in the
case of security with abort. Our online protocol, on the other hand, has guaran-
teed output delivery (if t < n/3) and uses multiplication triples. Furthermore,
it is most efficient when using a function-dependent preprocessing in the style
of [BNO19, ED20]. These differences make a fair comparison more difficult, but
even assuming an adaptation of [DLS20] to the function-dependent techniques of
[BNO19, ED20], our online phase remains more efficient in the following aspects.

– Secret sharing input values: For the adapted [DLS20], when parties provide
inputs to the computation, it would be important to check that they are
rightly encoded. This issue is not specific to CAFEs, but merely to the fact
of having to work over an extension (GR(2k, d)) of the ring one is actu-
ally interested in (Z2k). The check can be performed by using preprocessing
material, but it increases the communication and round complexity of the
protocol. Our online phase does not need to perform any such check, as it
works directly over Mm×m(Z2k).

– Computing the product of two secret-shared matrices, communication: In our
work, this requires to reconstruct two secrets in Mm×m(Z2k). An adapted
[DLS20], would need to reconstruct one element of GR(2k, d) per entry of the
matrix. Hence, in terms of communication we are around d/2 times better
in our work.

– Computing the product of two secret-shared matrices, computation: Our
work benefits from the fact that the shares each party holds, as well as
the operations they perform on them, are in Mm×m(Z2k). This has the
advantage that an implementation of our protocol can fully exploit existing
libraries for matrix arithmetic, which is quite efficient due to its relevance in
multiple practical settings. On the other hand, using a potential extension of
the techniques of [DLS20] in the online phase would require computation on
Galois ring elements, which is way less studied than matrix arithmetic and it
is also more inefficient. Each multiplications of two Galois ring elements costs
d2 operations in Z2k , or potentially d log(d) using FFT-based techniques.
This is not very concretely efficient, as explored experimentally in [DEK21],
for example.

5



Instead of using CAFEs, Reverse Multiplication Friendly Embeddings (RM-
FEs) [CCXY18] could have been chosen. A generalization of the interpolation-
based RMFE from [CCXY18] was presented in [DLS20] and the constructions
based on algebraic geometric codes were also lifted to rings in [CRX19]. Whereas
RMFEs are much computationally heavier than CAFEs, they can provide a
slightly better communication complexity. More concretely, if δ is the amount
of elements from the base ring that the RMFE can “pack”, RMFEs incur in a
communication complexity for the product of secret shared matrices that would
be only d/δ, rather than d/2, worse than ours. On the other hand, using RMFEs
require two sequential openings per matrix multiplication, rather than a single
one as CAFEs do. This is due to a resharing operation to compute ψ(φ(a) ·φ(b))
in RMFEs.

In a nutshell, by using our seemingly theoretical tools, we are able to build
MPC protocols which have a more efficient online phase than the state of the
art protocols, while retaining a comparable preprocessing.

1.3 Related Work

There are a few works on MPC over non-abelian groups, rather than rings. Hence,
we are not interested in those. These include [DPS+12] and [CDI+13]. Note that
[CDI+13] additionally provides constructions for commutative rings.

MPC over non-commutative rings has been discussed in [CFIK03], but their
results related to MPC from (multiplicative) Monotone Span Programs are re-
stricted to (algebras over) commutative rings. They only seem to take care of the
non-commutative case in Sections 4.2. and 4.3., which deal only with branching
programs and formulas, rather than circuits.

Although not mentioned explicitly in [BBY20], the basic building blocks (se-
cure addition and multiplication) presented in that work for MPC based on
replicated secret-sharing also work over a non-commutative ring. However, these
techniques differ from ours in several ways. First, they use computational as-
sumptions (PRFs) in order to improve their overall efficiency. Second, as it is
inherent for MPC based on replicated secret-sharing, the communication com-
plexity does not scale well as the number of parties increases. More precisely,
each share consists of

(
n
t

)
ring elements, which is exponential in n whenever

t = n/c for some c > 1, since
(
n
n/c

)
≥ (c1/c)n.2

2 Preliminaries

Notation. Sometimes, we use [n], where n ∈ N, to represent {1, 2, . . . , n}. We

write x
$← X to denote sampling a value x uniformly from the set X . We write

Zpk to denote the ring of integers modulo pk and Mr×c(R) to refer to the ring
of r × c matrices over R.

2Here we use the well known inequality
(
a
b

)
≥ (a/b)b.

6



2.1 Multiparty Computation

We consider secure evaluation of functions (y1, . . . , yn) = f(x1, . . . , xn) given by
arithmetic circuits with addition and multiplication gates defined over a finite
ring R, where party Pi is supposed to learn yi.

The security of our protocols is proven in the UC framework by Cannetti
[Can01]. We assume secure, synchronous channels, and we deal with active, static
adversaries. In a nutshell, the adversary corrupts a subset of t parties actively,
arbitrarily changing their behavior during the execution of the protocol. The
adversary, also known as an environment, additionally provides the inputs for all
the parties.A given protocol Π instantiates a given functionality F , if there exists
a simulator S who, by interacting with the adversary and with the functionality
F , creates an execution (called the ideal execution) that is indistinguishable to
the adversary from the real execution in which the actual honest parties are
running the protocol Π.

If the distributions in the two executions are exactly the same, then we say
that Π instantiates F with perfect security. In contrast, if the distributions
are only negligibly apart (in some security parameter κ), then we say that Π
instantiates F with statistical security. Finally, sometimes we consider hybrid
models in which a protocol Π instantiates a functionality F , assuming access
to another functionality F ′. In this case we say that Π instantiates F in the
F ′-hybrid model. See [Can01] for details.

In this work we consider a broadcast functionality FBC that receives an input
from a designated sender and relays this exact same value to all the parties.

We will take into account two functionalities for MPC. One is FMPC−GOD,
which receives inputs x1, . . . , xn from the parties, computes the given function
(y1, . . . , yn) = f(x1, . . . , xn), which is represented as an arithmetic circuit over
a ring R composed of addition and multiplication gates, and returns the output
yi to each party Pi. The second functionality is FMPC−abort, which is defined
as FMPC−GOD, except that, before delivering output to the parties, it waits for
a message from the adversary. If the message is abort, then the functionality
sends abort to all the parties. Else, if the message if ok, then the functionality
sends the output yi to each party Pi. In a real execution, when we say that an
honest party “aborts”, it means that this party sends an abort signal to all the
parties using FBC and then outputs abort. A party aborts upon receiving an
abort signal through the broadcast channel.

2.2 Background in Ring Theory

We turn to recall some useful results from ring theory. Outside of this section,
whenever we talk about a ring R, we mean a finite ring with identity 1 6= 0 for
which we do not assume commutativity. During this specific section we do not
assume finiteness, so that it is clear which results require such hypothesis.

Working over these general rings hides subtleties which do not appear in the
field case. Besides the lack of commutativity, one has to be careful about the
fact that the rings we consider contain zero divisors. Moreover, it is important

7



to reconsider what it means to be a unit. We recap some basic definitions and
results in this area of algebra. These are standard results, and some of their
proofs are provided in the full version of this work.

Definition 2. Let R be a ring. An element a ∈ R is a unit if there exists b ∈ R
such that a · b = b · a = 1. The set of all units is denoted by R∗.

An element a ∈ R\{0} is a left (resp. right) zero divisor if ∃ b ∈ R\{0} such
that a · b = 0 (resp. b · a = 0). In this work, whenever we say that a ∈ R \ {0} is
a zero divisor we mean that a is both a left and right zero divisor.

Lemma 1. 1. a ∈ R∗ if and only if a is both left-invertible and right-invertible.
2. If a has a right inverse, then a is not a right zero divisor.
3. If R is finite, then every element which has a right inverse is a unit.

Lemma 2. Let R be a finite ring. Then all non-zero elements of R are either a
unit or a zero divisor.

Some elements of a non-commutative ring have better commutative proper-
ties than other. The two following definitions allow us to name them.

Definition 3. The center of a ring R, denoted by Z(R) consists of the elements
a ∈ Z(R) such that ∀b ∈ R, ab = ba.

Definition 4 ([QBC13]). Let A = {a1, . . . , an} ⊂ R. We say that A is a
commutative set if ∀ai, aj ∈ A, ai · aj = aj · ai.

Exceptional sets. Elements which satisfy that their pairwise differences are in-
vertible will be fundamental in our constructions. These have received different
names in the literature: ‘subtractive sets’ in [QBC13], ‘exceptional sequences’
in [ACD+19] and ‘exceptional sets’ in [DLS20]. We will stick with the latter
denomination.

Definition 5. Let A = {a1, . . . , an} ⊂ R. We say that A is an exceptional set
if ∀i 6= j, ai− aj ∈ R∗. We define the Lenstra constant of R to be the maximum
size of an exceptional set in R.

2.3 Polynomials over Non-Commutative Rings

Definition 6 (Polynomial Ring). Let R be a ring and A ⊆ R. The set of

polynomials over A of degree at most d is given by A[X]≤d = {f(X) =
∑d
i=0 ai ·

Xi | ai ∈ A}. The set of polynomials over A is A[X] = ∪d≥0A[X]. Given two

polynomials a(X) =
(∑d

i=0 ai · Xi
)

, b(X) =
(∑d′

j=0 bj · Xj
)

, the ring R induces

the following operations:

1. c(X) = a(X) + b(X) =
∑max{d,d′}
k=0 (ak + bk) · Xk, where ak = 0 for k > d and

bk = 0 for k > d′.

8



2. c(X) = a(X) · b(X) =
∑d+d′

k=0 ck · Xk, where

ck =
∑
i+j=k

0≤i≤d, 0≤j≤d′

aibj .

Furthermore, when A is a ring, so is A[X].

Our definition of the product in a polynomial ring imposes that “the indeter-
minate X commutes with the coefficients”. Otherwise, when formally multiplying
two polynomials we would encounter terms of the form aiX

ibjX
j , which could

not be turned into aibjX
i+j . Allowing the indeterminate to commute with coef-

ficients, rather than keeping everything non-commutative, allows us to prove a
series of results leading to the existence and uniqueness of interpolating polyno-
mials. On the other hand, granting this small commutativity property to poly-
nomials requires to consider their evaluation more carefully, as we will see next.

Definition 7 (Evaluation Maps). Let f =
∑d
i=0 fiX

i ∈ R[X] and a ∈ R. We
define the evaluation at a on the right (resp. left) map fR(a) (resp. fL(a)) as
follows:

·R(a) : R[X]→ R ·L(a) : R[X]→ R

f 7→ fR(a) =

d∑
i=0

fia
i f 7→ fL(a) =

d∑
i=0

aifi

We say that a is a right (rep. left) root whenever fR(a) = 0 (resp. fL(a) = 0).
We use f(a) to denote fR(a).

The evaluation maps above are additive homomorphisms but, in general, they
are not ring homomorphisms. This is because, as mentioned above, in polynomial
multiplication the indeterminate X commutes with the coefficients. It is impor-
tant to keep in mind that we are dealing with polynomials as formal objects of
their own, rather than confusing them with polynomial functions (where a “vari-
able” X is “instantiated” with a ∈ R when evaluating the polynomial) as one
usually does in commutative rings. Fortunately, there are some cases in which
some notion of multiplicative homomorphism holds for the evaluation maps, as
described in the following lemma.

Lemma 3. Let f ∈ R[X].

1. Let A be a commutative set. If g ∈ (A∪Z(R))[X] and a ∈ A, then (f · g)
R
(a) =

fR(a) · gR(a) and (g · f)
L
(a) = gL(a) · fL(a).

2. Let g ∈ R[X]. If a ∈ Z(R), for all h ∈ R[X], hR(a) = hL(a). Furthermore,

(f · g)
R
(a) = fR(a) · gR(a).

Proof. We only prove the first part of the first statement, as the same reasoning

applies for the rest of the claims. Let a ∈ A and let f(X) =
(∑d

i=0 fi · Xi
)
∈ R[X]

9



and g(X) =
(∑d′

j=0 gj · Xj
)
∈ (A ∪ Z(R))[X] be our polynomials.

fR(a) · gR(a) =

(
d∑
i=0

fi · ai
)
·

 d′∑
j=0

gj · aj
 =

d∑
i=0

d′∑
j=0

fi · ai · gj · aj =

=

d∑
i=0

d′∑
j=0

fi · ai−1 · gj · aj+1 =

d∑
i=0

d′∑
j=0

fi · gj · ai+j = (f · g)
R
(a).

Theorem 3 (Euclidean Algorithm over Rings). Let f(X) ∈ R[X] be a non-
zero polynomial and let g(X) ∈ R[X] be a monic polynomial. There exist unique
q`(X), r`(X) (resp. qr(X), rr(X)) such that f(X) = q`(X) · g(X) + r`(X) (resp. f(X) =
g(X) · qr(X) + rr(X)), where deg(r`) < deg(g) (resp. deg(rr) < deg(g)).

Given the two previous results, we can bound the number of roots of a poly-
nomial as it is described in the next Lemma.

Lemma 4. Let f ∈ R[X]≤n be a non-zero polynomial. Then f has at most n
distinct left (resp. right) roots in the same commutative exceptional set A ⊂ R.
In other words, if f has at least n+ 1 left (resp. right) roots in A, then it is the
zero polynomial.

Proof. We focus on right roots for the result, and we reason by induction on
the degree d of the non-zero polynomial f . The statement is clear when d = 0.
Assuming the result for d−1, we now look at a degree-d polynomial f . If f does
not have any roots, or if it only has one root, then the result clearly holds. Else,
let a, b ∈ A be two different roots of f(X). As g(X) = X−a is a monic polynomial,
by Theorem 3 there exists q(X) ∈ R[X] and c ∈ R such that f(X) = q(X) ·g(X)+c.
Observe that deg(q) < deg(f).

Now, since g(X) ∈ A[X], by Lemma 3 we have that fR(a) = qR(a)gR(a)+ c, so
0 = qR(a) · (a− a) + c = c. From this, it follows that 0 = fR(b) = qR(b)gR(b) =
qR(b) · (b− a). Since (b− a) ∈ R∗, then it has to be that qR(b) = 0.

By the induction hypothesis, q(X) has at most d − 1 distinct right roots in
A, so we can conclude that f(X) has at most d distinct right roots in A.

Lagrange interpolation for sets of points (xi, yi) ∈ R2 can be computed, as
long as all the xi are part of the same commutative exceptional set A ⊂ R.
The following result was proven in [QBC13], but it only considered evaluation
on the right. We reformulate and extend their result here for completeness and
additional precision.

Proposition 1. Let A = {x1, . . . , xn+1} ⊂ R be a commutative exceptional set
and let B = {y1, . . . , yn+1} ⊂ R. Then there exists a unique polynomial f ∈ R[X]
(resp. g ∈ R[X]) of degree at most d such that fR(xi) = yi (resp. gL(xi) = yi)
for i = 1, . . . , d + 1. Furthermore, if A ∪ B constitutes a commutative set, or if
A ⊂ Z(R), f(X) = g(X).

10



Proof. Let Li(X) =
∏
j 6=i(X− xj) ∈ A[X]. Observe that for all j = 1, . . . , d+ 1 it

holds that Li(xj) ∈ R∗, since (xi − xj) ∈ R∗.
It is easy to verify, with the help of Lemma 3, that the two following poly-

nomials show the existence of solutions:

f(X) =

d+1∑
i=1

yiLi(xi)
−1Li(X); g(X) =

d+1∑
i=1

Li(X)Li(xi)
−1yi

The uniqueness of f (resp. g) is a consequence of Lemma 4. The fact that f(X) =
g(X) when A ∪ B constitutes a commutative set or A ⊂ Z(R) follows from
inspection.

2.4 Galois Rings

Galois Rings relate to integers modulo a prime power pk in the same way a Galois
Field relates to integers modulo a prime p. They are a fundamental object of
study among finite commutative rings.

Definition 8. A Galois Ring GR(pk, d) is a ring of the form R = Zpk [X]/(h(X)),
where p is a prime, k a positive integer and h(X) ∈ Zpk [X] a monic polynomial
of degree d ≥ 1 such that its reduction modulo p is an irreducible polynomial in
Fp[X].

Given a base ring Zpk , there is a unique degree d Galois extension of Zpk ,
which is precisely the Galois Ring provided on the previous definition. Note that
Galois Rings reconcile the study of finite fields Fpd = GR(p, d) and finite rings of
the form Zpk = GR(pk, 1). Every Galois Ring R = GR(pk, d) is a local ring and
its unique maximal ideal is (p). Hence, all the zero divisors of R are furthermore
nilpotent, and they constitute the maximal ideal (p). Furthermore, we have that
R/(p) ∼= Fpd .

Proposition 2 ([ACD+19]). The Lenstra constant of R = GR(pk, d) is pd.

Whenever we need to explicitly represent elements a ∈ R, we will consider
two options. The first one, which we will denote the additive representation,
follows from Definition 8 and consists of the residue classes

a ≡ a0 + a1 · X + · · ·+ ad−1 · Xd−1 mod h(X), ai ∈ Zpk . (1)

The second option is what we shall call the matrix representation, which uses
the embedding ι : GR(pk, d) ↪→ Md×d(Zpk) and represents a as ι(a). It will
be instructive to discuss this embedding more explicitly for other parts of this
work. Let us look at how the product between a, b ∈ GR(pk, d) is computed. If
we express a in its additive representation, a =

∑
`∈[d] a` · X`, multiplication by

b can be seen as the homomorphism of free Zpk -modules φb : Zdpk → Zdpk , which

maps the coefficients of a’s additive representation to those of c = φb(a). As
there is a one-to-one correspondence between homomorphisms of free modules
and matrices, we can represent b as the matrix defined by φb.

Notice that since Im(ι) ' GR(pk, d), we have that ι(a) · ι(b) = ι(b) · ι(a). In
other words, the matrices in Im(ι) constitute a commutative subset ofMd×d(Zpk).

11



3 Shamir’s Secret Sharing over Non-commutative Rings

Secret sharing schemes (SSS) are one of the most fundamental building blocks in
secure computation. There are three properties which we usually want from SSS
in MPC. The first one is t-privacy, meaning that no set of at most t shares reveals
any information about the secret. The second one is t+ 1-reconstruction, which
allows to reconstruct the secret from any subset of t+1 correct shares. The third
one is linearity, which requires talking about specific algebraic structures. In our
work, as we will be working over rings for which we do not assume commutativity,
we need to distinguish between left and right linearity.

Definition 9. Let C = {(s, s1, . . . , sn)} ⊆ Rn+1 be a SSS, where s is a secret
and s1, . . . , sn are its shares. We say that C is a left (resp. right) linear secret
sharing scheme if it is a left (resp. right) submodule of Rn+1. We will respectively
denote the secret sharing of s by [s], 〈s〉. If C is a bisubmodule of Rn+1, then we
simply call it a linear secret sharing scheme, which we denote as JsK.

In Shamir’s secret sharing scheme, which was originally restricted to finite
fields [Sha79], the submodule C is a Reed-Solomon code, i.e. JsKt would be
sampled from C = {(s, f(α1), . . . , f(αn)) : f ∈ F[X]≤t ∧ s = f(α0)}. This was
later on generalized to commutative rings containing big enough exceptional
sets [ACD+19]. In this work, we observe that Reed-Solomon codes have been
constructed even over non-commutative rings [QBC13]. Throughout this section
we translate the relevant parts of [QBC13] to the LSSS language. Moreover, we
fill some gaps about error correction left by the authors of [QBC13], we generalize
standard secret reconstruction procedures from [DN07] and we show where do
matrix rings fit in these results.

Beyond linearity, another desirable property for a SSS to have is that of
(strong) multiplicativity. Briefly, such notion guarantees that (even in the pres-
ence of active adversaries) the product of two secrets a, b can be reconstructed
as a function of the coordinate-wise product of their shares, ai · bi. For a formal
definition see [CDM00].

Theorem 4. Let R be a ring such that Z(R) contains an exceptional set A =
{α0, . . . , αn} and let t < n/3. Then, we can define a Shamir-style strongly multi-
plicative linear secret sharing scheme over R. In more detail, a degree-t sharing
JsKt is sampled from:

{(s, fR(α1), . . . , fR(αn)) : f ∈ F[X]≤t ∧ s = fR(α0)}

Strong multiplicativity in the previous result woks as usual in Shamir’s LSSS.
In more detail, given two shared values, JaKt = (a, a1, . . . , an) using a polynomial
f ∈ R[X]≤t and JbKt = (b, b1, . . . , bn) using a polynomial g ∈ R[X]≤t, it holds that
Ja · bK2t = (ab, a1b1, . . . , anbn). This is due to the fact that the points αi where
f and g are evaluated at are contained in Z(R), and hence by Lemma 3 it

holds that (f · g)
R
(αi) = fR(αi) · gR(αi), which is not generally the case for

non-commutative polynomials.

12



Given the previous theorem, we can adapt the results of [BTH08, ACD+19]
to work over non-commutative rings as the ones of the hypothesis without too
much effort. This gives us the following result, for which a bit more details are
given in the full version of this work. The increase on the size of the exceptional
set is due to the use of so-called hyper-invertible matrices.

Corollary 2. Let R be a ring such that Z(R) contains an exceptional set of size
at least 2n. Let A be an active adversary corrupting t < n/3 parties. There exists
a perfectly secure, black-box MPC protocol with an amortized communication
complexity of O(n) ring elements per gate.

If we relax the hypothesis of Theorem 4, so that we only ask from the elements
of the exceptional set to commute with each other, rather than being in the centre
of the ring, we can still build Shamir-style secret sharing schemes.

Theorem 5. Let R be a ring containing a commutative, exceptional set A =
{α0, . . . , αn}. Then, we can define a Shamir-style left-LSSS [·] and a Shamir-
style right-LSSS 〈·〉 over R. These secret sharing schemes are not multiplicative.

We do not provide an explicit proof of the previous Theorem, but in Figure 1
we show how to share a secret for the left-linear scheme [·]. The right-linear
scheme 〈·〉 would produce shares in an analogous way, setting instead si = fL(αi).
The t-privacy and t + 1-reconstruction properties are a consequence of Propo-
sition 1. To see why these schemes are not multiplicative, remember that the
evaluation maps are not ring homomorphisms in general, i.e. given f, g ∈ R[X],

generally fR(αi)·gR(αi) 6= (f · g)
R
(αi). Hence, in contrast with Theorem 4, given

[a]t = (a, fR(α1), . . . , fR(αn)) and [b]t = (b, gR(α1), . . . , gR(αn)), Lemma 3 is of
no help now, since the αi values are not in the centre any more. Note that we
cannot simply impose for the sampled polynomial f in Figure 1 to be in A[X]≤d.
As an example, imagine the case when A is furthermore a subring of R. We
would then have that fR(α0) ∈ A, effectively restricting the values that can be
secret shared to those in the subring A itself.

Protocol Π[·]−Share(s, d)

Input: A secret s ∈ R held by a dealer PD. A commutative exceptional set A =
{α0, . . . , αn}.
Output: Sharing [s]d.
Protocol: The parties proceed as follows

1. PD samples a polynomial f
$← R[X]≤d such that fR(α0) = s. Define the shares

to be si = fR(αi) for i ∈ [n].
2. For i ∈ [n] \ {D}, PD sends si to Pi.

Fig. 1. Sharing a secret using [·].

13



3.1 Secret Sharing over Matrix Rings

As our more practical results are related to the ring Mm×m(Z2k), it will be
useful to give already a more concrete analysis of how it fits with respect to
Theorems 4 and 5, before returning to generic rings. We start by reminding the
following basic result.

Lemma 5. The centre of Mm×m(R), where R is a commutative ring, is the
R-multiples of the identity matrix.

Besides which elements are in the centre of the ring, it is important that we
identify exceptional sets in the ring. As we discussed in Section 2.4, there exists
an embedding ι : GR(pk,m) ↪→Mm×m(Zpk). Hence, as the Lenstra constant of
the former ring is pm, that ofMm×m(Zpk) has to be at least pm. Furthermore, it
can be proved that this is exactly the Lenstra constant ofMm×m(Zpk), a result
shown in the full version of this work.

Proposition 3. The Lenstra constant of Mm×m(Zpk) is pm.

Let us focus on the ring R = Mm×m(Z2k). We know that Z(R) cannot
contain exceptional sets of size bigger than two, so Theorem 4 is ruled out. The
good news are that, since GR(2k,m) (more precisely, Im(ι)) is a commutative
subring of R, we can easily identify within R a commutative exceptional set
of size 2m and construct the secret sharing schemes described in Theorem 5
whenever m > log(n+ 1).

3.2 Error Correction and Robust Reconstruction.

Let R be a finite ring and let A = {α0, α1, . . . , αn} ⊆ R be an exceptional
commutative set. Let [s]d = (s1, . . . , sn) be a secret-shared value s ∈ R using
a polynomial of degree at most d. For i = 1, . . . , n, let s′i = si + δi, where
at most e of the δi ∈ R are non-zero, with n > d + 2e. Our goal is to recover
(s1, . . . , sn) from (s′1, . . . , s

′
n). This is an essential primitive when designing MPC

protocols based on Shamir secret-sharing, as it corresponds to reconstructing a
secret-shared value from a given set of announced shares among which some
of them could be incorrect due to adversarial behavior. This is achieved by a
generalization of the Berlekamp-Welch decoding algorithm for Reed-Solomon
codes to the non-commutative setting. Such result was exhibited in [QBC13],
although many holes were left due to the general approach taken by the authors.
For instance, a crucial step in the decoding algorithm lies in solving a system
of linear equations over a non-commutative ring, which as we discuss later on
is not a very well studied area and concrete algorithms should be developed for
each particular instantiation. Motivated by this, and also for the sake of clarity
and self-containment, we present below our own version of the generalization of
the Berlekamp-Welch algorithm, filling in the holes left in [QBC13]. Below, we
let n′ = d+ 2e+ 1.

14



Generalization of the Berlekamp-Welch algorithm. Below we let F denote
the subring of R made of finite sums of terms of the form αi1 · αi2 · · ·αi` . We
say that two polynomials p(X), q(X) ∈ R[X] satisfy the BW-conditions if:

1. deg(p) ≤ e;
2. deg(q) ≤ d+ e;
3. p(X) is monic;
4. p(X) ∈ F [X];
5. For all i = 1, . . . , n′, it holds that s′i · p(αi) = q(αi).

We begin with the following claim.

Claim. There exists a pair p(X), q(X) ∈ R[X] that satisfies the BW-conditions
above.

Proof. Let f(X) =
∑d
i=0 ciX

i ∈ R≤d[X] such that f(αi) = si for i = 1, . . . , n′,
guaranteed by Proposition 1, and define p(X) =

∏
ei 6=0(X − αi) and q(X) =

f(X)p(X). It can be easily verified, with the help of Lemma 3, that this choice of
p(X) and q(X) satisfies the BW-conditions.

The next claim shows that any other pair satisfying the BW-conditions is as
good as the one guaranteed from the previous claim for the purpose of recovering
f(X).

Claim. Let p(X), q(X) be defined as in the proof of the previous claim, and
suppose that p̂(X), q̂(X) satisfy the BW-conditions. Then p̂(X) divides q̂(X) and
q̂(X)/p̂(X) = f(X).3

Proof. Consider the polynomial r(X) = q̂(X)p(X)−q(X)p̂(X). In light of Lemma 3,
taking into account that p(X) ∈ F [X], we have that for every i = 1, . . . , n′:

r(αi) = q̂(αi)p(αi)− q(αi)p̂(αi) = s′ip̂(αi)p(αi)− s′ip(αi)p̂(αi) = 0.

Observe that in the last equality we have used the fact that p̂(αi)p(αi) =
p(αi)p̂(αi). Since deg(r) ≤ d+ 2e < n′, it follows from Lemma 4 that r(X) ≡ 0,
which shows that q̂(X)p(X) = q(X)p̂(X). Given that q(X) = f(X)p(X), we have that
q̂(X)p(X) = f(X)p(X)p̂(X), which implies (q̂(X)− f(X)p̂(X)) · p(X) = 0.

We claim that q̂(X)− f(X)p̂(X) = 0, which can be shown by proving that this
polynomial evaluates to 0 in at least d + e + 1 points on an exceptional set in
light of Lemma 4. To see this, consider the evaluation of this polynomial at αi
for all i such that ei = 0. Observe that there are at least n′ − e = d + e + 1
such evaluation points. It is easy to see that in this case p(αi) is invertible, so
(q̂(αi)− f(αi)p̂(αi)) · p(αi) = 0 implies that q̂(αi)− f(αi)p̂(αi) = 0, as required.
At this point we see that q̂(X) = f(X)p̂(X), which concludes the proof of the main
claim.

3b(X) (right-)divides a(X), if, after dividing a by b using Theorem 3 obtaining q(X)
and r(X) such that a(X) = q(X) ·b(X)+r(X) with deg(r) < deg(b), it holds that r(X) = 0.
The quotient a(X)/b(X) is defined as q(X).

15



Error Detection. Finally, if n > d+e the parties may not be able to perform error
correction, but they can still do error detection by checking if all the received
shares (s′1, . . . , s

′
n) are consistent with a polynomial of degree at most d (e.g. by

using the first d+ 1 shares to interpolate such polynomial and checking that the
remaining shares are consistent with it). If this is the case, since this polynomial
is determined by any set of d + 1 shares, it is in particular determined by the
n− e ≥ d+ 1 shares without errors.

Solving for the BW-conditions. In order to have an efficient decoder it
remains to show how to find at least one pair p(X), q(X) that satisfies the BW-
conditions. First, notice that by treating the coefficients of the unknown poly-
nomials p(X), q(X) as unknowns, the BW-conditions transform into a system of
n′ = d+ 2e+ 1 linear equations on d+ 2e+ 1 variables over R.4 Unfortunately,
to the best of our knowledge the theory of linear equations over general non-
commutative rings is not very well understood, with only a few works considering
concrete instantiations of some types of rings (e.g. [Ore31, Son75, DKH+12]).
Since it is of particular interest to us, we develop in the full version of this work
efficient algorithms to solve systems of linear equations for the matrix ring case
R =Mm×m(Zpk).

3.3 Efficient Protocols for Secret Reconstruction

Protocol ΠPrivOpen([s]d, Pr)

Input: Sharing [s]d, a receiver party Pr.
Output: Pr learns s.
Protocol: The parties proceed as follows

1. Each party Pj for j ∈ {1, . . . , n} \ {r} sends its share of s to Pr.
2. Upon receiving all the shares of [s], Pr defines si = 0 for every missing share

si and proceeds as follows.
– If 0 < n − d ≤ t: Interpolate the unique polynomial f ∈ R[X]≤d such that
fL(αi) = si for i = 1, . . . , d+ 1. Output s′ = f(α0).

– If t < n− d ≤ 2t: Interpolate the unique polynomial f ∈ R[X]≤d such that
fL(αi) = si for i = 1, . . . , d+ 1. Check if fL(αi) = si for i = d+ 2, . . . , d+
t+ 1. If this is the case, output s = f(α0). Else abort.

– If 2t < n − d: Apply error correction (Section 3.2) on the shares
(s1, . . . , sd+2t+1) to recover a polynomial f ∈ R[X]≤d such that fL(αi) = si
for at least d+ t+ 1 points, and output s = f(α0).

Fig. 2. Reconstructing secret-shared values efficiently to a single party.

4It is worth noting that some of the unknowns will have coefficients multiplying
from both left and right.

16



Given the above, a party that receives n shares of degree ≤ d, among which
at most t can be corrupted by an adversary, can perform error detection if
t < n− d ≤ 2t, and it can perform error correction if 2t < n− d. We denote by
ΠPrivOpen([s]d, Pr) the protocol in which all parties send their share of [s]d to
Pr. If all parties are intended to learn the secret s, we make use of a protocol
ΠPublicOpen([s0]d, . . . , [sd]d) that opens a batch of secrets towards all the parties
with an amortized communication complexity that is linear in n. This protocol is
achieved by a natural generalization of the equivalent protocol in [DN07], except
that great care must be taken when handling the different multiplications and
polynomial evaluations when the ring is not commutative. This is described in
detail in the full version of this work.

Finally, notice that the protocols ΠPrivOpen, ΠPubOpen are currently described
for [·]-sharings, but they can be naturally adapted to 〈·〉-sharings by evaluating
the polynomial f(X) on the right and computing 〈fR(αi)〉 =

∑t
j=0〈sj〉α

j
i .

4 MPC in the Preprocessing Model

The goal of this section is to leverage the adaptations of Shamir’s secret sharing
described in Section 3 to build an MPC protocol that operates directly over R,
in a black-box way. We assume an active adversary corrupting t out of n parties,
where it could hold either that t < n/3 or t < n/2. In the first case we can
obtain guaranteed output delivery with perfect security, and in the second case
we achieve perfect security with abort (both in the preprocessing model).

Multiparty computation can be obtained from any linear secret sharing scheme
satisfying certain multiplicative properties, as shown in [CDM00]. As we proved
in Corollary 2, even more modern and efficient techniques for MPC over com-
mutative rings can be adapted to the non-commutative setting, assuming that
there is a large enough exceptional set in the centre of the ring. The challenge
in this section is, however, that we only assume the existence of a big enough
commutative exceptional set, i.e. the conditions of Theorem 2.

Losing multiplicativity leads to most existing techniques for secret-sharing
based MPC to fail. A clever solution when multilpicativity is lost is to resort to
properties of the dual of the error-correcting code underlying the secret-sharing
scheme [CDM00]. However, although as shown in [QBC13] the usual properties
of the dual code of Reed-Solomon codes do carry over to non-commutative rings,
this requires that the evaluation points constitute not only an exceptional set,
but that they are also contained in Z(R). Unfortunately, this is precisely the
assumption we do not want to make (and in fact, as said above, such assumption
would yield a multiplicative LSSS directly).

Given the hurdles highlighted above, this work takes a different route. Our
protocols are set in the offline/online paradigm, in which a set of input-independent
correlated information is generated in a preprocessing phase, which is then used
in an online phase once the inputs are known. By preprocessing the so-called
Beaver triples, the online phase can be executed without relying on any mul-
tiplicativity property of the underlying secret-sharing scheme. However, due to

17



non-commutativity, the usual approach to secure multiplication using Beaver
triples does not directly work, as we will explain shortly. The rest of this section
is then devoted to overcoming these issues and obtain a secure computation pro-
tocol in the preprocessing model, where we assume that the input-independent
correlated data is given “for free”. Our protocols for instantiating such prepro-
cessing phase will be discussed in Section 5.

4.1 A First Approach

We begin by considering the typical approach to Beaver-based multiplication,
and discuss why it fails in our setting. Assume for a moment that R is commu-
tative. A Beaver triple is a set of shared values (JaK, JbK, JcK) such that a, b ∈ R
are uniformly random and c = a · b. Given two shared values JxK, JyK, these can
be multiplied by means of the following protocol:

1. Parties call d = ΠPubOpen(JxK− JaK) and e = ΠPubOpen(JyK− JbK).
2. Parties compute locally JxyK = JaKe+ dJbK + JcK + de.

Privacy follows from the fact that the sensitive values x and y are being
masked by uniformly random values a and b that are unknown to the adversary.
Correctness follows from the fact that xy = (d+ a)(e+ b) = ae+ db+ ab+ de,
a relation that also holds even if R is non-commutative. Here we use the fact
that, since t < n/2, the calls to ΠPubOpen result in the parties learning the
correct underlying secret or aborting (and in the stronger case that t < n/3
then ΠPubOpen does not result in abort).

The issue with a non-commutative R is that, unless Z(R) contains a big
enough exceptional set, the secret sharing scheme [·] (resp. 〈·〉) we can define
is just a left (resp. right) submodule of Rn. In particular, the local operation
d · [b] can be carried out, but [a] · e does not result in a [·]-shared value5. To
address this complication, let ([a], [b], [c]) be a triple. Assume the existence of
“sextuples”, which are just triples of the form ([a], [b], [c]) enhanced with shares
of the form (〈a〉, [r], 〈r〉). These are produced by a functionality FTuples.

6 These
tuples can be used to multiply [x] and [y] as follows:

1. Parties call d = ΠPubOpen([x]t − [a]t), e = ΠPubOpen([y]t − [b]t).
2. Parties call f = ΠPubOpen(〈a〉t · e+ 〈r〉t).
3. Parties compute locally [xy]t = d · e+ d · [b]t + f − [r]t + [c]t

Privacy follows from the fact that sensitive data x and y is masked by the
uniformly random values a and b before opening and also because, before recon-
structing a · e (which could potentially leak information about a), the uniformly
random mask r is applied. In terms of correctness, we observe that the final

5More concretely, if we had [a]t, multiplication by e on the right will not result on
[ae]t in general.

6This functionality, together with some others used in this work, are formalized in
the full version

18



expression defining [xy]t is well defined given that only additions and multiplica-
tions on the left are used. Furthermore, the computation of f uses multiplication
on the right on the sharings 〈·〉, which admit such mutliplications. The rest is
simply a matter of using the definition of d, e, c and f in the final computation:
d ·e+d ·b+f −r+c = (x−a) · (y−b)+(x−a) ·b+a · (y−b)+r−r+a ·b = x ·y.

4.2 Improving Round-Complexity

The protocol sketched in the previous section suffers from the issue that its round
complexity is quite high, requiring 4 rounds per multiplication (two sequential
calls to ΠPubOpen, each requiring 2 rounds). In MPC protocols networking is
usually the most scarce resource, and it can be argued that round-count is even
more sensitive than communication complexity, specially in wide area networks
that have high latency. Therefore, the rest of this section is devoted to lowering
the round count of each secure multiplication.

In order to achieve secure multiplication with no sequential calls to ΠPubOpen

in the non-commutative case, we modify the way multiplications are handled.
First, each intermediate value of the computation x will not be represented by
[x], but rather by a pair ([λx], µx), where λx ∈ R is uniformly random and
unknown to any party, and µx = x − λx. Notice that this still maintains the
privacy of x since the only public value is µx, which perfectly hides x as it is
being masked by λx, that is random and unknown to any party.

Suppose the parties have two shared values ([λx], µx = x−λx) and ([λy], µy =
y−λy). To obtain a shared representation of their sum, the parties simply locally
compute ([λx + λy], µx + µy). On the other hand, to securely multiply these
shared values, the process is as follows. Let [λz] be the random mask associated
to the output of the multiplication. To obtain ([λz], µz), the parties need to get
the value µz = x · y − λz in the clear. This is achieved by noticing that, since
x = µx+λx and y = µy+λy, it holds that µz = µxµy+µxλy+λxµy+λxλy−λz.
Assume that the parties have [λxλy], which can be preprocessed as λx and λy
are simply random values. If R was conmutative, then the parties could compute

[µz] = µxµy + µx[λy] + [λx]µy + [λxλy]− [λz],

followed by opening µz. This approach was followed in [BNO19] in order to im-
prove the communication complexity of secure multiplication in the dishonest
majority setting. It was also used in the context of honest majority in [ED20],
both to minimize online communication complexity and in order to avoid selec-
tive failure attacks.

Unfortunately, when R is non-commutative, this approach cannot be carried
out as we find the exact same issue we had in the previous section, namely
that [λx]µy is not well defined as the secret-sharing scheme [·] does not allow
multiplication on the right. However, our crucial observation is that, unlike the
traditional use of triples from Section 4.1, in this case the task is not to take a
combination of sharings in order to obtain a new shared value but rather take
a linear combination of sharings in order to open the result µz. This difference

19



turns out to be essential in order to devise a protocol for the non-commutative
case that does not require sequential openings, which we describe in detail below.
The overall idea of our protocol is that the parties do not really need to convert
〈λx〉µy to [λxµy] as in Section 4.1, which adds an extra opening round, but
rather it is enough to open this part separately from the other part that uses
the [·]-sharing, and then add the two opened values to obtain µz. Some masking
is necessary to ensure that each separate piece does not leak anything, but this
is easily achievable, as we will describe next.

Preprocessing functionality. Unfortunately, resorting to this new approach does
not allow us to use the functionality FTuples directly. Instead, we must resort
to a similar but different type of preprocessing, which is captured by function-
ality for function-dependent preprocessing FF.D.Prep, which is formalized in de-
tail in the full version. In a nutshell, this functionality also distributes tuples
([λx]t, [λy]t, [λx · λy]t, 〈λx〉t, [r]t, 〈r〉t), except that, if λx (resp. λy) is used to
mask a value x (resp. y) for a given multiplication, then the same λx (resp. λy)
must be used for all multiplications involving x (resp. y) as a left (resp. right) in-
put. Since the structure of the tuples returned depend on the way multiplications
are arranged in the circuit, we refer to this type of preprocessing as function-
dependent preprocessing. This is in contrast to the preprocessing from FTuples

which only depends on (an upper bound on) the number of multiplications in
the circuit and not on the way these are arranged.

Protocols for MPC in the (FF.D.Prep,FBC)-hybrid model. Now we fi-
nally describe our protocol for MPC in the (FF.D.Prep,FBC)-hybrid model. The
protocol ΠOnline, described in Fig. 3 achieves guaranteed output delivery with
perfect security against an active adversary corrupting t < n/3 parties, and
it achieves perfect security with abort against an active adversary corrupting
t < n/2 parties. The following makes use of a standard simulation-based proof
which is provided in the full version of this work.

Theorem 6. Assume that t < n/3. Then protocol ΠOnline implements function-
ality FMPC−GOD in the (FF.D.Prep,FBC)-hybrid model with perfect security.

We recall that the functionality FBC can be instantiated with perfect security
if t < n/3 [LSP82], which, together with Theorem 6, implies that there exists
a protocol that instantiates FMPC−GOD with perfect security in the FF.D.Prep-
hybrid model.

Finally, in a similar way as the theorem above, the following is proved. The
main difference lies in the fact that the simulator may send abort signals to the
functionality FMPC−abort if it detects that the adversary is sending inconsistent
shares. This works since error detection in the t < n/2 case is possible.

Theorem 7. Assume that t < n/2. Then protocol ΠOnline implements function-
ality FMPC−abort in the (FF.D.Prep,FBC)-hybrid model with satistical security.

20



Protocols ΠOnline

PREPROCESSING PHASE

The parties call FF.D.Prep to get the following.

– For every wire in the circuit x the parties have [λx].
– Party Pi knows λx for every input gate x corresponding to Pi.
– For every multiplication gate with inputs x, y and output z, the parties have

[λxλy].

ONLINE PHASE

Input Gates. For every input gate x owned by party Pi, the parties do the fol-
lowing:
1. Pi uses FBC to send µx = x− λx to all parties.
2. Upon receiving this value, the parties set the sharing ([λx], µx)

Addition Gates. For every addition gate with inputs ([λx], µx) and ([λy], µy),
the parties locally get shares of the sum as ([λx] + [λy], µx + µy).

Multiplication Gates. For every multiplication gate with inputs ([λx], µx) and
([λy], µy), the parties proceed as follows:
1. The parties call γ ← ΠPubOpen(µxµy + µx[λy] + [λxλy] − [λz] + [r]) and

ρ← ΠPubOpen(〈λx〉µy − 〈r〉),a and, if there was no abort, set µz = γ + ρ.
2. Output ([λz], µz) as shares of the product.

Output Gates. If the parties did not abort above, then for every output gate
([λx], µx) that is supposed to be learned by Pi, the parties do the following:
1. The parties call ΠPubOpen([λx], Pi).
2. If this call does not result in abort, Pi outputs µx + λx.

aSince ΠPubOpen takes as inputs batches of shares to be opened, this is called
for all the multiplication gates on the given layer of the circuit in parallel, doing
multiple calls if necessary.

Fig. 3. Online phase of our MPC protocol.

21



5 Preprocessing

In this section we provide different protocols to realize the FTuples functionality
when Z(R) does not contain a big enough exceptional set. Our presentation fo-
cuses in this simpler functionality, since FF.D.Prep can be easily realized either in
the FTuples-hybrid or by slightly tweaking the protocols that implement FTuples.
In Section 5.1 we provide a generic protocol that only requires black-box access
to the ring operations and the ability to sample random ring elements. On the
downside, this theoretical result has a complexity of poly(n), in contrast with
the more specialized protocol for matrices over commutative rings we provide in
Section 5.2. By additionally getting black-box access to the commutative ring
operations, this optimized protocol has O(n) communication complexity and
O(n log n) computational complexity.

5.1 Generic, Black-box Construction

Representing non-commutative ring arithmetic as operations in G =
GL3(R). We quickly recap the work of Ben-Or and Cleve [BC92]. Let a ∈ R,
where R is a possibly non commutative ring. We will keep the invariant of
representing such elements within the group of 3 × 3 invertible matrices over
R, G = GL3(R), as follows:

M(a) =

1 0 a
0 1 0
0 0 1


This allows us to compute additions as M(a+ b) = M(a) ·M(b). Multiplication
is a bit more complicated. We can compute M(a · b) = J1 ·M(b) · J2 ·M(a) · J3 ·
M(b) · J4 ·M(a) · J5, where the Ji matrices are the following:

J1 =

 0 1 0
−1 0 0
0 0 1

 J2 =

0 0 −1
1 0 0
0 1 0

 J3 =

0 1 0
0 0 1
1 0 0

 J4 =

 0 0 1
−1 0 0
0 1 0

 J5 =

−1 0 0
0 0 1
0 1 0


Preprocessing for MPC over non-commutative rings Given the previous
representation, we can use existing results for efficient MPC over non-abelian
groups [DPS+12, CDI+13] in order to implement the FPrep functionality required
for the online phase in Section 4. In more detail, this can be computed as a
constant-depth arithmetic circuit over R which we will represent as a series of
products in the group G = GL3(R).

Note that the shares in the group-based protocol are according to the group
law (i.e., they are “multiplicative shares”), whereas the protocols from Section 4
use Shamir’s secret sharing. One option would be to compute something like
[M(a)]G =

∏t+1
i=1[M(ai)]G, [M(b)]G =

∏t+1
i=1[M(bi)]G and [M(c)]G = J1 · [M(b)]G ·

J2 · [M(a)]G ·J3 · [M(b)]G ·J4 · [M(a)]G ·J5, as well as generating “double shares”

22



of the form [M(r)]G, [r] to e.g. extract (c+r) from PublicOpen([M(c)]G · [M(r)]G)
and then compute [c] = (c+ r)− [r].

Alternatively, we can employ the following, more direct approach. Let A =
{0, α1, . . . , αn} be the commutative exceptional set defining the non-commutative
sharing scheme [·]. Parties compute the following circuit, where each Pi in-
puts random f ij , g

i
j , h

i
j ∈ R and receives as output their corresponding shares

of ([a], [b], [c]), that is, (f(αi), g(αi), h(αi)).

a =

t+1∑
i=1

f i0, b =

t+1∑
i=1

gi0, c = a · b

fj =

t+1∑
i=1

f ij , gj =

t+1∑
i=1

gij hj =

t+1∑
i=1

hij , j ∈ [t]

f(α`) =a+

t∑
j=1

fjα
j
` , g(α`) = b+

t∑
j=1

gjα
j
` , h(α`) = c+

t∑
j=1

hjα
j
` , ` ∈ [n]

The downside of these two generic approaches is that their respective proto-
cols inherit the poly(n) complexity of [CDI+13]. On the upside, any improvement
to MPC over non-abelian groups would directly translate to our blackbox con-
structions.

5.2 Concretely Efficient Preprocessing for Matrix Rings

For our more practical construction, which works over the ringR =Mm×m(Z2k),
we describe how to implement FTuples using non-black-box protocols which are
more efficient than the one from the previous section. Even though we specialize
to matrices over Z2k , our analysis and techniques can be generalized to matrices
over other commutative rings.

Remember from Section 3.1 that Mm×m(Z2k) contains a commutative ex-
ceptional set of size 2m, which is why can only use the non-multiplicative secret
sharing schemes from Theorem 5 that are linear only on one side.

In order to overcome the lack of multiplicativity, as FTuples requires to pro-
duce values ([A], [B], [C]) such that C = A ·B, we use an existing MPC protocol
for computation over Z2k . Given such an entry-wise protocol, we can trivially
emulate the whole arithmetic of R. The issue is that, by doing this, we need to
work over a big enough Galois extension of Z2k , so that we can define a multi-
plicative, Shamir-style linear secret sharing scheme J·K7. Once we have computed
this matrix product from the entry-wise shares of the matrices A and B, we
need to convert J·K sharings of the entries of A,B,C to sharings [·] and 〈·〉 over
Mm×m(Z2k), so that parties obtain the tuple [A], 〈A〉, [B], [C], [r], 〈r〉 required
for the online protocols in Section 4.

7This was described in [ACD+19], but it is also a consequence of Theorem 5. This
is why we will use the J·K notation to refer to the LSSS over the Galois Ring in this
section. It should not be confused with [·] and 〈·〉, which work over Mm×m(Z2k ).

23



In particular, we will use the InnerProd CAFE from [DLS20], which can
compute inner products of length δ ' d/2 over R = GR(2k, d) at the cost of just
2 sharings and a single opening in R. If one wants to calculate an inner product
of length rd/2, the cost would be 2r sharings and a single opening in R. The
following proposition captures the properties of InnerProd we are interested in,
without getting into details about the specific construction.

Proposition 4 ([DLS20]). Let R = GR(2k, d) be a Galois Ring defined as
Z2k [X]/(h(X)). Let d̃ denote the degree of the second-highest degree monomial in
h(X). Let δ ∈ N be such that δ < (d+ 1)/2, δ < d− d̃+ 1. There exist three Z2k -
linear homomorphisms EL : (Z2k)δ → R, ER : (Z2k)δ → R and Eout : Z2k → R
satisfying:

EL(a1, . . . , aδ) · ER(b1, . . . , bδ) + Eout(c) = Eout(c+
δ∑
`=1

a` · b`)

Furthermore, the value Eout(c+
∑δ
`=1 a` ·b`) ∈ R does not reveal any information

beyond c+
∑δ
`=1 a` · b` ∈ Z2k .

Since the maps EL,ER and Eout are homomorphisms of Z2k -modules, the
image of each of them can be seen as a Z2k -submodule of GR(2k, d). We will
indistinctively refer to either these homomorphisms, or the Z2k -modules they
define as encodings.

By extension, we define how these encodings can be applied to matrices.
Given A′ ∈ M1×δ(Z2k), B′ ∈ Mδ×1(Z2k), for which we want to compute C ′ =
A′ · B′, where C ′ ∈ Z2k , we simply view the entries of A′, B′ as elements of
(Z2k)δ, to which we apply EL and ER, respectively. In order to compute the
product of A,B ∈Mm×m(Z2k), we need to introduce some additional notation.
Let ∆ = dm/δe. Let A ∈ Mm×δ∆(Z2k) (resp. B ∈ Mδ∆×m(Z2k)) denote the
matrix A padded with δ∆−m columns of zeroes (resp. the matrix B padded with
δ∆−m rows of zeroes). For ` ∈ [m∆], let A(`) ∈M1×δ(Z2k), B(`) ∈Mδ×1(Z2k)
be submatrices such that

A =


A(1) A(2) . . . A(∆)

A(∆+1) A(∆+2) . . . A(2·∆)

...
...

. . .
...

A((m−1)·∆+1) A((m−1)·∆+2) . . . A(m·∆)

 B =


B(1) B(∆+1) . . . B((m−1)·∆+1)

B(2) B(∆+2) . . . B((m−1)·∆+2)

...
...

. . .
...

B(∆) B(2·∆) . . . B(m·∆)

 ,

where A(∆), A(2·∆), . . . , A(m·∆) and B(∆), B(2·∆), . . . , B(m·∆) are the submatrices
including the zero-padding. Let γ ∈Mm×m(Z2k) be a matrix that we will use to
mask the result of C = A ·B and let us denote the entries of γ,C ∈Mm×m(Z2k)
as C(α,β), γ(α,β) ∈ Z2k , where α, β ∈ {1, . . . ,m}. Taking into account Defini-
tion 4, we can compute:

Eout(C
(α,β) + γ(α,β)) = Eout(γ

(α,β)) +

∆∑
`=1

EL(A((α−1)∆+`)) · ER(B((β−1)∆+`))

24



Hyperinvertible matrices acting on commutative and non-commutative
LSSS. Hyper-Invertible Matrices were introduced in [BTH08] as a tool for gen-
erating and checking linearly correlated randomness in the context of perfectly
secure MPC over fields. We recall their properties in the full version of this work.

Let R = Mm×m(Z2k), d = 1 + log n, S = Mn×n(GR(2k, d)) and M ∈ S
be a hyper-invertible matrix. Let N be a Z2k -module, such as those defined by
commutative sharings of EL,ER or Eout encodings. Let NL (resp. NR) be the left
(resp. right) R-module defined by [·] (resp. 〈·〉). We want to define the action of
multiplying by M on the left on those modules. We will refer to the morphisms
they define as φM : Nd·n → Nd·n, ψLM : Nd·n

L → Nd·n
L and ψRM : Nd·n

R → Nd·n
R .

Let us first look at the Z2k -linear action of multiplying elements a ∈ Nd by
b ∈ GR(2k, d). As Nd is a Z2k -module, we know how to multiply its elements with
scalars from Z2k , but how can we multiply them with scalars from GR(2k, d)?
The formal answer is tensor products: Nd is isomorphic to GR(2k, d)⊗Z

2k
N as

a Z2k -module, but GR(2k, d) ⊗Z
2k
N can also be seen as an GR(2k, d)-module

compatible with the Z2k -module structure Nd. Informally, one just needs to
represent b ∈ GR(2k, d) on its matrix representation ι(b) (see Section 2.4) and
compute the matrix-vector product ι(b) · a. We refer the reader interested in
a more systematic exposition of the tensoring technique to the discussion on
interleaved generalized secret sharing schemes in [CCXY18], which is restricted
to fields but can be generalized to commutative rings [CRX19]. For those who
want a more computational description, we recommend [DLS20, Section 4.1].

Given the description of the Z2k -linear action of multiplying elements a ∈ Nd

by b ∈ GR(2k, d), we can deduce the Z2k -linear action of multiplying elements in
(Nd)n by the matrix M with entries in GR(2k, d), giving result to the Z2k -module
homomorphism φM : (Nd)n → (Nd)n. We were talking about multiplying by the
matrix M ∈ S “on the left”, so whereas one could easily imagine how everything
works fine when defining ψLM : Nd·n

L → Nd·n
L , what happens with ψRM : Nd·n

R →
Nd·n
R ? The important remark here is that NR is a right R-module, but it also

a Z2k -bimodule, so we can meaningfully “multiply by M on the left”, as we
are interested in the Z2k -linear action of multiplication by M . Moreover, the
Z2k -bimodule structure of NR is compatible with the right R-module structure,
since Z(R) consists of the Z2k -multiples of the identity matrix and hence ∀a ∈
Z2k , 〈b〉 ∈ NR, we have that a · 〈b〉 = 〈b〉 · a = 〈b · a〉 = 〈a · b〉. This leads us to
the observation that:

ψLM ([r̃1,1]t, . . . , [r̃1,d]t; . . . ; [r̃n,1]t, . . . , [r̃n,d]t)

= ψRM (〈r̃1,1〉t, . . . , 〈r̃1,d〉t; . . . ; 〈r̃n,1〉t, . . . , 〈r̃n,d〉t) (2)

What is more, ψLM and ψRM will also be compatible with φM , as they are
all defined by the unique Z2k -linear action that is defined by multiplying by M
on the left that we describe above, where M is basically interpreted as a block
matrix over Z2k taking the matrix representation of its entries in GR(2k, d). The
following Lemma is stated for ψLM , but it can be naturally adapted to ψRM and
φM .

25



Lemma 6. Let R =Mm×m(Z2k) and let NL denote the R-module defined by [·].
Let M ∈Mn×n(GR(2k, d)) be a hyper-invertible matrix. Then, for all A,B ⊆ [n]
with |A|+ |B| = n, there exists an isomorphism of R-modules ψLM : Nnd

L → Nnd
L ,

ψLM (x) = y, defined by the Z2k -linear action of “multiplying x by M on the left”,
such that ψLM (xA,yB) = (xĀ,yB̄), where Ā = [n] \A and B̄ = [n] \B.8

See protocol ΠTuples on Figure 4, Protocol ΠTuples−NC−Shares on Figure 5
and ΠTuplesCheck on Figure 6. We provide a standard simulation-based proof of
the following result in the full version of this work.

Theorem 8. Assume that t < n/3. Then protocol ΠTuples on Figure 4 imple-
ments functionality Fabort

Tuples in the FBC-hybrid model with perfect security.

The case of n/3 ≤ t < n/2 is discussed in the full version of this work.

Acknowledgements

During his time at Aarhus University, Eduardo Soria-Vazquez was supported
by the Carlsberg Foundation under the Semper Ardens Research Project CF18-
112 (BCM). Daniel Escudero was supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 669255 (MPCPRO).

References

ACD+19. Mark Abspoel, Ronald Cramer, Ivan Damg̊ard, Daniel Escudero, and Chen
Yuan. Efficient information-theoretic secure multiparty computation over
Z/pkZ via galois rings. In Dennis Hofheinz and Alon Rosen, editors,
TCC 2019, Part I, volume 11891 of LNCS, pages 471–501. Springer, Hei-
delberg, December 2019.

BBY20. Alessandro Baccarini, Marina Blanton, and Chen Yuan. Multi-party repli-
cated secret sharing over a ring with applications to privacy-preserving
machine learning. Cryptology ePrint Archive, Report 2020/1577, 2020.
https://eprint.iacr.org/2020/1577.

BC92. Michael Ben-Or and Richard Cleve. Computing algebraic formulas using
a constant number of registers. SIAM Journal on Computing, 21(1):54–58,
1992.

BGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In 20th ACM STOC, pages 1–10. ACM Press, May 1988.

BNO19. Aner Ben-Efraim, Michael Nielsen, and Eran Omri. Turbospeedz: Double
your online SPDZ! Improving SPDZ using function dependent preprocess-
ing. In Robert H. Deng, Valérie Gauthier-Umaña, Mart́ın Ochoa, and Moti
Yung, editors, ACNS 19, volume 11464 of LNCS, pages 530–549. Springer,
Heidelberg, June 2019.

8With the notation xĀ, we refer to viewing x as an element of (Nd)n and taking,
among the n “entries” in Nd, the ones indexed by A. These correspond to parties in
our protocols.

26

https://eprint.iacr.org/2020/1577


Protocol ΠTuples

Let T = n− 2t. Let R =Mm×m(Z2k ) and S =Mn×n(GR(2k, d)). Let M ∈ S be a
hyper-invertible matrix. Let N be a Z2k -module (such as those defined by EL,ER or
Eout) and let φM : Nd·n → Nd·n and ψM : Rd·n → Rd·n be the morphisms defined
by the Z2k -linear action of M described in Section 5.2.

I. Commutative Shares. Parties generate commutative shares of the entries of
the matrices A,B, so that they can compute the product C = A ·B.
For i ∈ [n], j ∈ [d], each Pi samples at random Ãi,j , B̃i,j , γ̃i,j ∈ R, extracts

representations Ã
(`)
i,j , B̃

(`)
i,j , γ̃

(α,β)
i,j as described in Section 5.2 and calls ΠJ·K to

distribute shares of JEL(Ã
(`)
i,j )Kt, JER(B̃

(`)
i,j )Kt and JEout(γ̃(α,β)

i,j )K2t to all parties.
1. Parties locally compute:

(JEL(A
(`)
1,1)Kt, . . . , JEL(A

(`)
1,d)Kt; . . . ; JEL(A

(`)
n,1)Kt, . . . , JEL(A

(`)
n,d)Kt)

= φM (JEL(Ã
(`)
1,1)Kt, . . . , JEL(Ã

(`)
1,d)Kt; . . . ; JEL(Ã

(`)
n,1)Kt, . . . , JEL(Ã

(`)
n,d)Kt)

(JER(B
(`)
1,1)Kt, . . . , JER(B

(`)
1,d)Kt; . . . ; JER(B

(`)
n,1)Kt, . . . , JER(B

(`)
n,d)Kt)

= φM (JER(B̃
(`)
1,1)Kt, . . . , JER(B̃

(`)
1,d)Kt; . . . ; JER(B̃

(`)
n,1)Kt, . . . , JER(B̃

(`)
n,d)Kt)

(JEout(γ(α,β)
1,1 )K2t, . . . , JEout(γ(α,β)

1,d )K2t; . . . ; JEout(γ(α,β)
n,1 )K2t, . . . , JEout(γ(α,β)

n,d )K2t)

= φM (JEout(γ̃(α,β)
1,1 )K2t, . . . , JEout(γ̃(α,β)

1,d )K2t; . . . ; JEout(γ̃(α,β)
n,1 )K2t, . . . , JEout(γ̃(α,β)

n,d )K2t)

2. For i = 1, . . . , T ; j = 1, . . . , d;α, β ∈ {1, . . . ,m} they additionally compute:

JEout(C(α,β)
i,j + γ

(α,β)
i,j )K2t = JEout(γ(α,β)

i,j ))K2t +

∆∑
`=1

JEL(A
((α−1)∆+`)
i,j )Kt · JER(B

((β−1)∆+`)
i,j )Kt

II. Non-Commutative Shares. Parties run the subprotocol ΠTuples−NC−Shares

in Figure 5 to generate shares of the form [A], 〈A〉, [B], [r], 〈r〉, [C].
III. Consistency Checks. Parties run the subprotocol ΠTuplesCheck in Figure 6.

If all the checks pass, they accept the output.

Fig. 4. Preprocessing phase for MPC over R =Mm×m(Z2k ).

27



Protocol ΠTuples−NC−Shares

This is a subprotocol of ΠTuples (Figure 4). Assume same conditions and notation.

II. Non-Commutative Shares. Parties generate non-commutative shares of
the form [A], 〈A〉, [B], [r], 〈r〉, [γ]. The latter value will allow them to convert
from JEout(C + γ)K2t to [C]t.

1. For i ∈ [n], j ∈ [d], each Pi calls Π[·] and Π〈·〉 to distribute to all parties
non-commutative shares of the values they sampled in Step I.

([A1,1]t, . . . , [A1,d]t; . . . ; [An,1]t, . . . , [An,d]t)

= ψLM ([Ã1,1]t, . . . , [Ã1,d]t; . . . ; [Ãn,1]t, . . . , [Ãn,d]t)

(〈A1,1〉t, . . . , 〈A1,d〉t; . . . ; 〈An,1〉t, . . . , 〈An,d〉t)

= ψRM (〈Ã1,1〉t, . . . , 〈Ã1,d〉t; . . . ; 〈Ãn,1〉t, . . . , 〈Ãn,d〉t)

([B1,1]t, . . . , [B1,d]t; . . . ; [Bn,1]t, . . . , [Bn,d]t)

= ψLM ([B̃1,1]t, . . . , [B̃1,d]t; . . . ; [B̃n,1]t, . . . , [B̃n,d]t)

([γ1,1]t, . . . , [γ1,d]t; . . . ; [γn,1]t, . . . , [γn,d]t)

= ψLM ([γ̃1,1]t, . . . , [γ̃1,d]t; . . . ; [γ̃n,1]t, . . . , [γ̃n,d]t)

([r1,1]t, . . . , [r1,d]t; . . . ; [rn,1]t, . . . , [rn,d]t)

= ψLM ([r̃1,1]t, . . . , [r̃1,d]t; . . . ; [r̃n,1]t, . . . , [r̃n,d]t)

(〈r1,1〉t, . . . , 〈r1,d〉t; . . . ; 〈rn,1〉t, . . . , 〈rn,d〉t)

= ψRM (〈r̃1,1〉t, . . . , 〈r̃1,d〉t; . . . ; 〈r̃n,1〉t, . . . , 〈r̃n,d〉t)

2. Parties use the double shares of γ ∈ R in order to convert JEout(C + γ)K2t,
where Eout(C + γ) ∈ S, to [C], where C ∈ R.
(a) For i ∈ {1, . . . , T}, j ∈ {1, . . . , d}, α, β ∈ {1, . . . ,m} parties call

ΠPubOpen with the values JEout(C(α,β)
i,j + γ

(α,β)
i,j )K2t, so that everyone

obtains Ci,j + γi,j ∈Mm×m(Z2k ), or abort.
(b) Parties compute

[Ci,j ]t = Ci,j + γi,j − [γi,j ]t

Fig. 5. Preprocessing phase for MPC over Mm×m(Z2k ): Non-Commutative Shares.

28



Consistency check subprotocol of ΠTuples – Protocol ΠTuplesCheck

This is a subprotocol of ΠTuples (Figure 4). Assume same conditions and notation.

III. Consistency Checks. For i ∈ {T + 1, . . . , n}, j ∈ [d] every party sends their

shares of {JEL(A
(`)
i,j )K, JER(B

(`)
i,j )K}`∈[m∆], {JEout(γ(α,β)

i,j )K2t}α,β∈[m], [Ai,j ], 〈Ai,j〉,
[Bi,j ], [γi,j ], [ri,j ], 〈ri,j〉 to Pi, who first checks that all the shares of any

received secret lie on a polynomial of degree t (or 2t for JEout(γ(α,β)
i,j )K2t).

Furthermore, it performs the following checks:
1. Correct EL and ER encodings of A

(`)
i,j , B

(`)
i,j

a.

2. Consistency between the alleged secrets JEout(γ(α,β)
i,j )K2t and [γi,j ].

3. Consistency between the alleged secrets [ri,j ] and 〈ri,j〉.
4. Consistency between the alleged secrets [Bi,j ] and JER(B

(`)
i,j )K.

5. Consistency between the alleged secrets [Ai,j ], 〈Ai,j〉 and JEL(A
(`)
i,j )K.

Pi uses FBC to broadcast a bit which signals whether all the checks pass
or not. If they do so for every PT+1, . . . , Pn, parties accept the tuples
[A`,j ], 〈A`,j〉, [B`,j ], [C`,j ], [r`,j ], 〈r`,j〉 for ` ∈ [T ].

aNote there is no need to check the Eout encoding of γ
(α,β)
i,j .

Fig. 6. Consistency check of the preprocessing phase for MPC over R =Mm×m(Z2k ).

BTH08. Zuzana Beerliová-Trub́ıniová and Martin Hirt. Perfectly-secure MPC with
linear communication complexity. In Ran Canetti, editor, TCC 2008, vol-
ume 4948 of LNCS, pages 213–230. Springer, Heidelberg, March 2008.

Can01. Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001.

CCXY18. Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan. Amor-
tized complexity of information-theoretically secure MPC revisited. In Ho-
vav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part III,
volume 10993 of LNCS, pages 395–426. Springer, Heidelberg, August 2018.

CDI+13. Gil Cohen, Ivan Bjerre Damg̊ard, Yuval Ishai, Jonas Kölker, Peter Bro Mil-
tersen, Ran Raz, and Ron D. Rothblum. Efficient multiparty protocols via
log-depth threshold formulae - (extended abstract). In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 185–202. Springer, Heidelberg, August 2013.

CDM00. Ronald Cramer, Ivan Damg̊ard, and Ueli M. Maurer. General secure multi-
party computation from any linear secret-sharing scheme. In Bart Preneel,
editor, EUROCRYPT 2000, volume 1807 of LNCS, pages 316–334. Springer,
Heidelberg, May 2000.

CFIK03. Ronald Cramer, Serge Fehr, Yuval Ishai, and Eyal Kushilevitz. Effi-
cient multi-party computation over rings. In Eli Biham, editor, EURO-
CRYPT 2003, volume 2656 of LNCS, pages 596–613. Springer, Heidelberg,
May 2003.

CRX19. Ronald Cramer, Matthieu Rambaud, and Chaoping Xing. Asymptotically-
good arithmetic secret sharing over Z/p`Z with strong multiplication and its
applications to efficient mpc. Cryptology ePrint Archive, Report 2019/832,
2019. https://eprint.iacr.org/2019/832.

29

https://eprint.iacr.org/2019/832


DEK21. Anders Dalskov, Daniel Escudero, and Marcel Keller. Fantastic four:
Honest-majority four-party secure computation with malicious security. To
appear at USENIX’21, 2021.

DKH+12. Anuj Dawar, Eryk Kopczynski, Bjarki Holm, Erich Grädel, and Wied
Pakusa. Definability of linear equation systems over groups and rings. arXiv
preprint arXiv:1204.3022, 2012.

DLS20. Anders P. K. Dalskov, Eysa Lee, and Eduardo Soria-Vazquez. Circuit amor-
tization friendly encodingsand their application to statistically secure mul-
tiparty computation. In Shiho Moriai and Huaxiong Wang, editors, ASI-
ACRYPT 2020, Part III, volume 12493 of LNCS, pages 213–243. Springer,
Heidelberg, December 2020.

DN07. Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally secure
multiparty computation. In Alfred Menezes, editor, CRYPTO 2007, volume
4622 of LNCS, pages 572–590. Springer, Heidelberg, August 2007.

DPS+12. Yvo Desmedt, Josef Pieprzyk, Ron Steinfeld, Xiaoming Sun, Christophe
Tartary, Huaxiong Wang, and Andrew Chi-Chih Yao. Graph coloring ap-
plied to secure computation in non-abelian groups. Journal of Cryptology,
25(4):557–600, October 2012.

ED20. Daniel Escudero and Anders Dalskov. Honest majority mpc with abort
with minimal online communication. Cryptology ePrint Archive, Report
2020/1556, 2020. https://eprint.iacr.org/2020/1556.

LSP82. LESLIE LAMPORT, ROBERT SHOSTAK, and MARSHALL PEASE. The
byzantine generals problem. ACM Transactions on Programming Languages
and Systems, 4(3):382–401, 1982.

Ore31. Oystein Ore. Linear equations in non-commutative fields. Annals of Math-
ematics, pages 463–477, 1931.

QBC13. Guillaume Quintin, Morgan Barbier, and Christophe Chabot. On gener-
alized reed–solomon codes over commutative and noncommutative rings.
IEEE transactions on information theory, 59(9):5882–5897, 2013.

Sha79. Adi Shamir. How to share a secret. Communications of the Association for
Computing Machinery, 22(11):612–613, November 1979.

Son75. Eduardo D Sontag. On linear systems and noncommutative rings. Mathe-
matical systems theory, 9(4):327–344, 1975.

30

https://eprint.iacr.org/2020/1556

	Efficient Information-Theoretic Multi-Party Computation over Non-Commutative Rings
	Introduction
	Theoretical Contributions
	Concretely Efficient Protocols for Mm m(Z2k)
	Related Work

	Preliminaries
	Multiparty Computation
	Background in Ring Theory
	Polynomials over Non-Commutative Rings
	Galois Rings

	Shamir's Secret Sharing over Non-commutative Rings
	Secret Sharing over Matrix Rings
	Error Correction and Robust Reconstruction.
	Efficient Protocols for Secret Reconstruction

	MPC in the Preprocessing Model
	A First Approach
	Improving Round-Complexity

	Preprocessing
	Generic, Black-box Construction
	Concretely Efficient Preprocessing for Matrix Rings



