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Abstract. Quantum copy-protection uses the unclonability of quantum
states to construct quantum software that provably cannot be pirated.
copy-protection would be immensely useful, but unfortunately, little is
known about achieving it in general. In this work, we make progress on
this goal, by giving the following results:

– We show how to copy-protect any program that cannot be learned
from its input-output behavior relative to a classical oracle. This
construction improves on Aaronson (CCC 2009), which achieves the
same relative to a quantum oracle. By instantiating the oracle with
post-quantum candidate obfuscation schemes, we obtain a heuristic
construction of copy-protection.

– We show, roughly, that any program which can be watermarked can
be copy detected, a weaker version of copy-protection that does not
prevent copying, but guarantees that any copying can be detected.
Our scheme relies on the security of the assumed watermarking, plus
the assumed existence of public-key quantum money. Our construc-
tion is publicly detectable and applicable to many recent watermark-
ing schemes and .

1 Introduction

Quantum copy-protection, proposed by Aaronson [Aar09], aims to use the
unclonability of quantum states to achieve programs that cannot be copied. That
is, the program f is given as a quantum state |ψf 〉. |ψf 〉 allows for computing f on
arbitrary inputs; meanwhile, it is infeasible to copy the state |ψf 〉, or even convert
|ψf 〉 into two arbitrary states that both allow for computing f . The quantum no-
cloning theorem shows that quantum states, in general, cannot be copied. Copy
protection takes this much further, augmenting the unclonable state with the
ability to evaluate programs. Copy-protection would have numerous applications
to intellectual property management and to cryptography generally.

Progress on quantum copy-protection has unfortunately been slow. On the
negative side, copy-protection for general programs is impossible. As explained



by Aaronson [Aar09], any learnable program—that is, a program whose de-
scription can be learned from just its input/output behavior—cannot be copy-
protected. Indeed, given the (copy-protected) code for the program, an attacker
can just query the code on several inputs and learn the original program from
the results. The attacker can then copy the original program indefinitely. A
more recent result of Ananth and La Placa [AP20] shows, under certain com-
putational assumptions, that certain contrived unlearnable programs cannot be
copy-protected.

On the positive side, Aaronson demonstrates a quantum oracleiv relative to
which copy-protection exists for any unlearnable program. Due to the negative
result above, this scheme cannot be instantiated in general. Worse, even for
programs that are not subject to the impossibility result, it remains unclear
how even heuristically to instantiate the scheme. Very recently, Ananth and La
Placa [AP20] build a version of copy-protection, which they call software leasing,
which guarantees a sort of copy detection mechanism. Unfortunately, their work
explicitly allows copying the functionality and only ensures that such copying can
be detected. Also, their construction only works for a certain class of “evasive”
functions, which accept a hidden sparse set of inputs. The work of Ben-David
and Sattath [BDS16] and more recently Amos et al. [AGKZ20] can be seen as
copy-protecting specific cryptographic functionalities.

1.1 This Work

In this work, we give new general results for copy-protection. Our two main
results are:

– Any unlearnable functionality can be copy-protected, relative to a classical
oracle.

– Any functionality that can be watermarked in a certain sense, can be copy-
detected assuming just the existence of public-key quantum money.

Both of our results are very general, applying to a wide variety of learning and
watermarking settings, including settings where functionality preservation is not
required. Along the way to obtaining our results, we give new definitions for
security of copy-protection (as well as copy-detection and watermarking), which
provide stronger guarantees.

Our first result improves Aaronson [Aar09] to use a classical oracle, which
can then heuristically be instantiated using candidate post-quantum obfuscation
(e.g. [BGMZ18, BDGM20]), resulting in a concrete candidate copy-protection
scheme. Of course, the impossibility of Ananth and La Placa [AP20] means the
resulting scheme cannot be secure in the standard model for arbitrary programs.
Still, it can be conjectured to be secure for programs not subject to the impos-
sibility.

Our second result complements Ananth and La Placa [AP20]’s positive result
for copy-detecting certain evasive functions by copy-detecting arbitrary water-
markable functions. For our purposes, watermarkable functions are those that

iv That is, an oracle that implements a quantum operation.
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can have a publicly observable “mark” embedded into the program, such that it
is infeasible to remove the mark without destroying the functionality. We note
that the results (and techniques) are incomparable to [AP20]. First, watermark-
able functions are never evasive, so the class of functions considered are disjoint.
Second, our security guarantee is much stronger than theirs, which we discuss
in Section 1.2.

Taken together, we believe our results strongly suggest that watermarkable
functions may be copy-protectable. Concretely, the impossibility result of Ananth
and La Placa also applies to copy detection, and our second result shows that
watermarkable functions, therefore, circumvent the impossibility. Based on this,
we conjecture that our first result, when instantiated with candidate obfuscators,
is a secure copy-protection scheme for watermarkable functions. We leave proving
or disproving our conjecture as an interesting direction for future work.

1.2 Technical Overview

Definitional Work. We first investigate the definition of quantum copy-protection.
We find that existing definitions and other straightforward attempts have sev-
eral limitations. We therefore carefully develop a strong and general definition of
copy-protection to resolve these limitations. In particular, our definition captures
attacks where (1) the program is meaningfully copied even if the functionality
is technically different, and (2) the program is copied only with a small but
detectable probability.

Consider the following attempt of defining quantum copy-protection: we say
an adversary successfully pirates a quantum program for computing a function
f if it outputs two quantum programs σ1, σ2, each of them able to compute
f correctly on a large fraction of inputs. Now consider applying this definition
to the case where f is a signing algorithm with a particular signing key hard-
coded, and suppose there are many valid signatures for each message. Consider a
hypothetical adversary who “splits” the program into two pieces, each computing
valid signatures; but neither computing the same signature that f produces.
Such programs are “good enough” for forging signatures, and the ability to copy
a signature-producing program in this way would naturally be considered an
attack. However, the usual notions of security for copy-protection do not apply
to such programs.

Another example is the copy-protection of public-key encryption. Let f be
a decrypting algorithm with a particular decryption key hard-coded. Suppose
the split two program pieces only work correctly on a sparse set: they can only
decrypt correctly on ciphertexts of m0,m1; for ciphertexts of other messages,
the output is arbitrary. This splitting attack does not violate the security notion
either since both functions produced by the adversary differ from the origi-
nal program on most inputs. But again, such programs are “good enough” for
breaking the semantic security of the encryption scheme, and therefore would
reasonably count as an attack.

Similar definitional issues are discussed in the context of watermarking [GKM+19]
but have not been explored in the setting of copy-protection. Inspired by the
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watermarking case, our solution is to define “compute f correctly” by a general
relation. The relation takes some random coins r, the function f (with some ad-
ditional information about f hard-coded in the circuit); it samples an input and
runs the (quantum) program on that classical input; finally, it checks the output
of the quantum program, testing (in superposition) if the output z together with
f, r is in the relation. As an example, if f is a signing circuit (with the signing
key hard-coded), the relation is defined as: use random coins r to generate a
random message m, run the quantum program on m and test in superposition
if it is a valid signature, by applying the verification algorithm Ver(vk,m, · ; r).

Therefore, we propose a general definition that can capture a broader class
of attacks, especially in the context of cryptographic functionalities.

Unfortunately, another uniquely quantum issue arises when trying to formu-
late a definition. We intuitively want to consider a program to be a valid copy if
it computes f correctly on a non-trivial fraction of the domain. Unfortunately,
there is no physical way to actually test if a program represented as a quantum
state satisfies the property when an algorithm only receives a single copy of the
program, especially in game-based security definitions.

Generally, any attempt at assigning a non-trivial property to quantum states
(e.g., “valid program” vs. “invalid program”) will be physically meaningless.
Indeed, given any valid program P1 and any invalid program P2 (regardless of
the meaning of “valid”), what is the uniform superposition |P1〉 + |P2〉 of the
two programs? Is it valid or invalid? Regardless of which, because the three
programs are not orthogonal quantum states, no measurement can determine all
three states’ validity.

At a more operational level, the classical way to test for correctly computing
f is to evaluate the function on all points and report the fraction of inputs where
the program computed correctly. Alternatively, one can efficiently estimate the
fraction of inputs that are computed correctly by simply testing a polynomial
number of random points. Regardless, testing involves running the program on
multiple points.

In the setting of quantum programs, however, the uncertainty principle im-
plies that the moment one tests the first input, the quantum program state is
irreversibly altered, potentially affecting the subsequent evaluations of the pro-
gram. Thus, the fraction of inputs computed correctly is ever-changing, and
simply evaluating the program on several points will not give a meaningful in-
dication of the program’s validity at any single point in time.

To illustrate further issues, consider the adversary which takes its quantum
program P and simply produces 1√

2
(|P 〉 |D〉 |0〉+|D〉 |P 〉 |1〉) whereD is a dummy

program that outputs junk. The two halves of this bipartite system each have
probability 1/2 of outputting the right answer on a random input. And yet, this
“attack” is rather useless and should not be considered a break.

On the other hand, consider a hypothetical attacker which produces 1√
2
|P 〉 |P 〉+

1√
2
|D〉 |D〉. The two halves of this bipartite system each separately has prob-

ability 1/2 of outputting the right answer on a random input. However, if we
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measure both halves, there is a 1/2 chance of obtaining two copies of P , which
each answers correctly with probability 1. Therefore, this attack should likely be
considered a break.

Thus, we see that any characterization of program validity which just tests
the program on a random input cannot distinguish cases that should be con-
sidered breaks from those that are not. On the other hand, if we test multiple
random inputs, we run into the problem that testing each input causes the pro-
gram state to change, meaning we may not get meaningful results.

Our solution will be to use recent ideas from Zhandry [Zha20], who considered
similar issues in the context of traitor tracing. At a high level, the issue above is
that we are trying to assign a property to a quantum state (whether the state
is a good program), but this property is non-physical and does not make sense
for mixed or entangled states. Instead, we want “a program is good” to be a
measurement that can be applied to the state. We would naturally also want the
measurement to be projective, so that if a program is once tested to be “good”,
it will always be “good”.

Let M = (M0,M1) be binary positive operator-valued measures (POVMs)
that represents choosing random coins and testing if the quantum program com-
putes correctly with respect to the random coins. For a mixed quantum program
state σ, the probability the program evaluates correctly relative to this test is
given as Tr[M0σ] . LetM′ be the (inefficient) projective measurement {Pp}p∈[0,1],
projecting onto the eigenspaces of M0, where p ranges over the corresponding
eigenvalues of M0

v Zhandry showed that the measurement below results in an
equivalent POVM as M:

– Apply the projective measurement M′, and obtain p;
– Output 0 with probability p, and output 1 with probability 1− p.

Intuitively, M′ will project a state to an eigenvector with eigenvalue p. The
leftover state computes correctly on p-fraction of all inputs.

Therefore, we say a quantum program σ is tested to be γ-good, if the mea-
surement M′ has outcome p ≥ γ. We say an adversary successfully pirates a
quantum program for computing f if the two programs are both tested to be
γ-good with non-negligible probability. We will show an efficient algorithm that
approximates the measurement. Thus, our new definition provides an opera-
tional game-based security definition that resolves all the issues we mentioned
above. Besides, although the definition may be laborious, this definition implies
the previous definitions in [Aar09, CMP20] and etc, and we find proving secu-
rity with this definition is considerably easier. Using similar ideas, we also define
quantum unlearnability of programs and quantum copy-detection.

Our Copy-Protection Scheme. We give a quantum copy-protection construc-
tion for all unlearnable functions based on (1) classical oracles, and (2) subspace
states, or more abstractly, any tokenized signature scheme [BDS16].

v Since M0 + M1 is the identity, M1 shares the same eigenvectors, with eigenvalue
1− p.
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Note the difference between classical and quantum oracles: a classical ora-
cle is a classical functionality that can be (superposition) queried in a black-
box way, while a quantum oracle is a quantum unitary operation used as a
black-box. It is more feasible to implement classical oracles heuristically con-
sidering existing candidates of (post-quantum) obfuscations for classical cir-
cuits [BDGM20]. Therefore our construction is a significant improvement from
the result in [Aar09].

A tokenized signature generates a signature token |sig〉 which we call a signing
token. A signer who gets one copy of the signing token can sign a single bit b of
her choice. Sign(b, |sig〉) outputs a classical signature whose correctness guarantee
is the same as classical signatures: namely, verification will accept the result as a
signature on b. Importantly, the signing procedure is a unitary and will produce
a superposition of all valid signatures of b; to obtain a classical signature, a
measurement to the state is necessary, leading to a collapse of the token state.
Thus, a signature token |sig〉 can only be used to produce one classical signature
of a single bit, and any attempt to produce a classical signature of the other
bit would fail. [BDS16] formalizes this idea and constructs a tokenized signature
scheme relative to a classical oracle (a subspace membership oracle).

The high-level idea of our copy-protection scheme is that it requires an au-
thorized user to query an oracle twice on signatures of bits 0 and 1. Let f be
the function we want to copy-protect. Define the following classical circuits:

O1(x, sig) =

{
H(x) if Ver(vk, 0, sig) = 1

⊥ otherwise
,

O2(x, sig) =

{
f(x)⊕H(x) if Ver(vk, 1, sig) = 1

⊥ otherwise
.

Here H is a random function. The copy-protected program of f is a signature
token |sig〉 and obfuscations of O1,O2, which we will heuristically treat as oracles
to O1,O2. We denote this program as (|sig〉 ,O1,O2).

To obtain f(x), a user has to query on signatures of both bits and get H(x)
and H(x) ⊕ f(x). Note that even if one can only produce one of the classical
signatures with token |sig〉, a user can still query both oracles O1,O2 multiple
times. To obtain H(x), a user can compute the superposition of all valid sig-
natures of 0 by applying a unitary and feed the quantum state together with x
to O1. It then measures the output register. The user never actually measures
the signature. Because the output register contains a unique output H(x), by
Gentle Measurement Lemma [Aar04], it can rewind the quantum state back to
|sig〉. Thus, our copy-protection scheme allows a copy-protected program to be
evaluated on multiple inputs multiple times.

We next show how to prove anti-piracy security. Let σ1, σ2 be two (potentially
entangled) program states pirated by an adversary, which makes oracle access
to both O1,O2 and breaks the anti-piracy security. Let O⊥ be an oracle that
always outputs ⊥. If σ1 never queries the oracle O2, we know the two programs
(σ1,O1,O2) and (σ1,O1,O⊥) will have identical output distributions. Moreover,
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(σ1,O1,O⊥) can be simulated even without querying f because O1 is simply a
random oracle (on valid inputs). Therefore, the program can be used to break
the unlearnability of f . Similarly, if σ2 never queries the oracle O1, the program
(σ2,O⊥,O2) can be used to break the unlearnability of f .

Since f is unlearnable, the above two cases can not happen. We show that
under this case, we can extract signatures of both 0 and 1. Intuitively, since
(σ1,O1,O2) makes queries to O2, we can run the program on random inputs and
measure a random query to O2, thereby extracting a signature of 1. Similarly, it
holds for (σ2,O1,O2) and one could extract a signature of 0. Unfortunately, this
intuition does not quite work since σ1 and σ2 are potentially entangled. It means
there can be correlations between the outcomes of the measurements producing
the two signatures: perhaps, if the measurement on (σ1,O1,O2) produces a valid
signature on 1, then the measurement on (σ2,O1,O2) is guaranteed to fail to
produce a signature. We show by a delicate argument that, in fact, adversaries
cannot cheat using such correlations. Intuitively, although σ1, σ2 are entangled,
we show there exists an efficient measurement: by applying this measurement
to (σ1, σ2), with non-negligible probability, the resulting programs (σ′1, σ

′
2) have

the following properties:

– They are both “good” programs. Thus, we can extract a signature of 1 in
σ′1.

– The resulting program σ′′2 after applying any measurement on σ′1 is still
“good”. Similarly, we can extract a signature of 0 in σ′′2 .

Note that the above argument does not directly work for the original programs
(σ1, σ2).

Our Copy-Detection Scheme. Inspired by [AP20], we propose a weaker defi-
nition called copy-detection, which has an additional checking procedure. A user
can publicly verify a program’s validity by running this checking procedure. The
security guarantees that, given one copy of the program, no adversary can pro-
duce two programs such that both programs pass the checking procedure and
both are ‘functionally correct’ (as in the copy-protection definition) — in other
words, honest users can always identify the pirate. Looking ahead, we note that
copy-detection is similar to secure software leasing (SSL, [AP20]), with the ma-
jor differences are (1) the checking procedure is public, (2) ‘functionally correct’
in the security of copy-detection is average-case while that in the security of SSL
is worst-case.

We construct a copy-detection scheme for any function family that can be
watermarked. A watermarking scheme roughly consists of the following proce-
dure: Mark takes a circuit and a message, and outputs a circuit embedded with
that mark; Extract takes a marked circuit and produces the embedded mark.
A watermarking scheme requires: (1) the watermarked circuit f̃ = Mark(f,m)
should preserve its intended functionality as f ; (2) any efficient adversary given
a marked f̃ , can not generate a new marked circuit with a different mark (or re-
move the mark) while preserving its functionality. Watermarking primitives have
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been studied in previous works, including [CHN+18, KW17, QWZ18, KW19,
GKM+19].

Our construction also requires a public key quantum money scheme. It con-
sists two procedures: a generation procedure and a verification procedure. The
generation procedure outputs a quantum banknote |$〉. Verification is public,
takes a quantum money banknote, and outputs either a (classical) serial number
of that banknote or ⊥ indicating it is an invalid banknote. The security requires
no efficient adversary could use a quantum banknote |$〉 to prepare two quan-
tum banknotes |$1〉 |$2〉 such that both banknotes pass the verification and their
serial numbers are equal to that of |$〉. We note that this version of quantum
money corresponds to a “mini-scheme” as defined by [AC12].

The copy-detection scheme takes a function f , samples a banknote |$〉 with
serial number s, lets f̃ ← Mark(f, s) and outputs a copy-detection program as
(f̃ , |$〉). To evaluate the function, it simply runs the classical program f̃ . To
check a program is valid, it extracts the serial number from the money state and
compares it with the mark of the program.

The security requires that no efficient adversary could produce f̃1, |$1〉 and
f̃2, |$2〉 such that two programs pass the check and both classical circuits preserve
the functionality. Let s be the serial number of |$〉, sb be the serial number of
|$b〉 for b = 1, 2. To pass the check, there are two possible cases:

– s1 = s2 = s. In this case, |$1〉 |$2〉 breaks the security of the quantum money
scheme because one successfully duplicates a banknote with the same serial
number.

– At least one of sb 6= s. Because the mark of f̃b is also equal to sb, one
of f̃b breaks the security of the watermarking scheme, as it preserves the
functionality, while having a different mark from s.

We show that the above construction and proof apply to a wide range of water-
marking primitives.

Copy-Protection in the Standard Model? The security of our copy-protection
scheme requires treating the obfuscated programs as oracles. While we prove se-
curity for all unlearnable programs, we cannot expect such security to hold in the
standard model: as shown in [AP20], there are unlearnable functions that can
not be copy-protected or even copy-detected. On the other hand, watermarkable
programs are a natural class of programs that are necessarily immune to the
style of counter-example of Barak et al. [BGI+01], on which the copy-protection
impossibility is based. Namely, the counter-example works by giving programs
that are unlearnable, but such that having any (even approximate [BP15]) code
for the program lets you recover the original program. Such programs cannot be
watermarkable, as the adversary can always recover the original program from
the (supposedly) watermarked program.

Thus, we broadly conjecture that all watermarkable functions can be copy-
protected. Our copy-detection result gives some evidence that this may be fea-
sible. Concretely, we conjecture that our copy-protection construction is secure
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for any watermarkable program when the oracles are instantiated with post-
quantum obfuscation constructions. We leave justifying either the broad or con-
crete conjectures as fascinating open questions.

1.3 Other Related Works

Quantum Copy Protection Quantum copy-protection was proposed by Aaron-
son in [Aar09]; this paper gave two candidate schemes for copy-protecting point
functions without security proofs and showed that any functions that are not
quantum learnable could be quantum copy-protected relative to a quantum or-
acle (an oracle which could perform an arbitrary unitary).

[AP20] gave a conditional impossibility of general copy-protection: they con-
struct a quantum unlearnable circuit using the quantum FHE scheme and compute-
and-compare obfuscation [WZ17, GKW17], which is not copy-protectable once
a QPT adversary has non-black-box access to the program. [AP20] also gave a
new definition that is weaker than the standard copy-protection security, called
Secure Software Leasing (SSL) and an SSL construction for a subclass of evasive
functions, namely, searchable compute-and-compare circuits.

[BL19] and [GZ20] introduced two new notions respectively, unclonable en-
cryption/ decryption schemes; [CMP20] gave a construction for copy-protecting
point functions in the quantum random oracle model with techniques inspired
by [BL19] and the construction can be extended to copy-protecting compute-
and-compare circuits. [BJL+21] then constructed information-theoretic SSL for
point functions.

1.4 Concurrent and Independent Work

Very recently, [KNY20] presents a secure software leasing for a subclass of evasive
functions and PRFs, using watermarking and two-tier quantum-lightning, which
can be built from the LWE assumption. Their main observation is that the full
power of public-key quantum money is not needed in the verification of SSL, and
they introduce a new primitive in between public-key and private-key quantum
money, which they call two-tier quantum lightning. While their construction can
be built from LWE alone, our construction aims at a more generalized definition
in terms of successful piracy and functionality-preserving; our copy detection
construction also works for a broader class of cryptographic functionalities such
as encryption and signature.

2 Preliminaries

We denote by λ the security parameter, and when inputted into an algorithm, λ
will be represented in unary. We say a function ε(x) is negligible if for all inverse
polynomials 1/p(x), ε(x) < 1/p(x) for all large enough x. We denote a negligible
function by negl(x). We use QPT to denote quantum polynomial time.
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2.1 Quantum Computation

Definition 1 (Trace distance). Let ρ, σ ∈ C2n×2n be the density matrices of
two quantum states. The trace distance between ρ and σ is

‖ρ− σ‖tr :=
1

2

√
Tr[(ρ− σ)†(ρ− σ)],

Here, we only state a key lemma for our construction: the Gentle Measure-
ment Lemma proposed by Aaronson [Aar04], which gives a way to perform mea-
surements without destroying the state.

Lemma 1 (Gentle Measurement Lemma [Aar04]). Suppose a measure-
ment on a mixed state ρ yields a particular outcome with probability 1− ε. Then
after the measurement, one can recover a state ρ̃ such that ‖ρ̃− ρ‖tr ≤

√
ε. Here

‖·‖tr is the trace distance (defined in Definition 1).

We give other basic definitions of quantum computation and quantum infor-
mation in the full version.

2.2 Quantum Oracle Algorithm

We consider the quantum query model in this work, which gives quantum circuits
access to some oracles.

Definition 2 (Classical Oracle). A classical oracle O on input query x is
a unitary transformation of the form Uf |x, y, z〉 → |x, y + f(x), z〉 for classical
function f : {0, 1}n → {0, 1}m. Note that a classical oracle can be queried in
quantum superposition.

In the rest of the paper, we refer to the word “oracle” as “classical oracle”. A
quantum oracle algorithm with oracle access to O is a sequence of unitary Ui
and oracle access to O (or Uf ). Thus, the query complexity of a quantum oracle
algorithm is defined as the number of O access.

In the analysis of the security of the copy-protection scheme in Section 5.2, we
will use the following theorem from [BBBV97] to bound the change in adversary’s
state when we change the oracle’s input-output behavior at places where the
adversary hardly ever queries on.

Theorem 1 ([BBBV97]). Let |φi〉 be the superposition of quantum Turing
machine M with oracle O on input x at time i. Define Wy(|φi〉) to be the sum
of squared magnitudes in |φi〉 of configurations of M which are querying the
oracle on string y. For ε > 0, let F ⊆ [0, T − 1] × Σ∗ be the set of time-string
pairs such that

∑
(i,y)∈F Wy(|φi〉) ≤ ε2/T .

Now suppose the answer to each query (i, y) ∈ F is modified to some arbitrary
fixed ai,y (these answers need not be consistent with an oracle). Let |φ′i〉 be the
superposition of M on input x at time i with oracle O modified as stated above.
Then ‖|φT 〉 − |φ′T 〉‖tr ≤ ε.
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2.3 Direct-Product Problem and Quantum Signature Tokens

In this section, we will define direct-product problems, which are key components
of the quantum signature token scheme by Ben-David and Sattath [BDS16] and
also our quantum copy-protection scheme.

Definition 3 (Dual Subspace). Given a subspace S of a vector space V , let
S⊥ be the orthogonal complement of S: the set of y ∈ V such that x · y = 0 for
all x ∈ S. It is not hard to show: S⊥ is also a subspace of V ; (S⊥)⊥ = S.

Definition 4 (Subspace Membership Oracles). A subspace membership or-
acle for a subspace A ⊆ Fn, denoted as UA, on input vector v, will output 1 if
v ∈ A, v 6= 0 and output 0 otherwise.

Definition 5 (Subspace State). For a subspace A ⊆ Fn, the state |A〉 is
defined as 1√

|A|

∑
v∈A |v〉, which is a uniform superposition of all vectors in A.

Direct-Product Problem Our construction relies on the following problem
called the “Direct-Product Problem” in [AC12]: for any QPT adversary A, given
one copy of |A〉 and oracle access to UA, UA⊥ , the problem is to finds two non-
zero vectors such that u ∈ A and v ∈ A⊥.

Ben-David and Sattath [BDS16] proved the hardness of the direct-product
problem for the construction of quantum signature tokens. More precisely, a
signature token is a subspace state |A〉 in their construction. All vectors in
A \ {0} are signatures for bit 0 and all vectors in A⊥ \ {0} are signatures for
bit 1. Therefore, to generate valid signatures for both 0 and 1, it is required to
solve the “Direct-Product Problem”. We believe that our copy-protection scheme
works for general signature token schemes. To keep the statements and proofs
simple, we focus on the construction in [BDS16].

Theorem 2 ([BDS16]). Let ε > 0 be such that 1/ε = o(2n/2). Let A be a
random subspace Fn, and dim(A) = n/2. Given one copy of |A〉 and access to
both subspace membership oracles of UA and UA⊥ , an adversary needs Ω(

√
ε2n/4)

queries to output a pair of non-zero vectors (u, v) such that u ∈ A and v ∈ A⊥
with probability at least ε.

We will refer to the direct-product problem as a security game, which is
defined as follows:

Definition 6 (Direct-Product Game). A direct-product game consists of the
following steps:

Setup Phase: the challenger takes in a security parameter λ, samples a random
λ/2-dimensional subspace A from Fλ; then prepares the membership oracle
UA for A, UA⊥ for the dual subspace A⊥ and a quantum state |A〉.

Query Phase: the challenger sends |A〉 to the adversary; the adversary can
query UA, UA⊥ for polynomially many times.

Output Phase: the adversary outputs two vectors (u, v).
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The challenger checks if u ∈ A \ {0}, v ∈ A⊥ \ {0}. If this is satisfied, then the
adversary wins the game.

Theorem 2 shows that for any QPT adversary, the winning probability of the
direct-product game is negligible.

2.4 Testing Quantum Programs: Measurement Implementation

In classical cryptographic security games, the challenger typically gets some
information from the adversary and checks if this information satisfies certain
properties.

However, in the quantum world, when a challenger tries to decide if a quan-
tum adversary has produced a state with certain properties, especially in the
context of security games for properties related to unclonability, classical defini-
tions of “testing properties” may result in various failures as discussed in [Zha20].
Such an issue has also been discussed in the introduction.

To deal with this issue, [Zha20] formalized a measurement procedure for
testing an adversary’s state. This is best understood with an example.

Consider a security game where the adversary needs to produce a state that
can decrypt a challenge ciphertext. First, the challenger’s behavior is abstracted
into the following:

– Encrypt a random message bit m to get c using randomness rand, note that
randomness rand is used to sample m and random coins for encryption;

– Run the adversary’s state on the resulting ciphertext c;
– Output 1 or 0 depending on whether the adversary’s state correctly decrypts

or not.

Fixing the ciphertext c, the procedure of outputting 1 or 0 depending on
whether the adversary’s state correctly decrypts c can be described as a projec-
tive measurement Pm,c = (Pm,c, Qm,c) where Pm,c corresponds to output 1, Qm,c
corresponds to output 0 and (Pm,c, Qm,c) can be efficiently implemented given
subscript m, c. The challenger uses m, c as a control to decide which projective
measurement to be applied to the state.

More generally, let R be the set of randomness, I be the control set (similar
to the role of m, c in the above example). Let D be a function from R to I. For
a uniform randomness rand, D(rand) defines a distribution over I. Therefore we
will use the word “distribution” for D in the rest of the discussion. For every
control (or index) i ∈ I, we have a projective measurement Pi = (Pi, Qi). Let
P = {Pi = (Pi, Qi)} be a collection of binary projective measurements. We
define a mixture of projective measurement PD as follows.

Definition 7 (Mixture of Projective Measurement PD). For P = {Pi, Qi}i∈I
and D : R → I, a mixture of projective measurement PD = (PD, QD) is a
POVM defined as the following:

PD =
∑
i∈I

Pr[i← D(R)]Pi, QD =
∑
i∈I

Pr[i← D(R)]Qi,

where R is a uniform random variable in R.

12



In other words, PD is implemented in the following way: sample randomness
rand ← R, compute index/control i ← D(rand) and apply projective measure-
ment Pi = (Pi, Qi).

Thus, for any quantum state ρ, Tr[PDρ] is the probability that a random
sampled projective measurement Pi = (Pi, Qi) (according to the distribution
D) applies on ρ and outputs 1.

Definition 8 (Projective Implementation). Let P = (P,Q) be a binary
outcome POVM. Let D be a finite set of distributions (p, 1 − p) over outcomes
{0, 1}. Let E = {Ep}(p,1−p)∈D be a projective measurement with index set D.
Consider the following measurement experiment:

– Measure under the projective measurement E and obtain a distribution (p, 1−
p) over {0, 1};

– Output a bit according to the distribution: output 1 with probability p and
output 0 with probability 1− p.

We say the measurement E is a projective implementation of P if the above
experiment and P produce identical outcomes on any quantum states. We denote
E by ProjImp(P).

Note that if the collapsed state is an eigenvector of P corresponding to eigen-
value p, then it is also an eigenvector of Q corresponding to eigenvalue 1− p.

Lemma 2 (A variation of Lemma 1 in [Zha20]). Any binary outcome
POVM P = (P,Q) has a unique projective measurement ProjImp(P).

In this work, we propose the following new definition corresponding to ProjImp.

Definition 9 (Threshold Implementation). A threshold implementation
with parameter γ of a binary POVM P = (P,Q) is a variant of projective im-
plementation ProjImp(P), denoted as (TIγ(P), I− TIγ(P)):

– Measure under the projective measurement E (ProjImp(P)) and obtain a dis-
tribution (p, 1− p) over {0, 1};

– Output a bit according to the distribution (p, 1− p): output 1 if p ≥ γ, or 0
otherwise.

Remark 1. For any quantum state ρ, the threshold implementation outputs 1
with probability Tr[TIγ(P)ρ], and 0 with probability 1− Tr[TIγ(P)ρ].

Remark 2. For a binary outcome measurement P = (P,Q), we usually say “per-
form measurement P on ρ” if P was performed on ρ. For example, if we say a
threshold implementation TI(PD) on a quantum state ρ outputs 1, we refer to
apply (TIγ(PD), I− TIγPD) on ρ and the outcome is 1.
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Approximating Projective Implementation Before describing the theorem
of the approximation algorithm, we give two definitions that characterize how
good an approximation projective implementation is, which were first introduced
in [Zha20].

Definition 10 (Shift Distance). For two distributions D0, D1, the shift dis-
tance with parameter ε is defined as ∆ε

Shift(D0, D1), which is the smallest quantity
δ such that for all x ∈ R:

Pr[D0 ≤ x] ≤ Pr[D1 ≤ x+ ε] + δ,

Pr[D1 ≤ x] ≤ Pr[D0 ≤ x+ ε] + δ.

For two real-valued measurementsM and N over the same quantum system,
the shift distance between M and N with parameter ε is defined as,

∆ε
Shift(M,N ) := sup

|ψ〉
∆ε

Shift (M(|ψ〉),N (|ψ〉)) .

Definition 11 ((ε, δ)-Almost Projective). A real-valued quantum measure-
ment M is said to be (ε, δ)-almost projective if for all quantum state |ψ〉, ap-
ply M twice in a row to |ψ〉, obtaining outcomes X and Y . Then we have
Pr[|X − Y | ≤ ε] ≥ 1− δ.

The following theorem gives a way to approximate any projective implemen-
tation:

Theorem 3 (Theorem 2 in [Zha20]). Let D be any probability distribution
over some control set I and P be a collection of projective measurements. For
any 0 < ε, δ < 1, there exists an algorithm of measurement APIε,δP,D that satisfies
the followings:

– ∆ε
Shift(APIε,δP,D,ProjImp(PD)) ≤ δ.

– APIε,δP,D is (ε, δ)-almost projective.

– The expected running time of APIε,δP,D is TP,D ·poly(1/ε, log(1/δ)) where TP,D
is the combined running time of D, the procedure mapping i to (Pi, Qi) and
the run-time of measurement (Pi, Qi).

3 Learning Game Definitions

In this section, we define unlearnability, copy-protection, copy-detection, and
watermarking with respect to a function family and a testing distribution.

We assume a function f is sampled uniformly at random from a function
family Fλ. To test the correctness of a quantum program (for computing f), it
samples an input x from a testing distribution Dλ, runs the quantum program
on x, and checks if the output is f(x).

We will give the generalized definitions (for unlearnability, copy-protection,
copy-detection, and watermarking) in the full version, which allow for more
general sampling procedures and functionality testing. Since our constructions
naturally extend to these settings, we leave all the discussions about definitions
and proofs in the full version of the paper.
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Definition 12 (Quantum Program with Classical Inputs and Outputs).
A quantum program with classical inputs is a pair of quantum state ρ and uni-
taries {Ux}x∈[N ] (where [N ] is the domain), such that the state of the program

evaluated on input x is equal to UxρU
†
x. To obtain an output, it measures the

first register of UxρU
†
x. Moreover, {Ux}x∈[N ] has a compact classical description

which means “applying Ux” can be efficiently computed given x.

Notation-wise, the input and output space N,M are functions of λ.

3.1 Unlearnability

First, we define γ-goodness testing with respect to a fixed function f and a
testing distribution D (over inputs).

Definition 13 (γ-Goodness Test with respect to f,D). Let (ρ, {Ux}x∈[N ])
be a quantum program for computing a classical function f : [N ]→ [M ]. Let D
be a testing distribution over the input space [N ].

– Define Px = (Px, Qx) be the following projective measurement:

• On input x, it runs Ux on the quantum state ρ;
• It measures whether the output register is equal to f(x); output 1 if yes,

and 0 otherwise.

Let P = {Px} be a collection of projective measurements.
– D is the distribution that samples an input: given randomness rand, output
x = D(rand).

– Let PD = (PD, QD) be the mixture of projective measurement defined in
Definition 7.

– We say a quantum program is tested γ-good with respect to f,D, if the
threshold implementation TIγ(PD) outputs 1.

We then define a learning game for a function family F and a set of test-
ing distribution D. Note that we assume for a fixed security parameter λ, f is
drawn uniformly at random from Fλ and the testing distribution Df is efficiently
sampleable given the description f .

Definition 14 (Learning Game for F ,D). A learning game for a function
family F = {Fλ : [N ] → [M ]}, a distribution family D = {Df}, a threshold

γ ∈ (0, 1), and an adversary A is denoted as LearningGameAF,D,γ(1λ), which
consists of the following steps:

1. Sampling Phase: At the beginning of the game, the challenger takes a
security parameter λ and samples a function f ← Fλ uniformly at random;

2. Query Phase: A then gets oracle access to f ;
3. Output Phase: Finally, A outputs a quantum program (ρ, {Ux}x∈[N ]).

The game outputs 1 if and only if the program is tested γ-good with respect to
f,Df .
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Definition 15 (Quantum Unlearnability of F with Testing Distribu-
tion D). A family of functions F with respect to D is called γ quantum un-
learnable if for any QPT adversary A, there exists a negligible function negl(·)
such that the following holds for all λ:

Pr
[
b = 1, b← LearningGameAF,D,γ(1λ)

]
≤ negl(λ)

3.2 Copy-Protection

Definition 16 (Quantum Copy-Protection). A quantum copy-protection
scheme for F ,D consists of the following procedures:

Setup(1λ) → sk: the setup algorithm takes in a security parameter λ in unary
and generates a secret key sk.

Generate(sk, f) → (ρf , {Uf,x}x∈[N ]): on input f ∈ Fλ and secret key sk, the
vendor generates a quantum program (ρf , {Uf,x}x∈[N ]).

Compute(ρf , {Uf,x}x∈[N ], x) → y: given a quantum program, a user can com-
pute the function f(x) on input x by applying Uf,x on ρf and measuring the
first register of the state.

Efficiency: Setup, Compute and Generate should run in poly(λ) time.
Correctness: There exists a negligible function negl(·) such that: all λ ∈ N,

every f ∈ Fλ, all sk← Setup(1λ), all (ρf , {Uf,x}x∈[N ])← Generate(sk, f), for
all x ∈ [N ], apply Uf,x on ρf and measure the first register, with probability
at least 1− negl(λ), the output is a fixed value zf,x; moreover, zf,x = f(x).

Security: The γ-anti-piracy security defined below.

Note that correctness ensures that the copy-protected program can be evaluated
polynomially many times.

Definition 17 (γ-Anti-Piracy Security Game). An anti-piracy security game
for F ,D and adversary A is denoted as CopyProtectionGameAF,D,γ(1λ), which
consists of the following steps:

1. Setup Phase: At the beginning of the game, the challenger takes a security
parameter λ and obtains a secret key sk← Setup(1λ).

2. Sampling Phase: A function f is sampled uniformly at random, f ← Fλ.
3. Query Phase: A makes a single query to the challenger and obtains a copy-

protection program for f : (ρf , {Uf,x}x∈[N ])← Generate(sk, f).
4. Output Phase: Finally, A outputs a (possibly mixed and entangled) state

σ over two registers R1, R2 and two sets of unitaries ({UR1,x}x, {UR2,x}x)
They can be viewed as programs P1 = (σ[R1], {UR1,x}x∈[N ]) and P2 = (σ[R2],
{UR2,x}x∈[N ]).

The game outputs 1 if and only if both programs P1,P2 are tested to be γ-good
with respect to f,Df .
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Definition 18 (γ-Anti-Piracy-Security). A copy-protection scheme for F
and D has γ-anti-piracy security, if for any QPT adversary A, there exists a
negligible function negl(·) such that the following holds for all λ ∈ N:

Pr
[
b = 1, b← CopyProtectionGameAF,D,γ(1λ)

]
≤ negl(λ) (1)

In the full version, we will show our new anti-piracy security implies previous
security, defined in [Aar09].

3.3 Copy-Detection

A copy-detection scheme is very similar to the copy-protection scheme, except it
has an additional procedure Check which applies a projective measurement and
checks if the quantum state is valid.

Definition 19 (Quantum Copy-Detection). A quantum copy-detection scheme
for F ,D consists of the following procedures:

Setup(1λ), Generate(sk, f) and Compute(ρf , {Uf,x}x∈[N ], x) are the same as those
in Definition 16, except Setup additionally samples a public key for Check.

Check(pk, ρf , {Uf,x}x∈[N ]) → b, ρ′: on input a quantum program, it applies a
binary projective measurement (P0, P1) on ρf that depends on {Uf,x}x∈[N ];
it outputs the outcome b and the leftover state ρ′.

Correctness (Generate): The same as the security of Definition 16.
Correctness (Check): For every efficient A, there exists a negligible func-

tion negl(·) such that, all λ ∈ N, (pk, sk) ← Setup(1λ), every f ∈ Fλ,
all (ρf , {Uf,x}x∈[N ]) ← Generate(sk, f), Check(pk, ρf , {Uf,x}x∈[N ]) outputs
1 with probability at least 1− negl(λ).

Security: The γ-copy-detection security defined below.

Definition 20 (γ-Copy-Detection Security Game). A copy-detection secu-
rity game for F ,D and adversary A is denoted as CopyDetectionGameAF,D,γ(1λ),
which consists of the following steps:

1. Setup Phase: At the beginning of the game, the challenger takes a security
parameter λ and obtains keys (pk, sk)← Setup(1λ).

2. Sampling Phase: A function f is sampled uniformly at random, f ← Fλ.
3. Query Phase: A makes a single query to the challenger and obtains a

quantum program for f : (ρf , {Uf,x}x∈[N ])← Generate(sk, f).
4. Output Phase: Finally, A outputs a (possibly mixed and entangled) state

σ over two registers R1, R2 and two sets of unitaries ({UR1,x}x, {UR2,x}x)
They can be viewed as programs P1 = (σ[R1], {UR1,x}x∈[N ]) and P2 = (σ[R2],
{UR2,x}x∈[N ]).

The game outputs 1 if and only if

17



– Apply Check on Pi respectively and both outcomes are 1. Let P ′i be the col-
lapsed program conditioned on outcomes are 1.

– Both programs P′1,P
′
2 are tested γ-good with respect to f,Df .

Definition 21 (γ-Copy-Detection-Security). A copy-detection scheme for
F ,D has γ-copy-detection security, if for any QPT adversary A, there exists a
negligible function negl(·) such that the following holds for all λ ∈ N:

Pr
[
b = 1, b← CopyDetectionGameAF,D,γ(1λ)

]
≤ negl(λ) (2)

3.4 Watermarking Primitives with Public Extraction

In this section, we formalize watermarking. We will give the generalized notations
in the full version.

Definition 22 (Watermarking Primitives for F ,D). A watermarking scheme
for F ,D consists of the following classical algorithms:

Setup(1λ): it takes as input a security parameter 1λ and outputs keys (xk,mk).
xk is the extracting key and mk is the marking key. We only consider the
publicly extractable watermarking schemes. Thus, xk is always public.

Mark(mk, f, τ): it takes a circuit f and a message τ ∈ Mλ, outputs a marked

circuit f̃ .
Extract(xk, f ′): it takes a circuit f ′ and outputs a message in {⊥} ∪Mλ.

It satisfies the following properties.

Definition 23 (Correctness of Mark (Functionality Preserving)). For
for every efficient algorithm A, there exists a negligible function negl, for all
(xk,mk)← Setup(1λ), and every τ ∈Mλ, all λ,

Pr

[
f̃(x) = f(x) :

f←Fλ
f̃←Mark(mk,f,τ)

x←Df

]
≥ 1− negl(λ).

Definition 24 (Correctness of Extract). For every efficient algorithm A, there
exists a negligible function negl(·), for all (xk,mk) ← Setup(1λ), and every
τ ∈Mλ, all λ,

Pr
[
τ 6= Extract(xk, f̃) :

f←Fλ
f̃←Mark(mk,f,τ)

]
≤ negl(λ).

Definition 25 (γ-Unremovability with respect to F ,D). Consider the
following game, denoted as WaterMarkingGameAF,D,γ :

1. Setup: The challenger samples (xk,mk)← Setup(1λ). A then gets xk.
2. Sampling Phase: A function f is sampled uniformly at random in Fλ.
3. Query Phase: A has classical access to Mark(mk, f, ·) at any time. Define

Q be the set of messages that A has queried on.
4. Output Phase: Finally, the algorithm outputs a circuit f∗.
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The adversary wins the game if and only if

Extract(xk, f∗) 6∈ Q ∧ Pr
x←Df

[f∗(x) = f(x)] ≥ γ

We say a watermarking scheme has γ-unremovability with respect to F ,D, if for
all QPT A, it wins the above game with negligible probability in λ.

Remark 3. Here, we only consider a weaker security notion where a quantum
adversary only has classical oracle access in the query phase. We claim it is
practical and good enough in most of the settings since the watermarking key mk
is only in the hands of the challenger: whenever adversary queries Mark(mk, f, ·),
the challenger can always measure this query.

Remark 4. Watermarking primitives should also satisfy ‘meaningfulness’ prop-
erty [GKM+19] but since we do not use this property in our construction, we
omit it here.

4 Approximating Threshold Implementation

By applying APIε,δP,D and checking if the outcome is greater than or smaller

than γ, we get a approximated threshold implementation ATIε,δP,D,γ . Here, we use

(ATIε,δP,D,γ , I− ATIε,δP,D,γ) to denote this binary POVM.
Theorem 3 gives the following theorem on approximating threshold imple-

mentation:

Theorem 4. For any ε, δ, γ,P, D, the algorithm of measurement ATIε,δP,D,γ that
satisfies the followings:

– For all quantum state ρ, Tr[ATIε,δP,D,γ−ε · ρ] ≥ Tr[TIγ(PD) · ρ]− δ.
– By symmetry, for all quantum state ρ, Tr[TIγ−ε(PD)·ρ] ≥ Tr[ATIε,δP,D,γ ·ρ]−δ.
– For all quantum state ρ, let ρ′ be the collapsed state after applying ATIε,δP,D,γ

on ρ (conditioned on outcome 1). Then, Tr[TIγ−2ε(PD) · ρ′] ≥ 1− 2δ.

– The expected running time is the same as APIε,δP,D.

Intuitively the theorem says that if a quantum state ρ has weight p on eigen-
vectors with eigenvalues at least γ, the measurement ATIε,δP,D,γ−ε with probability
at least p − δ will produce a collapsed state which has weight 1 − 2δ on eigen-
vectors with eigenvalues at least γ − 2ε. Also note that the running time is
proportional to poly(1/ε, 1/(log δ)), which is a polynomial in λ as long as ε is
any inverse polynomial and δ is any inverse sub-exponential function. The proof
of the above theorem is in the full version.

We can also consider approximating the measurements on a bipartite (pos-
sibly entangled) quantum state. In this case, we will prove a similar statement
as Theorem 4.
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Lemma 3. Let P1 and P2 be two collections of projective measurements and
D1 and D2 be any probability distributions defined on the index set of P1 and P2

respectively. For any 0 < ε, δ, γ < 1, the algorithms ATIε,δP1,D1,γ
and ATIε,δP2,D2,γ

satisfy the followings:

– For any bipartite (possibly entangled, mixed) quantum state ρ ∈HL ⊗HR,

Tr
[(

ATIε,δP1,D1,γ−ε ⊗ ATIε,δP2,D2,γ−ε
)
ρ
]
≥ Tr

[(
TIγ(PD1)⊗ TIγ(PD2)

)
ρ
]
− 2δ.

– For any (possibly entangled, mixed) quantum state ρ, let ρ′ be the collapsed

state after applying ATIε,δP1,D1,γ
⊗ ATIε,δP2,D2,γ

on ρ (and normalized). Then,

Tr
[(

TIγ−2ε(PD1
)⊗ TIγ−2ε(PD2

)
)
ρ′
]
≥ 1− 4δ.

We defer the proof of the above Lemma to the full version.

5 Quantum Copy-Protection Scheme

Let λ be the security parameter. Let F = {Fλ}λ∈N be a class of circuits. We
assume F is quantum unlearnable with respect to D (see Definition 15) and
can be computed by polynomial-sized classical circuits. The construction for
quantum copy-protection of function class Fλ is defined in Fig. 1.

Note that this construction works for general quantum unlearnable function
families as well. By simply changing the notation in the proof to that in the gen-
eral quantum unlearnability case, we prove it for general quantum unlearnable
function families. More discussion will be given in the full version.

Oracle Heuristics In practice we use a quantum-secure PRF [Zha12] to im-
plement function g; and we use quantum-secure (classical) VBB obfuscation to
implement each of (O1,O2, UA, UA⊥). We can replace VBB obfuscation programs
with oracles that only allow black-box access by the security of VBB obfusca-
tion; afterwards, we can also replace PRF g with a real random function by the
property of PRF. The heuristic analysis is straightforward and we omit them
here.

5.1 Correctness and Efficiency

Correctness For the quantum program
(
ρ = |A〉 〈A| , {Ux}x∈[N ]

)
produced by

the Generate algorithm, it performs the following computation:

1. Make an oracle query O1 on the state |0〉 |x〉 |A〉, the resulting state is sta-
tistically close to |y1〉 |x〉 |A〉. Note that |A〉 with overwhelming probabil-
ity 1 − 1/|A| contains a non-zero vector in A. It measures y1, which is
y1 = f(x)⊕ g(x).

2. It then prepares a state by applying QFT on the third register and the
resulting state is is statistically close to |0〉 |x〉

∣∣A⊥〉. It makes an oracle

query O2 on the state |0〉 |x〉
∣∣A⊥〉, the resulting state is statistically close to

|y2〉 |x〉
∣∣A⊥〉 where y2 = g(x).

Therefore, with overwhelming probability, the output is y1 ⊕ y2 = f(x).
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Setup(1λ)→ sk: The setup algorithm takes in security parameter 1λ.
– Pick a uniformly random subspace A ⊆ Fλ of dimension λ/2.
– Output sk = A, where A is described by a set of orthogonal basis

vectors.
Generate(sk, f ∈ Fλ): The Generate algorithm receives sk = A and a

function f from Fλ.
– Prepare a subspace state on n qubits corresponding to A, |A〉 =

1√
|A|

∑
v∈A |v〉.

– Generate oracles UA, UA⊥ which compute subspace membership
functions for subspace A and its dual subspace A⊥ respectively.

– Generate oracles O1,O2 such that

O1(x, v) =

{
f(x)⊕ g(x) if v ∈ A and v 6= 0,

⊥ otherwise.

O2(x, v) =

{
g(x) if v ∈ A⊥ and v 6= 0,

⊥ otherwise.

where g is a uniformly random function, with the same input and
output length as f .

– Finally, the Generate algorithm outputs a quantum program(
ρ = |A〉 〈A| , {Ux}x∈[N ]

)
, which describes the following proce-

dure:
• On input x, prepare the state |0〉 〈0| ⊗ |x〉 〈x| ⊗ ρ and make

an oracle query UA and measure the first register (output
register) to get y1; the remaining state is |x〉 〈x| ⊗ ρ′.

• Apply QFT on the third register ρ′ to get ρ′′.
• Prepare the state |0〉 〈0| ⊗ |x〉 〈x| ⊗ ρ′′ and make an oracle

query UA⊥ and measure the first register to get y2.
• Output y1 ⊕ y2.

The description of {Ux}x∈[N ] requires the oracle of UA, UA⊥ (or the
VBB obfuscations).

Fig. 1. Quantum copy-protection scheme.
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Efficiency In Generate algorithm, as shown in [AC12], given the basis of A,
the subspace state |A〉 can be prepared in polynomial time using QFT. For the
oracles O1,O2, it only needs to check the membership of A and A⊥ and compute
functions f and g. f can be prepared in polynomial time by definition. As we
discussed above, we can prepare the function g as a PRF. Therefore, the oracles
O1,O2 can be generated in polynomial time. The Compute algorithm is clearly
efficient.

5.2 Anti-Piracy Security

We show that for a quantum unlearnable families of functions F with respect to
D defined in Definition 15, the quantum copy-protection scheme has anti-piracy
security against any quantum polynomial-time adversaries. More formally:

Theorem 5 (Main Theorem). Let F be a function families that is γ-quantum-
unlearnable with respect to distribution D (γ is a non-negligible function of λ).
The above copy-protection scheme for F ,D has (γ(λ) − 1/poly(λ))-anti-piracy
security, for all polynomial poly.

In order to describe the quantum query behavior of quantum programs made
to oracles, we give the following definitions and notations.

We recall that in Definition 13, a QPT adversary A in the anti-piracy security
game CopyProtectionGameAF,D,γ(1λ), will produce a state σ over registers R1, R2

and unitaries {UR1,x}x∈[N ], {UR2,x}x∈[N ], the challenger will then perform γ-
goodness test on σ using threshold implementations TIγ(PR1,f ) and TIγ(PR2,f ).
For simplicity we will describe the unitary ensembles {UR1,x}x∈[N ], {UR2,x}x∈[N ]

as UR1
, UR2

and describe threshold implementations TIγ(PR1,f ), TIγ(PR2,f ) as
TIR1,γ ,TIR2,γ . Similarly, let ATIR1,γ−ε and ATIR2,γ−ε denote the approximation

threshold implementation ATIε,δR1,γ−ε and ATIε,δR2,γ−ε respectively, for some inverse
polynomial ε and inverse subexponential function δ (in other words, log(1/δ) is
polynomial in λ).

In this particular construction, A’s behavior can be described as follows:
A “splits” the copy-protection state ρ into two potentially entangled states
σ[R1], σ[R2]. A prepares (σ[R1], UR1

) with oracle access to (O1,O2) as pirate
program P1; and prepares (σ[R2], UR2) with oracle access (O1,O2) as pirate pro-
gram P2. Therefore, TIRb,γ and ATIRb,γ−ε both make oracle queries to O1,O2.

We can assume the joint state of R1, R2 has been purified and the overall
state is a pure state over register R1, R2, R3 where P1 has only access to R1 and
P2 has only access to R2.

Quantum Query Weight Let σ be any quantum state of R1, R2, R3. We
consider the program P1. P1 has access to register R1 and oracle access to O =
(O1,O2). We denote |φi〉 to be the overall state of registers R1, R2, R3 before P1

makes i-th query to O1, when it applies ATIR1,γ−ε on σ[R1].

|φi〉 =
∑
x,v,z

αx,v,z |x, v, z〉 .
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where (x, v) is the query to oracle O1 and z is working space of P1, the registers
of R2, R3. Note that when ATIR1,γ−ε is applied on σ[R1], it in fact applies some
unitary and eventually makes a measurement, during which the unitary makes
queries to oracles O1,O2. Therefore such a query weight is well-defined.

We denote by W1,A,i to be the sum of squared amplitudes in |φi〉, which are
querying O1 on input (x, v) such that v ∈ A \ {0}:

W1,A,i =
∑

x,v,z:v∈A\{0}

|αx,v,z|2

Then we sum up all the squared amplitudes W1,A,i in all the queries made
by P1 to O1, where v ∈ A \ {0}. We denote this sum as W1,A =

∑
i∈[`1]W1,A,i,

where `1 = `1(λ) is the number of queries made by P1 to O1.

Similarly, we writeW1,A⊥ =
∑
i∈[`2]W1,A⊥,i =

∑
i∈[`2]

∑
x,v,z:v∈A⊥\{0} |αx,v,z|

2

to be the sum of squared amplitudes in |φi〉 where v ∈ A⊥ \{0}, in the `2 queries
made by P1 to O2.

Accordingly, for the other program P2 and threshold implementation ATIR2,γ−ε,
we denote these sums of squared amplitudes as W2,A =

∑
i∈[m1]

W2,A,i and

W2,A⊥ =
∑
i∈[m2]

W2,A⊥,i, where m1,m2 are the number of queries made by P2

to oracles O1,O2 respectively.

Case One. Fixing a function f , let (σ, UR1 , UR2) be the two programs output
by the adversary which are both tested γ-good with respect to f,Df with some
non-negligible probability.

Let O⊥ be an oracle that always outputs ⊥. We hope one of the following
events will happen:

1. The program (σ[R1], UR1
) with oracle access toO1,O⊥ is tested (γ−2ε)-good

with respect to f,Df , with non-negligible probability.
2. The program (σ[R2], UR2) with oracle access toO⊥,O2 is tested (γ−2ε)-good

with respect to f,Df , with non-negligible probability.

Let ÃTIR1,γ−ε be the same as ATIR1,γ−ε except with oracle access to O1,O⊥
and ÃTIR2,γ−ε be the same as ATIR2,γ−ε except with oracle access to O⊥,O2.

Similarly, let T̃IRb,γ−2ε be the same threshold implementation as TIRb,γ−2ε except
with oracle access to O1,O⊥ and O⊥,O2 respectively.

Since (σ[R1], UR1
) and (σ[R2], UR2

) are both γ-good with respect to f,Df
with non-negligible probability, for some non-negligible function β(·),

Tr[(TIR1,γ ⊗ TIR2,γ) · σ] ≥ β(λ)

From the property of the approximated threshold implementation (Lemma 3),

Tr[(ATIR1,γ−ε ⊗ ATIR2,γ−ε) · σ] ≥ β(λ)− 2δ

Thus, for any b ∈ {1, 2}, we have Tr[ATIRb,γ−ε · σ[Rb]] ≥ β(λ) − 2δ. Since δ is
negligible, both probabilities are still non-negligible.

We then define the following two events:

23



E1 : Let E1 be the event denotes Tr[ÃTIR1,γ−ε · σ[R1]] is non-negligible. If E1

happens, by Theorem 4,

Tr
[
T̃IR1,γ−2ε · σ[R1]

]
≥ Tr

[
ÃTIR1,γ−ε · σ[R1]

]
− δ

which is still non-negligible. In other words, (σ[R1], UR1
) with oracle access

to O1,O⊥ is tested (γ − 2ε)-good with respect to f,Df with non-negligible
probability.

E2 : Similarly, define E2 as the program (σ[R2], UR2
) with oracle access toO⊥,O2

is (γ − 2ε)-good with respect to f,Df with non-negligible probability.

Case Two. Fixing a function f , let (σ, UR1
, UR2

) be the two programs output by
the adversary which are both γ-good with respect to f,Df , with non-negligible
probability.

If E1 ∨ E2 does not happen, we are in the case Ē1 ∧ Ē2. By definition, there
exist negligible functions negl1, negl2 such that

Tr
[
ÃTIR1,γ−ε · σ[R1]

]
≤ negl1(λ), Tr

[
ÃTIR2,γ−ε · σ[R2]

]
≤ negl2(λ).

We look at the following thought experiments:

1. We apply ATIR1,γ−ε ⊗ ATIR2,γ−ε on σ, by Lemma 3, there exists a non-
negligible function β(·) such that

Tr [(ATIR1,γ−ε ⊗ ATIR2,γ−ε) · σ] ≥ β(λ)− 2δ.

2. We apply ATIR1,γ−ε ⊗ ÃTIR2,γ−ε on σ. We have,

Tr
[
(ATIR1,γ−ε ⊗ ÃTIR2,γ−ε) · σ

]
≤ Tr

[
(I ⊗ ÃTIR2,γ−ε) · σ

]
≤ negl2(λ).

3. Note that in 1 and 2, the only difference is the oracle access: in 1, it has oracle
access to O1,O2; in 2, it has oracle access to O⊥,O2. Let σ′ be the state
which we apply (ATIR1,γ−ε⊗I) on σ and obtain a outcome 1, which happens
with non-negligible probability. Let W2,A be the query weight defined on the
state σ′. We know that W2,A can not be negligible otherwise by Theorem 1
(BBBV), the probability difference in 1 and 2 can not be non-neglibile.
Define MR2

be the operator that measures a random query of ATIR2,γ−ε to
O1 and the query (x, v) satisfies v ∈ A \ {0}. By the above discussion, there
exists a non-negligible function β1(·),

Tr [(ATIR1,γ−ε ⊗MR2) · σ] ≥ β1(λ).

4. We apply ÃTIR1,γ−ε ⊗MR2 on σ. We have,

Tr
[
(ÃTIR1,γ−ε ⊗MR2) · σ

]
≤ Tr

[
(ÃTIR1,γ−ε ⊗ I) · σ

]
≤ negl1(λ).
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5. By a similar argument of 3, let MR1
be the operator that measures a random

query of ATIR1,γ−ε to O2 and the query (x, v) satisfies v ∈ A⊥ \ {0}. There
exists a non-negligible function β2(·),

Tr [(MR1
⊗MR2

) · σ] ≥ β2(λ).

Thus, in the case, one can extract a pair of vectors (u, v) ∈ (A\{0})×(A⊥ \{0})
with non-negligible probability. To conclude it, we have the following lemma,

Lemma 4. Fixing a function f , let (σ, UR1 , UR2) be the two programs output
by the adversary which are both γ-good with respect to f,Df , with non-negligible
probability. If E1 ∨ E2 does not happen, by randomly picking and measuring a
query of ATIR1,γ−ε to O2 and a query of ATIR2,γ−ε to O1, one can obtain a pair
of vectors (u, v) ∈ (A \ {0})× (A⊥ \ {0}) with non-negligible probability.

Then we show a reduction to violate unlearnability in case of E1 or E2 and
a reduction to violate direct product hardness in case of Ē1 ∧ Ē2. We have the
following lemmas:

Lemma 5. Let Pr[E1] be the probability of E1 taken over all randomness of
CopyProtectionGameAF,D,γ(1λ). If Pr[E1] is non-negligible, there exists an adver-

sary A1 that wins LearningGameA1

F,D,γ−2ε(1
λ) with non-negligible probability.

Proof. The challenger in the copy-protection security game plays as the quantum
unlearnability adversary A1 for function f ← F , given only black-box access to
f ; we denote this black box as oracle Of , which on query |x, z〉, answers the
query with |x, f(x) + z〉.

Next, we show that A1 can simulate the copy-protection security game for
A using the information given and uses A to quantumly learn f . A1 samples
random λ/2-dimensional subspace A over F and prepares the membership oracles
(two unitaries) UA, U

⊥
A as well as state |A〉.

Using UA, U
⊥
A and given oracle access to f in the unlearnability game, A1

simulates the copy-protection oracles O1,O2 for A in the query phase of anti-
piracy game.

There is one subtlety in the proof: A1 needs to simulate the oracles in the
anti-piracy game slightly differently: A1 simulates the oracles with their func-
tionalities partially swapped:

O′1(x, v) =

{
g(x) if v ∈ A and v 6= 0,

⊥ otherwise.

O′2(x, v) =

{
f(x)⊕ g(x) if v ∈ A⊥ and v 6= 0,

⊥ otherwise.

That is, a random function g(x) is output when queried on u ∈ A \ {0}, and
f(x)⊕g(x) is output when queried on u ∈ A⊥ \{0}. The distributions of O1,O2

and O′1,O′2 are identical. Note that g(x) can be simulated by a quantum secure
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PRF or a 2t-wise independent hash function where t is the number of oracle
queries made by A [Zha12].

In the output phase, A outputs (σ, UR1 , UR2) and sends to A1. A1 simply
outputs (σ[R1], UR1) with oracle access to O′1,O⊥. The program does not need
access to oracle f because O′1 is only about g(·) and O⊥ is a dummy oracle. If
E1 happens, the program is a (γ − 2ε)-good with non-negligible probability, by
the definition of E1. Because Pr[E1] is also non-negligible, A1 breaks (γ − 2ε)-
quantum-unlearnability of F ,D. ut

Lemma 6. Let Pr[E2] be the probability of E2 taken over all randomness of
CopyProtectionGameAF,D,γ(1λ). If Pr[E2] is non-negligible, there exists an adver-

sary A2 that wins LearningGameA2

F,D,γ−2ε(1
λ) with non-negligible probability.

Proof (Proof Sketch). The proof is almost identical to the proof for Lemma 6
except oracles O1,O2 are simulated in the same way as that in the construction.
O1(x, v) outputs f(x)⊕ g(x) if v ∈ A \ {0}, and otherwise outputs ⊥. Similarly,
O2(x, v) outputs g(x) if v ∈ A⊥ \ {0}, and otherwise outputs ⊥ ut

As discussed above, if Pr[E1∨E2] is non-negligible, we can break the quantum
unlearnability. Otherwise, Pr[Ē1∧ Ē2] is overwhelming. We show that in the case,
one can use the adversary A to break the direct-product problem Theorem 2.

Lemma 7. Let Pr[Ē1 ∧ Ē2] be the probability taken over all randomness of the
game CopyProtectionGameAF,D,γ(1λ). If Pr[Ē1 ∧ Ē2] is non-negligible, there exists
an adversary A3 that breaks the direct-product problem.

Proof. The challenger in the copy-protection security game plays as the adver-
sary in breaking direct-product problem, denoted as A3. In the reduction, A3 is
given the access to membership oracles UA, U

⊥
A and one copy of |A〉.

Next, we show that A3 can simulate the anti-piracy security game for A using
the information given and uses A to obtain the two vectors. A3 samples f ← F ,
and simulates a γ-anti-piracy game, specifically simulating the copy-protection
oracle O1,O2 for adversary A. In the output phase, A outputs (σ, UR1 , UR2).
A1 upon taking the output, it randomly picks and measures a query of

ATIR1,γ−ε to O2 and a query of ATIR2,γ−ε to O1, and obtain a pair of vec-
tors (u, v). If Ē1 ∧ Ē2 happens. By Lemma 4, (u, v) breaks the direct-product
problem with non-negligible probability. Since Pr[Ē1 ∧ Ē2] is non-negligible, the
overall probability is non-negligible. ut

Note that the proof does not naturally extend to q-collusion resistant anti-
piracy. We leave this as an interesting open problem.

6 Quantum Copy-Detection

6.1 Construction

We construct a copy-detection scheme for a watermarkable function family F
with respect to an input distribution D. Let QM and WM be a public key quan-
tum money scheme and a publicly extractable watermarking scheme for F ,D,
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whose serial number space Sλ of QM is a subset of the message space Mλ of
WM. We construct a copy-detection scheme in Fig. 2. The definition of quantum
money schemes, our general scheme and full proofs are in the full version of this
paper.

Setup(1λ): it runs WM.Setup(1λ) to get xk,mk, let sk = mk and pk = xk.
Generate(sk, f):

– it runs QM.Gen(1λ) to get a money state |$〉 and a serial number
s (by applying QM.Ver to the banknote);

– let f̃ = WM.Mark(mk, f, s) which is classical;

– it outputs the quantum state ρf = (f̃ , |$〉), and {Uf,x}x∈[N ];
– let {Uf,x}x∈[N ] describe the following unitary: on input a quantum

state ρ, treat the first register as a classical function g, compute
g(x) in superposition.

Check(pk, (ρf , {Uf,x}x∈[N ])):
– it parses and measures the first register, which is (f ′, |$′〉);
– it checks if QM.Ver(|$′〉) is valid and it gets the serial number s′;
– it then checks if s′ = WM.Extract(pk = xk, f ′);
– if all the checks pass, it outputs 1; otherwise, it outputs 0.

Fig. 2. Quantum copy-detection scheme.

6.2 Efficiency and Correctness

First, for all λ ∈ N, all efficient A, every f ∈ Fλ, the copy-detection program
is (ρf , {Uf,x}x∈[N ]). We have Compute(ρf , {Uf,x}x∈[N ], x) = f̃(x), where f̃ =
WM.Mark(mk, f, s) for some serial number s. From the correctness of WM, it
satisfies the correctness of copy-detection.

The correctness of Check comes from the correctness of WM.Extract and
unique serial number property of QM. Check is a projection since QM.Ver is
also a projection. Efficiency is straightforward.

6.3 Security

Theorem 6. Assume QM is a quantum money scheme and WM is a watermark-
ing scheme for F ,D with γ-unremovability, the above copy-detection scheme for
F ,D has γ-copy-detection-security.

Proof. Let A be a QPT algorithm that tries to break the security of the copy-
detection scheme. Let (σ, UR1

, UR2
) be the programs output by A which wins

the game CopyDetectionGameAF,D,γ . To win the game, the program (σ, UR1
, UR2

)
should pass the following two tests:
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1. Apply the projective measurement (defined by Check(pk, ·)) on both σ[R1]
and σ[R2], and both outcomes are 1.

2. Let σ′ be the state that passes step 1. Then both programs (σ′[R1], UR1
),

(σ′[R2], UR2
) are tested to be γ-good with non-negligible probability.

In our construction, Check first measures the program registers. The resulting
state is f̃1, f̃2, σ, where f̃1, f̃2 are supposed to be classical (marked) circuits
that computes f and σ are (possibly entangled) states that are supposed to be
quantum money state for each of the program.

Next, Check applies QM.Ver on both registers of σ and computes serial num-
bers. Define Sb be the random variable of QM.Ver applying on σ[Rb] represent-
ing the serial number of ρb, for b = 1, 2. Define S be the random variable of
QM.Ver(|$〉) representing the serial number of the quantum money state in the
Generate procedure.

Define E be the event that both WM.Extract(xk, f̃b) = Sb and at least one of
S1, S2 is not equal to S. Define E′ be the event that both S1, S2 are equal to S
and both WM.Extract(xk, f̃b) = Sb. If f̃1, f̃2, σ passes the step 1, exactly one of
E and E′ happens.

In step 2, it simply tests if f̃1 and f̃2 are γ-good with respect to f,Df . Since

f̃1, f̃2 are classical circuits, it is equivalent to check whether they work correctly
on at least γ fraction of all inputs. If it passes step 2, we have for all b ∈ {1, 2},
Prx←Dλ [f̃b(x) = f(x)] ≥ γ.

Therefore, the probability of A breaks the security game is indeed,

Pr
(f̃1,f̃2,σ)

[
(E ∨ E′) ∧ ∀b, Pr

x←Dλ
[f̃b(x) = f(x)] ≥ γ

]
≤ Pr

(f̃1,f̃2,σ)

[
E ∧ ∀b, Pr

x←Dλ
[f̃b(x) = f(x)] ≥ γ

]
+ Pr

(f̃1,f̃2,σ)
[E′]

Note that the probability is taken over the randomness of CopyDetectionGameAF,D,γ .
Next we are going to show both probabilities are negligible, otherwise we can
break the quantum money scheme or watermarking scheme.

Claim 1. Pr(f̃1,f̃2,σ)[E
′] ≤ negl(λ).

Proof. It corresponds to the security game of the quantum money scheme. As-
sume Pr[E′] is non-negligible, we can construct an adversary B for the quantum
money scheme with non-negligible advantage. Given a quantum money state |$〉,
the algorithm B simulates the challenger for the copy-detection game and can
successfully ‘copy’ a money state. ut

Claim 2. Pr(f̃1,f̃2,σ)

[
E ∧ ∀b,Prx←Dλ [f̃b(x) = f(x)] ≥ γ

]
≤ negl(λ).

Proof. It corresponds to the security game of the underlying watermarking
scheme. Since if E happens, at least one of the circuit has different mark than s
and it satisfies the correctness requirement. ut

Thus, the probability of A breaks the game is negligible. ut
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