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Abstract. We carry out the first provable security analysis of the new
FIDO2 protocols, the promising FIDO Alliance’s proposal for a standard
for passwordless user authentication. Our analysis covers the core com-
ponents of FIDO2: the W3C’s Web Authentication (WebAuthn) specifi-
cation and the new Client-to-Authenticator Protocol (CTAP2).
Our analysis is modular. For WebAuthn and CTAP2, in turn, we propose
appropriate security models that aim to capture their intended security
goals and use the models to analyze their security. First, our proof con-
firms the authentication security of WebAuthn. Then, we show CTAP2
can only be proved secure in a weak sense; meanwhile, we identify a series
of its design flaws and provide suggestions for improvement. To with-
stand stronger yet realistic adversaries, we propose a generic protocol
called sPACA and prove its strong security; with proper instantiations,
sPACA is also more efficient than CTAP2. Finally, we analyze the overall
security guarantees provided by FIDO2 and WebAuthn+sPACA based
on the security of their components.
We expect that our models and provable security results will help clarify
the security guarantees of the FIDO2 protocols. In addition, we advocate
the adoption of our sPACA protocol as a substitute for CTAP2 for both
stronger security and better performance.

1 Introduction

Motivation. Passwords are pervasive yet insecure. According to some stud-
ies, the average consumer of McAfee has 23 online accounts that require a
password [17], and the average employee using LastPass has to manage 191
passwords [22]. Not only are the passwords difficult to keep track of, but it is
well-known that achieving strong security while relying on passwords is quite
difficult (if not impossible). According to the Verizon Data Breach Investiga-
tions Report [34], 81% of hacking-related breaches relied on either stolen and/or
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weak passwords. What some users may consider an acceptable password, may
not withstand sophisticated and powerful modern password cracking tools. More-
over, even strong passwords may fall prey to phishing attacks and identity fraud.
According to Symantec, in 2017, phishing emails were the most widely used
means of infection, employed by 71% of the groups that staged cyber attacks [31].

An ambitious project which tackles the above problem is spearheaded by the
Fast Identity Online (FIDO) Alliance. A truly international effort, the alliance
has working groups in the US, China, Europe, Japan, Korea and India and
has brought together many companies and types of vendors, including Amazon,
Google, Microsoft, Apple, RSA, Intel, Yubico, Visa, Samsung, major banks, etc.

The goal is to enable user-friendly passwordless authentication secure against
phishing and identity fraud. The core idea is to rely on security devices (con-
trolled via biometrics and/or PINs) which can then be used to register and
later seamlessly authenticate to online services. The various standards defined
by FIDO formalize several protocols, most notably Universal Authentication
Framework (UAF), the Universal Second Factor (U2F) protocols and the new
FIDO2 protocols: W3C’s Web Authentication (WebAuthn) and FIDO Alliance’s
Client-to-Authenticator Protocol v2.0 (CTAP25).

FIDO2 is moving towards wide deployment and standardization with great
success. Major web browsers including Google Chrome and Mozilla Firefox have
implemented WebAuthn. In 2018, Client-to-Authenticator Protocol (CTAP)6

was recognized as international standards by the International Telecommuni-
cation Union’s Telecommunication Standardization Sector (ITU-T). In 2019,
WebAuthn became an official web standard. Also, Android and Windows Hello
earned FIDO2 Certification. Although the above deployment is backed-up by
highly detailed description of the security goals and a variety of possible attacks
and countermeasures, these are informal [21].

Our Focus. We provide the first provable security analysis of the FIDO2 pro-
tocols. Our focus is to clarify the formal trust model assumed by the protocols,
to define and prove their exact security guarantees, and to identify and fix po-
tential design flaws and security vulnerabilities that hinder their widespread use.
Our analysis covers the actions of human users authorizing the use of credentials
via gestures and shows that, depending on the capabilities of security devices,
such gestures enhance the security of FIDO2 protocols in different ways. We
concentrate on the FIDO2 authentication properties and leave the study of its
arguably less central anonymity goals for future work.

Related Work. Some initial work in this direction already exists. Hu and
Zhang [25] analyzed the security of FIDO UAF 1.0 and identified several vul-
nerabilities in different attack scenarios. Later, Panos et al. [32] analyzed FIDO
UAF 1.1 and explored some potential attack vectors and vulnerabilities. How-
ever, both works were informal. FIDO U2F and WebAuthn were analyzed using
the applied pi-calculus and ProVerif tool [23,27,33]. Regarding an older version

5 The older version is called CTAP1/U2F.
6 CTAP refers to both versions: CTAP1/U2F and CTAP2.
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of FIDO U2F, Pereira et al. [33] presented a server-in-the-middle attack and Ja-
comme and Kremer [27] further analyzed it with a structured and fine-grained
threat model for malware. Guirat and Halpin [23] confirmed the authentication
security provided by WebAuthn while pointed out that the claimed privacy prop-
erties (i.e., account unlinkability) failed to hold due to the same attestation key
pair used for different servers.

However, none of the existing work employs the cryptographic provable secu-
rity approach to the FIDO2 protocols in the course of deployment. In particular,
there is no analysis of CTAP2, and the results for WebAuthn [27] are limited in
scope: as noted by the authors themselves, their model “makes a number of sim-
plifications and so much work is needed to formally model the complete protocol
as given in the W3C specification”. The analysis in [27] further uses the symbolic
model (often called the Dolev-Yao model [18]), which captures weaker adversar-
ial capabilities than those in computational models (e.g., the Bellare-Rogaway
model [10]) employed by the provable security approach we adopt here.

The works on two-factor authentication (e.g., [16,29]) are related to our work,
but the user in such protocols has to use the password and the two-factor device
during each authentication/login. With FIDO2, there is no password during user
registration or authentication. The PIN used in FIDO2 is meant to authorize a
client (e.g., a browser) access to an authenticator device (e.g., an authentication
token); the server does not use passwords at all.7 Some two-factor protocols can
also generate a binding cookie after the first login to avoid using the two-factor
device or even the password for future logins. However, this requires trusting
the client, e.g., a malicious browser can log in as the user without having the
two-factor device (or the password). FIDO2 uses the PIN to prevent an attacker
with a stolen device from authenticating to a server from a new client.

Our work is not directly applicable to federated authentication protocols such
as Kerberos, OAuth, or OpenID. FIDO2 allows the user to keep a single hardware
token that it can use to authenticate to multiple servers without having to use
a federated identity. The only trust anchor is an attestation key pair for the
token. To the best of our knowledge, there are no complete and formal security
models for federated authentication in the literature, but such models would
differ significantly from the ones we consider here. It is interesting to see how
FIDO2 and federated authentication can be used securely together; we leave this
as an interesting direction for future work. Our work could, however, be adapted
to analyze some second-factor authentication protocols like Google 2-step [2].

FIDO2 Overview. FIDO2 consists of two core components (see Fig. 1 for the
communication channels and Fig. 2 for the simplified FIDO2 flow).

WebAuthn is a web API that can be built into browsers to enable web appli-
cations to integrate user authentication. At its heart, WebAuthn is a password-
less “challenge-response” scheme between a server and a user. The user relies
on a trusted authenticator device (e.g., a security token or a smartphone) and
a possibly untrusted client (e.g., a browser or an operating system installed on

7 Some form of prior user authentication method is required for registration of a new
credential, but this is a set-up assumption for the protocol.
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Fig. 2. FIDO2 flow (simplified): double arrow = CTAP2 authorized message.

the user’s laptop). Such a device-assisted “challenge-response” scheme works as
follows (details in Section 5). First, in the registration phase, the server sends
a random challenge to the security device through the client. In this phase, the
device signs the challenge using its long-term embedded attestation secret key,
along with a new public key credential to use in future interactions; the credential
is included in the response to the server. In the subsequent interactions, which
correspond to user authentication, the challenge sent by the server is signed by
the device using the secret key corresponding to the credential. In both cases,
the signature is verified by the server.

The other FIDO2 component, CTAP2, specifies the communication between
an authenticator device and the client (usually a browser). Its goal is to guar-
antee that the client can only use the authenticator with the user’s permission,
which the user gives by 1) entering a PIN when the authenticator powers up
and 2) directly using the authenticator interface (e.g., a simple push-button)
to authorize registration and authentication operations. CTAP2 specifies how to
configure an authenticator with a user’s PIN. Roughly speaking, its security goal
is to “bind” a trusted client to the set-up authenticator by requiring the user
to provide the correct PIN, such that the authenticator accepts only messages
sent from a “bound” client. We remark that, surprisingly, CTAP2 relies on the
(unauthenticated) Diffie-Hellman key exchange. The details are in Section 7.

Our Contributions. We perform the first thorough cryptographic analysis of
the authentication properties guaranteed by FIDO2 using the provable security
approach. Our analysis is conducted in a modular way. That is, we first ana-
lyze WebAuthn and CTAP2 components separately and then derive the overall
security of a typical use of FIDO2. We note that our models, although quite
different, follow the Bellare-Rogaway model [10] that was proposed to analyze
key exchange protocols, which defines oracle queries to closely simulate the real-
world adversarial abilities. Its extensions (like ours) have been widely used to
analyze real-world protocols such as TLS 1.3 [13,19], Signal [14], etc.

Provable security of WebAuthn. We start our analysis with the simpler base
protocol, WebAuthn. We define the class of passwordless authentication (PlA)
protocols that capture the syntax of WebAuthn. Our PlA model considers an
authenticator and a server (often referred to as a relying party) communicating
through a client, which consists of two phases. The server is assumed to know
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the attestation public key that uniquely identifies the authenticator. In the reg-
istration phase the authenticator and the server communicate with the intention
to establish some joint state corresponding to this registration session: this joint
state fixes a credential, which is bound to the authenticator’s attestation public
key vk and a server identity idS (e.g., a server domain name). The server gets
the guarantee that the joint state is stored in a specific authenticator, which is
assumed to be tamper-proof. The joint state can then be used in the authentica-
tion phase. Here, the authenticator and the server engage in a message exchange
where the goal of the server is to verify that it is interacting with the same
authenticator that registered the credential bound to (vk, idS).

Roughly speaking, a PlA protocol is secure if, whenever an authentica-
tion/registration session completes on the server side, there is a unique part-
nered registration/authentication session which completed successfully on the
authenticator side. For authentication sessions, we further impose that there is a
unique associated registration session on both sides, and that these registration
sessions are also uniquely partnered. This guarantees that registration contexts
(i.e., the credentials) are isolated from one another; moreover, if a server session
completes an authentication session with an authenticator, then the authentica-
tor must have completed a registration session with the server earlier. We use the
model thus developed to prove the security of WebAuthn under the assumption
that the underlying hash function is collision-resistant and the signature scheme
is unforgeable. Full details can be found in Section 5.

Provable security of CTAP2. Next we study the more complex CTAP2 proto-
col. We define the class of PIN-based access control for authenticators (PACA)
protocols to formalize the general syntax of CTAP2. Although CTAP2 by its
name may suggest a two-party protocol, our PACA model involves the user as
an additional participant and therefore captures human interactions with the
client and the authenticator (e.g., the user typing its PIN into the browser win-
dow or rebooting the authenticator). A PACA protocol runs in three phases
as follows. First, in the authenticator setup phase, the user “embeds” its PIN
into the authenticator via a client and, as a result, the authenticator stores a
PIN-related long-term state. Then, in the binding phase, the user authorizes the
client to “bind” itself to the authenticator (using the same PIN). At the end of
this phase, the client and the authenticator end up with a (perhaps different)
binding state. Finally, in the access channel phase, the client is able to send
any authorized message (computed using its binding state) to the authentica-
tor, which verifies it using its own binding state. Note that the final established
access channel is unidirectional, i.e., it only guarantees authorized access from
the client to the authenticator but not the other way.

Our model captures the security of the access channels between clients and
authenticators. The particular implementation of CTAP2 operates as follows. In
the binding phase, the authenticator privately sends its associated secret called
pinToken (generated upon power-up) to the trusted client and the pinToken is
then stored on the client as the binding state. Later, in the access channel phase,
that binding state is used by the bound client to authenticate messages sent to
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the authenticator. We note that, by the CTAP2 design, each authenticator is
associated with a single pinToken per power-up, so multiple clients establish
multiple access channels with the same authenticator using the same pinToken.
This limits the security of CTAP2 access channels: for a particular channel from
a client to an authenticator to be secure (i.e., no attacker can forge messages
sent over that channel), none of the clients bound to the same authenticator
during the same power-up can be compromised.

Motivated by the above discussion, we distinguish between unforgeability
(UF) and strong unforgeability (SUF) for PACA protocols. The former corre-
sponds to the weak level of security discussed above. The latter, captures strong
fine-grained security where the attacker can compromise any clients except those
involved in the access channels for which we claim security. As we explain later
(Section 6), SUF also covers certain forward secrecy guarantees for authentica-
tion. For both notions, we consider a powerful attacker that can manipulate the
communication between parties, compromise clients (that are not bound to the
target authenticator) to reveal the binding states, and corrupt users (that did
not set up the target authenticator) to learn their secret PINs.

Even with the stronger trust assumption (made in UF) on the bound clients,
we are unable to prove that CTAP2 realizes the expected security model: we de-
scribe an attack that exploits the fact that CTAP2 uses unauthenticated Diffie-
Hellman. Since it is important to understand the limits of the protocol, we
consider a further refinement of the security models which makes stronger trust
assumptions on the binding phase of the protocol. Specifically, in the trusted
binding setting the attacker cannot launch active attacks against the client dur-
ing the binding phase, but it may try to do so against the authenticator, i.e., it
cannot launch man-in-the-middle (MITM) attacks but it may try to impersonate
the client to the authenticator. We write UF-t and SUF-t for the security levels
which consider trusted binding and the distinct security goals outlined above.
In summary we propose four notions: by definition SUF is the strongest security
notion and UF-t is the weakest one. Interestingly, UF and SUF-t are incompara-
ble as established by our separation result discussed in Section 7 and Section 8.
Based on our security model, we prove that CTAP2 achieves the weakest UF-t
security and show that it is not secure regarding the three stronger notions. Fi-
nally, we identify a series of design flaws of CTAP2 and provide suggestions for
improvement.

Improving CTAP2 security. CTAP2 cannot achieve UF security because in
the binding phase it uses unauthenticated Diffie-Hellman key exchange which is
vulnerable to MITM attacks. This observation suggests a change to the protocol
which leads to stronger security. Specifically, we propose a generic sPACA proto-
col (for strong PACA), which replaces the use of unauthenticated Diffie-Hellman
in the binding phase with a password-authenticated key exchange (PAKE) pro-
tocol. Recall that PAKE takes as input a common password and outputs the
same random session key for both parties. The key observation is that the client
and the authenticator share a value (derived from the user PIN) which can be
viewed as a password. By running PAKE with this password as input, the client
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and the authenticator obtain a strong key which can be used as the binding state
to build the access channel. Since each execution of the PAKE (with different
clients) results in a fresh independent key, we can prove that sPACA is a SUF-
secure PACA protocol. Furthermore, we compare the performance of CTAP2 and
sPACA (with proper PAKE instantiations). The results show that our sPACA
protocol is also more efficient, so it should be considered for adoption.

Composed security of CTAP2 and WebAuthn. Finally, towards our main
goal of the analysis of full FIDO2 (by full FIDO2 we mean the envisioned usage
of the two protocols), we study the composition of PlA and PACA protocols (cf.
Section 9). The composed protocol, which we simply call PlA+PACA, is defined
naturally for an authenticator, user, client, and server. The composition, and the
intuition that underlies its security, is as follows. Using PACA, the user (via a
client) sets a PIN for the authenticator. This means that only clients that obtain
the PIN from the user can “bind” to the authenticator and issue commands that
it will accept. In other words, PACA establishes the access channel from the
bound client to the authenticator. Then, the challenge-response protocols of
PlA run between the server and the authenticator, via a PACA-bound client.
The server-side guarantees of PlA are preserved, but now the authenticator can
control client access to its credentials using PACA; this composition result is
intuitive and easy to prove given our modular formalization.

Interestingly, we formalize an even stronger property that shows that FIDO2
gives end-to-end mutual authentication guarantees between the server and the
authenticator when clients and servers are connected by an authenticated server-
to-client channel (e.g., a TLS connection). The mutual authentication guaran-
tees extend the PlA guarantees: authenticator, client, and server must all be
using the same registration context for authentication to succeed. We note that
Transport Layer Security (TLS) provides a server-to-client authenticated chan-
nel, and hence this guarantee applies to the typical usage of FIDO2 over TLS.
Our results apply to WebAuthn+CTAP2 (under a UF-t adversarial model) and
WebAuthn+sPACA (under a SUF adversarial model).

We conclude with an analysis of the role of user gestures in FIDO2. We first
show that SUF security offered by sPACA allows the user, equipped with an
authenticator that can display a simple session identifier, to detect and prevent
attacks from malware that may compromise the states of PACA clients previ-
ously bound to the authenticator. (This is not possible for the current version
of CTAP2.) We also show how simple gestures can allow a human user to keep
track of which server identity is being used in PlA sessions.

Summary. Our analyses clarify the security guarantees FIDO2 should provide
for the various parties involved in the most common usage scenario where: 1)
the user owns a simple hardware token that is capable of accepting push-button
gestures and, optionally, to display a session identifier code (akin to bluetooth
pairing codes); 2) the user configures the token with a PIN using a trusted
machine; 3) the user connects/disconnects the token on multiple machines, some
trusted, some untrusted, and uses it to authenticated to multiple servers.
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In all these interactions, the server is assured that during authentication it
can recognize if the same token was used to register a key, and that this token
was bound to the client it is talking to since the last power-up (this implies
entering the correct PIN recently). This guarantee assumes that the client is not
corrupted (i.e., the browser window where the user entered the PIN is isolated
from malicious code and can run the CTAP2 protocol correctly) and that an
active attack against the client via the CTAP2 API to guess the user entered
PIN is detected (we know this is the case on the token side, as CTAP2 defines
a blocking countermeasure).

Assuming a server-to-client authenticated channel, the user is assured that
while it is in possession of the PIN, no one can authenticate on her behalf,
except if she provides the PIN to a corrupted browser window. Moreover, the
scope of this possible attack is limited to the current power-up period. If we
assume that registration was conducted via an honest client, then we know that
all authentication sessions with honest clients are placed to the correct server.
Finally, if the token is stolen, the attacker still needs to guess the PIN (without
locking the token) in order to impersonate the user.

With our proposed modifications, FIDO2 will meet this level of security.
Without them, these guarantees will only hold assuming weaker client corruption
capabilities and more importantly, the attacker cannot perform active man-in-
the-middle attacks during all binding sessions, which may be unrealistic.

2 Preliminaries

In the full version of this paper [6], we recall the definitions of pseudorandom
functions (PRFs), collision-resistant hash function families, message authentica-
tion codes (MACs), signature schemes, the computational Diffie-Hellman (CDH)
problem and strong CDH (sCDH) problem, as well as the corresponding advan-
tage measures Advprf , Advcoll, Adveuf-cma, Adveuf-cma, Advcdh, Advscdh. There
we also recall the syntax for PAKE and its security of perfect forward secrecy
and explicit authentication.

3 Execution Model

The protocols we consider involve four disjoint sets of parties. Formally, the
set of parties P is partitioned into four disjoint sets of users U , authenticators
(or tokens for short) T , clients C, and servers S. Each party has a well-defined
and non-ambiguous identifier, which one can think of as being represented as
an integer; we typically use P , U , T , C, S for identifiers bound to a party in
a security experiment and id for the case where an identifier is provided as an
input in the protocol syntax.

For simplicity, we do not consider certificates or certificate checks but assume
the public key associated with a party is supported by a public key infrastructure
(PKI) and hence certified and bound to the party’s identity. This issue arises
explicitly only for attestation public keys bound to authenticators in Section 4.
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The possible communication channels are represented as double-headed ar-
rows in Fig. 1. In FIDO2, the client is a browser and the user-client channel is the
browser window, which keeps no long-term state. The authenticator is a hard-
ware token or mobile phone that is connected to the browser via an untrusted
link that includes the operating system, some authenticator-specific middleware,
and a physical communication channel that connects the authenticator to the
machine hosting the browser. The authenticator exposes a simple interface to the
user that allows it to perform a “gesture”, confirming some action; ideally the
authenticator should also be able to display information to the user (this is nat-
ural when using a mobile phone as an authenticator but not so common in USB
tokens or smartcards). Following the intuitive definitions of human-compatible
communications by Boldyreva et al. [12], we require that messages sent to the
user be human-readable and those sent by the user be human-writable.8 The user
PIN needs to be human-memorizable.

We assume authenticators have a good source of random bits and keep
volatile and static (or long-term) storage. Volatile storage is erased every time
the device goes through a power-down/power-up cycle, which we call a reboot.
Static storage is assumed to be initialized using a procedure carried out under
special setup trust assumptions; in the case of this paper we will consider the
setup procedures to generate an attestation key pair for the authenticator and
to configure a user PIN, i.e., to “embed” the PIN in the authenticator.

Trust model. For each of the protocols we analyze in the paper we specify
a trust model, which justifies our proposed security models. Here we state the
trust assumptions that are always made throughout the paper. First, human
communications ( 1 2 ) are authenticated and private. This in practice captures
the direct human-machine interaction between the human user and the authen-
ticator device or the client terminal, which involves physical senses and contact
that we assume cannot be eavesdropped or interrupted by an attacker. Second,
client-authenticator communications ( 3 ) are not protected, i.e., neither authen-
ticated nor private. Finally, authenticators are assumed to be tamper-proof, so
our models will not consider corruption of their internal state.

Modeling users and their gestures. We do not include in our protocol syn-
taxes and security models explicit state keeping and message passing for human
users, i.e., there are no session oracles for users in the security experiments. We
shortly explain why this is the case. The role of the user in these protocols is to
a) first check that the client is operating on correct inputs, e.g., by looking at
the browser window to see if the correct server identity is being used; b) possibly
(if the token has the capability to display information) check that the token and
client are operating on consistent inputs; and c) finally confirm to the token that
this is the case. Therefore, the user itself plays the role of an out-of-band secure
channel via which the consistency of information exchanged between the client
and the token can be validated.

8 We regard understandable information displayed on a machine as human-readable
and typing in a PIN or rebooting an authenticator as human-writable.
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We model this with a public gesture predicate G that captures the semantics
of the user’s decision. Intuitively, the user decision d ∈ {0, 1} is given by d =
G(x, y), where x and y respectively represent the information conveyed to the
user by the client and the token in step b) above. Note that x, y may not be input
by the user. Tokens with different user interface capabilities give rise to different
classes of gesture predicates. For example, if a user can observe a server domain
name id on the token display before pressing a button, then we can define the
gesture of checking that the token displayed an identifier id that matches the
one displayed by the client id∗ as G(id∗, id) = (id∗ ?= id).

User actions are hardwired into the security experiments as direct inputs to
either a client or a token, which is justified by our assumption that users interact
with these entities via fully secure channels. We stress that here G is a modeling
tool, which captures the sequence of interactions a), b), c) above. Providing a
gesture means physical possession of the token, so an attacker controlling only
some part of the client machine (e.g., malware) is not able to provide a gesture.
Moreover, requiring a gesture from the user implies that the user can detect
when some action is requested from the token.

4 Passwordless Authentication

We start our analysis with the simpler FIDO2 component protocol, WebAuthn.
In order to analyze the authentication security of WebAuthn we first define the
syntax and security model for passwordless authentication (PlA) protocols.

4.1 Protocol Syntax

A PlA protocol is an interactive protocol among three parties: a token (repre-
senting a user), a client, and a server. The token is associated with an attestation
public key that is pre-registered to the server. The protocol defines two types of
interactions: registration and authentication. In registration the server requests
the token to register some initial authentication parameters. If this succeeds, the
server can later recognize the same token using a challenge-response protocol.

The possible communication channels are as shown in Fig. 1, but we do not
include the user. Servers are accessible to clients via a communication channel
that models Internet communications.

The state of token T , denoted by stT , is partitioned into the following (static)
components: i) an attestation key pair (vkT , akT ) and ii) a set of registration
contexts stT .rct. A server S also keeps its registration contexts stS .rcs. Clients
do not keep long-term state.9 All states are initialized to the empty string ε.

A PlA protocol consists of the following algorithms and subprotocols:

Key Generation: This algorithm, denoted by Kg, is executed at most once for
each authenticator; it generates an attestation key pair (vk, ak).

9 Some two-factor protocols may have a “trust this computer” feature that requires
the client to store some long-term states. This is not included in our model as to the
best of our knowledge FIDO2 does not have that feature.
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Register: This subprotocol is executed among a token, a client, and a server.
The token inputs its attestation secret key akT ; the client inputs an intended
server identity îdS ; and the server inputs its identity idS (e.g., a server domain
name) and the token’s attestation public key vkT . At the end of the subprotocol,
each party that successfully terminates obtains a new registration context, and
sets its session identifier that can be used to uniquely name a (registration
or authentication) session. Note that the token may successfully complete the
subprotocol while the server may fail to, in the same run.

Authenticate: This subprotocol is executed between a token, a client, and a
server. The token inputs its registration contexts; the client inputs an intended
server identity īdS ; and the server inputs its identity idS and registration con-
texts. At the end of the subprotocol, the server accepts or rejects. Each party
on success sets its session identifier and updates the registration contexts.

Restricted class of protocols. For both Register and Authenticate, we
focus on 2-pass challenge-response protocols with the following structure:
– Server-side computation is split into four procedures: rchallenge and rcheck

for registration, achallenge and acheck for authentication. The challenge al-
gorithms are probabilistic, which take the server’s input to the Register or
Authenticate subprotocol and return a challenge. The check algorithms get
the same input, the challenge, and a response. rcheck outputs the updated
registration contexts rcs that are later input by acheck; acheck outputs a bit
b (1 for accept and 0 for reject) and updates rcs.

– Client-side computation is modeled as two deterministic functions rcommand
and acommand that capture possible checks and translations performed by
the client before sending the challenges to the token. These algorithms output
commands denoted by Mr,Ma respectively, which they generate from the
input intended server identity and the challenge. The client may append
some information about the challenge to the token’s response before sending
it to the server, which is an easy step that we do not model explicitly.

– Token-side computation is modeled as two probabilistic algorithms rresponse
and aresponse that, on input a command and the token’s input to the Register
or Authenticate subprotocol, generate a response and update the registra-
tion contexts rct. In particular, rresponse outputs the updated registration
contexts rct that are later input by aresponse; aresponse may also update rct.

Correctness. Correctness imposes that for any server identities idS , îdS , īdS
the following probability is 1:

Pr


b = ((idS

?= îdS) ∧ (idS
?= īdS))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ak, vk)
$← Kg( )

cr
$← rchallenge(idS , vk)

Mr ← rcommand(îdS , cr)

(Rr, rct)
$← rresponse(ak,Mr)

rcs← rcheck(idS , vk, cr, Rr)

ca
$← achallenge(idS , rcs)

Ma ← acommand(īdS , ca)

(Ra, rct)
$← aresponse(rct,Ma)

(b, rcs)← acheck(idS , rcs, ca, Ra)
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Intuitively, correctness requires that the server always accepts an authenti-
cation that is consistent with a prior registration, if and only if the client’s input
intended server identities match the server identity received from the server.
Note that the latter check is performed by the client rather than the human
user. It helps to prevent a so-called server-in-the-middle attack identified in [33].

4.2 Security Model

Trust model. Before defining security we clarify that there are no security
assumptions on the communication channels shown in Fig. 1. Again, authentica-
tors are assumed to be tamper-proof, so the model will not consider corruption
of their internal state. (Note that clients and servers keep no secret state.) We
assume the key generation stage, where the attestation key pair is created and
installed in the token, is either carried out within the token itself, or performed
in a trusted context that leaks nothing about the attestation secret key.

Session oracles. As with the Bellare-Rogaway model [10], to capture multiple
sequential and parallel PlA executions (or instances), we associate each party
P ∈ T ∪ S with a set of session oracles {πi,jP }i,j , which models two types of
PlA instances corresponding to registration and authentication. We omit session
oracles for clients, since all they do can be performed by the adversary. For
servers and tokens, session oracles are structured as follows: πi,0P refers to the i-th

registration instance of P , whereas πi,jP for j ≥ 1 refers to the j-th authentication

instance of P associated with πi,0P after this registration completed. A party’s
static storage is maintained by the security experiment and shared among all of
its session oracles.

Security experiment. The security experiment is run between a challenger
and an adversary A. At the beginning of the experiment, the challenger runs
(akT , vkT )

$← Kg( ) for all T ∈ T to generate their attestation key pairs and
assign unique identities {idS}S∈S to all servers. The challenger also manages
the attestation public keys {vkT }T∈T and provides them to the server oracles as
needed. The adversary A is given all attestation public keys and server identities
and then allowed to interact with session oracles via the following queries:

• Start(πi,jS ). The challenger instructs a specified server oracle πi,jS to execute
rchallenge (if j = 0) or achallenge (if j > 0) to start the Register or Authenticate
subprotocol and generate a challenge c, which is given to A.
• Challenge(πi,jT ,M). The challenger delivers a specified command M to a spec-

ified token oracle πi,jT , which processes the command using rresponse (if j = 0)
or aresponse (if j > 0) and returns the response to A.
• Complete(πi,jS , T,R). The challenger delivers a specified token response R to a

specified server oracle πi,jS , which processes the response using rcheck and vkT
(if j = 0) or acheck (if j > 0) and returns the result to A.

We assume without loss of generality that each query is only called once for
each instance and allow the adversary to get the full state of the server via Start
and Complete queries.
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Partners. We follow the seminal work by Bellare et al. [9] to define partnership
via session identifiers. A server registration oracle πi,0S and a token registration

oracle πk,0T are each other’s partner if they agree on the same session identifier,
which indicates a “shared view” that must be defined by the analyzed protocol
and must be the same for both parties, usually as a function of the communica-
tion trace. A server authentication oracle πi,jS (j > 0) and a token authentication

oracle πk,lT (l > 0) are each other’s partner if: i) they agree on the session iden-

tifier and ii) πi,0S and πk,0T are each other’s partner.
We note that a crucial aspect of this definition is that the authentication

session partnership holds only if the token and the server are also partnered for
the associated registration sessions: a credential registered in a server should not
be used to authenticate a token using another credential.

Advantage measure. Let Π be a PlA protocol. We define the passwordless
authentication advantage Advpla

Π (A) as the probability that a server oracle ac-
cepts but it is not uniquely partnered with a token oracle. In other words, a
secure PlA protocol guarantees that, if a server oracle accepts, then there exists
a unique token oracle that has derived the same session identifier, and no other
server oracle has derived the same session identifier.

5 The W3C Web Authentication Protocol

In this section, we present the cryptographic core of W3C’s Web Authentication
(WebAuthn) protocol [15] of FIDO2 and analyze its security.

Protocol Description. We show the core cryptographic operations of We-
bAuthn in Fig. 3 in accordance with PlA syntax.10 For WebAuthn, a server iden-
tity is an effective domain (e.g., a hostname) of the server URL. The attestation
key pair is generated by the key generation algorithm Kg of a signature scheme
Sig = (Kg,Sign,Ver). (Note that WebAuthn supports the RSASSA-PKCS1-v1 5
and RSASSA-PSS signature schemes [30].) In Fig. 3, we use H to denote the
SHA-256 hash function and λ to denote the default parameter 128 (in order
to accommodate potential parameter changes). WebAuthn supports two types
of operations: Registeration and Authentication (cf. Fig. 1 and Fig. 2 in [15]),
respectively corresponding to the PlA Register and Authenticate subprotocols.
In the following description, we assume each token is registered at most once for
a server; this is without loss of generality since otherwise one can treat the one
token as several tokens sharing the same attestation key pair.

– In registration, the server generates a random string rs of length at least
λ = 128 bits and a random 512-bit user id uid, forms a challenge cc with rs, uid
and its identity idS , and then sends it to the client. Then, the client checks if
the received server identity matches its input (i.e., the intended server), then
passes the received challenge (where the random string is hashed) to the token.

10 We do not include the WebAuthn explicit reference to user interaction/gestures at
this point, as this will be later handled by our PACA protocol.
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Authenticator T (akT , vkT ) Client C (idS) Server S (idS , vkT )

Register:
rchallenge :

rcommand : rs
$← {0, 1}≥λ, uid

$← {0, 1}4λ
(id, uid, r)← cc

cc←−−− cc← (idS , uid, rs)
rresponse : if id 6= idS : halt

(idS , uid, hr)←Mr
Mr←−−− Mr ← (idS , uid,H(r))

(pk, sk)
$← Sig.Kg( )

n← 0, cid
$← {0, 1}≥λ

ad← (H(idS), n, cid, pk) rcheck :

σ ← Sig.Sign(akT , (ad, hr))
Rr = (ad, σ, r)

−−−−−−−−−−−−−−−−−−−−−−−−−−→ (h, n, cid, pk)← ad
halt if r 6= rs or h 6= H(idS) or n 6= 0

or Sig.Ver(vkT , (ad,H(r)), σ) = 0

rct.insert((idS , uid, cid, sk, n)) rcs.insert((uid, cid, pk, n))

Authenticate:
achallenge :

acommand : rs
$← {0, 1}≥λ

(id, r)← cr
cr←−−− cr ← (idS , rs)

aresponse : if id 6= idS : halt

(idS , hr)←Ma
Ma←−−− Ma ← (idS ,H(r))

(uid, cid, sk, n)← rct.get(idS)
n← n+ 1, ad← (H(idS), n) acheck :

σ
$← Sig.Sign(sk, (ad, hr))

Ra = (cid, ad, σ, uid, r)
−−−−−−−−−−−−−−−−−−−−−−−−−−→ (uid′, pk, n)← rcs.get(cid)

(h, nt)← ad
reject if uid 6= uid′ or r 6= rs

or h 6= H(idS) or nt ≤ n
or Sig.Ver(pk, (ad,H(r)), σ) = 0

rct.insert((idS , uid, cid, sk, n)) accept; rcs.insert((uid, cid, pk, nt))

Fig. 3. The WebAuthn protocol

The token generates a key pair (pk, sk) with Sig.Kg, sets the signature counter
n to 0,11 and samples a credential id cid of length at least λ = 128 bits; it then
computes an attestation signature (on H(idS), n, cid, pk and the random string
hash hr) and sends the signed (public) credential and signature to the client as
a response; the token also inserts the generated credential into its registration
contexts. Upon receiving the response, the server checks the validity of the
attestation signature and inserts the credential into its registration contexts.

– In authentication, the server also generates a random string rs, but no uid
is sampled; it then forms a challenge cr with rs and its identity idS , and
sends it to the client. Then, the client checks if the received idS matches its
input and passes the challenge (where the random string is hashed) to the
token. The token retrieves the credential associated with the authenticating
server idS from its registration contexts, increments the signature counter n,
computes an authentication signature (on H(idS), n and the random string
hash hr), and sends it to the client together with H(idS), n and the retrieved
credential id cid and user id uid; the token also updates the credential with
the new signature counter. Upon receiving the response, the server retrieves
the credential associated with the credential id cid and checks the validity
of the signature counter and the signature; if all checks pass, it accepts and
updates the credential with the new signature counter.

11 The signature counter is mainly used to detect cloned tokens, but it also helps in
preventing replay attacks (if such attacks are possible).
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It is straightforward to check that WebAuthn is a correct PlA protocol.

WebAuthn Analysis. The following theorem (proved in the full version [6])
assesses PlA security of WebAuthn uses (ad,H(r)) as the session identifier.

Theorem 1. For any efficient adversary A that makes at most qS queries to
Start and qC queries to Challenge, there exist efficient adversaries B, C such that
(recall λ = 128):

Advpla
WebAuthn(A) ≤ Advcoll

H (B) + qSAdveuf-cma
Sig (C) + (q2

S + qC
2) · 2−λ.

The security guarantees for the WebAuthn instantiations follow from the
results proving RSASSA-PKCS1-v1 5 and RSASSA-PSS to be EUF-CMA in
the random oracle model under the RSA assumption [11,28] and the assumption
that SHA-256 is collision-resistant.

6 PIN-Based Access Control for Authenticators

In this section, we define the syntax and security model for PIN-based access
control for authenticators (PACA) protocols. The goal of the protocol is to ensure
that after PIN setup and possibly an arbitrary number of authenticator reboots,
the user can employ the client to issue PIN-authorized commands to the token,
which the token can use for access control, e.g., to unlock built-in functionalities
that answer client commands.

6.1 Protocol Syntax

A PACA protocol is an interactive protocol involving a human user, an authen-
ticator (or token for short), and a client. The state of token T , denoted by stT ,
consists of static storage stT .ss that remains intact across reboots and volatile
storage stT .vs that gets reset after each reboot. stT .ss is comprised of: i) a pri-
vate secret stT .s and ii) a public retries counter stT .n, where the latter is used to
limit the maximum number of consecutive failed active attacks (e.g., PIN guess-
ing attempts) against the token. stT .vs consists of: i) power-up state stT .ps and
ii) binding states stT .bsi (together denoted by stT .bs). A client C may also keep
binding states, denoted by bsC,j . All states are initialized to the empty string ε.

A PACA protocol is associated with an arbitrary public gesture predicate G
and consists of the following algorithms and subprotocols, all of which can be
executed a number of times, except if stated otherwise:

Reboot: This algorithm represents a power-down/power-up cycle and it is ex-

ecuted by the authenticator with mandatory user interaction. We use stT .vs
$←

reboot(stT .ss) to denote the execution of this algorithm, which inputs its static
storage and resets all volatile storage. Note that one should always run this
algorithm to power up the token at the beginning of PACA execution.

Setup: This subprotocol is executed at most once for each authenticator. The
user inputs a PIN through the client and the token inputs its volatile storage.
In the end, the token sets up its static storage and the client (and through it
the user) gets an indication of whether the subprotocol completed successfully.
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Bind: This subprotocol is executed by the three parties to establish an access
channel over which commands can be issued. The user inputs its PIN through
the client, whereas the token inputs its static storage and power-up state. At the
end of the subprotocol, each of the token and client that successfully terminates
gets a (volatile) binding state and sets the session identifier. In either case
(success or not), the token may update its static retries counter.12 We assume
the client always initiates this subprotocol once it gets the PIN from the user.

Authorize: This algorithm allows a client to generate authorized commands for
the token. The client inputs a binding state bsC,j and a command M . We denote

(M, t)
$← authorize(bsC,j ,M) as the generation of an authorized command.

Validate: This algorithm allows a token to verify authorized commands sent
by a client with respect to a user decision (where the human user inputs
the public gesture predicate G). The token inputs a binding state stT .bsi,
an authorized command (M, t), and a user decision d = G(x, y). We denote
b ← validate(stT .bsi, (M, t), d) as the validation performed by the token to ob-
tain an accept or reject indication.

Correctness. For an arbitrary public predicate G, we consider any token T
and any sequence of PACA subprotocol executions that includes the following
(which may not be consecutive): i) a Reboot of T ; ii) a successful Setup using
PIN fixing stT .ss via some client; iii) a Bind with PIN creating token-side binding
state stT .bsi and client-side binding state bsC,j at a client C; iv) authorization

of command M by C as (M, t)
$← authorize(bsC,j ,M); and v) validation by T

as b ← validate(stT .bsi, (M, t), d). If no Reboot of T is executed after iii), then
correctness requires that b = 1 if and only if G(x, y) = 1 (i.e., d = 1) holds.

Remark. The above PACA syntax may seem overly complex but it is actually
difficult (if not impossible) to decompose. First, Setup and Bind share the same
power-up state generated by Reboot so cannot be separated into two independent
procedures. Then, although Authorize and Validate together can independently
model an access channel, detaching them from PACA makes it difficult to define
security in a general way: Bind may not establish random symmetric keys; it
could, for instance, output asymmetric key pairs.

6.2 Security Model

Trust model. Before defining our security model, we first state the assumed
security properties for the involved communication channels, as shown in Fig. 1
excluding the client-server channel. We assume that Setup is carried out over an
authenticated channel where the adversary can only eavesdrop communications
between the client and authenticator; this is a necessary assumption, as there
are no pre-established authentication parameters between the parties.

12 When such an update is possible, the natural assumption often made in cryptography
requires that incoming messages are processed in an atomic way by the token, which
avoids concurrency issues. Note that Bind executions could still be concurrent.

16



Session oracles. To capture multiple sequential and parallel PACA executions,
each party P ∈ T ∪ C is associated with a set of session oracles {πiP }i, where
πiP models the i-th PACA instance of P . For clients, session oracles are totally
independent from each other and they are assumed to be available throughout
the protocol execution. For tokens, the static storage and power-up state are
maintained by the security experiment and shared by all oracles of the same
token. Token oracles keep only binding states (if any). If a token is rebooted, its
binding states got reset and hence become invalid, i.e., those states will be no
longer accessible to anyone including the adversary.

Security experiment. The security experiment is executed between a chal-
lenger and an adversary A. At the beginning of the experiment, the challenger
fixes an arbitrary distribution D over a PIN dictionary PIN associated with
PACA; it then samples independent user PINs according to D , denoted by
〈pinU

D← PIN〉U∈U . Without loss of generality, we assume each user holds only
one PIN. The challenger also initializes states of all oracles to the empty string.
Then, A is allowed to interact with the challenger via the following queries:

• Reboot(T ). The challenger runs Reboot for token T , marking all previously

used instances πiT (if any) as invalid13 and setting stT .vs
$← reboot(stT .ss).

• Setup(πiT , π
j
C , U). The challenger inputs pinU through πjC and runs Setup be-

tween πiT and πjC ; it returns the trace of communications to A. After this query,
T is set up, i.e., stT .ss is set and available, for the rest of the experiment. Oracles
created in this query, i.e., πiT and πjC , must never have been used before and are
always marked invalid after Setup completion.14

• Execute(πiT , π
j
C). The challenger runs Bind between πiT and πjC using the same

pinU that set up T ; it returns the trace of communications to A. This query
allows the adversary to access honest Bind executions in which it can only take
passive actions, i.e., eavesdropping. The resulting binding states on both sides
are kept as stT .bsi and bsC,j respectively.

• Connect(T, πjC). The challenger asks πjC to initiate the Bind subprotocol with

T using the same pinU that set up T ; it returns the first message sent by πjC
to A. Note that no client oracles can be created for active attacks if Connect
queries are disallowed, since we assume the client is the initiator of Bind. This
query allows the adversary to launch an active attack against a client oracle.

• Send(πiP ,m). The challenger delivers m to πiP and returns its response (if any)
to A. If πiP completes the Bind subprotocol, then the binding state is kept as
stT .bsi for a token oracle and as bsC,i for a client oracle. This query allows the
adversary to launch an active attack against a token oracle or completing an
active attack against a client oracle.

• Authorize(πjC ,M). The challenger asks πjC to authorize command M ; it returns

the authorized command (M, t)
$← authorize(bsC,j ,M).

13 All queries are ignored if they refer to an oracle πi
P marked as invalid.

14 Session oracles used for Setup are separated since they may cause ambiguity in
defining session identifiers for binding sessions.
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• Validate(πiT , (M, t)). The challenger asks πiT (that received a user decision d)
to validate (M, t); it returns the validation result b← validate(stT .bsi, (M, t), d).
• Compromise(πjC). The challenger returns bsC,j and marks πiC as compromised.
• Corrupt(U). The challenger returns pinU and marks pinU as corrupted.

Partners. We say a token oracle πiT and a client oracle πjC in binding sessions
are each other’s partner if they have both completed their Bind executions and
agree on the same session identifier. As with our PlA model, session identifiers
must be properly defined by the analyzed protocol. Moreover, we also say πjC is
T ’s partner (and hence T may have multiple partners). Note that, as mentioned
before, if a token is rebooted then all of its existing session oracles (if any) are
invalidated. A valid partner refers to a valid session oracle.

Security goals. We define 4 levels of security for a PACA protocol Π. All ad-
vantage measures define PAKE-like security: the adversary’s winning probability
should be negligibly larger than that of the trivial attack of guessing the user
PIN (known as online dictionary attacks with more details in the full version [6]).

Unforgeability (UF). We define Advuf
Π (A) as the probability that there exists a

token oracle πiT that accepts an authorized command (M, t) for gesture G and
at least one of the following conditions does not hold:

1) G approves M , i.e., G(x, y) = 1;
2) (M, t) was output by one of T ’s valid partners πjC .

The adversary must be able to trigger this event without: i) corrupting pinU that
was used to set up T , before πiT accepted (M, t); or ii) compromising any of T ’s
partners created after T ’s last reboot and before πiT accepted (M, t).

The above captures the attacks where the attacker successfully makes a token
accept a forged command, without corrupting the user PIN used to set up the
token or compromising any of the token’s partners. In other words, a UF-secure
PACA protocol protects the token from unauthorized access even if it is stolen
and possessed by an attacker. Nevertheless, UF considers only weak security for
access channels, i.e., compromising one channel could result in compromising all
channels (with respect to the same token after its last reboot).

Unforgeability with trusted binding (UF-t). We define Advuf-t
Π (A) the same as

Advuf
Π (A) except that the adversary is not allowed to make Connect queries.

As mentioned before, the attacker is now forbidden to launch active attacks
against clients (that input user PINs) during binding; it can still, however, per-
form active attacks against tokens. This restriction captures the minimum re-
quirement for proving the security of CTAP2 (using our model), which is the
main reason we define UF-t. Clearly, UF security implies UF-t security.

Strong unforgeability (SUF). We define Advsuf
Π (A) as the UF advantage, with

one more condition captured:

3) πiT and πjC are each other’s unique valid partner.

More importantly, the adversary considered in this strong notion is allowed to
compromise T ’s partners, provided that it has not compromised πjC . It is also
allowed to corrupt pinU used to set up T even before the command is accepted,
as long as πiT has set its binding state.
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\

Fig. 4. Relations between PACA security notions.

The above captures similar attacks considered in UF but in a strong sense,
where the attacker is allowed to compromise the token’s partners. This means
SUF considers strong security for access channels, i.e., compromising any channel
does not affect other channels. It hence guarantees a unique binding between
an accepted command and an access channel (created by uniquely partnered
token and client oracles running Bind), which explains condition 3). Finally, the
attacker is further allowed to corrupt the user PIN immediately after the access
channel establishment. This guarantees forward secrecy for access channels, i.e.,
once the channel is created its security will no longer be affected by later PIN
corruption. Note that SUF security obviously implies UF security.

Strong unforgeability with trusted binding (SUF-t). For completeness we can also
define Advsuf-t

Π (A), where the adversary is not allowed to make Connect queries.
Again, it is easy to see that SUF security implies SUF-t security.

Relations between PACA security notions. Fig. 4 shows the implication
relations among our four defined notions. Note that UF and SUF-t do not imply
each other, for which we will give separation examples in Sections 7 and 8.

Improving (S)UF-t security with user confirmation. Trusted binding ex-
cludes active attacks against the client (during binding), but online dictionary
attacks are still possible against the token. Such attacks can be mitigated by
requiring user confirmation (e.g., pressing a button) for Bind execution, such
that only honest Bind executions will be approved when the token is possessed
by an honest user. We argue that the confirmation overhead is quite small for
CTAP2-like protocols since the user has to type its PIN into the client any-
way; the security gain is meaningful as now no online dictionary attacks (that
introduce non-negligible adversarial advantage) can happen to unstolen tokens.

A practical implication of SUF security. We note that SUF security has a
practical meaning: an accepted command can be traced back to a unique access
channel. This means that an authenticator that allows a human user to confirm
a session identifier (that determines the channel) for a command can allow a
human user to detect rogue commands issued by an adversary (e.g., malware)
that compromised one of the token’s partners (e.g., browsers).

PACA security bounds. In our theorems for PACA security shown later, we
fix qS (i.e., the number of Setup queries) as one adversarial parameter to bound
the adversary’s success probability of online dictionary attacks (e.g., the first
bound term in Theorem 2 and the PAKE advantage term in Theorem 3), while
for PAKE security the number of Send queries qs is used (see [9] or the full
version [6] for example). This is because PACA has a token-side retries counter
to limit the total number of failed PIN guessing attempts (across reboots).
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7 The Client to Authenticator Protocol v2.0

In this section, we present the cryptographic core of the FIDO Alliance’s CTAP2,
analyze its security using PACA model, and make suggestions for improvement.

Protocol Description. CTAP2’s cryptographic core lies in its authenticator
API15 which we show in Fig. 5 in accordance with PACA syntax. One can also
refer to its specification (Fig. 1, [1]) for a command-based description.16 The
PIN dictionary PIN of CTAP2 consists of 4∼63-byte strings.17 In Fig. 5, the
client inputs an arbitrary user PIN pinU ∈ PIN . We use ECKGG,G to denote
the key generation algorithm of the NIST P-256 elliptic-curve Diffie-Hellman
(ECDH) [26], which samples an elliptic-curve secret and public key pair (a, aG),
where G is an elliptic-curve point that generates a cyclic group G of prime order
|G| and a is chosen at random from the integer set {1, . . . , |G|−1}. Let H denote
the SHA-256 hash function and H′ denote SHA-256 with output truncated to
the first λ = 128 bits; CBC0 = (K,E,D) denotes the (deterministic) encryption
scheme AES-256-CBC [20] with fixed IV = 0; HMAC′ denotes the MAC HMAC-
SHA-256 [8] with output truncated to the first λ = 128 bits. Note that we use the
symbol λ to denote the block size in order to accommodate parameter changes
in future versions of CTAP2.

– Reboot generates stT .ps by running ECKGG,G, sampling a kλ-bit pinToken pt
(where k ∈ N+ can be any fixed parameter, e.g., k = 2 for a 256-bit pt), and
resetting the mismatch counter m ← 3 that limits the maximum number of
consecutive mismatches. It also erases the binding state stT .bs (if any).

– Setup is essentially an unauthenticated ECDH followed by the client trans-
mitting the (encrypted) user PIN to the token. The shared encryption key is
derived from hashing the x-coordinate of the ECDH result. A HMAC′ tag of
the encrypted PIN is also attached for authentication; but as we will show this
is actually useless. The token checks if the tag is correct and if the decrypted
PIN pinU is valid; if so, it sets the static secret stT .s to the PIN hash and sets
the retries counter stT .n to the default value 8.

– Bind also involves an unauthenticated ECDH but followed by the transmission
of the encrypted PIN hash. First, if stT .n = 0, the token blocks further access
unless being reset to factory default state, i.e., erasing all static and volatile
state. Otherwise, the token decrements stT .n and checks if the decrypted PIN

15 The rest of CTAP2 does not focus on security but specifies transport-related behav-
iors like message encoding and transport-specific bindings.

16 There the command used for accessing the retries counter stT .n is omitted because
PACA models it as public state. Commands for PIN resets are also omitted and
left for future work, but capturing those is not hard by extending our analysis since
CTAP2 changes PIN by simply running the first part of Bind (to establish the
encryption key and verify the old PIN) followed by the last part of Setup (to set
a new PIN). Without PIN resets, our analysis still captures CTAP2’s core security
aspects and our PACA model becomes more succinct.

17 PINs memorized by users are at least 4 Unicode characters and of length at most 63
bytes in UTF-8 representation.
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Authenticator T Client C (pinU )

Reboot:

(a, aG)
$← ECKGG,G( ), pt

$← {0, 1}kλ, m← 3
stT .ps← (a, aG, pt,m), stT .bs← ε

Setup:
cmd = 2←−−−−−−−−
aG−−−−−−−−→ (b, bG)

$← ECKGG,G( ), K ← H(baG.x)
cp ← CBC0.E(K, pinU )

tp ← HMAC′(K, cp)
K ← H(abG.x)

cmd = 3
bG, cp, tp
←−−−−−−−−

if tp 6= HMAC′(K, cp): halts

pinU ← CBC0.D(K, cp)
if pinU 6∈ PIN : halt

stT .s← H′(pinU ), stT .n← 8
ok−−−−−−−−→

Bind:
cmd = 2←−−−−−−−−

if stT .n = 0: blocks access
aG−−−−−−−−→ (b, bG)

$← ECKGG,G( ), K ← H(baG.x)
cph ← CBC0.E(K,H′(pinU ))

K ← H(abG.x), stT .n← stT .n− 1

cmd = 5
bG, cph←−−−−−−−−

if stT .s 6= CBC0.D(K, cph):

m← m− 1, (a, aG)
$← ECKGG,G( )

halt (if m = 0: reboot)
m← 3, stT .n← 8

cpt ← CBC0.E(K, pt)
cpt−−−−−−−−→

stT .bsi ← pt bsC,j ← CBC0.D(K, cpt)

Validate: Authorize:

if t 6= HMAC′(stT .bsi,M):
M, t

←−−−−−−−− t← HMAC′(bsC,j ,M)
m← m− 1, reject
if m = 0: reboot

m← 3, collects user decision d

accept if d = 1
uv = 1−−−−−−−−→

Fig. 5. The CTAP2 protocol (and CTAP2* that excludes the boxed contents).

hash matches its stored static secret. If the check fails, it decrements the
mismatch counter m, generates a new key pair, then halts; if m = 0, it further
requires a reboot to enforce user interaction (and hence user detectability).
If the check passes, it resets the retries counter, sends back the encrypted
pinToken, and uses its pinToken as the binding state stT .bsi; the client then
uses the decrypted pinToken as its binding state bsC,j .

– Authorize generates an authorized command by attaching a HMAC′ tag.
– Validate accepts the command if and only if the tag is correct and the user

gesture approves the command. The default CTAP2 gesture predicate G1 al-
ways returns true, since only physical user presence is required. The mismatch
counter is also updated to trigger user interaction.

It is straightforward to check that CTAP2 is a correct PACA protocol.

CTAP2 Analysis. The session identifier of CTAP2 is defined as the full com-
munication trace of the Bind execution.

Insecurity of CTAP2. It is not hard to see that CTAP2 is not UF-secure
(and hence not SUF-secure). An attacker can query Connect to initiate the Bind
execution of a client oracle that inputs the user PIN, then impersonate the token
to get the PIN hash, and finally use it to get the secret binding state pt from the

21



token. CTAP2 is not SUF-t-secure either because compromising any partner of
the token reveals the common binding state pt used to access all token oracles.

UF-t security of CTAP2. The following theorem (proved in the full ver-
sion [6]) confirms CTAP2’s UF-t security, by modeling the hash function H (with
fixed 256-bit input) and truncated HMAC HMAC′ as random oracles H1,H2.

Theorem 2. Let D be an arbitrary distribution over PIN with min-entropy
hD . For any efficient adversary A making at most qS, qE, qR, qV queries respec-
tively to Setup,Execute,Reboot,Validate, and qH random oracle queries to H2,
there exist efficient adversaries B, C,D such that (recall λ = 128):

Advuf-t
CTAP2(A) ≤ 8qS · 2−hD + (qS + qE)Advscdh

G,G(B) + Advcoll
H′ (C)

+ 2(qS + qE)Advprf
AES-256(D) + qV · 2−kλ + qSqH · 2−2λ

+ (12qS + 2|U|qRqE + q2
RqE + (k + 1)2qE + qV) · 2−λ.

We remark that for conciseness the above theorem does not show what secu-
rity should be achieved by CBC0 for CTAP2’s UF-t security to hold, but directly
reduces to the PRF security of the underlying AES-256 cipher. Actually, the
proof of the above theorem also shows that it is sufficient for CBC0 to achieve a
novel security notion that we call indistinguishability under one-time chosen and
then random plaintext attack (IND-1$PA), which (defined in the full version [6])
we think would be of independent interest. We prove in the full version [6] that
the IND-1$PA security of CBC0 can be reduced to the PRF security of AES-256.

SUF-t 6=⇒ UF. Note that we can modify CTAP2 to achieve SUF-t security by
using independent pinTokens for each Bind execution, but this is not UF-secure
due to unauthenticated ECDH. This shows that SUF-t does not imply UF.

CTAP2 improvement. Here we make suggestions for improving CTAP2 per
se, but we advocate the adoption of our proposed efficient PACA protocol with
stronger SUF security in Section 8.

Setup simplification. First, we notice that the Setup authentication procedures
(boxed in Fig. 5) are useless, since there are no pre-established authentication
parameters between the token and client. In particular, a MITM attacker can
pick its own aG to compute the shared key K and generate the authentica-
tion tag. More importantly, CTAP2 uses the same key K for both encryption
and authentication, which is considered bad practice and the resulting security
guarantee is elusive; this is why we have to model HMAC′ as a random ora-
cle. Therefore, we suggest removing those redundant authentication procedures
(or using checksums), then the resulting protocol, denoted by CTAP2*, is also
UF-t-secure, with the proof in the full version [6] where HMAC′ is treated as
an EUF-CMA-secure MAC.18 Furthermore, one can use a simple one-time pad
(with appropriate key expansion) instead of CBC0 to achieve the same UF-t se-
curity. This is because only one encryption is used in Setup and hence one-time
security provided by a one-time pad is sufficient.

18 Note that HMAC-SHA-256 has been proved to be a PRF (and hence EUF-CMA)
assuming SHA-256’s compression function is a PRF [7].
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Authenticator T Client C (pinU )

Reboot:

(a, aG)
$← ECKGG,G( ), m← 3

stT .ps← (a, aG,m), stT .bs← ε

Setup:
bG←−−−−−−−− (b, bG)

$← ECKGG,G( )

K ← H(abG.x)
aG−−−−−−−−→ K ← H(baG.x)

pinU ← CBC0.D(K, cp)
cp←−−−−−−−− cp ← CBC0.E(K, pinU )

if pinU 6∈ PIN : halts

stT .s← H′(pinU ), stT .n← 8
ok−−−−−−−−→

Bind:
if stT .n = 0: blocks access

stT .n← stT .n− 1
PAKE(H′(pinU ))
↼−−−−−−−−−−−−−−−−−−−−−−−−−−⇁

if PAKE outputs skT ∈ {0, 1}κ: if PAKE outputs skC ∈ {0, 1}κ:
m← 3, stT .n← 8
stT .bsi ← skT bsC,j ← skC

otherwise:
m← m− 1, halts
(if m = 0: tests user presence)

Validate: Authorize:

reject if t 6= HMAC′(stT .bsi,M)
M, t

←−−−−−−−− t← HMAC′(bsC,j ,M)
collects user decision d

accept if d = 1
uv = 1−−−−−−−−→

Fig. 6. The sPACA protocol

Unnecessary reboots. In order to prevent attacks that block the token without
user interaction, CTAP2 requires a token reboot after 3 consecutive failed bind-
ing attempts. Such reboots do not enhance security as the stored PIN hash is
not updated, but they could cause usability issues since reboots invalidate all
established access channels by erasing the existing binding states. We therefore
suggest replacing reboots with tests of user presence (e.g., pressing a button)
that do not affect existing bindings. Note that reboots are also introduced for
user interaction in Validate executions; this however is completely useless when
CTAP2 already requires a test of user presence before accepting each command.

User confirmation for binding. As discussed at the end of Section 6, we sug-
gest CTAP2 require user confirmation for Bind executions to improve security.
Note that here user confirmation is used to detect and prevent malicious Bind
executions rather than confirming honest ones.

8 The Secure PACA Protocol

In this section, we propose a generic PACA protocol that we call sPACA for
secure PACA, prove its SUF security, and compare its performance with CTAP2
when instantiating the underlying PAKE of sPACA with CPace [24].

Protocol Description. We purposely design our sPACA protocol following
CTAP2 such that the required modification is minimized if sPACA is adopted.
As shown in Fig. 6, sPACA employs the same PIN dictionary PIN and crypto-
graphic primitives as CTAP2 and additionally relies on a PAKE protocol PAKE
initiated by the client. Compared to CTAP2, sPACA does not have pinTokens,
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but instead establishes independent random binding states in Bind executions
by running PAKE between the token and the client (that inputs the user PIN)
on the shared PIN hash; it also excludes unnecessary reboots. We also note that
the length of session keys skT , skC ∈ {0, 1}κ established by PAKE is determined
by the concrete PAKE instantiation; typically κ ∈ {224, 256, 384, 512} when the
keys are derived with a SHA-2 hash function.

sPACA Analysis. The session identifier of sPACA is simply that of PAKE.

SUF security of sPACA. The following theorem (proved in the full version [6])
confirms SUF security of sPACA by modeling H as a random oracle.

Theorem 3. Let PAKE be a 3-pass protocol where the client is the initia-
tor and let D be an arbitrary distribution over PIN with min-entropy hD .
For any efficient adversary A making at most qS, qC, qE queries respectively to
Setup,Connect,Execute, there exist efficient adversaries B, C,D, E ,F such that:

Advsuf
sPACA(A) ≤ qSAdvcdh

G,G(B) + Advcoll
H′ (C) + 2qSAdvprf

AES-256(D)

+ AdvPAKE(E , 16qS + 2qC, hD) + (qC + qE)Adveuf-cma
HMAC′ (F) + 12qS · 2−λ.

Note that it is crucial for PAKE to guarantee explicit authentication, other-
wise, the token might not be able to detect wrong PIN guesses and then decre-
ment its retries counter to prevent exhaustive PIN guesses.19 Also note that
the PAKE advantage bound may itself include calls to an independent random
oracle. PAKE can be instantiated with variants of CPace [24] or SPAKE2 [3, 5]
that include explicit authentication. Both protocols were recently considered by
the IETF for standardization and CPace was selected in the end.20 They both
meet the required security property, as they have been proved secure in the UC
setting which implies the game-based security notion we use [4, 24].

UF 6=⇒ SUF-t. Note that one can easily transform sPACA into a protocol that
is still UF secure, but not SUF-t secure: similar to CTAP2, let the authenticator
generate a global pinToken used as binding states for all its partners and send
it (encrypted with the session key output by PAKE) to its partners at the end
of Bind executions. This shows that UF does not imply SUF-t.

Performance comparison of CTAP2 and sPACA. It is straightforward
to see from Fig. 5 and Fig. 6 that CTAP2 and sPACA differ mainly in their
Bind executions, while sPACA has slightly better performance than CTAP2 in
other subprotocols. We therefore compare their performance for binding (where
sPACA is instantiated with CPace) in terms of message flows, computations
(for group exponentiations, hashes, AES) on both sides, and communication
complexity. Among these three factors, the number of flows reflects the network

19 One does not actually need explicit token-to-client authentication in the proof, as
clients do not have long-term secret to protect. This would allow removing the server-
side authentication component from the PAKE instantiation for further efficiency.
We do not propose to do this and choose to rely on the standard mutual explicit
authentication property to enable direct instantiation of a standardized protocol.

20 https://mailarchive.ietf.org/arch/msg/cfrg/j88r8N819bw88xCOyntuw_Ych-I
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Table 1. Performance comparison of CTAP2 and sPACA for binding.

Protocol Flow Token Client Communication
exp hash AES exp hash AES (λ = 128)

CTAP2 4 2 1 2k 2 2 2k 4λ+ 2kλ (e.g., k = 2)
sPACA[CPace] 3 2 4 0 2 5 0 4λ+ 2κ (e.g., κ = 256)

latency cost that usually dominates the performance. Therefore, one can ob-
serve that sPACA (with CPace) is more efficient than CTAP2 from the results
summarized in Table 1, which we explain as follows.

First, CPace needs 3 flows when explicit authentication is required and hence
so does sPACA, while CTAP2 needs 4. Besides, if Bind is executed when the
client already has a command to issue, the last CPace message can be piggy-
backed with the authorized command, leading to a very efficient 2-flow binding.21

As shown in Fig. 5, CTAP2 requires two Diffie-Hellman group exponentiations
and 2k AES computations (for pt of k-block length) on both sides; the token com-
putes one hash while the client computes two (one for hashing PIN). For sPACA,
CPace requires two Diffie-Hellman group exponentiations and four hashes on
both sides; the client also needs to compute the PIN hash beforehand. In short,
sPACA incurs 3 more hashes while CTAP2 involves 2k more AES computations.
Note that the most expensive computations are group exponentiations, for which
both protocols have two. Regarding communication complexity, both protocols
exchange two group elements and two messages of the same length as the bind-
ing states, so they are equal if, say, κ = kλ = 256. Overall, sPACA (with CPace)
is more efficient than CTAP2 due to less flows.

Finally, we note that the cryptographic primitives in sPACA could be instan-
tiated with more efficient ones compared to those in CTAP2 without compro-
mising security. For instance, as mentioned before, one can use a very efficient
one-time pad (with appropriate key expansion) instead of CBC0 in Setup.

9 Composed Security of PlA and PACA

In this section we discuss the composed security of PlA and PACA and the
implications of this composition for FIDO2 and WebAuthn+sPACA. The com-
posed protocol, which we simply refer to as PlA+PACA, is defined in the natural
way, and it includes all the parties that appear in Fig. 1. We give a typical flow
for registration in Fig. 7, where we assume PACA Setup and Bind have been
correctly executed. The server’s role is purely that of a PlA server. The client
receives the server challenge via an authenticated channel (i.e., it knows the true
server identity idS when it gets a challenge from the server). It then authorizes
the challenge using the PACA protocol and sends it to the authenticator. The
authenticator first validates the PACA command (possibly using a user gesture)
and, if successful, it produces a PlA response that is conveyed to the server.

21 This piggy backing has the extra advantage of associating the end of the binding
state with a user gesture by default, which helps detect online dictionary attacks
against the token as stated in Section 6.
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User U

Authenticator T
b← validate(stT .bsi, (Mr, tr), d)
If b = 1:
Rr ← rresponse(akT ,Mr)

Client C
Mr ← rcommand(idS , cr)

(Mr, tr)
$← authorize(bsC,j ,Mr)

Server S

c
$← rchallenge(idS , vk)

b← rcheck(idS , vkT , cr, Rr)

Set
up(p

inU
)

Reboot

Bind(pinU )

4.
y(
stT
.b
s i
,M
r
)

5.
d

=
G(x
, y
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3.(Mr, t)

1.cr

(sent via Client)
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C
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Fig. 7. Full PlA+PACA registration flow: black = PACA, blue = PlA, red = authen-
ticated (e.g., TLS), dashed = PACA algorithms/subprotocols.

The flow for authentication looks exactly the same, apart from the fact that the
appropriate PlA authentication algorithms are used instead. The requirement
on the token is that it supports the combined functionalities of PlA and PACA
protocols and that it is able to validate the correct authorization of two types
of commands, (Mr, tr) and (Ma, ta), that correspond to PlA registration and
authentication. These commands are used to control access to the PlA registra-
tion and authentication functionalities. In the full version of this paper [6] we
formally give a syntax for such composed protocols.

A crucial aspect of our security results is that we convey the two-sided au-
thentication guarantees offered by PlA+PACA, and not only the server-side
guarantees. In fact, the server-side guarantees given by the composed protocol
are almost those offered by PlA, as the server is simply a PlA server: if a to-
ken was used to register a key, then the server can recognize the same token
in authentication; furthermore, PACA security requires that the authentication
must have been carried by a PACA-bound client. But how do the client and user
know which server they are registering at? What guarantees does a user have
such that registered credentials cannot be used in a different server? What does
a user know about how client security affects the effectiveness of access control
for the token? We answer these questions next.

Security model. We give a very short description of the security model here
(the details are in the full version [6]). We define a security property called user
authentication (UA) for the composed protocol. We analyze the PlA+PACA
composition in a trust model as with our PACA model but we further require a
server-to-client explicit authentication guarantee. This captures a basic guaran-
tee given by TLS, whereby the client knows the true identity of the server that
generates the challenge and is ensured the integrity of the received challenge; it
allows formalizing explicit server authentication guarantees given to the token
and user by the composed protocol. We allow the adversary to create arbitrary
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bindings between clients and tokens, used to deliver arbitrary commands to those
created token oracles. We model server-to-token interactions via a unified query:
the adversary can request challenges from server S, via client C aimed at a spe-
cific client-token PACA binding. We hardwire the server’s true identity to the
challenges, which is justified by our assumption of an authenticated channel from
server to client. The token oracles are modeled in the obvious way: if a PACA
command is accepted, then it is interpreted as in the PlA security experiment
and the response is given to the adversary. Compromise of binding states and
corruption of user PINs are modeled as in the PACA security experiment.

Security guarantees. The security goal we define for the composed proto-
col requires that a server oracle that accepts is uniquely partnered with a token
oracle, which is associated with a unique PACA-bound client oracle (that has es-
tablished an access channel), and these oracles agree on the exchanged messages
in all passes of the challenge-response authentication session; this also holds for
the associated registration session. We show that such server-side security for
the composed protocol follows from security of its PlA and PACA components.
Then, it is not hard to see that PlA correctness guarantees the above token and
client oracles agree on the accepting server’s identity and that PlA correctness
and server-to-client explicit authentication (e.g., offered by TLS) guarantees that
user approval (i.e., d = 1) via an uncompromised access channel implies that only
the intended server can be authenticated to.

We now give a brief intuition on how the server-side result can be proved as-
suming the underlying PlA and PACA components are secure. Suppose a server
authentication oracle πi,jS (j > 0) accepts and its associated server registration

oracle πi,0S took as input the attestation public key of token T :

– PlA security guarantees a unique partner oracle in T , which determines two
partner token oracles: πk,0T for registration and πk,lT (l > 0) for authentication.

– Token oracles are, by construction, created on acceptance of PACA commands.
Therefore, token T must have accepted PACA commands to create the above
PlA partner token oracles.

– PACA security binds a PACA command accepted by the token to a unique
PACA partner client oracle (in the SUF/SUF-t corruption model) or to a set
of PACA partner client oracles (in the UF/UF-t corruption model).

– PlA security also guarantees unique server-side partnered oracles πi,0S and πi,jS
(which generated a challenge that is consistent with the token’s view); this
implies that the two accepted PACA commands are produced respectively by
unique PACA partner client oracles πmC and πnC (in either corruption model),

i.e., πmC has a consistent view with πi,0S and πk,0T in registration and so does

πnC with πi,jS and πk,lT in authentication.

The above argument guarantees that unique server, token and client oracles are
bound to the execution of PlA+PACA registration and authentication, as we
claimed before. If this does not hold, then either the PlA protocol or the PACA
protocol can be broken (reduction to the PACA protocol security can be done
by considering the same corruption model as in PlA+PACA).

The details are in the full version of this paper [6].
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Implications for FIDO2. The above result implies that FIDO2 components
WebAuthn and CTAP2 securely compose to achieve the UA security guarantees
under a weak corruption model UF-t: the protocol is broken if the adversary can
corrupt any client that has access to the target token since the last power-up, or
if the adversary can launch an active attack against an uncorrupted client (that
the target user inputs its PIN into) via the CTAP2 API (i.e., the user thinks it is
embedding the PIN into the token but it is actually giving it to the adversary).
Such attacks are excluded by the trust model assumed for the client platform.

Security in the SUF model. The above result also implies that WebAuthn
composes with our sPACA protocol from Section 8 to give UA security in the
strongest corruption model we considered. Intuitively, no active attacks against
the Bind subprotocol can help the attacker beyond simply guessing the user
PIN. The corruption of clients (e.g., browsers) that have previously been bound
to the token may be detected with the help of the user.

User gestures can upgrade security. UA gives strong guarantees to the
server and client. However, it is not very clear what guarantees it gives to the
human user. Apparently, there is a guarantee that an attacker that does not
control the token cannot force an authentication, as it will be unable to provide
a gesture. Furthermore, an attacker that steals the token must still guess the
PIN in a small number of tries to succeed in impersonating the user.

One very important aspect of user awareness is to deal with malware attacks
that may corrupt clients that have been bound to the token. Here, assuming SUF
security has been established, the user can help prevent attackers from abusing
the binding, provided that the token supports gestures that permit identifying
the client-to-token access channel that is transmitting each command. In the
weaker UF model there is no way to prevent this kind of abuse, as corrupting
one access channel implies corrupting all access channels to the same token.

Gestures can also be used to give explicit guarantees to the user that the
server identity used in a PlA session is the intended one. For example, there
could be ambiguity with multiple (honest and malicious) client browser win-
dows issuing concurrent commands from multiple servers. Suppose gesture G
permits confirming which client session is issuing the registration and authen-
tication commands.22 In this case we get a strong guarantee that the token
registered a credential or authenticated via an honest client in the server with
identifier id?S , where id?S was explicitly confirmed by the user on the client in-
terface, provided that the honest client session issued only one command to the
token. Alternatively, G can be defined to directly confirm the specific id?S value
that can be displayed by the authenticator itself and we get the same guarantee.

If the gesture cannot confirm consistency between client and token, then the
user will not be able to distinguish which access channel is transmitting the PlA
command and know for sure which idS the command it is approving refers to.
However, our composition result does show that trivial gestures are sufficient
if the user establishes only one access channel with the token per power-up, as

22 Confirming a client session means that the client browser and token somehow display
a human-readable identifier that the user can crosscheck and confirm.
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then there is no ambiguity as to which access channel is used and only a single
client is provided with the intended server identity as input.

10 Conclusion

We performed the first provable security analysis of the new FIDO2 protocols for
a standard of passwordless user authentication. We identified several shortcom-
ings and proposed stronger protocols. We hope our results will help clarify the
security guarantees of the FIDO2 protocols and help the design and deployment
of more secure and efficient passwordless user authentication protocols.
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