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Abstract. In this work, we address communication, computation, and
round efficiency of unconditionally secure multi-party computation for
arithmetic circuits in the honest majority setting. We achieve both algo-
rithmic and practical improvements:

– The best known result in the semi-honest setting has been due to
Damg̊ard and Nielsen (CRYPTO 2007). Over the last decade, their
construction has played an important role in the progress of efficient
secure computation. However despite a number of follow-up works,
any significant improvements to the basic semi-honest protocol have
been hard to come by. We show 33% improvement in communication
complexity of this protocol. We show how to generalize this result
to the malicious setting, leading to the best known unconditional
honest majority MPC with malicious security.

– We focus on the round complexity of the Damg̊ard and Nielsen proto-
col and improve it by a factor of 2. Our improvement relies on a novel
observation relating to an interplay between Damg̊ard and Nielsen
multiplication and Beaver triple multiplication. An implementation
of our constructions shows an execution run time improvement com-
pared to the state of the art ranging from 30% to 50%.

1 Introduction

Secure Multi-Party Computation (MPC) allows n ≥ 2 parties to compute a
function on privately held inputs, such that the desired output is correctly com-
puted and is the only new information released. This should hold even if t out
of n parties have been corrupted by a semi-honest or malicious adversary. Since
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its introduction in the 1980s [Yao82,GMW87], a lot of research has been done
to improve the efficiency of MPC protocols. Thanks to these efforts, MPC has
rapidly moved from theory to practice.

In this work, our focus is on honest majority protocols in the presence of a
malicious adversary. We note that the fastest known implementations of MPC
have come in the honest majority setting, which does not necessarily require
public key operations. For example, the recent work of Chida et al. [CGH+18]
showed that their secure-with-abort protocol can evaluate 1 million multiplica-
tion gates within 1 second for up to 7 parties, 4 seconds for 50 parties, and 8
seconds for 110 parties. Another attractive feature of the honest majority setting
is that it allows one to achieve the stronger properties of fairness and guaranteed
output delivery which are otherwise impossible with dishonest majority.

For over a decade, the most efficient MPC protocol with semi-honest se-
curity in the honest majority setting has been the protocol of Damg̊ard and
Nielsen [DN07], hereafter known as the DN protocol. By using the Shamir se-
cret sharing scheme [Sha79], addition gates can be evaluated without any com-
munication. To evaluate a multiplication gate, each party only needs to com-
municate 6 field elements. In the computational setting, the communication
complexity can be reduced to 3 field elements by using pseudo-random gen-
erators [NV18] (improved further to 1.5 elements by Boneh et al. [BBCG+19]
for a constant number of parties). Due to its simplicity and efficiency, many
subsequent works have used the DN protocol to achieve security-with-abort
[GIP+14,CGH+18,NV18,BBCG+19,GSZ20] or guaranteed output delivery
[BSFO12,GSZ20].

Despite the important role played by the DN protocol in the honest majority
setting, any improvement to the basic protocol has been hard to come by unless
one resorts to other approaches using computational assumptions. An exception
is the recent work of Goyal et al. [GSZ20] who proposed a marginal improvement
over DN of 6 field elements per multiplication gate to 5.5 field elements.

1.1 Our Contributions

We propose ATLAS, an unconditionally secure MPC protocol in the honest
majority setting with reduced communication complexity over the celebrated
DN protocol even in the honest but curious setting, as well as malicious setting.
Our protocol ATLAS enjoys the following efficiency improvements over the DN
protocol:

– We improve the basic DN protocol leading to a communication complexity
of 4 field elements per multiplication gate per party. Our results are in the
information-theoretic setting assuming a majority of the parties are honest
and the adversary is semi-honest. This leads to the most communication-
efficient semi-honest MPC protocol with honest majority.

– We note that the recent works [BBCG+19,GSZ20] compiled the DN protocol
to get security-with-abort without increasing the communication complexity.
We show that our protocol continues to satisfy the properties needed for this
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compilation to work. It allows us to present a secure-with-abort protocol with
only 4 field elements per multiplication gate per party in the information-
theoretic setting.

– Next, we focus on the round complexity of the DN protocol. Instead of
evaluating multiplication gates of the same layer in parallel, we show how to
evaluate all multiplication gates in a two-layer circuit in parallel. This allows
us to improve the concrete efficiency even further and reduce the number of
rounds by a factor of 2. The achieved amortized communication cost per
multiplication gate in this setting is 4.5 field elements per party but halving
the number of rounds.

– In the computational setting, where one can use pseudo-random genera-
tors based on any one-way function (in practice, one can use an AES based
PRG in counter-mode), we show how to further reduce the communication
complexity by making black-box use of any pseudo-random generator. The
concrete efficiency can be improved to 2 field elements per party per gate in
both semi-honest and secure-with-abort settings, and 2.5 field elements for
the variant with the improvement of round complexity.

We implement ATLAS in the information-theoretic setting and compare with
the previously best-known results [CGH+18,GSZ20] in the setting of security-
with-abort. We measure the running time for circuits with 1 million and 10
million multiplication gates, with circuit depth from 20 to 10,000, and the num-
ber of parties from 3 to 21. By combining improvements on both communication
and round complexity, our protocol shows around 2x speedup comparing with
the protocol in [CGH+18], and around 1.4x speedup comparing with the protocol
in [GSZ20] in all tested cases.

1.2 Other Related Works

The notion of MPC was first introduced in [Yao82,GMW87] in 1980s. Feasibility
results for MPC were obtained by [Yao82,GMW87,CDVdG87] under crypto-
graphic assumptions, and by [BOGW88,CCD88] in the information-theoretic
setting. Subsequently, a large number of works have focused on improving the
efficiency of MPC protocols in various settings.

A series of works focus on improving the communication efficiency of MPC
with guaranteed output delivery in the settings with different thresholds on the
number of corrupted parties. In the setting of honest majority setting, assuming
the existence of a broadcast channel, the works [BSFO12,GSZ20] have shown
that guaranteed output delivery can be achieved efficiently. In the setting where
t < n/3, a rich line of works [HMP00,HM01,DN07,BTH08,GLS19] have focused
on improving the asymptotic communication complexity in this setting. In the
setting where t < (1/3− ε)n, packed secret sharing can be used to hide a batch
of values, resulting in more efficient protocols. E.g., Damg̊ard et al. [DIK10]
introduced a protocol with communication complexity of O(C logC log n · κ +
D2
Mpoly(n, logC)κ) bits.

A rich line of works have also focused on the performance of MPC in practice
for two parties [LP12,NNOB12], or three parties [FLNW17,ABF+17].
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2 Technical Overview

We give an overview of our techniques in this section. In the following, we will
use n to denote the number of parties and t to denote the number of corrupted
parties. In the setting of the honest majority, we have n = 2t+ 1. Our construc-
tion is based on the standard Shamir Secret Sharing Scheme [Sha79]. We will use
[x]d to denote a degree-d Shamir sharing, or a (d+ 1)-out-of-n Shamir sharing.
It requires at least d + 1 shares to reconstruct the secret and any d shares do
not leak any information about the secret.

2.1 Review: The Secure-with-abort MPC Protocol in [GSZ20]

In [GIP+14], Genkin et al. showed that the best-known semi-honest proto-
col [DN07] (hereafter referred to as the DN protocol) is secure up to an ad-
ditive attack in the presence of a fully malicious adversary. An additive attack
means that the adversary is able to change the multiplication result by adding
an arbitrary fixed value. As one corollary, the DN protocol provides full privacy
of honest parties before reconstructing the output. Therefore, a straightforward
strategy to achieve security-with-abort is to (1) run the DN protocol until the
output phase, (2) check the correctness of the computation, and (3) reconstruct
the output only if the check passes.

In the DN protocol [DN07], all parties compute a degree-t Shamir sharing for
each wire. Since the Shamir secret sharing scheme is linearly homomorphic, ad-
dition gates can be evaluated without interaction. Therefore, to achieve security-
with-abort, the main task is to verify the multiplications. In [GSZ20], Goyal et
al. show that multiplications can be verified with sub-linear communication com-
plexity in the number of multiplications. This allows Goyal et al. to obtain the
first secure-with-abort MPC protocol which achieves the same concrete efficiency
per gate as the best-known semi-honest protocol [DN07].

To make a further improvement in the concrete efficiency, we focus on the
multiplication protocol in [DN07] (hereafter referred to as the DN multiplication
protocol). Our idea is to reuse the correlated-randomness required in the DN
multiplication protocol.

Review of the DN Multiplication Protocol. To evaluate a multiplication gate, all
parties first need to prepare a pair of random sharings ([r]t, [r]2t) of the same
secret r, where the first sharing is a degree-t Shamir sharing and the second
sharing is a degree-2t Shamir sharing. Such a pair of sharings is referred to as a
pair of double sharings. In [DN07], preparing a pair of random double sharings
requires the communication of 4 elements per party.

For a multiplication gate, suppose the input sharings are denoted by [x]t, [y]t.
To compute [z]t := [x · y]t, a pair of random double sharings ([r]t, [r]2t) is con-
sumed. All parties first agree on a special party Pking. Then, all parties run the
following steps:

1. All parties locally compute [e]2t := [x]t · [y]t + [r]2t.
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2. Pking collects all shares of [e]2t and reconstructs the secret e. Then Pking

sends the value e to all other parties.
3. After receiving e from Pking, all parties locally compute [z]t := e− [r]t.

Correctness follows from the properties of the Shamir secret sharing scheme.
Note that each party needs to send an element to Pking, and Pking needs to
send an element to each party. The communication complexity of this protocol
is 2 elements per party. Including the communication cost for preparing double
sharings, the overall cost per multiplication gate is 6 elements per party.

2.2 Reducing the Communication Complexity via t-wise
Independence

Starting Point. In [GSZ20], Goyal et al. observe that in the second step of the
DN multiplication protocol, Pking can alternatively distribute a degree-t Shamir
sharing [e]t. Then in the last step, all parties can still compute [z]t := [e]t− [r]t.
This observation leads to an improvement from 6 elements to 5.5 elements. We
refer the readers to Section 4.2 for more discussion.

Our main observation is that, when Pking is an honest party, the corrupted
parties only receive several random elements from Pking if [e]t is a random degree-
t Shamir sharing. In particular, it holds even if the corrupted parties know
the whole sharings [r]t and [r]2t. This is because the corrupted parties only
receive t shares of a random degree-t sharing [e]t from Pking, which are uniformly
random and independent of the secret. Therefore for an honest Pking, we do not
need the double sharings to be uniformly random at all. While for a corrupted
Pking, we still need to use random double sharings, we can split the tasks of
handling multiplication gates as Pking to all parties. In this way, at least half of
multiplication gates are handled by honest Pking’s. We show that it allows us to
reduce the cost of preparing double sharings by a factor of 2.

Relying on t-wise Independence. Suppose we have n multiplication gates and
we let each party behave as Pking for 1 multiplication gate. When Pking is a
corrupted party, we still need to use a pair of random double sharings to protect
the secrecy of the result. If Pking is an honest party, as argued above, the double
sharings do not need to be random.

Our idea is to generate n pairs of double sharings such that any t pairs of
them are independent and uniformly random. This guarantees that the double
sharings used for multiplication gates handled by corrupted parties are uniformly
random, which ensures the security of the MPC protocol. On the other hand,
given these double sharings, the other double sharings used for multiplication
gates handled by honest parties can be fixed and determined. It means that we
only need to prepare t pairs of random and independent double sharings for n
multiplication gates.

To this end, all parties agree on a fixed hyper-invertible matrix of size n× t,
denoted by M . The main property of M is that any t × t sub-matrix of M is
invertible. Since the Shamir secret sharing scheme is a linear homomorphism,
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a linear combination of several pairs of double sharings is still a pair of double
sharings. All parties first prepare t pairs of random double sharings using the
protocol in [DN07], denoted by

([r(1)]t, [r
(1)]2t), . . . , ([r

(t)]t, [r
(t)]2t).

Then, we expand these t pairs of double sharings to n pairs by computing

([r̃(1)]t, . . . , [r̃
(n)]t)

T = M([r(1)]t, . . . , [r
(t)]t)

T

([r̃(1)]2t, . . . , [r̃
(n)]2t)

T = M([r(1)]2t, . . . , [r
(t)]2t)

T.

We point out that this expansion can be done locally without interaction. Note
that for all i ∈ [n], ([r̃(i)]t, [r̃

(i)]2t) is a pair of double sharings. Let C denote the
set of corrupted parties. According to the property of M , there is a one-to-one
map from {([r̃(i)]t, [r̃(i)]2t)}i∈C to {([r(i)]t, [r(i)]2t)}i∈[t]. Since the input double
sharings are independent and uniformly random, we conclude that the double
sharings in {([r̃(i)]t, [r̃(i)]2t)}i∈C are independent and uniformly random.

When ([r̃(i)]t, [r̃
(i)]2t) is used to evaluate a multiplication gate, we require

the party Pi to act as Pking. In this way, the multiplication gates handled by
corrupted parties will use double sharings in {([r̃(i)]t, [r̃(i)]2t)}i∈C , which are
independent and uniformly random. We are able to show that the security still
holds.

Concrete Efficiency of Our Improved Multiplication Protocol. Recall that in
[DN07], preparing a pair of random double sharings requires the communica-
tion of 4 elements per party. Relying on t-wise independence, we only need to
prepare t pairs of random double sharings for n multiplications. Thus, the amor-
tized communication cost per pair of double sharings is 4 · t/n ≈ 2 elements per
party. Including the communication cost of the multiplication protocol in [DN07],
which is 2 elements per party, the overall cost per multiplication is 4 elements
per party.

In Section 4.2, we show that our multiplication protocol can be directly used
in the secure-with-abort MPC protocol in [GSZ20]. It yields a secure-with-abort
MPC protocol with the concrete efficiency of 4 elements per party per gate.

2.3 Reducing the Number of Rounds via Beaver Triples

In the secure-with-abort MPC protocol in [GSZ20], multiplication gates in the
same layer of the circuit are evaluated in parallel.Therefore, the number of rounds
is linear in the depth of the circuit. To further improve the concrete efficiency,
we pay our attention to the round complexity. We note that the question of
obtaining information theoretic constant round protocols for a general circuit
has been opened for many years. In particular, it has been shown in [DNPR16]
that the dependency on the depth in the round complexity is inherent for the
DN protocol. Given this, we managed to reduce the number of rounds by a factor
of 2 while maintaining the communication efficiency.

To this end, we first consider a two-layer circuit, and try to evaluate all
multiplication gates in parallel.
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Starting Point. For a two-layer circuit, an input sharing of a multiplication gate
in the second layer may come from three places:

– This sharing is an input sharing of the circuit.
– This sharing is an output sharing of an addition gate in the first layer.
– This sharing is an output sharing of a multiplication gate in the first layer.

Note that an addition gate can be evaluated without interaction. Therefore for
the first two cases, all parties can locally compute this sharing. However, for the
third case, communication is required to evaluate this multiplication gate in the
first layer. Therefore, the question becomes how to evaluate multiplication gates
in the second layer without learning the output sharings of multiplication gates
in the first layer.

A Beaver triple [Bea92] consists of three degree-t Shamir sharings ([a]t, [b]t, [c]t)
such that c = a · b. Usually, a Beaver triple is used to transform one multiplica-
tion to two reconstructions. Concretely, given two sharings [x]t, [y]t, suppose we
want to compute [z]t such that z = x · y. Since

z = x · y
= (x+ a− a) · (y + b− b)
= (x+ a) · (y + b)− (x+ a) · b− (y + b) · a+ a · b,

we can compute

[z]t := (x+ a) · (y + b)− (x+ a) · [b]t − (y + b) · [a]t + [c]t.

Therefore, the task of computing [z]t becomes to reconstruct two degree-t Shamir
sharings [x]t+[a]t and [y]t+[b]t. Observe that, if we set u = x+a and v = y+ b,
the above equation allows us to locally compute a degree-t Shamir sharing of
z := (u−a) · (v−b) using a Beaver triple ([a]t, [b]t, [c]t) once u and v are publicly
known.

Beaver-triple Friendly Form. We say a sharing is in the Beaver-triple friendly
form, if it can be written as u − [a]t, where u is a public element and [a]t is a
degree-t Shamir sharing. Now suppose for each multiplication gate in the second
layer, the input sharings are in the Beaver-triple friendly form, say u− [a]t and
v−[b]t. Given the Beaver triple ([a]t, [b]t, [c]t), one can non-interactively compute
the output sharing of this gate by

[z]t := u · v − u · [b]t − v · [a]t + [c]t.

Note that the Beaver triple ([a]t, [b]t, [c]t) can be prepared without learning u, v.
Therefore, if for each multiplication gate in the second layer, the input sharings
are in the Beaver-triple friendly form u−[a]t, v−[b]t, and [a]t, [b]t are learnt before
evaluating the first layer, we can prepare the Beaver triple ([a]t, [b]t, [c]t) with-
out evaluating the first layer, and then non-interactively evaluate multiplication
gates in the second layer after learning u, v from the first layer.

Of course, the question remains: since the input sharings of the second layer
come from the output sharings of the first layer, how do we ensure that the
output sharings of the first layer are in the Beaver-triple friendly form?
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Evaluating a Two-Layer Circuit. We observe that the original DN multiplication
protocol in [DN07] satisfies our requirement! Concretely, to evaluate a multipli-
cation gate with input sharings [x]t, [y]t all parties need to first prepare a pair
of random double sharings ([r]t, [r]2t). In the last step of the DN multiplication
protocol, Pking sends the reconstruction result of [e]2t := [x]t · [y]t + [r]2t to all
parties, and all parties can compute the degree-t Shamir sharing [z]t := e− [r]t.
In particular, the output sharing is in the Beaver-triple friendly form, and the
sharing [r]t is prepared before evaluating this multiplication gate. Therefore, we
will use the original DN multiplication protocol to evaluate multiplication gates
in the first layer.

For a multiplication gate in the second layer, suppose that the two input
wires are both the outputs of multiplication gates in the first layer. Let e1− [r1]t
and e2 − [r2]t denote these two output sharings. Now observe that e1 and e2
will already be public as part of evaluating the first layer. So to compute a
degree-t Shamir sharing of (e1 − r1)(e2 − r2), all we need is [r1 · r2]t. If we
can pre-compute and distribute ([r1]t, [r2]t, [r1 · r2]t), we are done! Of course,
since r1 and r2 are also used in the multiplication gates in the first layer, we
simultaneously need to compute degree-2t Shamir sharings of r1 and r2 as well.
Fortunately, this does not affect the security of the second layer. In other words,
the outputs of the first layer feed nicely into the second layer making the second
layer non-interactive. At the same time, we are able to ensure that these two
different types of multiplication protocols do not destroy the security of each
other despite sharing randomness.

As we discussed above, the input sharing of a multiplication gate in the
second layer may come from two other places: (1) it may be an input sharing of
this two-layer circuit, or (2) it may be an output sharing of an addition gate in
the first layer. In both cases, all parties can locally compute this sharing before
evaluating the multiplication gates in the first layer. Let [x]t denote such an input
sharing. Note that [x]t = 0−(−[x]t) is already in the Beaver-triple friendly form.
Therefore, all the input sharings of multiplication gates in the second layer are
in the Beaver-triple friendly form. But now, the problem is that [x]t is not known
before the circuit evaluation starts (unlike [r1]t and [r2]t), and hence [x]t cannot
be part of a Beaver triple pre-computed before the evaluation. Fortunately, as
observed earlier, parties hold [x]t before evaluating any multiplication gates in
the first layer. Now our idea is to prepare the Beaver triples for the second layer
dependent on [x]t in parallel with the multiplications in the first layer.

After preparing Beaver triples for the second layer and computing the output
sharings of the multiplication gates in the first layer, all parties can locally
compute the degree-t Shamir sharings associated with the output wires of this
two-layer circuit. These sharings will be fed to the next two-layer circuit, which
is sufficient to start the evaluation since the original DN multiplication protocol
does not require any special property of the input sharings. Therefore in the
evaluation of the whole circuit, these two types of multiplication protocols are
alternatively used in every two layers.
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Improving the Communication Complexity. While the above helps us make
progress, it does not achieve our final goal. In particular, using the original
DN protocol requires the communication of 6 elements per party per gate. We
note that for multiplications in different layers, we have different requirements:

– For multiplication gates in the first layer, we need the output sharings to
have the Beaver-triple friendly form.

– For multiplication gates in the second layer, we compute the Beaver triples
in the form of ([a]t, [b]t, [c]t). We only need to obtain the degree-t sharing of
[c]t for each Beaver triple.

Therefore for multiplication gates in the second layer, we can use our im-
proved multiplication protocol to compute Beaver triples, which requires the
communication of 4 elements per party per multiplication. For multiplication
gates in the first layer, however, Pking needs to send the same values to all par-
ties. It seems like our trick of using t-wise independence does not work in this
scenario.

Having a closer look at our trick of using t-wise independence, for a mul-
tiplication gate handled by an honest party, the secret r of the random dou-
ble sharings is fixed given the double random sharings used for multiplica-
tion gates handled by corrupted parties. Revealing the reconstruction result
of [e]2t := [x]t · [y]t + [r]2t may leak the multiplication result to the adversary.
Therefore, to be able to reveal the reconstruction result, r needs to be uniformly
random for every multiplication gate. However, we note that r being uniformly
random is not equivalent to the pair of double sharings ([r]t, [r]2t) being uni-
formly random.

Therefore, we want to decouple the relation between r and the double shar-
ings. Note that a pair of double sharings ([r]t, [r]2t) is equivalent to a pair of
sharings ([r]t, [o]2t), where the first sharing is a degree-t Shamir sharing of r
and the second sharing is a degree-2t Shamir sharing of zero o = 0. To see this,
given ([r]t, [r]2t), we can set [o]2t := [r]2t − [r]t; given ([r]t, [o]2t), we can set
[r]2t := [r]t + [o]2t. When using a pair of sharings ([r]t, [o]2t), the DN multipli-
cation protocol becomes:

1. All parties locally compute [e]2t := [x]t · [y]t + [r]t + [o]2t.
2. Pking collects all shares of [e]2t and reconstructs the secret e. Then Pking

sends the value e to all other parties.
3. After receiving e from Pking, all parties locally compute [z]t := e− [r]t.

Note that [o]2t is only used to compute [e]2t. When Pking is an honest party, [o]2t
does not need to be a uniformly random degree-2t sharing of 0. Thus, we can
use t-wise independent [o]2t’s with uniformly random degree-t sharings [r]t’s.

In [DN07], it has been shown that preparing a random degree-t random shar-
ing requires the communication of 2 elements per party. In Section 4.3, following
from the same idea of preparing random degree-t Shamir sharings, we show that
preparing a random degree-2t sharing of 0 requires the communication of 2 ele-
ments per party as well. Then, using our idea of t-wise independence, we expand
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t random degree-2t sharings of 0 to n sharings with t-wise independence. In this
way, the communication cost of preparing correlated-randomness for one multi-
plication in the first layer is 2+2·t/n ≈ 3 elements. Including the communication
cost of the multiplication protocol in [DN07], which is 2 elements per party, the
overall cost per multiplication in the first layer is 5 elements per party.

Recall that for multiplication gates in the second layer, we will use our im-
proved multiplication protocol to compute Beaver triples, which requires the
communication of 4 elements per party per gate. To evaluate the whole circuit,
we first partition it into a sequence of two-layer sub-circuits. Then we use the
above strategy to evaluate each two-layer sub-circuit in a predetermined topo-
logical order. Assuming that the number of multiplication gates in the first layer
is roughly the same as the number of multiplication gates in the second layer,
the concrete efficiency is (4 + 5)/2 = 4.5 elements per party per gate.

Achieving Security-with-abort. We note that the correctness of the computation
requires the following two points:

– Pking parties send the same values to all other parties for multiplication gates
in the first layer of all sub-circuits.

– All multiplication tuples are correctly computed.

In the verification phase, all parties first check whether they receive the same
values, which corresponds to the first point above. This is done by checking
a random linear combination of the values they receive. Then, all parties use
the verification of multiplications in [GSZ20] to efficiently check the correctness
of all multiplication tuples. In Section 4.3, we show that the communication
complexity of the verification phase is sub-linear in the number of multiplication
gates. Therefore, the concrete efficiency of our protocol is the same as that for
each multiplication gate, i.e., 4.5 elements per party per gate. In particular,
comparing with the protocol in [GSZ20], we reduce the number of rounds by a
factor of 2.

2.4 Using PRG to Reduce Communication Complexity

We note that the communication complexity can be further reduced by relying
on pseudo-random generators. This trick has been used in previous works such
as [BBCG+19,LN17,NV18].

At a high-level, each pair of parties will first agree on a random seed, which
is unknown to other parties. When some party Pi needs to distribute a degree-t
sharing, one can think that Pi first sends random elements to the first t parties
as their shares. Then Pi reconstructs the whole sharing using the secret and
the first t shares, and distributes the shares to the rest of parties. Relying on
the PRG, Pi does not need to send shares to the first t parties. Instead, each
of the first t parties and Pi will simply run the PRG on their common seed
and take the same piece from the output as the share. In this way, the cost of
distributing a degree-t sharing can be reduced by a factor of 2. For a degree-2t
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sharing, one can think that Pi first sends random elements to all other parties
as their shares. Then Pi reconstructs the whole sharing using the secret and the
2t shares distributed to other parties. Finally, Pi can compute its own share.
Relying on PRG, Pi does not need to communicate with any party. Instead,
each party and Pi simply run the PRG on their common seed and take the same
piece from the output as the share. In this way, distributing a degree-2t sharing
can be done at no cost. Regarding the security, notice that the corrupted parties
learn nothing about the secret of a sharing distributed by an honest party even
if the shares of corrupted parties are determined by themselves. This is because
the corrupted parties only learn t shares of either a degree-t Shamir sharing or
a degree-2t Shamir sharing, which are independent of the secret value.

As a result, for our first improvement of using t-wise independence, the con-
crete efficiency can be improved to 2 elements per party per gate. For our second
improvement of using Beaver triples, the communication efficiency can be im-
proved to 2.5 elements per party per gate. More details can be found in the full
version of this paper [GLO+21].

3 Preliminaries

3.1 Model

In this work, we focus on functions that can be represented as arithmetic circuits
over a finite field F (with |F| ≥ 2n)6 with input, addition, multiplication, and
output gates. Let φ = log |F| be the size of an element in F. We use κ to denote
the security parameter and let K be an extension field of F (with |K| ≥ 2κ). For
simplicity, we assume that κ is the size of an element in K. Let cI , cM , cO be the
number of input gates, multiplication gates, and output gates respectively. We
set C = cI + cM + cO to be the size of the circuit.

For the secure multi-party computation, we use the client-server model. In
the client-server model, clients provide inputs to the functionality and receive
outputs, and servers can participate in the computation but do not have inputs
or get outputs. Each party may have different roles in the computation. Note
that, if every party plays a single client and a single server, this corresponds
to a protocol in the standard MPC model. Let c denote the number of clients
and n = 2t + 1 denote the number of servers. For all clients and servers, we
assume that every two of them are connected via a secure (private and authentic)
synchronous channel so that they can directly send messages to each other.
The communication complexity is measured by the number of bits via private
channels.

An adversary A can corrupt at most c clients and t servers, provide inputs to
corrupted clients, and receive all messages sent to corrupted clients and servers.
Corrupted clients and servers can deviate from the protocol arbitrarily. We refer
the readers to the full version of this paper [GLO+21] for the security definition.

6 The requirement of the field size is due to the use of so-called hyper-invertible ma-
trices in our construction. See more discussion in Section 3.2 of [BTH08].
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Benefits of the Client-Server Model. In our construction, the clients only
participate in the input phase and the output phase. The main computation is
conducted by the servers. For simplicity, we use {P1, . . . , Pn} to denote the n
servers, and refer to the servers as parties. Let C denote the set of all corrupted
parties and H denote the set of all honest parties. One benefit of the client-server
model is the following theorem shown in [GIP+14].

Theorem 1 (Lemma 5.2 [GIP+14]). Let Π be a protocol computing a c-client
circuit C using n = 2t + 1 parties. Then, if Π is secure against any adversary
controlling exactly t parties, then Π is secure against any adversary controlling
at most t parties.

This theorem allows us to only consider the case where the adversary controls
exactly t parties. Therefore in the following, we assume that there are exactly t
corrupted parties.

3.2 Secret Sharing

In this work, we will use the standard Shamir Secret Sharing Scheme [Sha79].
Let n be the number of parties and F be a finite field of size |F| ≥ n + 1. Let
α1, . . . , αn be n distinct non-zero elements in F.

A degree-d Shamir sharing of x ∈ F is a vector (x1, . . . , xn) which satisfies
that there exists a polynomial f(·) ∈ F[X] of degree at most d such that f(0) = x
and f(αi) = xi for i ∈ {1, . . . , n}. Each party Pi holds a share xi and the whole
sharing is denoted by [x]d.

We will utilize two properties of the Shamir secret sharing scheme.

– Linear Homomorphism:

∀ [x]d, [y]d, [x+ y]d = [x]d + [y]d.

– Multiplying two degree-d sharings yields a degree-2d sharing. The secret
value of the new sharing is the product of the original two secrets.

∀ [x]d, [y]d, [x · y]2d = [x]d · [y]d.

3.3 Useful Building Blocks

In this part, we briefly summarize the functionalities that will be used in our
main construction. These three functionalities can be efficiently instantiated
from [DN07,GSZ20]. We refer the readers to the full version of this paper [GLO+21]
for the descriptions of these functionalities.

– The first functionality Frand allows all parties to prepare a random degree-t
Shamir sharing. An instantiation of Frand can be found in [DN07,GSZ20]
(Protocol 2 in Section 3.3 of [GS20]). At a high-level, the idea is to let
each party generate and distribute a random degree-t Shamir sharing to all
parties. Then, all parties locally apply (the transpose of) a Vandermonde
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matrix, as a randomness extractor, on their shares to obtain n − t random
degree-t Shamir sharings. The amortized communication cost per sharing is
2 elements per party.

– The second functionality FdoubleRand allows all parties to prepare a pair of
sharings ([r]t, [r]2t) of the same random element r, where the first sharing is a
random degree-t Shamir sharing, and the second sharing is a random degree-
2t Shamir sharing. We refer to such a pair of sharings as a pair of double
sharings. An instantiation of FdoubleRand can be found in [DN07,GSZ20]
(Protocol 4 in Section 3.4 of [GS20]). At a high-level, the idea is to let
each party generate and distribute a pair of random double sharings to all
parties. Then, all parties locally apply (the transpose of) a Vandermonde
matrix, as a randomness extractor, on their shares to obtain n − t pairs
of random double sharings. The amortized communication cost per pair of
random double sharings is 4 elements per party.

– The third functionality Fcoin allows all parties to generate a random element.
An instantiation of Fcoin can be found in [GSZ20] (Protocol 6 in Section 3.5
of [GS20]). At a high-level, the idea is to first invoke Frand to obtain a
random degree-t Shamir sharing. Then all parties exchange their shares and
reconstruct the secret as their output, which is a random field element. The
communication complexity of the instantiation is O(n2κ) bits.

4 ATLAS: Our Unconditional MPC Construction

In this section, we will introduce two improvements to the secure-with-abort
MPC protocol in [GSZ20].

– The first improvement reduces the communication cost per multiplication
gate per party from 5.5 elements to 4 elements.

– The second improvement reduces the communication cost per multiplication
gate per party from 5.5 elements to 4.5 elements and reduce the number of
rounds by a factor of 2.

Our core idea is to reuse the correlated-randomness prepared for multiplication
gates.

We first give a short review of the construction in [GSZ20]. Then we in-
troduce our two improvements. We refer the readers to the full version of this
paper [GLO+21] for further reducing the communication complexity by using a
pseudo-random generator.

4.1 Review of the Secure-with-abort MPC Protocol in [GSZ20]

In [GIP+14], Genkin et al. showed that several semi-honest MPC protocols are
secure up to an additive attack in the presence of a fully malicious adversary. An
additive attack means that the adversary is able to change the multiplication
result by adding an arbitrary fixed value. As one corollary, these semi-honest
protocols provide full privacy of honest parties before reconstructing the output.
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Therefore, a straightforward strategy to achieve security-with-abort is to (1)
run a semi-honest protocol till the output phase, (2) check the correctness of the
computation, and (3) reconstruct the output only if the check passes.

Fortunately, the best-known semi-honest protocol in this setting [DN07] is se-
cure up to an additive attack. At a high-level, the semi-honest protocol in [DN07]
computes a degree-t Shamir sharing for each wire. Since the Shamir secret shar-
ing scheme is linear homomorphic, addition gates can be evaluated without in-
teraction. Therefore, the main concern is multiplication gates. In [GSZ20], this
kind of attack is modeled in the functionality Fmult, which takes two degree-t
Shamir sharings [x]t, [y]t and outputs the multiplication result [x · y]t. The de-
scription of Fmult can be found in Functionality 1. The original multiplication
protocol in [DN07] requires 6 elements per party per gate. Goyal et al. [GSZ20]
improve this protocol and reduce the communication cost to 5.5 elements.

Functionality 1: Fmult

1. Let [x]t, [y]t denote the input sharings. Fmult receives from honest parties
their shares of [x]t, [y]t. Then Fmult reconstructs the secrets x, y. Fmult further
computes the shares of [x]t, [y]t held by corrupted parties, and sends these
shares to the adversary.

2. Fmult receives from the adversary a value d and a set of shares {zi}i∈C .
3. Fmult computes x · y + d. Based on the secret z := x · y + d and the t shares
{zi}i∈C , Fmult reconstructs the whole sharing [z]t and distributes the shares
of [z]t to honest parties.

Since Fmult does not guarantee the correctness of the multiplications, all
parties need to verify the multiplications computed by Fmult at the end of the
protocol. The functionality FmultVerify takes N multiplication tuples as input and
outputs to all parties a single bit b indicating whether all multiplication tuples
are correct. The description of FmultVerify can be found in Functionality 2.

In [GSZ20], Goyal et al. provide an instantiation of FmultVerify which has
communication complexity O(n2 · logC · κ) bits, where n is the number of par-
ties and κ is the security parameter. Note that it is sub-linear in the num-
ber of multiplication tuples. Relying on Fmult,FmultVerify, Goyal et al. [GSZ20]
construct a secure-with-abort MPC protocol with communication complexity
O(Cnφ + n2 · logC · κ) bits. In particular, the concrete efficiency per multipli-
cation gate is the same as the communication cost of the instantiation of Fmult,
i.e., 5.5 elements per party.
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Functionality 2: FmultVerify

1. Let N denote the number of multiplication tuples. The multiplication tuples
are denoted by

([x(1)]t, [y
(1)]t, [z

(1)]t), ([x
(2)]t, [y

(2)]t, [z
(2)]t), . . . , ([x

(N)]t.[y
(N)]t, [z

(N)]t).

2. For all i ∈ [N ], FmultVerify receives from honest parties their shares of
[x(i)]t, [y

(i)]t, [z
(i)]t. Then FmultVerify reconstructs the secrets x(i), y(i), z(i).

FmultVerify further computes the shares of [x(i)]t, [y
(i)]t, [z

(i)]t held by cor-
rupted parties and sends these shares to the adversary.

3. For all i ∈ [N ], FmultVerify computes d(i) = z(i) − x(i) · y(i) and sends d(i) to
the adversary.

4. Finally, let b ∈ {abort, accept} denote whether there exists i ∈ [N ] such that
d(i) 6= 0. FmultVerify sends b to the adversary and waits for its response.

– If the adversary replies continue, FmultVerify sends b to honest parties.
– If the adversary replies abort, FmultVerify sends abort to honest parties.

4.2 Reducing the Communication Complexity via t-wise
Independence

Our first improvement comes from a new protocol for Fmult. The amortized
communication cost of our new protocol is 4 elements per party. Relying on
the secure-with-abort MPC protocol [GSZ20] which uses Fmult,FmultVerify as
building blocks, we directly obtain a secure-with-abort MPC protocol with the
same asymptotic communication complexity, i.e., O(Cnφ + n2 · logC · κ) bits.
In particular, the concrete efficiency per multiplication gate is 4 elements per
party. Our new protocol is based on the multiplication protocol in [DN07]. We
first give a quick review of the multiplication protocol in [DN07].

Review of the Multiplication Protocol in [DN07]. To evaluate a mul-
tiplication gate, all parties need to prepare a pair of random double sharings
([r]t, [r]2t). This is done by invoking FdoubleRand introduced in Section 3.3. Recall
that the amortized communication complexity of the instanciation of FdoubleRand

in [DN07,GSZ20] is 4 elements per party.
For a multiplication gate, suppose the input sharings are denoted by [x]t, [y]t.

To compute [z]t := [x · y]t, a pair of random double sharings ([r]t, [r]2t) is con-
sumed. All parties first agree on a special party Pking. Pking will help do the
reconstruction in the multiplication protocol. Then, all parties run the following
steps:

1. All parties locally compute [e]2t := [x]t · [y]t + [r]2t.
2. Pking collects all shares of [e]2t and reconstructs the secret e. Then Pking

sends the value e to all other parties.
3. After receiving e from Pking, all parties locally compute [z]t := e− [r]t.
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The correctness follows from the properties of the Shamir secret sharing scheme.
Note that each party needs to send an element to Pking, and Pking needs to
send an element to each party. The communication complexity of this protocol
is 2 elements per party. Including the communication cost for preparing double
sharings, the overall cost per multiplication gate is 6 elements per party.

In [GSZ20], Goyal et al. observe that in the second step, Pking can alterna-
tively distribute a degree-t Shamir sharing [e]t. Then in the last step, all parties
can still compute [z]t := [e]t− [r]t. Furthermore, since e does not need to be pri-
vate, Pking can set the shares of (a predetermined set of) t parties to be 0 in [e]t.
This means that Pking need not to communication these shares at all, reducing
the communication by half. This observation allows Goyal et al. to reduce the
communication cost from 6 elements to 5.5 elements.

Our Observation. As [GSZ20], we require Pking to distribute a degree-t Shamir
sharing [e]t in the second step. However, we further require Pking to generate
a random sharing [e]t. In this way, when Pking is an honest party, corrupted
parties only receive t shares of a random degree-t sharing [e]t from Pking, which
are uniform and independent of the secret. As discussed in Section 2, it means
that we do not need to use uniform double sharings when Pking is honest.

For n multiplication gates, our idea is to let each party behave as Pking for
one multiplication gate. Note that only t out of n multiplications are handled
by corrupted Pking’s. To make sure that all parties still use a pair of random
double sharings when Pking is corrupted, the n pairs of double sharings for these
n multiplication gates only need to be t-wise independent. To this end, we will
first generate t pairs of random double sharings, and then expand them to n
pairs of double sharings with t-wise independence.

Specifically, all parties agree on an n × t hyper-invertible matrix M . Let
([r(1)]t, [r

(1)]2t), . . . , ([r
(t)]t, [r

(t)]2t) be t pairs of random double sharings pre-
pared by FdoubleRand. All parties execute Expand (Protocol 3) to expand these
t pairs into n pairs of t-wise independent double sharings.

Protocol 3: Expand

1. All parties agree on an n × t hyper-invertible matrix M . All parties locally
compute

([r̃(1)]t, . . . , [r̃
(n)]t)

T = M([r(1)]t, . . . , [r
(t)]t)

T

([r̃(1)]2t, . . . , [r̃
(n)]2t)

T = M([r(1)]2t, . . . , [r
(t)]2t)

T

2. All parties output {([r̃(i)]t, [r̃(i)]2t, Pi)}ni=1, where ([r̃(i)]t, [r̃
(i)]2t, Pi) will be

used for a multiplication gate handled by Pi.
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Recall that C denotes the set of all corrupted parties. By the property of
hyper-invertible matrices, there is a one-to-one map from {([r̃(i)]t, [r̃(i)]2t)}i∈C
to {[r(i)]t, [r(i)]2t}ti=1. Thus, {([r̃(i)]t, [r̃(i)]2t)}i∈C are t pairs of random double
sharings.

ATLAS Multiplication Protocol. To evaluate a multiplication gate, a pair
of double sharings ([r]t, [r]2t, Pi) is consumed. All parties execute Mult (Proto-
col 4).

Protocol 4: Mult

1. Let ([r]t, [r]2t, Pi) be the random double sharings which will be used in the
protocol. Let [x]t, [y]t denote the input sharings.

2. All parties locally compute [e]2t = [x]t · [y]t + [r]2t.
3. Pi collects all shares and reconstructs the secret e = x·y+r. Then Pi randomly

generates a degree-t Shamir sharing [e]t and distributes the shares to other
parties.

4. All parties locally compute [z]t = [e]t − [r]t.

To show the security of ATLAS multiplication protocol, we consider the
scenario where all parties evaluate a sequence of N multiplication gates. In par-
ticular, the input sharings of each multiplication gate can depend on the input
sharings or output sharings of the previous multiplication gates. The functional-
ity F ′

mult appears in Functionality 5, which invokes Fmult for each multiplication
gate. One can view F ′

mult as an interface of Fmult. It allows us to replace the
invocation of Fmult in the secure-with-abort MPC protocol [GSZ20] by the in-
vocation of F ′

mult, and thus directly use ATLAS multiplication protocol in the
protocol [GSZ20]. The protocol ATLAS-Mult appears in Protocol 6.

Functionality 5: F ′
mult

1. F ′mult receives N from all parties.
2. From i = 1 to N , let [x(i)]t, [y

(i)]t denote the input sharings of the i-th mul-
tiplication gate. F ′mult invokes Fmult on [x(i)]t, [y

(i)]t.

Lemma 1. The protocol ATLAS-Mult securely computes the functionality
F ′

mult in the FdoubleRand-hybrid model in the presence of a fully malicious adver-
sary controlling t corrupted parties.
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Protocol 6: ATLAS-Mult

1. All parties set N to be the number of multiplication gates to be evaluated.
2. All parties invoke FdoubleRand to prepare N · t/n pairs of random double shar-

ings, and invoke Expand to obtain N pairs of double sharings in the form of
([r]t, [r]2t, Pj)

3. From i = 1 to N , let [x(i)]t, [y
(i)]t denote the input sharings of the i-th multipli-

cation gate. Suppose ([r]t, [r]2t, Pj) is the first pair of unused double sharings.
All parties invoke Mult on [x(i)]t, [y

(i)]t and ([r]t, [r]2t, Pj).

We refer the readers to the full version of this paper [GLO+21] for the proof
of Lemma 1.

Using F ′
mult in the MPC protocol in [GSZ20]. In the secure-with-abort MPC

protocol in [GSZ20], all parties invoke Fmult for each multiplication gate. Note
that F ′

mult invoke Fmult for each multiplication. Therefore, we view F ′
mult as an

interface of Fmult. All parties initialize F ′
mult in the beginning of the protocol

with the number of multiplications they need to compute (which is determined
by the circuit). Then we replace each invocation of Fmult by F ′

mult.

Note that every t pairs of random double sharings generated by FdoubleRand

are expanded to n pairs of double sharings. Therefore, the communication cost
per pair of double sharings is 4 · t/n ≈ 2 elements per party. The overall cost
per multiplication gate is 4 elements per party. Therefore, when using ATLAS-
Mult to instantiate F ′

mult, we obtain a secure-with-abort MPC protocol with
communication complexity of O(Cnφ + n2 · logC · κ) bits. In particular, the
concrete efficiency per multiplication gate is 4 elements per party.

Remark 1. It has been observed in many previous works (e.g., [CGH+18,GSZ20])
that the DN multiplication protocol can be extended to compute an inner-
product operation with the same communication complexity as a multiplica-
tion operation. An inner-product operation is to compute the summation of the
coordinate-wise multiplications between two vectors. At a high-level, given two
vectors of input sharings ([x(1)]t, [x

(2)]t, . . . , [x
(`)]t), ([y

(1)]t, [y
(2)]t, . . . , [y

(`)]t), the

goal is to compute a degree-t Shamir sharing of z =
∑`
i=1 x

(i) ·y(i). Since all par-

ties can locally compute a degree-2t Shamir sharing [z]2t =
∑`
i=1[x(i)]t · [y(i)]t,

all parties can use the same technique as the DN multiplication protocol to do
degree reduction.

We note that our technique of using t-wise independent double sharings also
works in this extension. As a result, we obtain an inner-product protocol with
communication complexity of 4 elements per party, which is secure up to an
additive attack (see Functionality 7 in Section 4 of [GS20] for the description of
the corresponding functionality).
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4.3 Reducing the Number of Rounds via Beaver Triples

For the secure-with-abort MPC protocol in [GSZ20], multiplication gates in the
same layer of the circuit are evaluated in parallel. Therefore, the number of
rounds is linear in the depth of the circuit. To further improve the concrete
efficiency, we pay our attention to the round complexity. In this part, we show
that multiplication gates in a two-layer circuit can be evaluated in parallel.
It allows us to reduce the number of rounds by a factor of 2. The amortized
communication cost per multiplication gate is 4.5 elements per party.

An Overview of Our Approach. We first start with a two-layer circuit.
At a high-level, we use Beaver triples to evaluate multiplications in the second
layer. Recall that a Beaver triple consists of three degree-t Shamir sharings
([a]t, [b]t, [c]t) such that c = a ·b. Usually, a Beaver triple is used to transform one
multiplication to two reconstructions. Concretely, given two sharings [x]t, [y]t,
suppose we want to compute [z]t such that z = x · y. Since

z = x · y = (x+ a− a) · (y + b− b)
= (x+ a) · (y + b)− (x+ a) · b− (y + b) · a+ a · b,

we can compute

[z]t := (x+ a) · (y + b)− (x+ a) · [b]t − (y + b) · [a]t + [c]t.

Therefore, the task of computing [z]t becomes to reconstruct two degree-t Shamir
sharings [x]t+[a]t and [y]t+[b]t. Observe that, if we set u = x+a and v = y+ b,
the above equation allows us to locally compute a degree-t Shamir sharing of
z := (u−a) · (v− b) using a Beaver triple ([a]t, [b]t, [c]t). In particular, the values
u, v can be learnt after preparing the Beaver triple. For multiplications in the
second layer, our idea is to transform each input sharing to the form of u− [a]t,
where u is a public element and [a]t is a degree-t Shamir sharing. We refer to
this form as the Beaver-triple friendly form. Moreover, the sharing [a]t is known
to all parties before evaluating the first layer. In this way, for an multiplication
gate in the second layer with input sharings u− [a]t and v− [b]t, we can prepare
the Beaver triple ([a]t, [b]t, [c]t) in parallel with the multiplications in the first
layer.

We note that an input sharing of a multiplication gate in the second layer
may come from three places:

– This sharing is an input sharing of the circuit.
– This sharing is an output sharing of an addition gate in the first layer.
– This sharing is an output sharing of a multiplication gate in the first layer.

Note that an addition gate can be evaluated without interaction. For the first
two cases, all parties can locally compute this sharing. Let [x]t denote such a
sharing. Note that [x]t = 0 − (−[x]t) is already in the Beaver-triple friendly
form, and (−[x]t) is known before evaluating the first layer. For the third case,
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we want the output sharing of a multiplication gate in the first layer to have
the Beaver-triple friendly form u− [a]t, and [a]t is known before evaluating this
gate. We note that the original multiplication protocol in [DN07] satisfies our
requirement. Recall that in the original multiplication protocol in [DN07]:

1. Pking reconstructs a degree-2t Shamir sharing [e]2t := [x]t · [y]t + [r]2t and
sends e to other parties.

2. All parties locally compute [z]t := e− [r]t.

In particular, the random double sharings ([r]t, [r]2t) are prepared before evalu-
ating this gate.

In summary, a two-layer circuit can be evaluated as follows:

– For each input sharing in the second layer, all parties transform it to the
Beaver-triple friendly form, denoted by u − [a]t, such that [a]t is known to
all parties.

– For each multiplication gate in the first layer, suppose [x]t, [y]t are the input
sharings. All parties use the original multiplication protocol in [DN07] to
compute [z]t, where z = x · y. For each multiplication gate in the second
layer, suppose u − [a]t, v − [b]t are the input sharings. All parties use our
multiplication protocol Mult on [a]t, [b]t to compute [c]t, where c = a · b.
Note that these two kinds of multiplications can be computed in parallel.

– For each multiplication gate in the second layer, suppose u− [a]t, v− [b]t are
the input sharings. Note that we have learnt u, v when evaluating the first
layer, and we have computed the Beaver triple ([a]t, [b]t, [c]t). Therefore, all
parties compute [z]t := u · v − u · [b]t − v · [a]t + [c]t.

We note that the original multiplication protocol in [DN07] requires the com-
munication of 6 elements per party. Next, we show how to reduce the communi-
cation cost to 5 elements without breaking the form of the output sharing.

Improving the Original Multiplication Protocol in [DN07]. Recall that
in the original multiplication protocol in [DN07]:

1. Pking reconstructs a degree-2t Shamir sharing [e]2t := [x]t · [y]t + [r]2t and
sends e to other parties.

2. All parties locally compute [z]t := e− [r]t.

To keep the form of the output sharing, Pking cannot replace e by a degree-t
Shamir sharing [e]t. Furthermore, to protect the secrecy of the multiplication
result x ·y, r need to be uniformly random. Our main observation is that r being
uniform is not equivalent to the double sharings ([r]t, [r]2t) being uniform. To
this end, we first decouple the relation between r and ([r]t, [r]2t). Note that a
pair of double sharings ([r]t, [r]2t) is equivalent to a pair of sharings ([r]t, [o]2t),
where the first sharing is a degree-t Shamir sharing of r and the second sharing
is a degree-2t Shamir sharing of o = 0. To see this, given ([r]t, [r]2t), we can set
[o]2t := [r]2t − [r]t; given ([r]t, [o]2t), we can set [r]2t := [r]t + [o]2t. When using
a pair of sharings ([r]t, [o]2t), the multipliation protocol becomes:
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1. All parties locally compute [e]2t := [x]t · [y]t + [r]t + [o]2t.
2. Pking collects all shares of [e]2t and reconstructs the secret e. Then Pking

sends the value e to all other parties.
3. After receiving e from Pking, all parties locally compute [z]t := e− [r]t.

Note that [o]2t is only used to compute [e]2t. When Pking is an honest party, [o]2t
does not need to be a uniformly random degree-2t sharing of 0. Thus, following
the same argument as that in Section 4.2, we can use t-wise independent [o]2t’s
with uniformly random degree-t sharings [r]t’s.

The Improved Multiplication Protocol. For a sequence of n multiplication gates,
all parties first prepare n random degree-t Shamir sharings using Frand, denoted
by

[r(1)]t, . . . , [r
(n)]t.

Recall that the amortized communication cost of the instantiation of Frand

in [DN07,GS20] is 2 elements per sharing per party. For random degree-2t Shamir
sharings of 0, we model the functionality Fzero in Functionality 7. We refer the
readers to the full version of this paper [GLO+21] for an instantiation of Fzero

with communication complexity of 2 elements per sharing per party.

Functionality 7: Fzero

1. Fzero receives from the adversary the set of shares {ri}i∈C .
2. Fzero randomly samples t elements as the shares of the first t honest parties.

Based on the secret o = 0, the t shares of the first t honest parties, and the t
shares {ri}i∈C of corrupted parties, Fzero reconstructs the whole sharing [o]2t.
Fzero distributes the shares of [o]2t to honest parties.

All parties invoke Fzero to prepare t random degree-2t Shamir sharings of 0,
denoted by

[o(1)]t, . . . , [o
(t)]t.

These t sharings are expanded to n sharings with t-wise independence. As Ex-
pand, we will use a predetermined n×t hyper-invertible matrix M . The protocol
ExpandZero appears in Protocol 8.

For the i-th multiplication gate, we will use ([r(i)]t, [õ
(i)]2t, Pi) and Pi will

act as Pking. The protocol MultDN appears in Protocol 9. As for the amortized
communication cost per gate:

– Preparing one random degree-t Shamir sharing using Frand requires to com-
municate 2 elements per party.

– Preparing one t-wise independent degree-2t Shamir sharing of 0 using Fzero

and ExpandZero requires to communicate 2 · t/n elements per party.
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Protocol 8: ExpandZero

1. All parties agree on an n × t hyper-intertible matrix M . All parties locally
compute

([õ(1)]2t, . . . , [õ
(n)]2t)

T = M([o(1)]2t, . . . , [o
(t)]2t)

T

2. All parties output {([õ(i)]2t, Pi)}ni=1, where ([õ(i)]2t, Pi) will be used for a mul-
tiplication gate handled by Pi.

– The protocol MultDN requires to communicate 2 elements per party.

In summary, the amortized communication cost per gate is 5 elements per party.

Protocol 9: MultDN

1. Let ([r]t, [o]2t, Pi) be the random sharings which will be used in the protocol.
Let [x]t, [y]t denote the input sharings.

2. All parties locally compute [e]2t = [x]t · [y]t + [r]t + [o]2t.
3. Pi collects all shares and reconstructs the secret e = x · y + r. Then Pi sends

e to other parties.
4. All parties locally compute [z]t = e− [r]t.

Evaluating a Two-Layer Circuit. Given a two-layer circuit, we assume that
all parties hold a degree-t Shamir sharing for each input wire in the beginning.
As described above, we will use MultDN to evaluate multiplication gates in
the first layer. For multiplication gates in the second layer, note that all parties
only need to obtain the output sharings. Therefore, we can use Mult, which
only requires 4 elements per gate per party, to evaluate multiplication gates in
the second layer.

Suppose there are N1 multiplication gates in the first layer, and N2 multipli-
cation gates in the second layer. We assume that all parties have prepared the
correlated randomness associated with these multiplication gates, i.e., N1 pairs
of sharings in the form of ([r]t, [o]t, Pi), and N2 pairs of sharings in the form of
([r]t, [r]2t, Pi). In the main protocol, these sharings are prepared together at the
beginning of the protocol. Then all parties execute Evaluate (Protocol 10) to
compute the output sharings of this circuit.
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Protocol 10: Evaluate

1. All parties start with holding a degree-t Shamir sharing for each input wire of
this circuit. For each multiplication gate in the second layer, we will transform
the input sharings to the Beaver-triple friendly form u − [a]t. Consider the
following three cases.

– If this sharing is an input sharing of the circuit, denoted by [x]t, all parties
set u := 0 and [a]t := −[x]t.

– If this sharing is an output sharing of an addition gate in the first layer,
all parties first locally compute this sharing, denoted by [x]t, and then set
u := 0 and [a]t := −[x]t.

– If this sharing is an output sharing of a multiplication gate in the first
layer, suppose ([r]t, [o]2t, Pi) are associated with this gate. All parties set
[a]t := [r]t. The value u, which corresponds to e in MultDN, will be
computed when this multiplication gate is evaluated.

2. For each multiplication gate with input sharings [x]t, [y]t in the first layer, all
parties invoke MultDN to compute [z]t where z := x · y. For each multiplica-
tion gate with input sharings (u− [a]t), (v− [b]t) in the second layer, where all
parties have learnt the sharings [a]t, [b]t, all parties invoke Mult to compute
[c]t where c := a · b.

3. For each multiplication gate in the first layer, let e be the reconstruction result
distributed by Pking in MultDN. If the output sharing of this gate is used as
an input sharing of a multiplication gate in the second layer, all parties set
u := e for this input sharing.

4. Finally, for each multiplication gate with input sharings (u − [a]t), (v − [b]t)
in the second layer, all parties locally compute

[z]t := u · v − u · [b]t − v · [a]t + [c]t

as the output sharing of this gate.

Main Protocol. Now we are ready to present the main protocol. Recall that we
are in the client-server model. In particular, all the inputs belong to the clients,
and only the clients receive the outputs. The functionality Fmain appears in
Functionality 11.

As [GSZ20], our protocol includes 4 phases:

– Input Phase: The clients will share their inputs to the parties.
– Computation Phase: The whole circuit will be partitioned into a sequence of

two-layer sub-circuits. We will evaluate each sub-circuit using Evaluate.
– Verification Phase: To check the correctness of the computation, we will

check that
• All parties receive the same values when using MultDN to evaluate

multiplication gates in the first layer of each sub-circuit.
• Multiplication tuples computed by MultDN and Mult are correct.

– Output Phase: All parties reconstruct the outputs to the clients.
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Functionality 11: Fmain

1. Fmain receives from all clients their inputs.
2. Fmain evaluates the circuit and computes the output. Fmain first sends the

output of corrupted clients to the adversary.
– If the adversary replies continue, Fmain distributes the output to honest

clients.
– If the adversary replies abort, Fmain sends abort to honest clients.

To check that all parties receive the same values when using MultDN, all par-
ties will compute a random linear combination of the values they received in
MultDN and exchange their results. If a party receives different values, this
party will abort. We will use the functionality Fcoin introduced in Section 3.3
to generate a random element. The protocol CheckConsistency appears in
Protocol 12. Recall that the communication complexity of the instaniation of
Fcoin in [GSZ20] is O(n2κ) bits. The communication complexity of CheckCon-
sistency is O(n2κ) bits.

Protocol 12: CheckConsistency(N, {x(1), . . . , x(N)})
1. All parties invoke Fcoin to generate a random element r ∈ K. All parties locally

compute
x := x(1) + x(2) · r + . . . + x(N) · rN−1.

2. All parties exchange their results x’s and check whether they are the same. If
a party Pi receives different x’s, Pi aborts.

Lemma 2. If there exists two honest parties who receive different set of values
{x(1), . . . , x(N)}, then with overwhelming probability, at least one honest party
will abort in the protocol CheckConsistency.

We refer the readers to the full version of this paper [GLO+21] for the proof
of Lemma 2.

To check that multiplication tuples computed by MultDN and Mult are
correct, we will use FmultVerify from [GSZ20]. The protocol Main appears in
Protocol 13.

Theorem 2. Let c be the number of clients and n = 2t+1 be the number of par-
ties. The protocol Main securely computes Fmain with abort in the {Frand,Fzero,
FdoubleRand,Fcoin,FmultVerify}-hybrid model in the presence of a fully malicious
adversary controlling up to c clients and t parties.

24



Protocol 13: Main

1. Input Phase:
For each client input x, client randomly samples a degree-t sharing [x]t and
distributes the shares to all parties.

2. Computation Phase – Preparing Correlated Randomness:
All parties start with holding a degree-t sharing for each input gate. The
circuit is partitioned into a sequence of two-layer sub-circuits. Let N1 denote
the number of multiplications in the first layer of all sub-circuits, and N2

denote the number of multiplications in the second layer of all sub-circuits.
All parties prepare the correlated randomness as follows:

– All parties invoke Frand to prepare N1 random degree-t Shamir sharings.
Then all parties invoke Fzero to prepare N1 · t/n random degree-2t Shamir
sharings of 0, and invoke ExpandZero to obtain N1 degree-2t Shamir
sharings of 0. These sharings are transformed to N1 pairs of sharings in
the form of ([r]t, [o]2t, Pi).

– All parties invoke FdoubleRand to prepare N2 · t/n pairs of random double
sharings. Then all parties invoke Expand to obtain N2 pairs of double
sharings in the form of ([r]t, [r]2t, Pi).

3. Computation Phase – Evaluating Two-Layer Circuits:
All sub-circuits are evaluated in a predetermined topological order. For each
sub-circuit with all the input sharings prepared, all parties invoke Evaluate
to compute the output sharings.

4. Verification Phase:
– Suppose e(1), . . . , e(N1) are the values all parties received in MultDN

invoked in Evaluate. All parties invoke CheckConsistency to check
that they receive the same values.

– Suppose {([x(i)]t, [y
(i)]t, [z

(i)]t)}N1
i=1 denote the multiplication tuples com-

puted by MultDN invoked in Evaluate, and {([a(i)]t, [b
(i)]t, [c

(i)]t)}N2
i=1

denote the multiplication tuples computed by Mult invoked in Evalu-
ate. All parties invoke FmultVerify to check the correctness of these N1+N2

multiplication tuples.
5. Output Phase:

For each output gate, suppose [x]t is the sharing associated with this gate and
client is the client who should receive this output. All parties send their shares
of [x]t to client. client checks whether the shares of [x]t is consistent. If not,
client aborts. Otherwise, client reconstructs the result x.

We refer the readers to the full version of this paper [GLO+21] for the proof
of Theorem 2.

Analysis of the Concrete Efficiency. In Main, all multiplication gates in the first
layer of all sub-circuits are evaluated by MultDN, which requires 5 elements
per party per gate. All multiplication gates in the second layer of all sub-circuits
are evaluated by Mult, which requires 4 elements per party per gate. Assuming
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that the number of multiplication gates in the first layer is roughly the same as
the number of multiplication gates in the second layer, the concrete efficiency of
Main is 4.5 elements per party per gate. Note that each sub-circuit is evaluated
within one round of multiplication. Therefore, we reduce the number of rounds
by a factor of 2. The overall communication complexity is the same as that
in [GSZ20], i.e., O(Cnφ+ n2 · logC · κ) bits.

5 Experimental Evaluation

In this section, we evaluate and compare the concrete efficiency of our proposed
improvements. As a baseline for comparison, we use the publicly available im-
plementation of [CGH+18]. We also use a setup similar to [CGH+18].

Experiment Setup. We run each party on an independent C4.large instance
(2 cores with 2.9GHz and 3.75GB RAM) on Amazon AWS. The instances are
all located in the same region (i.e. a LAN configuration). Throughout our ex-
periments, we use the 61-bit Mersenne field, and we report the average of 5
executions as [CGH+18].

Our benchmark consists of two sets of synthetic arithmetic circuits. The first
set has 4 circuits of 1 million multiplication gates, ranging from 20 layers to
10,000 layers. The second set has 2 circuits of 10 million multiplication gates,
each with 20 layers and 100 layers. Together, the two sets cover scenarios ranging
from wide-and-shallow circuits to narrow-and-deep ones. We generate these two
sets of synthetic arithmetic circuits by using the code from [CGH+18]. We show
running time on these circuits with 3 to 21 parties.

Benchmark Results. In Table 1 and Table 2, we compare the running time
of four protocols: the baseline from [CGH+18], the secure-with-abort protocol
from [GSZ20], our improved protocol using t-wise independence (abbreviated as
t-wise), and the further improved version with round compression (abbreviated
as round-compression). The orders of the protocols shown in both tables are
based on the running times. Table 1 shows results for circuits of 1 million multi-
plication gates, and Table 2 shows results for circuits of 10 million multiplication
gates. Note that in Table 2, the baseline implementation runs out of memory
when running with 11, 15, or 21 parties. We put N/A in those cases.

We observe that when the circuit depthD is small relative to its size (e.g.D =
20, 100), the t-wise version achieves better speedup than the round-compression
version. When D is large (e.g. D = 1, 000, 10, 000), the round-compression ver-
sion achieves significant further speedup.

This is because when D is small, communication bandwidth is the bottleneck
of running times. The t-wise version effectively reduces the number of bytes
communicated in each round, hence speeds up the running time. The overhead
of the round-compression version when D is small surpasses its improvement
in running time. However, when D is large, round latency becomes the bottle-
neck of running times, and improvements on communication complexity become
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Depth version 3 5 7 9 11 15 21

20 [CGH+18] 1126 1235 1642 1739 2029 2315 2762
20 [GSZ20] 763 857 1007 1068 1177 1301 1528
20 round-compression 642 709 810 858 974 989 1118
20 t-wise 545 622 711 752 842 917 1047
20 speedup vs [CGH+18] 2.1x 2.0x 2.3x 2.3x 2.4x 2.5x 2.6x
20 speedup vs [GSZ20] 1.4x 1.4x 1.4x 1.4x 1.4x 1.4x 1.5x

100 [CGH+18] 1122 1174 1591 1729 2033 2442 2915
100 [GSZ20] 696 887 1096 1122 1230 1430 1830
100 round-compression 655 719 839 849 914 1050 1190
100 t-wise 535 618 770 820 910 1038 1250
100 speedup vs [CGH+18] 2.1x 1.9x 2.1x 2.1x 2.2x 2.4x 2.3x
100 speedup vs [GSZ20] 1.3x 1.4x 1.4x 1.4x 1.4x 1.4x 1.5x

1k [CGH+18] 1480 1802 2510 2793 3232 4053 5093
1k [GSZ20] 1146 1358 1748 1920 2332 2744 3543
1k t-wise 939 1136 1490 1618 1983 2389 3108
1k round-compression 855 976 1195 1268 1511 1700 2100
1k speedup vs [CGH+18] 1.7x 1.8x 2.1x 2.2x 2.1x 2.4x 2.4x
1k speedup vs [GSZ20] 1.3x 1.4x 1.5x 1.5x 1.5x 1.6x 1.7x

10k [CGH+18] 4470 6444 9641 10702 15040 18398 24693
10k [GSZ20] 4457 5892 8747 9850 12832 18630 23026
10k t-wise 4333 5641 8570 9327 12323 16580 22220
10k round-compression 2477 3252 4713 5173 6633 8713 11719
10k speedup vs [CGH+18] 1.8x 2.0x 2.0x 2.1x 2.3x 2.1x 2.1x
10k speedup vs [GSZ20] 1.8x 1.8x 1.9x 1.9x 1.9x 2.1x 2.0x

Table 1: This table shows running times (in milliseconds) for circuits with 1
million multiplication gates and of various depths. The columns show running
times for different number of parties.

less significant. The round-compression version in this case achieves significant
speedup by reducing the round complexity.

In practice, we can have a switch in the code to decide whether to use the
t-wise version or the round-compression version according to the size and
depth of each input circuit. By combining the two improvements, we achieve
around 2 times speedup compared with [CGH+18] in the overall running time,
which includes both communication and computation time, in all cases, and
around 1.4 times speedup compared with [GSZ20].
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