
Witness Authenticating NIZKs and Applications

Hanwen Feng1 and Qiang Tang2

1 Beihang University, hanw.feng94@gmail.com
2 The University of Sydney, qiang.tang@sydney.edu.au

Abstract. We initiate the study of witness authenticating NIZK proof
systems (waNIZKs), in which one can use a witness w of a statement x
to identify whether a valid proof for x is indeed generated using w. Such
a new identification functionality enables more diverse applications, and
it also puts new requirements on soundness that: (1) no adversary can
generate a valid proof that will not be identified by any witness; (2) or
forge a proof using her valid witness to frame others. To work around
the obvious obstacle towards conventional zero-knowledgeness, we define
entropic zero-knowledgeness that requires the proof to leak no partial
information, if the witness has sufficient computational entropy.
We give a formal treatment of this new primitive. The modeling turns
out to be quite involved and multiple subtle points arise and particu-
lar cares are required. We present general constructions from standard
assumptions. We also demonstrate three applications in non-malleable
(perfect one-way) hash, group signatures with verifier-local revocations
and plaintext-checkable public-key encryption. Our waNIZK provides a
new tool to advance the state of the art in all these applications.

1 Introduction

Non-interactive zero-knowledge (NIZK) proof systems [8,26] allow one to prove
a statement by sending a single message to a verifier without revealing anything
beyond the validity of the statement. NIZKs have been a ubiquitous tool in
modern cryptography and play an essential role in constructing many impor-
tant primitives such as chosen-ciphertext secure encryptions [35,38], anonymous
authentication tools such as group and ring signatures [21,20], and many more.

While privacy is essential, some interesting functionalities become unattain-
able when considering the strong privacy definition where all partial information
is protected. For example, doing a binary search for a plaintext in ciphertext is
elusive when using a semantically secure encryption. How to construct secure
schemes enabling certain functionalities, while maintaining the best possible pri-
vacy, is one of the central questions in modern cryptography and has been studied
in a large amount of works in different contexts [5,17,32,11,14].

In this paper, we turn our attention to NIZK proofs and consider to add an
“identification” functionality: a witness w of a statement x (which potentially
has many valid witnesses) in an NP language L can be used check whether a valid

proof π showing x ∈ L was generated by the witness w, i.e., Identify(x,w, π)
?
= 1.

It means that each witness w is “committed” to the proof π generated using w.
Other than that, the proof will remain “zero-knowledge”. Such an exclusive
checking capability immediately enables many interesting applications. For in-
stance, one could easily realize a private/covert communication channel between
administrators of an anonymous token system [31] as follows: administrators may
consider using shared two witnesses w1, w2 to indicate whether a valid “anony-
mous certificate” falls into a certain blacklist (or whitelist) by using w1; in this
way, only the administrators obtain this extra information which remains hidden
to everyone else in the system. As pointed out in the recent work of [31], such a
tool is important to enable CDN providers to distinguish potentially malicious
requests without breaching anonymity.

Adding this simple identification functionality also naturally posts new re-
quirements on soundness: (1) if an attacker who knows a set of witnesses of a
statement x generates a proof π for x, this proof must be identified by one of
these witnesses; and (2) if a witness w is not known to an attacker (who may
have other witnesses), any of the proofs generated by the attacker will not be
identified by w, i.e., Identify(x,w, π) = 0.

We put forth a new notion called witness-authenticating NIZKs to capture all
those requirements. Essentially, we add a way of distinguishing between different
witnesses in NIZKs. As we will demonstrate soon in the applications, our new
notion provide a new tool to advance the state of the art in multiple different
domains: non-malleable (perfectly one-way) hash, group signature with verifier-
local revocation, and plaintext-checkable public-key encryption.

1.1 Our contributions

We overview our contributions in more detail below.

Definitional contributions. Adding a single identification functionality and
defining the witness-authenticating NIZK proof system turn out to be highly
involved; we have to revisit essentially every single property of the conventional
NIZK proof system, and multiple subtleties exist.

Syntax and identifier witness. The basic idea is to augment a non-interactive
proof system with an Identify(·) algorithm to check whether the witness he is
possessing was used to generate the proof. However, often in practice, only a part
of the witness (such as a secret key) is bound to a user; while other parts, such as
random coins, may not be always available. To avoid unnecessary restrictions on
the application, we introduce a generalization that we only require the Identify
algorithm to take into a part of the witness. A bit more formally, we introduce
a notion called identifier witness, which splits each witness w into an identifier
witness wI and a non-identifier witness wNI . Using an identifier witness wI of
x, one can check whether a proof for x was generated using a witness in the
form of (wI , ?). If Identify(x, π, wI) = 1, we say π is authenticated by wI . When
privacy is not considered in the context, we call such a proof system a witness-
authenticating non-interactive proof system (waNIPS).

2

Entropic zero-knowledgeness. As a witness-authenticating proof has to convey at
least a bit about the identifier witness that makes the identification functionality
possible, the conventional zero-knowledgeness that hides all partial information
of witness becomes out of reach. Therefore, we study the best possible privacy
definition that we call the entropic zero-knowledgeness (entropic ZK), and call
a waNIPS with this property a waNIZK.

– Defining unpredictable sampler. Similar to that semantic security is impossi-
ble for deterministic encryption, if an identifier witness can be guessed easily
by the adversary, the Identify algorithm enables the adversary to trivially
distinguish a real proof from a simulated proof. It follows that the privacy
definition should be defined for languages with “unpredictable” (identifier)
witnesses. To model that, we introduce an unpredictable sampler G which
ensures that for a random sample (x,wI , wNI) ← G(1λ), given x, finding
the associated identifier witness wI is hard.

Several subtle issues appear. (1) In applications, if the whole statement is
generated by the sampler, it may cause a trivial impossibility; for example,
if a waNIZK is applied in a larger system, which requires an honestly gener-
ated public parameter pp (and the witness could be leaked completely if pp
is malicious). We handle it by introducing a parameter generation algorithm
that is not under the control of the adversary or sampler G. (2) In an adap-
tive setting, the sampler G could be generated by the attacker after seeing
the CRS. But now, the sampled statement could simply contain one proof
for which the corresponding witness is never output. This will enable a ma-
licious prover to generate a proof without using any witness, which clearly
violates the knowledge soundness. We get around this by requiring the un-
predictability of the identifier witness to hold for every CRS value (instead
of a randomly chosen one). Please see Sect. 2.1 for details.

– Defining entropic ZK. We define the entropic ZK, somewhat analogous to en-
tropic security in encryptions [5], by capturing that adversaries still cannot
learn anything more about wI from π if wI is sampled from the unpre-
dictable sampler G (specified by the adversary). In conventional ZK, the
whole witness is provided by the adversary; now adversary provides only a
sampler. Directly integrating the unpredictable sampler to the conventional
adaptive zero-knowledge definition would restrict adversary from learning
side information about the witness via other or directly related proofs. We
define another proof oracle to enable an adversary to obtain proofs on related
statements. See Sect.2.2 for details.

Soundness definitions. As very briefly mentioned above, soundness definitions
also require a major upgrade because of the new identification functionality.
Besides the conventional (knowledge) soundness, we require two new properties
to show that the identifier witness to be “committed” to the proof, in the sense
that 1) a proof must be identifiable by one of the identifier witnesses used in
the proof generation; 2) a malicious prover cannot “forge” a proof that will be
identified by some identifier witness she does not know. Concretely,

3

– For the former property, we formalize it by augmenting the knowledge sound-
ness (named authenticating knowledge soundness), saying that a witness ex-
tracted by a knowledge extractor from a valid proof not only validates the
statement being proven, but also authenticates the proof.

– The latter property, which we call unforgeability, also relies on the unpre-
dictable sampler; it is analogous to “unforgeability” in MAC. Namely, for
a target witness generated from the unpredictable sampler, the adversary
who can obtain multiple proofs generated from it still cannot produce a new
proof that will be authenticated by this identifier witness.
Note that unforgeability defends against a malicious prover trying to “frame”
a witness. In some applications, a malicious prover may generate a proof that
links to a string which is not even a witness. We thus also introduce a notion
called identifier uniqueness, which ensures that it is infeasible to generate a
valid proof that could be authenticated by two different strings.

We remark that unforgeability and identifier uniqueness are incomparable: an
attacker that cannot forge a proof being authenticated by an unknown witness
may be able to produce one being authenticated by two witnesses he possesses; on
the other hand, for technical reasons in the definitions, the identifier uniqueness
is not strictly stronger either. But each could be useful in various applications
when working together with other properties from the context.

There are several versions of weakening, e.g., in the CRS-independent setting;
and strengthening. We refer detailed discussion in Sec.2.3.3

Constructions of witness-authenticating NIZK proofs. With the defini-
tions and models settled, we are now ready to discuss the constructions.

Basic ideas. A natural idea of our waNIZK construction is to attach an authen-
tication tag to the NIZK proof, and augment it with a proof of the validity of
the tag. Verification could be easy, while security posts several challenges. Since
we want to remain “zero-knowledge” when the witness is unpredictable, the tag
should not leak any other partial information. I.e., it should be “simulatable”,
even if the same witness is used to generate multiple proofs; further dealing with
“unforgeability” incur extra difficulties in following different cases.

Warm-up constructions. Let us start with a special case where the identifier
witness is uniform (or pseudorandom). For example, in group/ring signatures,
the identifier witness is each user’s secret key. We notice that simulatability can
be realized by pseudorandomness, and we could simply use the witness as the
key to generate the tag using a PRF. Namely,

TagPRF(wI) = (t,PRF(wI , t)), for a random t.

3 We note that in the group signature of [2], a related notion called testable weak zero-
knowledge (TwZK) was introduced as an attempt to add identification functionality.
However, TwZK was only against uniform adversaries. Thus it can only be applied to
more restricted languages (where the restrictions were informally described) and was
impossible for non-uniform adversaries. Besides, soundness definition and provable
constructions were not discussed.

4

The “simulatability” and unforgeability of this tag simply follow the pseudo-
randomness, which in turn ensures the entropic zero-knowledgeness and un-
forgeability (the underlying NIZK should satisfy certain ”non-malleability” to
prevent from modifying a valid proof). If the identifier uniqueness is in need, we
can further require the collision-resistance of the PRF [19]. We remark that this
solution that enables very efficient instantiations, could already be useful.

A more general solution needs to deal with a general unpredictable sampler.
We may apply a strong extractor [29] to the identifier witness to pump out
a uniform key, then apply PRF to generate the tag. Some subtle issues arise
immediately: (1) the same witness as a source may be used to generate multiple
proofs (choosing different seeds). Thus, the extractor has to be re-usable thus
requiring much more entropy (or the outer layer PRF needs to be related-key
secure, which is only known for special relations); (2) a malicious prover might
choose a “bad” seed to break the unforgeability, as the security of randomness
extractor requires a uniform and independent seed. We resolve it by simply
leveraging the common reference string, namely, using a part of CRS as the
fixed seed. However, as a consequence, this technique can only be applied to the
setting that the statements are from a CRS-independent sampler.

Full-fledged solution for CRS-dependent samplers. In many applications (e.g., in
all three applications we will show), the unpredictable sampler may be gener-
ated after the adversary sees the CRS; thus, it depends on the CRS. But the
construction now cannot simply obtain a string (e.g., the seed) from the CRS.
Instead, we need to somehow “force” the honest behavior.

Let us examine the two soundness issues above: it is not clear how to force
the same random seed to be used for every prover (if we do not want to get into
the difficulty of reusable extractor or related-key secure PRF); moreover, proving
a seed is generated uniformly already seems elusive. These obstacles motivate us
to deviate from the Extract-then-PRF path. We first note that there are alterna-
tives for “simulatability”. Also, to ensure the honest generation of randomness
(such as seed) used in generating the tag, we may explore a parameter with
structure or certain functionality so that we can prove and further bind the wit-
ness to the tag. Since we still need the identification function, those observations
together lead us to the choice of deterministic public-key encryption (DPKE).

More precisely, let DEnc be the encryption algorithm of a DPKE scheme. We
first generate a fresh public key pk, encrypt wI to c under pk, and set (pk, c)
as the tag. One can easily check whether w′ is the encrypted message (identify

here) w.r.t c by checking DEnc(pk,w′)
?
= c.

Now for entropic ZK, we note that the DPKE can provide simulation secu-
rity if the message is unpredictable. More importantly, this needs to hold even
facing multiple proofs on potentially related statements. Viewing the statements
as auxiliary input on the identifier witness, we can obtain those from DPKE
with multi-user security with auxiliary inputs, which can be based on d-linear
assumption [13]. Next, for soundness, and particularly unforgeability, we first
need to ensure the well-formedness of pk. We can leverage the correctness of

5

encryption and just prove a well-formedness of the ciphertext. Furthermore,
“unforgeability” can be obtained by using a simulation-extractable NIZK proof.

We remark that our construction offers a framework that can have a hierarchy
of instantiations. If we want the resulting waNIZK systems to have stronger (or
weaker) property, we can instantiate the underlying NIZK correspondingly. For
details, we refer to Sect.3.2.

Applications. Our new abstraction of waNIZK can provide a tool for many
interesting applications. Here we will showcase three non-trivial applications in
hash functions, anonymous authentication revocation, and encryption in more
detail. Each of them advances the state of the art in the corresponding topic. We
believe there are many more applications which we leave for future exploration.

Non-malleable (perfectly one-way) hash from standard assumptions. Many works
have been around trying to realize partial properties of random oracles, ide-
ally, via standard assumptions. Perfectly one-way hash and non-malleable hash
are two important primitives for this purpose, in settings that include Bellare-
Rogaway encryption scheme [6], HMAC[27], and OAEP [10].

Perfectly one-way hash requires its (randomized) evaluation algorithm to
hide all partial information of the pre-image, even with some auxiliary inputs,
while providing a verification algorithm to check the correctness of evaluation.
Non-malleable hash requires that one cannot “maul” a hash value into a related
one even with some auxiliary information about the pre-image. Both of them
also require collision resistance. Currently, perfectly one-way hash w.r.t general
auxiliary inputs is only known to exist under a not-efficiently-falsifiable assump-
tion [18], which contradicts the existence of iO [16]; while non-malleable hash
are either from perfectly one-way hash [9] or in the random oracle model [3].
Given the recent progress [30] on iO, the mere existence of non-malleable hash
or perfectly one way hash (with general auxiliary inputs) is still open.

We confirm the feasibility by presenting a new framework for non-malleable
(perfectly one-way) hash functions from waNIZKs that can be based on the
standard assumptions like the d-linear assumption. The starting point is to view
the hash as a commitment that allows others to verify the committed value:
it computationally determines an input and hides all partial information. This
view inspires us to obtain a non-malleable (and perfectly one-way) hash by
adding a proof of well-formedness of the commitment via waNIZKs where the
input is set as the identifier witness. Perfect one-wayness comes from entropic
ZK, collision resistance from identifier uniqueness, while non-malleability comes
from (related-witness) unforgeability. For details, we refer to Sect. 4.1.

Auxiliary-input group signatures with verifier-local revocation. Group signatures
[21] allow a user to sign a message on behalf of a group while hiding the signer’s
identity. A major issue is the revocation of users whose membership should be
cancelled without influencing others. In group signatures with verifier-local re-
vocation (VLR) [12], the signing procedure and the group public key will be
independent of the revocation list, making this primitive appealing for systems
providing attestation capabilities. Indeed, some instantiations of VLR group sig-

6

natures such as the direct anonymous attestation scheme [14] have been already
widely deployed in trusted platform modules (TPM) including Intel’s SGX.

Many works have shown these TPMs are vulnerable to “side channel” at-
tacks by which attackers could learn partial information about the secret key.
One approach to mitigate the threat is to employ leakage-resilient cryptograohic
schemes. However, existing VLR group signature schemes [32,12,14,15,11] do not
provide any security guarantee when auxiliary information about secret key is
leaked. We therefore study the problem of constructing leakage-resilient VLR
group signature scheme, particularly, in the auxiliary-input model, the strongest
model capturing one-time memory leakage.

Interestingly, a VLR group signature scheme necessarily rely on a secret-
key-based tag generation which is identifiable (for revocation), unforgeable, and
does not leak any partial information about the identity of the signer (for se-
curity). Existing constructions leverage either algebraic approaches [32,12,14,15]
or generic approaches such as PRFs [11] to realize the mechanism via “pseudo-
randomness”, which will not hold anymore facing auxiliary-input leakage.

We solve this dilemma by using waNIZKs. Our idea is to simply replace the
simulation sound NIZK in the folklore construction of group signatures (for
proving knowledge of a group membership certificate) with our waNIZK.

Plaintext-checkable encryption in the standard model. Plaintext-checkable encryp-
tion (PCE) is a public-key encryption [17], allowing one to search encrypted data
with plaintext. Compared with DPKE [5], a PCE could still be randomized and
provides a stronger security ensuring two ciphertexts encrypting the same mes-
sage are unlinkable. Besides a more fine-grained security notion, PCE has also
been shown useful for constructing other primitives such as group signatures
with verifier-local verification.

Existing constructions [17,34] are mostly secure in the random oracle model.
However, in several scenarios, including the application to VLR group signatures
[17] and achieving CCA-security via Naor-Yung [35], we need to prove proper-
ties about the plaintext of a PCE ciphertext via NIZKs. Random oracles clearly
become unfavorable. Attempts exist [17,34,33] for standard-model PCE, but un-
fortunately they only work for uniform message distributions. In most scenarios
plaintext messages are unlikely uniformly distributed. It follows that design-
ing a standard-model plaintext-checkable encryption scheme for biased message
distributions is a natural question.

We also answer this question and present a general framework for plaintext-
checkable encryption, from any standard-model IND-CPA secure PKE and waNIZKs.
Our idea is simple: we first encrypt m with the PKE and then prove the cipher-
text is well-formed by using waNIZKs and setting m as the identifier witness.
This framework naturally gives standard-model instantiations. Moreover, the
identifier witness in our full-fledged construction is only required to be unpre-
dictable, which allows to remove the restriction on uniform messages.

Notations. Throughout the paper, we use λ for security parameter. For an NP
language L, we let RL denote its membership verification relation; (x,w) ∈ RL
or w ∈ RL(x) denote that RL(x,w) = 1, RL(x) denote the set of all witnesses

7

of x, and Ln denote Ln = L
⋂
{0, 1}n. We illustrate other notations and recall

definitions of NIZKs and computational entropy in the full version.

2 Syntax and Security Models

As explained in the introduction, we consider a non-interactive proof system
working for an NP language L, where a statement may have multiple wit-
nesses. There is an extra mechanism Identify, such that anyone having a witness
w ∈ RL(x) can efficiently check whether a proof π for x ∈ L was generated using
w. On the other hand, we require such mechanism to be robust, i.e., anyone who
does not know w cannot produce a valid proof for x ∈ L that will be identi-
fied as generated from w. We call such a proof system a witness-authenticating
non-interactive proof system (waNIPS), since now every proof essentially is au-
thenticated by the corresponding witness. Though intuitive, formulating the new
properties while adapting existing properties turns out to be involved.

Identifier witness. We first notice that the straightforward formulation of wa-
NIPS, in which the extra identification algorithm Identify takes the whole witness,
sometimes, limits the applications – some part of witness, such as the randomness
(or other information) used for generating the proof, may not be functionally
important or even be available, but are still required for the identification.

Consider a class of applications (including the non-malleable hash and plaintext-
checkable PKE applications that we will present soon), in which we may just use
the proof to carry a bit covertly that can be extracted by Identify. Now other
users who may know the actual secret cannot figure out the randomness freshly
generated; thus, they will not be able to run Identify. It is easy to see that the
actual secret is necessary and sufficient for the identification purpose.

We thus consider the notion of identifier witness. Formally, for a statement
x ∈ L, its witness w = (wI , wNI) consists of an identifier part wI and a non-
identifier part wNI , where wI will be explicitly specified by a relation RIL (called
an identifier relation of L), RIL((x,wNI), wI) = 1, or wI ∈ RIL(x) for short. Now
we only need the identifier witness for the identification algorithm. 4 Formally,

Definition 1 (waNIPS). Let L be an NP language, and RIL be an identifier
relation of L. A waNIPS on (L,RIL) is defined by four efficient algorithms:

– σ ← Setup(1λ). The setup algorithm outputs a CRS σ.

– π ← Prove(σ, x, w). The prover algorithm takes as inputs σ, an instance
x ∈ L with its witness w ∈ RL(x), and outputs a string π called a proof.

– b ← Verify(σ, x, π). The verifier algorithm takes as inputs σ, an instance x
and a proof π, and outputs either 1 accepting it or 0 rejecting it.

– d ← Identify(σ, x, π, wI). This algorithm takes as input a valid proof π for
some x ∈ L and a string wI . It returns either 1 indicating π was generated
by a witness in the form of (wI , ?), or 0 otherwise.

4 We stress that the notion of identifier witness does not put any restriction on the
languages that can be proved, as the non-identifier part can be empty. In this case,
the identifier part is simply the whole witness.

8

The first three describe a non-interactive proof system for L. We say π is au-
thenticated by wI if Identify(σ, x, π, wI) = 1.

Completeness of waNIPS could be easily defined by describing the identifica-
tion functionality and the proving functionality over honestly generated proofs,
which covers the standard completeness of non-interactive proof systems.

Definition 2 (Completeness of waNIPS). We say a waNIPS for (L,RIL)
is complete, if for every x ∈ Lλ, (wI , wNI) ∈ RL(x), for σ ← Setup(1λ), π ←
Prove(σ, x, (wI , wNI)), the following holds:

Pr[Verify(σ, x, π) = 1 ∧ Identify(σ, x, π, wI) = 1] = 1.

2.1 Defining unpredictable sampler

Incompatibility between identification and zero-knowledgeness. Before
introducing the formal security definitions, we first clarify a basic question: when
is a waNIZK meaningful? The question arises given that the identification func-
tionality is clearly incompatible with the standard zero-knowledgeness.

As a concrete example, consider the range proof system where we use a
NIZK to prove a committed integer value m w.r.t. a commitment com belongs
to the range, say (1, 20). Seeing such a proof, the adversary learns nothing about
m except its range. However, if we use a waNIZK to support identification,
then everyone can simply check all values in (1, 20) and completely recover the
value of m! This simple example hints a trivial impossibility for conventional
zero-knowledgeness of waNIZK, for the languages whose identifier witness can
be easily guessed. Similar situation appears in other settings, e.g., encryption
schemes equipped with a plaintext-search functionality [5].

It follows that we should focus on “hard” statements that one cannot guess
the identifier witnesses easily. The notion that a statement is “hard” clearly can-
not stand in the worst case if we are considering a non-uniform adversary, since
its advice string may encode the witness already. We thus consider a distribu-
tion over a language such that for any efficient adversary, a random sample from
this distribution is “hard”, and a waNIZK proof system is expected to work for
languages admitting such “hard” distributions.

A natural way to describe a distribution is to specify an (adversarial) sam-
pler G which is a non-uniform PPT algorithm and on input a security param-
eter outputs an element x ∈ Lλ and its witness (wI , wNI) ∈ RL(x) 5. The
unpredictability of this sampler can then be quantified by unpredictability en-
tropy [29] of the identifier witness wI . More precisely, G is k-unpredictable when
Hunp(W I |X) ≥ k(λ), where (X,W I ,WNI) is a joint random variable output by
G(1λ). While such a formulation is simple, we find it unnecessarily restrictive in
certain situations. We present a more general formulation below.

5 Note that in general, it is unclear how to generate a witness from a statement, so
we let the sampler to output x,wNI together with wI , but we put no restrictions on
them. In principle, x,wNI could even be fixed by the attacker and hardcoded into
G as long as an unpredictable wI can be generated.

9

Modeling a more general unpredictable sampler. When applying our
waNIZKs in a larger cryptosystem, the statement may involve system parame-
ters that are not under the control of the adversary. This seemingly minor point
is actually essential. A subtle issue is that letting the adversarial sampler to
generate the whole statement sometimes makes it hard to enforce the unpre-
dictability of witness. For example, consider a public-key encryption scheme and
a simple language LEnc := {(pk, c); (m, r) : c = Enc(pk,m; r)} where m is the
identifier witness. Let Gpk be the following sampler:

pk = pk∗,m←Mλ, r←$ {0, 1}λ, c = Enc(pk∗,m; r) :
return (x = (pk∗, c), wI = m,wNI = r),

where Mλ is a high-entropy message distribution. Is Gpk an unpredictable dis-
tribution? In general, the answer is no since the adversary might have the secret
key sk of pk∗. However, simply excluding such a sampler is not the right choice.
In typical applications (for example, in our application of plaintext checkable
encryption, cf. Sec.4.3), the public key is generated honestly and not under the
control of the adversary. And the message distribution is specified by the adver-
sary after seeing the public key.

This oddity arises due to that the larger system where a waNIZK is employed
already requires some honestly generated parameter. To capture this intuition,
we define a separate parameter generation as a PPT algorithm PG. We let the
sampler algorithm to take as input the parameter pp generated by PG, asking the
distribution conditioned on PG = pp to be unpredictable. Note that PG is not
a part of our waNIZK syntax, usually specified by the applications. We remark
that this is optional (which could be empty if there is no PG in the application).

Modeling CRS-dependent unpredictability. As a waNIZK assumes a CRS,
which is publicly available and usually generated once for all, in some scenarios,
adversaries might be able to specify an unpredictable sampler after seeing the
CRS. In this most general case, we allow the adversary and the sampler algorithm
G to take CRS as an input.

One tricky issue exists when measuring the unpredictability of the output
(particularly the identifier witness) of this CRS-dependent sampler: the state-
ment itself could be containing auxiliary input of the identifier witness. An ex-
treme example of this auxiliary input could be a valid proof; though the witness is
still unpredictable to the adversary, such kind of auxiliary input destroys knowl-
edge soundness. If a malicious prover simply outputs such a hardcoded proof,
she generates a proof without knowing any witness!

More serious issues will occur at a new “unforgeability” property we will
introduce. We will give a more detailed discussion when we present the soundness
definitions (see Remark 4). To rule out those trivial “attacks”, we require the
sampler to be unpredictable for every CRS. In this way, the hardcoded proof
would be automatically ruled out, as there always exists one particular CRS such
that an extractor knowing the corresponding trapdoor can recover the witness
from the proof, which violates the unpredictability requirement.

Taking all above discussions into consideration, we present the formal defi-
nition of unpredictable samplers.

10

Definition 3 (Unpredictable sampler). Let G be a sampler for (L,RIL). We
say G is k-unpredictable w.r.t. a trusted parameter generation procedure PG, if
for every CRS σ in the range of Setup(1λ), it holds that

Hunp(W I
σ |Xσ, PP) ≥ k(λ),

where PP = PG(1λ) and (Xσ,W
I
σ ,W

NI
σ)← G(PP, σ).

Clearly, the basic requirement is k = ω(log λ).6 If we are considering CRS-
independent samplers, G simply does not take as input the CRS σ.

2.2 Entropic zero-knowledgeness

We present a new definition of entropic zero-knowledgeness, ensuring that noth-
ing else is leaked except the identification bit to attackers who know the exact
identifier witness (to attackers who do not know the exact witness, actually
the zero-knowledgeness remains). Or, to put it another way, to rule out the
“trivial attacks” caused by the added identification functionality, we consider
zero-knowledge property w.r.t unpredictable samplers. Since now the attacker
does not know the witness, we need to give the attacker the capability to learn
extra side information from other related proofs using the same witness, and
this again should exclude the trivial impossibilities. Formally defining this new
property requires care. We illustrate the intuition and the definition below.

Integrating the unpredictable sampler. Let us first recall the conventional
zero-knowledge property: for any statement x along with its witness w, the
procedure that generates a CRS σ and a valid proof π using (x,w, σ), can be
emulated by a simulator without using the witness. The adaptive counterpart
allows the attacker to specify a statement after seeing the CRS.

Now the identifier witness wI (along with (x,wNI)) is produced by an unpre-
dictable sampler G, which is specified by the attacker. The prover (denoted as
a prover oracle OP1) takes the tuple (x,wI , wNI) from G and the CRS as input
and generates a proof. We want that this proof can be simulated via a simulator
(denoted as OS1)) without using the witness (wI , wNI).

Allowing attackers to learn side information from related proofs. In
the conventional zero-knowledge definition, since the attacker (distinguisher) is
given the witness, just asking the simulator to emulate the proof is sufficient.
While in our new definition, since the distinguisher does not have the exact
witness, directly plugging in the unpredictable sampler to the zero-knowledge
definition is too weak, in the sense that the prover only proves once. But in
practical applications, this is not the case. For example, in group signatures,
adversaries are allowed to obtain multiple signatures, possibly for different mes-
sages, from one user. To lift this restriction, we will allow the distinguisher to

6 We can also measure the unpredictability by HILL entropy [29]. On the one hand,
it brings more restrictions on the languages to be proved; On the other hand, for
samplers with sufficient HILL entropy we can give more efficient constructions which
we explain in details in the full paper.

11

adaptively obtain multiple proofs, which could be generated from independently
sampled statements. Also, seeing a statement x (whose identifier witness is wI),
the adversary can ask the prover to prove another related statement x̄, which
has the same identifier witness wI .

Formally, we let the prover oracle OP1 (or OS1) be stateful, and augment a
pair of new oracles OP2 and OS2, which, with access to the states of OP1 and
OS1, take as inputs an index (that specifies a previously sampled tuple) and an
extended sampler EG. EG generates an extended statement x̄ (and corresponding
non-identifier witness) seeing x, which is associated with the same wI . However,
an arbitrarily extended statement may leak the entire wI although the original
statement hides it. To rule out the trivial impossibility, we put a restriction on
the extended statement w.r.t a wI that it will not leak more information than
the original statement, and thus wI is still unpredictable.

Definition 4. We say EG is an admissible extended sampler w.r.t. G and PG,

if there exists a PPT algorithm ẼG, such that for every σ, and any non-uniform
PPT A, the following holds that pp← PG, (x,wI , wNI)← G(σ, pp), (x̄, w̄NI)←
EG(pp, σ, x, wI , wNI), x̃← ẼG(pp, x), Pr[(wI , w̄NI) ∈ RL(x̄)] and |Pr[A(σ, pp, x̄,
wI) = 1]−Pr[A(σ, pp, x̃, wI) = 1]| ≤ negl(λ) , where the probability is taken over

the coin tosses of PG, G, EG, ẼG and A.

We are now ready to present the formal definition of entropic ZK.

Definition 5 (Entropic ZK). A waNIPS Π for (L,RIL) satisfies the (multi-
theorem) entropic zero-knowledgeness w.r.t. a parameter generation procedure
PG and a class of unpredictable samplers G, if there is a PPT simulator {SimSetup,
SimProve}, such that for every non-uniform PPT adversary A, it holds that∣∣∣∣∣∣∣∣Pr


σ ← Setup(1λ)

pp← PG(1λ);G← A(pp, σ) :

1← AOP1,OP2(σ, pp)

− Pr


(σ, τ)← SimSetup(1λ)

pp← PG(1λ);G← A(pp, σ) :

1← AOS1,OS2(σ, pp)


∣∣∣∣∣∣∣∣ ≤ negl(λ) ,

where the real prover oracles OP1,OP2 and the simulator oracles OS1,OS2 are
defined in Fig.1. The sampler G should belong to G. EG shall be an admissible
extended sampler w.r.t. PG and G (cf. Def.4).

Remark 1. Entropic ZK for CRS-independent samplers can be easily obtained
by removing the CRS (the boxed σ in Fig.1) from the input of A and G; it also
suffices in interesting applications and admits more efficient constructions. For
detailed elaborations, we defer to the full version.

2.3 Soundness definitions

The conventional (knowledge) soundness of non-interactive proof systems en-
sures that a prover that can generate a valid proof must possess a witness. In
our setting with an extra identification functionality, we essentially require the
identifier witness to be “committed” to the proof. Naturally, the soundness prop-
erty also needs to be upgraded. In particular, we would need to ensure that a

12

OP1(σ, pp)

i+ +;

(xi, (w
I
i , w

NI
i))← G(σ , pp);

st← st ∪ (i, xi, (w
I
i , w

NI
i));

πi ← Prove(σ, xi, w
I
i , w

NI
i)

return (xi, πi)

OP2(σ, pp, xi,EG, st)

Find(i, xi, (w
I
i , w

NI
i)) ∈ st

(x̄, w̄NI)← EG(pp, σ, xi, (w
I
i , w

NI
i))

π̄ ← Prove(σ, x̄, wIi , w̄
NI)

return (x̄, π̄)

OS1(σ, τ, pp)

i+ +;

(xi, (w
I
i , w

NI
i))← G(σ , pp);

st← st ∪ (i, xi, (w
I
i , w

NI
i));

πi ← SimProve(σ, τ, xi)

return (xi, πi)

OS2(σ, τ, pp, xi,EG; st)

Find(i, xi, (w
I
i , w

NI
i)) ∈ st

(x̄, w̄NI)← EG(pp, σ, xi, (w
I
i , w

NI
i))

π̄ ← SimProve(σ, τ, x̄)

return (x̄, π̄)

Fig. 1. The oracles. OP1 (resp. OS1)and OP2 (resp. OS2) share the state st which is
initialized to be ∅. The counter i is initialized to be 0.

used witness must be identifiable; and a malicious prover could not “forge” a
proof that points to a witness that is not known to her. (1) The former property
can be realized augmenting the conventional knowledge soundness such that:
from a valid proof, a witness not only can be extracted but also is bound to
the proof. (2) The latter mimics the binding property and models that an at-
tacker has access to multiple witnesses for a statement but still cannot frame
any others that hold another witness unknown to the attacker. We call it un-
forgeability. Formulating those notions turns out to be highly involved, especially
when considering slightly more advanced notions. Formally,

Definition 6 (Authenticating knowledge soundness). We say a waNIPS
Π for (L,RIL) satisfies the authenticating knowledge soundness, if there exists a
PPT extactor (Ext0,Ext1), s.t., for any non-uniform PPT adversary A, (1) the
output of Ext0 is computationally indistinguishable with the real CRS:
|Pr[(σ, ξ)← Ext0(1λ) : 1← A(σ)]− Pr[σ ← Setup(1λ) : 1← A(σ)]| ≤ negl(λ) ,
and (2) any valid proof must be authenticated by the extracted witness:

Pr

(σ, ξ)← Ext0(1λ), (x, π)← A(σ), (wI , wNI)← Ext1(σ, ξ, x, π) :

Verify(σ, x, π) = 1 ∧
[
(wI , wNI) /∈ RL(x) ∨ Identify(σ, x, π, wI) 6= 1

] ≤ negl(λ) .

Remark 2. A weaker definition, which we call authenticating soundness, only
requires the existence of such (wI , wNI) instead of thatAmust know the witness.
In some concrete applications of NIZKs such as signatures of knowledge [20],
the knowledge extraction procedure can be done by external primitives such as
PKE. Thus, the NIZK does not have to be knowledge sound. The authenticating
soundness will suffice for replacing authenticating knowledge soundness in similar
cases. This notions will be formalized in the full paper.

13

Unforgeability. This property captures the “authenticity” that an adversary
cannot forge a proof that will be authenticated by an identifier witness that the
adversary does not know. Like our entropic ZK definition, we will leverage the
unpredictable sampler for (L,RIL) to capture an unpredictable target witness.
More importantly, we would like this to hold even if the adversary can adaptively
obtain many proofs from witnesses unknown to her (the “forgery” thus should
be a new proof) as she wishes. Note that this property indeed ensures that an
adversary cannot simply “maul” a proof, and thus it (along with authenticating
knowledge soundness) will suffice for many applications (such as non-malleable
hash and VLR group signatures) which originally need a simulation-extractable
NIZK for realizing non-malleability. 7

Definition 7 (Unforgeability). Let Π be a waNIPS for (L,RIL). We say Π
satisfies unforgeability w.r.t. PG and a collection of unpredictable samplers G (cf.
Def.3), if for any non-uniform PPT adversary A, it holds that

Pr

pp← PG(1λ);σ ← Setup(1λ);G← A(pp, σ);

(x∗, π∗)← AOP1,OP2(σ, pp) : (x∗, π∗) /∈ Hist

∧ Verify(σ, x∗, π∗) = 1 ∧ ∃wI ∈ st, Identify(σ, x∗, π∗, wI) = 1

 ≤ negl(λ) ,

where G ∈ G, and OP1, OP2 are prover oracles specified in Fig.1. Hist denotes
the query-response history of OP1 and OP2, and st denotes the set of identifier
witnesses generated by all calls (made by A) to OP1.

Remark 3. The unforgeability could be weakened and is still useful; for example,
for CRS-independent statements can be obtained by removing all boxed items
above. On the other hand, in certain applications, we also need to strengthen
the unforgeability: it is required that an adversary can neither frame the target
identifier witness nor any identifier witness related to it. We term the strength-
ened definition by related-witness unforgeability, and show its application to non-
malleable hash functions. Details will be given in the full version.

Remark 4. Recall that in the CRS-dependent sampler definition, we insist that
the unpredictability holds for every CRS. One reason is that the unforgeability
may not be achievable when unpredictability only holds for a randomly sampled
CRS. Now we can give a concrete example. Assume L is an NP language and
admits an unpredictable sampler GL. We define an extended language L′ that
x′ = (x, y) ∈ L′ iff x ∈ L, and a sampler GL′ which on input a CRS σ, directly
outputs (x, π), where (x,wI , wNI) ← GL(1λ) and π ← Prove(σ, x, wI , wNI).
Given the entropic ZK of π, the identifier witness output by GL′ is unpredictable.
However, A can directly output π to break the unforgeability.

Identifier uniqueness. Next, we discuss a special property of identifier unique-
ness, (like unique signatures), which is useful when handling a case that the

7 Different from the conventional simulation soundness, where the adversary is given
simulated proofs, here we provide real proofs, which will be needed in applications.

14

attacker may output a proof that will be identified by a string that is not even
a witness. In certain applications (e.g., in our application of plaintext-checkable
encryption), the attacker may try to fool the identify algorithm used by others.
Note that unforgeability does not address such an attack. The identifier unique-
ness of a waNIPS says it is infeasible to produce a valid proof and two different
identifier witnesses such that the proof is authenticated by both of them.

Definition 8 (Identifier uniqueness). We say a waNIPS Π for (L,RIL) sat-
isfies the identifier uniqueness, if any non-uniform PPT A, it holds that

Pr

[
σ ← Setup(1λ); (x, π, wI1 , w

I
2)← A(σ) : Verify(σ, x, π) = 1∧

Identify(σ, x, π, wI1) = 1 ∧ Identify(σ, x, (π,wI2)) = 1

]
≤ negl(λ) .

2.4 Definitions with auxiliary inputs

All definitions built upon samplers can be further strengthened by allowing ad-
versaries to obtain other auxiliary information (beyond the statements) about
the identifier witness. This strengthening will be useful when applying waNIZKs
to applications with auxiliary inputs (e.g., in our applications of non-malleable
hash and group signatures with verifier-local revocation). We formalize those by
considering an enhanced sampler G, which outputs an auxiliary information z
about wI as well. Accordingly, the output of an admissible extended sampler EG

shall be computationally indistinguishable with that of the associated ẼG, even
when the auxiliary information z is given to the distinguisher. In the strength-
ened definitions, the prover oracle OP1 and the simulation oracle OS1 will also
return the auxiliary input z for the sampled wI . Formal definitions appear in
the full version.

On the one hand, the auxiliary-input entropic ZK and unforgeability clearly
subsume the original definitions. On the other hand, considering auxiliary inputs
does not seem to introduce any additional difficulty in constructing waNIZKs,
since the statement itself is already an auxiliary information about the identifier
witness. Thereafter, when we refer to entropic ZK and unforgeability, we mean
the auxiliary-input counterparts.

3 Constructing Witness-Authenticating NIZKs

In this section, we present our general constructions for waNIZKs.

Basic challenges. A folklore approach for adding a new property to NIZKs is
to add some “tag” and extend the statement being proved. For example, when
transforming a NIZK to a knowledge-sound NIZK [38], one attaches the encryp-
tion of the witness to the proof, which enables the “extractability” by decrypting
the ciphertext. Like this folklore, the main idea behind our constructions is also
to attach an “identifiable” tag (and proof of validity) to a NIZK proof, s.t. it
can be identified with the corresponding identifier witness. The challenge is that
the tag has to satisfy several seemingly conflicting constraints.

15

• For “zero-knowledgeness”. The tag should not leak any information about
the identifier witness except the bit to a verifier knowing the corresponding
identifier witness. Particularly, a tag generated from an unpredictable wI

should be “simulatable” (without using wI), even conditioned on the poten-
tial auxiliary information about wI . Moreover, as the identifier witness may
be used to prove multiple times, the “simulatability” shall be ensured across
multiple tags from wI .

• For soundness. First, we note that just for unforgeability, the tag generation
should have a form of unforgeability. Namely, without the identifier witness
wI , a malicious prover cannot produce a tag that can be identified by wI

(even when it knows the statement). If we want the identifier uniqueness, it
should be infeasible to find two identifier witnesses identifying one tag, which
essentially requires a form of collision resistance. While for authenticating
(knowledge) soundness, we will have to make sure the extracted witness
is exactly the one used to generate the proof (comparing to the standard
knowledge soundness, which only requires extracting one witness).

3.1 Warm-up constructions

First, as a warm-up, we show how to easily build waNIZKs for distributions
where the identifier witness is pseudorandom (conditioned on statements). This
construction can be already useful in, e.g., group-oriented (accountable) authen-
tications where users’secret keys can be pseudorandom. We present a very simple
construction from a NIZK and a PRF. We then show how to easily lift this con-
struction to be secure for unpredictable distributions that are independent of the
CRS by using randomness extractors.

PRF-based tag: a construction for pseudorandom identifier witnesses.
In many applications such as group-oriented anonymous authentication (e.g.,
group signatures, ring signatures), the witness is usually a secret key. In this
case, the identifier witness could be pseudorandom conditioned on all public in-
formation (e.g., a public key can be a commitment to the identifier). As a natural
idea to generate a simulatable tag is to create a tag that is also pseudorandom,
we use the witness as a key to generate the tag using a PRF, i.e.,

TagPRF(wI)→ (t,PRF(wI , t)), for a random t.

It is easy to verify that, when wI is pseudorandom (with sufficient length and
conditioned on all side information available to adversaries), PRF(wI , t) is pseu-
dorandom for any t. Thus the tag (t,PRF(wI , t)) is “simulatable” (for a random
t) and unforgeable (for every t). Using such a tag generation mechanism, we
can construct a simple waNIZK for a language L that admits a pseudorandom
witness distribution. To identify whether the proof was generated by (wI∗, ?),

one just checks PRF(wI∗, t)
?
= PRF(wI , t). Moreover, by further requiring the

PRF function to be collision-resistant, we can also achieve identifier uniqueness.
Formal construction and analysis will be presented in the full version.

16

Lifting via randomness extraction: a construction for general CRS-
independent distributions. The above approach cannot be applied to general
unpredictable witness distributions. A natural idea is to transform an identifier
witness into a uniform string. Randomness extractors [4] [29] are such a tool for
generating a nearly uniform string from a random variable with enough entropy
(called source), with the help of a short uniformly random string called seed.
A computational extractor [29] would also be applicable even if the witness
distribution is only computationally unpredictable.

Several tricky issues remain: (1) For “zero-knowledgeness”, the attacker may
obtain multiple proofs generated using wI . Since the seed is randomly chosen,
the attacker essentially forces the same witness to be re-used with multiple dif-
ferent seeds and then the resulting outputs are used as the PRF keys; Thus
we will require a reusable extractor [24,23] (or related-key secure PRF [1]). Un-
fortunately, there are only a few reusable (computational) extractor construc-
tions, which either have entropy requirements on the source [23], or rely on
non-standard assumptions [24]. In our setting, the witness distribution some-
times is only computationally unpredictable. The status of related-key secure
PRF is neither promising as existing constructions only allow simple correla-
tions. (2) For soundness, a malicious prover may not generate the seed honestly.
In this case, we won’t have the properties of extractors, which could be devas-
tating for unforgeability. To see this, let us view the inner product as the special
Goldreich-Levin extractor, but the malicious prover will simply use all-0 string
as the seed. Now every witness can be used to identify such proof!

Luckily, since we are working in the CRS model, we could simply let the CRS
include one single piece of uniform seed. The tag can be generated as follows:

TagExt−PRF(wI) = (r, t,PRF(Ext(wI , r), t)), for r in CRS and a random t.

Leveraging this tag generation mechanism, we can have a construction for a lan-
guage L that is secure w.r.t. k-unpredictable distributions. Formal construction
and analysis will be presented in the full version.

Unfortunately, once we do not have the luxury that the sampler is indepen-
dent of the CRS, we will need new ideas for the challenges.

3.2 The full-fledged construction for CRS-dependent distributions

It is known that in general, a randomness extractor is secure only when the
source is independent of the seed (otherwise, seeing the seed, there will always
exist a source distribution that makes the first bit of the extractor output to
be 1). Thus, the unpredictable statement distribution must be independent of
the CRS in the above approach. However, in many applications, the statement
(and the corresponding witness distribution) might depend on the CRS, e.g., all
three applications we will present soon. It follows that we need a more general
solution that can handle a CRS-dependent witness distribution.

A more flexible tag generation. It is not hard to see that for any tag gen-
eration function f(params, w) = τ , if params is from CRS, the adversary can

17

always find a witness distribution that depends on params such that the output
τ can be recognizable. However, in the above approach using extract-then-PRF,
moving the seed out of CRS and letting prover generate it will put us back facing
the challenges of malicious seed and reusability, as described above.

To circumvent such a dilemma, we first note that realizing simulatability
and unforgeability does not have to be via pseudorandomness. For simulatabil-
ity, another alternative is encryption primitives. For the ease of checking, we
consider using deterministic public-key encryptions (DPKE) to generate a tag. 8

Regarding the unforgeability, we note it can be realized by adding a simulation-
extractable NIZK proof to the tag. As the NIZK is already a component of our
waNIZK construction, we can make the tag unforgeable by enforcing the “colli-
sion resistance”. Let DEnc be the encryption algorithm of a DPKE scheme, and
we illustrate the tag generation mechanism below.

TagDPKE(wI)→ (pk,DEnc(pk, wI)), for a random public key pk. (1)

Next, we examine the previous challenges more closely.

– For “zero-knowledge”, simulatability via pseudorandomness requires each
output to be “independently” pseudorandom, thus requiring “reusability”
in strong extractors. The latter is highly non-trivial as there is only a fixed
amount of entropy available in the witness. While for ciphertext as output,
however, we do not have to insist on a pseudorandom ciphertext distribution.
Actually, “reusability” is trivial in standard public-key encryption schemes
as each ciphertext is like an independent sample. Of course, in the setting of
DPKE (when considering the multi-user security), things get more compli-
cated as no private randomness is used for encryption; we also need to con-
sider the auxiliary input of the witness. Fortunately, Brakerski and Segev’s
d-linear based construction [13] can satisfy the auxiliary-input security and
the multi-user security simultaneously.

– For soundness, it was difficult to deal with malicious (prover-generated)
seeds in the extractor setting, as there is no way to prove a seed is sam-
pled uniformly. Nevertheless, if the parameters have some algebraic struc-
ture or functional properties, we may be able to enforce those features (for
unforgeability) instead of proving distributional properties. For example, the
decryptability condition (correctness) is such a property, when using encryp-
tion. In more detail, a malicious prover may still want to choose a malformed
pk, but now we can ask the prover to attach a proof of “goodness” of pk,
simply atttesting there exists a secret key. The perfect correctness of en-
cryption requires that for every valid key pair pk, sk, and every message m,
Dec(sk,DEnc(pk,m)) = m. This automatically implies that the encryption

8 Another potential tool could be perfectly one-way hash with auxiliary inputs [18].
Those are probabilistic functions that satisfy collision-resistance and hide all partial
information about its input even under with auxiliary input. Unfortunately, such a
strong primitive is only known to exist under a not-efficiently-falsifiable assumption
[24]; thus, its existence is elusive. In fact, it even contradicts with a form of obfusca-
tion [16]. We would like to have a construction that relies on standard assumptions.

18

function DEnc for each valid pk defines an injective function, i.e., for any
w1 6= w2,DEnc(pk, w1) 6= DEnc(pk, w2). Moreover, it is indeed the case for
the DPKE instantiation we chose in [13]. In this way, a malicious prover
cannot evade the checking or frame other witness holders!

The construction. Let us firstly specify the building blocks we will use.

– A deterministic public-key encryption (DPKE) scheme Σde = {Kde,Ede,Dde}
(whose formal definition is recalled in the full paper). We assume w.l.o.g. that
the plaintext space contains all identifier witnesses of L. Particularly, we
require the DPKE to be perfectly correct and PRIV-IND-MU-secure with
respect to 2−k-hard-to-invert auxiliary inputs which captures the security
when one message is encrypted under multiple keys and the auxiliary input
about the message are available to adversaries. We assume w.l.o.g. that there
is a relation RLde

s.t. a key pair (pk, sk) is valid iff RLde
(pk, sk) = 1.

– A NIZK proof system Πzk = {Szk,Pzk,Vzk} for an NP language

LCD := {(x, pk, c); (wI , wNI , sk) :

(wI , wNI) ∈ RL(x) ∧ wI ∈ RIL(x) ∧ c = Ede(pk, w
I) ∧RLde

(pk, sk) = 1};
(2)

The full-fledged construction ΠCD = {Setup,Prove,Verify, Identify} for an NP
language L with identifier relation RIL is presented in Fig.2.

Security analysis. The completeness directly follows the completeness of the
underlying NIZK proof system Πzk and of the DKPE scheme Σde. Particularly,
under an honest pk, c = Ede(pk,w

I) uniquely determines wI and thus the proof
will not be mis-identified by another identifier witness.

We claim the security of ΠCD in the following theorem and present here
only a security sketch: the statement being proved by Πzk is formed by (x, pk, c).
(1) the knowledge soundness of Πzk ensures one can extract a wI and c =
Ede(pk,w

I). By the description of Identify, these together imply the authenticat-
ing knowledge soundness. (2) When Πzk is sound, the public key pk contained in
a valid proof should be a valid public key, and thus (pk, c) determines a unique
plaintext (as the identifier), which ensures the identifier uniqueness. (3) More-
over, as the DPKE is PRIV-IND-MU-secure with respect to 2−k-hard-to-invert
auxiliary inputs, the proof can achieve the entropic ZK.

Regarding the unforgeability, at a high level, we show a contradication that a
successful adversary A against this property will give rise to a successful adver-
sary B that could recover messages from DPKE ciphertexts. Specifically, since
Πzk is a simulation-extractable NIZK, B can answer all prover oracle queries via
a “hybrid” prover algorithm which returns a “proof” formed by (pk, c, πzk) where
(pk, c) is an honest encryption of the identifier witness while πzk is a simulated
proof. Note that A cannot distinguish the real prover oracle and the hybrid
prover oracle. Next, A will issue a challenge proof (pk∗, c∗, π∗zk), for a challenge
statement x∗, satisfying c∗ = Ede(pk

∗, wI), and B can further leverage the knowl-
edge extractor of Πzk to extract wI , which is the plaintext of these deterministic
encryptions, from πzk.

19

Setup(1λ)

σzk ← Szk(1
λ) // generate a CRS of the underlying NIZK

return σ = σzk

Prove(σ, x, (wI , wNI))

(pk, sk)← Kde(1
λ) // generate the public key and the secret key

c← Ede(pk, w
I) // encrypt the identifier witness under pk

πzk ← Pzk(σzk, (x, pk, c), (w
I , wNI , sk))

// prove x ∈ L ∧ (pk, c) are well-formed

return π = (pk, c, πzk)

Verify(σ, x, π)

b← Vzk(σzk, (x, pk, c), πzk) // check the validity of the proof πzk

return b

Identify(σ, x, π, wI)

c′ ← Ede(pk, w
I) // encrypt the identifier witness under the public key

if (c = c′) then return 1 else return 0

Fig. 2. The full-fledged construction.

Actually, our construction can satisfy the stronger related-witness unforge-
ability. Specifically, in the definition, a successful adversary will output (x∗, π∗, φ∗)
such that π∗ = (pk∗, c∗, π∗zk) is authenticated by φ∗(wI), where φ∗ is a trans-
formation where all preimages can be efficiently found (the class of such trans-
formations will be formalized by Chen et al.[22] and recalled in the full paper).
Note that the adversary B can still leverage the attacker to recover messaages
from DPKE encryptions: all queries to the prover oracle can be simulated as
before; after extrcacting φ(wI) from the challenge proof π∗, B just outputs one
preimage of φ∗(wI) which will equal to wI with a non-negligible probability.

Due to the lack of space, we defer detailed proofs in the full version.

Theorem 1. Let ΠCD be the construction in Fig.2, and the following results
hold:

– ΠCD satisfies the authenticating (knowledge) soundness, if Πzk satisfies the
(knowledge) soundness;

– ΠCD satisfies the identifier uniqueness, if Πzk is sound, and the DPKE sat-
isfies perfect correctness;

– ΠCD satisfies the entropic ZK w.r.t. all k-unpredictable samplers, if Πzk is
zero-knowledge, and Σde is PRIV- IND-MU-secure with respect to 2−k-hard-
to-invert auxiliary inputs. 9

9 A basic requirement is k = ω(log λ) s.t. it is possible to have such a DPKE scheme.

20

– ΠCD satisfies the (related-witness) unforgeability w.r.t. all k-unpredictable
samplers, if Πzk is a simulation-extractable NIZK, and Σde is PRIV- IND-
MU-secure with respect to 2−k-hard-to-invert auxiliary inputs.

Sketch of instantiation. Since the underlying DPKE scheme Σde shall satisfy
the perfect correctness and the PRIV-IND-MU-security with respect to hard-to-
invert auxiliary inputs, the only candidate so far is Brakerski and Segev’s d-linear
based construction [13]. Particularly, this construction allows 2−k-hard-to-invert

auxiliary inputs where 2−k ≤ ν(λ)
q2d

. Here, ν is a negligible function in λ, d can be
1 when considering the DDH assumption, and q is the order of the DDH group
which is usually 2Θ(λ). Accordingly, if we set ν(λ) = 2−ω(log λ), the admissible
samplers of our waNIZK construction ΠCD should be k-unpredictable for some
k ≥ 2 log q + ω(log λ).10 Regarding the underlying simulation-extractable NIZK
Πzk for LCD, we note it could be realized via simulation-extractable NIZKs for
general NP languages. Particularly, adaptive NIZKs for general NP languages are
known to exist under the RSA assumption [26] or the LWE assumption [37], and
we can add simulation extractability to them using standard tools including one-
way functions and public-key encryptions as noted in [38]. In addition, since the
tag generation procedure is algebraic (and Groth-Sahai-friendly), we can leverage
the (simulation-extractable) Groth-Sahai proof system [28] to instantiate Πzk, if
the statement x ∈ L that we wish to prove is also Groth-Sahai-friendly.

4 Applications

We will present three different applications in (non-malleable) hash, (group)
signature, and (plaintext-checkable) public key encryption respectively, and we
will show how to advance the state of the art in each domain.

4.1 Non-malleable (perfectly one-way) hash functions from
standard assumptions

Many efforts have been made formalizing meaningful cryptographic properties
to realize random oracles. Perfectly one-way hash [18] and non-malleable hash
functions [9] are notable examples. They are used to instantiate random oracles
in e.g., Bellare-Rogaway encryption [6], HMAC [27], and OAEP [10] respectively.
In particular, a perfectly one-way hash is a probabilistic function that requires
the output to hide all partial information about the input (even with auxiliary
information about the input), while still enabling the check of the validity of
an evaluation. And non-malleable hash requires that one cannot “maul” a hash
value into a related one even with some auxiliary information about the pre-
image. Moreover, collision resistance is also required in both as it is necessary

10 In certain applications, we may be insterested in the relation between n = |wI | and k
of admissible samplers. Note that for any constant 0 < µ ≤ 1, there exists a sufficient
large polynomial n such that nµ ≥ 2 log q + ω(log λ). Namely, k can be sublinear in
n, and in this case given (X,Z, PP) finding W I is sub-exponentially hard.

21

for many of their interesting applications, such as instantiating random oracles
in Bellare-Rogaway encryption [6,9].

Unfortunately, both perfectly one-way hash and non-malleable hash (with
general auxiliary inputs) have no construction from any efficiently falsifiable as-
sumption [18,24,9,3]. 11 In particular, Boldyreva et al. [9] presented construc-
tions of non-malleable hash from perfectly one-way hash functions [18] and
simulation-extractable NIZKs [38], thus directly inherits the non-efficiently fal-
sifiable assumption from [18]; Baecher et al. [3] showed another construction
for non-malleable hash, but it requires a random oracle. Recall that the main
motivation of non-malleable hash was to instantiate random oracles.

Note that the drawbacks the non-standard assumptions made by [18] have
become much more serious: the assumption is known to contradict the existence
of iO [16], while recent progress [30] demonstrated the feasibility of iO from some
well-studied assumptions. The mere existence of such a non-malleable hash or
perfectly one-way hash becomes unclear, and a basic question remains:

Does there exist a non-malleable (or perfectly one-way) hash function w.r.t.
general auxiliary information from standard assumptions?

We solve both problems by using waNIZKs. Our framework could give con-
crete constructions for non-malleable and perfectly one way hash functionss with
any sub-exponentially hard-to-invert auxiliary inputs, assuming only the stan-
dard assumptions like d-linear assumption. We directly construct a hash function
that satisfies perfectly one-wayness, non-malleable and collision resistance simul-
taneously. We simply name it non-malleable (perfectly one-way) hash.

Definition. A hash function H is defined by a triple of PPT algorithms:

– HK(1λ). Generate a key hk of the hash function.
– H(hk, s). On inputs a key hk and an input s output a hash value y.
– HVf(hk, s, y). On inputs hk, s and y return a decision bit.

The correctness requires for any hk, s, it holds that HVf(hk, s,H(hk, s)) = 1.
For security, the hash function H is required to first satisfy:

– Perfect one-wayness w.r.t. ε-hard-to-invert auxiliary inputs. I.e., for any dis-
tribution S = {Sλ}λ∈N and any hint function hint such that hint is ε-hard-
to-invert w.r.t. S, and for any non-uniform PPT adversary A, it holds that

Pr

[
hk ←HK(1λ), s0 ← Sλ, s1 ← {0, 1}|s0|, b←$ {0, 1},

y ← H(hk, sb), b
′ ← A(hk, y, hint(hk, s0)) : b = b′

]
≤ negl(λ) .

– Collision resistance. I.e., for any non-uniform PPT adversary A,

Pr

[
hk ← HK(1λ),(s, s′, y)← A(hk) :

s 6= s′ ∧ HVf(hk, s, y) = HVf(hk, s′, y) = 1

]
≤ negl(λ) .

11 Under standard assumptions, the only existing perfectly one-way functions with
auxiliary inputs [7] does not enjoy the collision resistance; and the only non-malleable
hash (also given in [9]) is only secure against a very special class of auxiliary input.

22

For definition of non-malleability, we adopt it from [3] as this game-based
definition is easier to use (than the simulation definition from [9]), and sufficient
for all major applications including Bellare-Rogaway encryption [6], HMAC [27],
and OAEP [10]. Informally, non-malleability requires that an adversary, seeing a
hash value y = H(hk, s) and an auxiliary input hint(hk, s), cannot find another
y∗ whose pre-image is meaningfully related to s. The formal definition appears
in the full paper. We note the “relation” between the pre-images is described a
transformation set Φ, namely, s′ is Φ-related to s if s′ = φ(s) for some φ ∈ Φ. The
non-malleability is defined w.r.t. a transformation set Φ rather than any trans-
formation φ, since there exists some relation such as constant transformations,
for which this definition is hopeless. In this work, we will adopt on transfor-
mations that have the so-called bounded root space (BRS) and samplable root
space (SRS) (denoted by Φsrs

brs) developed in [22], which are the currently most
general yet achievable class (see the full paper [?]).

Construction. Observe that non-malleable (perfectly one-way) hash has three
security requirements and a verifier algorithm on each input-output pair. If we
start just with perfect one-wayness (without the verifier algorithm) which hides
all partial information, there are plenty of candidates; for example, a commitment
scheme. For the remaining challenges of collision resistance and validity checking
(while maintaining best possible privacy), our waNIZK becomes an immediate
choice. For non-malleability, it can come from related-witness unforgeability. We
define the evaluation as first committing to its input and then attaching a proof
of the well-formedness of the commitment using our waNIZK proof!

More precisely, let COM = {Kcom,Ccom} be a commitment scheme, and
let Πwa = {Swa,Pwa,Vwa, Iwa} be a WA-NIZK for an NP language Lnm :=
{(c, kcom); (s, r) : c = Ccom(kcom, s; r)}, in which s is the identifier witness. Here
we require Πwa to satisfy the identifier uniqueness, the entropic ZK and the
related-witness unforgeability w.r.t. all (− log ε)-unpredictable samplers and the
transformation set Φsrs

brs. We present the detailed description in Fig.3.

HK(1λ)

σwa ← Swa(1
λ) and kcom ← Kcom(1λ); return hk = (σwa, kcom)

H(hk, s)

ccom ← Ccom(kcom, s; r);πwa ← Πwa(σwa, (ccom, kcom), (s, r)); return y = (ccom, πwa)

HVf(hk, s, y)

return 1 if Vwa(σwa, (ccom, kcom), πwa) = 1 ∧ Iwa(σwa, (ccom, kcom), πwa, s) = 1

Fig. 3. Non-malleable Hash from commitment+ waNIZKs

Security analysis. The correctness follows the correctness of underlying prim-
itives. Regarding collision resistance, if two distinct inputs (s1, s2) (which are
identifier witnesses) authenticate the sample proof, it immediately breaks iden-

23

tifier uniqueness. Notice that the hash value y consists of a hiding commitment
and a WA-NIZK proof, both of which won’t leak partial information about an
unpredictable input. Thus, the perfect one-wayness follows easily. Regarding
the non-malleability, notice that a mauled hash value must contain a mauled
waNIZK proof, which is prevented by the related-witness unforgeability of the
waNIZK. For detailed proofs, we defer them to the full version.

Theorem 2. H satisfies the perfectly one-wayness w.r.t. ε-hard-to-invert auxil-
iary inputs, collision resistance, and non-malleability w.r.t. the transformation
set Φsrs

brs and ε-hard-to-invert auxiliary inputs, if the commitment scheme COM
satisfies computationally hiding, and Πwa satisfies the identifier uniqueness, the
entropic ZK and the related-witness unforgeability w.r.t. the transformation set
Φsrs
brs and all (− log ε)-unpredictable samplers.

4.2 Group signatures with verifier-local revocation with auxiliary
input

In group signatures with verifier local revocation (VLR) [12], we insist that the
verifier can check by himself whether a signature is generated by a revoked group
member, so that the group public key and the signing complexity are independent
of revocation list which could be potentially long. In this section, we show how
waNIZKs give rise to a simple VLR group signature scheme. Particularly, our
construction enjoys auxiliary-input security, which is against a “side-channel”
attacker who is allowed to see some computationally hard-to-invert function of
the user’s secret key. To the best of our knowledge, known VLR group signatures
cannot guarantee auxiliary-input security.

Why we consider the auxiliary-input security. Besides that “side-channel
attacks” are a threat for every cryptographic primitive, and that the auxiliary-
input model is currently the strongest model capturing memory leakage (more
details about the model are referred to [25]), we find the auxiliary-input security
for VLR group signatures is interesting both practice-wise and technical-wise.

Practice-wise, some instantiation of VLR group signatures, such as the direct
anonymous attestation (DAA) [14] (along with its improved version, the EPID
signature [15]), is adopted by the Trusted Computing Group as the standard for
remote authentication, and implemented in several trusted platform modules
(TPM) including Intel’s SGX. These TPMs are essential for computer security
but are shown, by numerous works, vulnerable to side-channel attacks [36]. The
study of auxiliary-input secure VLR group signature could enhance the security
of TPMs against side-channel attacks.

Technique-wise, constructing auxiliary-input secure VLR group signatures
turns out to be a non-trivial task. First, it is unclear how to easily “lift” ex-
isting constructions. Most of existing VLR group signature schemes (such as
[32,12,14,15]) leverage certain “pseudorandom functions” on a secret to preserve
the anonymity while enable verifier-local checking. Such “pseudorandomness” ei-
ther comes from underlying algebraic assumptions or directly from a PRF (e.g.,
a recent construction from Boneh et al. [11]). Unfortunately, with the auxiliary

24

input on the secret, “pseudorandomness” collapse. Essentially, in a VLR group
signature, it will need an auxiliary-input secure secret-key-based tag generation
mechanism that is identifiable (for realizing the revocation functionality), un-
forgeable, and does not leak any partial information about the signer identity
(for anonymity). Our waNIZK provides a perfect tool.

The definitions. A VLR group signature scheme Σgs is defined by a tuple of
three PPT algorithms.
– GS.KeyGen(1λ, n). It outputs a group public key gpk, and for each user i ∈

[n], outputs the secret key gsk[i] along with the revocation token grk[i].
– GS.Sign(gpk,gsk[i],m). It outputs a valid signature ϑ for m under gpk.
– GS.Verify(gpk,RL, ϑ,m). It returns either 1 indicating that ϑ is a valid sig-

nature for m and was not signed by a revoked user whose token is in RL, or
0 otherwise. Here RL is a set of revocation tokens.

A VLR group signature schemeΣgs is correct, if for (gpk,gsk,grk)← GS.KeyGen(1λ),
every RL ⊂ grk, every message m ∈ {0, 1}∗,

GS.Verify(gpk,RL,GS.Sign(gpk,gsk[i],m),m) = 1⇔ grk[i] /∈ RL.

Note that this verification algorithm allows the group manager, who knows all
revocation tokens, to trace signer’s identifier for every valid signatures. Specif-
ically, if GS.Verify(gpk, ∅, ϑ,m) = 1 and GS.Verify(gpk,grk[i∗], ϑ,m) = 0, the
signer of ϑ will be traced to user i∗.

A VLR group signature scheme should satisfy the anonymity and the trace-
ability. In the following, we briefly introduce the auxiliary-input counterparts of
them, and the formal definitions are presented in the full paper. Particularly, we
consider the auxiliary inputs as a hard-to-invert function on users’ secret keys
along with the group public key, since user’s devices are much more vulnerable
than the group manager’s device that is usually supposed to be well-protected.

– Anonymity ensures that the identity of an uncorrupted signer is indistin-
guishable from all possible signers, even when the adversary is allowed to
see many signatures from all users and to corrupt some gsk[i] and grk[i].
When considering the auxiliary-input anonymity, the adversary is further
allowed to see a hard-to-invert function on (gpk,gsk).

– Traceability captures that any non-uniform PPT adversary A can neither
produce a valid signature-message pair (ϑ,m) that won’t be traced to any
user, i.e., GS.Verify(gpk,grk, ϑ,m) = 1, nor frame an uncorrupted user i∗,
i.e., GS.Verify(gpk,grk[i∗], ϑ,m) = 0, even when the adversary are allowed
to obtain signatures from all users and to corrupt some gsk[i] and grk[i].
When considering the auxiliary-input anonymity, the adversary is further
allowed to see a hard-to-invert function on (gpk,gsk).

The construction. Our construction is based on the following observation. On
rough terms, if a group signature scheme allows one to efficiently check whether
a group signature was generated by using (a part of) gsk[i], then a VLR group
signature can be built upon this as follows. 1) Set grk[i] to be (the specific part
of) gsk[i], and 2) the verification algorithm performs as follows.

25

– Verify the group signature as the underlying verification algorithm does.
– If valid, for each gsk[i] ∈ RL, identify whether ϑ was created by gsk[i]. If ϑ

is not identified by any gsk[i], accept it; otherwise, reject it.

The remaining part is to design a group signature with this identifiability.
Note that the folklore of designing group signatures is to employ a simulation
extractable NIZK to prove the knowledge of a group membership certificate
[20] where the proof is taken as the signature. Then, our waNIZK will be an
immediate choice to add the identifiability, by replacing the NIZK in this folklore.
Moreover, the authenticating soundness and unforgeability of waNIZK would be
enough to replace simulation extractability.

Specifically, we consider a pair (ID, Sig), where ID is a bit string with suffi-
cient length, and Sig is a digital signature for ID under a verification key vksig
of the group manager. To sign a message m on behalf of the group, one just uses
a waNIZK to prove the knowledge of such a pair w.r.t. (vksig,m) where ID is set
to be the identifier. The auxiliary-input security follows the fact that all security
guarantee of waNIZKsare preserved when auxiliary-information about witnesses
12 is leaked to adversaries. More formally, let Σsig = {Ksig,Ssig,Vsig} be a stan-
dard digital signature scheme. Let Πwa = {Swa,Pwa,Vwa, Iwa} be a waNIZK for
the following language: LVLR : {(vksig,m); (ID, Sig) : Vsig(vksig,Sig, ID)}, where
ID is the identifier witness. The formal description of the VLR group signature
Σgs will be presented in the full paper.

The analysis.The correctness is easy to follow. Regarding the security, we
first specify the admissible leakage function family F . Assume the underly-
ing waNIZK Πwa satisfies the entropic ZK and the unforgeability w.r.t. all k-
unpredictable samplers.

Definition 9. We say F is admissible w.r.t. Σgs, if for every σwa in the range
of Swa(1

λ), and every (vksig, sksig) in the range of Ksig(1
λ), it holds that

Hunp(ID|gpk = (σwa, vksig), f(gpk, Ssig(vksig, sksig, ID), ID)) ≥ k(λ),

where ID is a uniformly distributed random variable over {0, 1}id(λ) and id is an
integer function polynomial in λ.

Note that the group public parameter gpk is independent of ID, and thus the
admissible leakage function family F is surely non-empty. Moreover, notice that
the class of admissible leakage functions gets larger, if k is smaller.

Theorem 3. Let Σsig be a standard-model digital signature scheme satisfying
EU-CMA security, Πwa be a waNIZK for the language LVLR that satisfies the
authenticating knowledge soundness, the entropic ZK and unforgeability w.r.t all
k-unpredictable samplers for LVLR. Σgs is a secure VLR group signature scheme
in terms of the auxiliary-input anonymity and the auxiliary-input traceability
w.r.t. all admissible functions.

12 Since in the auxiliary-input model, this leakage could depend on the public param-
eter, which requires the underlying waNIZK to work for CRS-dependent samplers.

26

Proof (sketch). Recall that in the anonymity experiment, the goal of an adver-
sary A is to decide the signer’s identity for a signature that was generated by an
uncorrupted user. The main idea of our proof is to show such a signature can be
obtained by querying the prover oracles of Πwa with an unpredictable sampler
or an admissible extended sampler. By the definition of entropic ZK, a signature
by an uncorrupted secret key (which is a proof πwa) will not leak any useful
information to adversaries beyond that its validity. The anonymity follows.

Regarding the auxiliary-input traceability, we note the adversary A wins ei-
ther when (GS.Verify(gpk,grk[i∗], ϑ∗,m∗) = 0 for the target user i∗, or when
(GS.Verify(gpk,grk, ϑ∗,m∗) = 1. If A wins via the first condition, we can show
it contradicts the unforgeability of Πwa by following similar arguments in the
anonymity proof. For the second condition, the authenticating knowledge sound-
ness of Πwa ensures that for each valid proof πwa, one can extract (ID, Sig) such
that ID authenticates πwa. Given the EU-CMA security of the digital signature
scheme, the extracted ID must be one generated by GS.KeyGen and thus be
contained in grk, which contradicts the second condition. The detailed formal
proof will be presented in the full paper. ut

4.3 Plaintext-checkable encryption in the standard model

Plaintext-checkable encryption (PCE) [17] is a public-key encryption primitive
that allows us to search encrypted data with plaintext messages but still en-
ables randomized encryption. Compared with deterministic public-key encryp-
tion (DPKE) [5], PCE aims to find a more fine-grained definition between the
search functionality while preserving best possible security, particularly, it en-
sures two ciphertexts encrypting the same message are unlinkable (all partial
information is still hidden when the plaintext is not known to the attacker).
Moreover, it was also shown to be useful for group signatures with verifier-local
revocation and backward unlinkability [12].

Existing constructions [17,34,33] are either relying on random oracles or only
working for uniform message distributions. 13 In most scenarios, messages are
from biased distributions. It is thus a natural question to consider PCE in the
standard-model for non-uniform message distributions. 14 In this section, we
answer this question and present a generic transformation from a PKE scheme
to a PCE scheme, via a simple application of our waNIZK.

Definition. A PCE scheme enables everyone having a public key pk, a ciphertext
c and a message m, to check whether m is the plaintext of c under pk. Formally,
it consists of four algorithms: KeyGen, Enc, Dec, PCheck. While the first three
algorithms describe a standard PKE scheme, the last algorithm is as follows:

13 We note that the recent scheme [33] claimed security in the standard model for any
high-entropy message distribution. However, their proofs still implicitly assume that
the message distribution is uniform. We defer details to the full paper.

14 The plain-text equality tester, presented in [39], seems close to a PCE. However, it
can only check whether a ciphertext encrypts a pre-chosen target value m∗, while a
PCE allows us to test for any plaintext publicly.

27

– PCheck(pk, c,m). Outputs 1 indicating c is an encryption of m under pk,
and 0 otherwise.

Correctness requires that for every λ and m, (pk, sk) ← KeyGen(1λ), c ←
Enc(pk,m), Pr[Dec(sk, c) = 1∧PCheck(pk, c,m) = 1] = 1, where the probability
is taken over coin tosses of KeyGen and Enc. We follow the definitions from [17]:

– Checking completeness: No efficient adversary can output a ciphertext which
decrypts to a message that is refused by PCheck.

– Checking soundness: No efficient adversary can generate a ciphertext c and a
plaintext m such that c cannot be decrypted to m but PCheck(pk, c,m) = 1.

– k-unlinkability: It is infeasible to decide whether two ciphertexts encrypt
the same message, when the message is from a message distribution whose
min-entropy is larger than k and the message is not available to adversaries.

Formal definitions are recalled in the full paper.

The construction. As a PCE scheme is a special PKE scheme that supports
the plaintext-checking functionality while preserving the best-possible privacy,
the idea behind our transformation is to attach a waNIZK proof that demon-
strates the underlying PKE ciphertext is well-formed. More precisely, let Σpke =
{Kpke,Epke,Dpke} be a PKE scheme, and let Πwa = {Swa,Pwa,Vwa, Iwa} be a
waNIZK for the following language: LPCE := {(c, pk); (m, r) : c = Epke(pk,m; r)}
where the message m is the identifier witness. To encrypt a message m, our PCE
scheme first encrypts it using Σpke, and uses Πwa to prove the ciphertext is well-
formed, where the CRS for Πwa is a part of the public key. Everyone can check
whether a ciphertext (cpke, πwa) encrypts a particular message m by running the
identification algorithm Iwa on πwa and m. We defer the formal construction Σ
to the full version.

The analysis.The correctness follows the correctness of the underlying primi-
tives. Regarding the security, we establish the following result.

Theorem 4. The PCE scheme Σ satisfies checking completeness, checking sound-
ness, and k-unlinkability, if Σpke is an IND-CPA PKE scheme with perfect cor-
rectness, and the waNIZK Πwa satisfies the entropic ZK w.r.t. all k-unpredictable
samplers, the authenticating soundness, and the identifier uniqueness.

Proof (sketch). The checking completeness follows the authentiation soundness
of Πwa, and the checking soundness is implied by the identifier uniqueness of Πwa.
Regarding the k-unlinkability, we argue the distribution G = {(x = (c, pk), wI =
m,⊥) : m ← Mλ; c ← Enc(pk,m)} for LPCE is k-unpredictable w.r.t. an honest
key generation (pk, sk)← KeyGen(1λ), if the min-entropy of Mλ is greater than
k. We note given (c, pk) finding wI is not necessarily 2−k-hard. Indeed, we can
define the following distribution Ḡ = {(x = (c, pk), y,⊥) : m, y ← Mλ; c ←
Enc(pk,m)}. Ensured by the IND-CPA security of the PKE scheme, Ḡ is in-
distinguishable with G. As no side information about y is given, the probabil-
ity of guessing y should be not greater than 2−k. According to our definition
k-unpredictable distributions, G is such a distribution, enabling us to deploy
a waNIZK that satisfies the entropic ZK w.r.t. k-unpredictable samplers. The

28

above argument helps us to avoid requiring the sub-exponential hardness of the
underlying PKE scheme. We defer the formal proof to the full version.

References

1. Abdalla, M., Benhamouda, F., Passelègue, A., Paterson, K.G.: Related-key security
for pseudorandom functions beyond the linear barrier. J. Cryptol. 31(4), 917–964
(2018)

2. Alamélou, Q., Blazy, O., Cauchie, S., Gaborit, P.: A code-based group signature
scheme. Des. Codes Cryptogr. 82(1-2), 469–493 (2017)

3. Baecher, P., Fischlin, M., Schröder, D.: Expedient non-malleability notions for hash
functions. In: CT-RSA. LNCS, vol. 6558, pp. 268–283. Springer (2011)

4. Barak, B., Dodis, Y., Krawczyk, H., Pereira, O., Pietrzak, K., Standaert, F., Yu, Y.:
Leftover hash lemma, revisited. In: CRYPTO. LNCS, vol. 6841, pp. 1–20. Springer
(2011)

5. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: CRYPTO. LNCS, vol. 4622, pp. 535–552. Springer (2007)

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: CCS. pp. 62–73. ACM (1993)

7. Bellare, M., Stepanovs, I.: Point-function obfuscation: A framework and generic
constructions. In: TCC (A2). LNCS, vol. 9563, pp. 565–594. Springer (2016)

8. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: STOC. pp. 103–112. ACM (1988)

9. Boldyreva, A., Cash, D., Fischlin, M., Warinschi, B.: Foundations of non-malleable
hash and one-way functions. In: ASIACRYPT. LNCS, vol. 5912, pp. 524–541.
Springer (2009)

10. Boldyreva, A., Fischlin, M.: On the security of OAEP. In: ASIACRYPT. LNCS,
vol. 4284, pp. 210–225. Springer (2006)

11. Boneh, D., Eskandarian, S., Fisch, B.: Post-quantum EPID signatures from sym-
metric primitives. In: CT-RSA. LNCS, vol. 11405, pp. 251–271. Springer (2019)

12. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: CCS.
pp. 168–177. ACM (2004)

13. Brakerski, Z., Segev, G.: Better security for deterministic public-key encryption:
The auxiliary-input setting. In: CRYPTO. LNCS, vol. 6841, pp. 543–560. Springer
(2011)

14. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: CCS.
pp. 132–145. ACM (2004)

15. Brickell, E., Li, J.: Enhanced privacy ID from bilinear pairing for hardware au-
thentication and attestation. Int. J. Inf. Priv. Secur. Integr. 1(1), 3–33 (2011)

16. Brzuska, C., Mittelbach, A.: Indistinguishability obfuscation versus multi-bit point
obfuscation with auxiliary input. In: ASIACRYPT (2). LNCS, vol. 8874, pp. 142–
161. Springer (2014)

17. Canard, S., Fuchsbauer, G., Gouget, A., Laguillaumie, F.: Plaintext-checkable en-
cryption. In: CT-RSA. LNCS, vol. 7178, pp. 332–348. Springer (2012)

18. Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial
information. In: CRYPTO. LNCS, vol. 1294, pp. 455–469. Springer (1997)

19. Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic hash
functions (preliminary version). In: STOC. pp. 131–140. ACM (1998)

29

20. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: CRYPTO. LNCS,
vol. 4117, pp. 78–96. Springer (2006)

21. Chaum, D., van Heyst, E.: Group signatures. In: EUROCRYPT 1991. LNCS, vol.
547, pp. 257–265. Springer (1991)

22. Chen, Y., Qin, B., Zhang, J., Deng, Y., Chow, S.S.M.: Non-malleable functions and
their applications. In: PKC (2). LNCS, vol. 9615, pp. 386–416. Springer (2016)

23. Dachman-Soled, D., Gennaro, R., Krawczyk, H., Malkin, T.: Computational ex-
tractors and pseudorandomness. In: TCC. LNCS, vol. 7194, pp. 383–403. Springer
(2012)

24. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC.
pp. 621–630. ACM (2009)

25. Faust, S., Hazay, C., Nielsen, J.B., Nordholt, P.S., Zottarel, A.: Signature schemes
secure against hard-to-invert leakage. In: ASIACRYPT. LNCS, vol. 7658, pp. 98–
115. Springer (2012)

26. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: FOCS. pp. 308–317. IEEE
Computer Society (1990)

27. Fischlin, M.: Security of NMAC and HMAC based on non-malleability. In: CT-
RSA. LNCS, vol. 4964, pp. 138–154. Springer (2008)

28. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
EUROCRYPT. LNCS, vol. 4965, pp. 415–432. Springer (2008)

29. Hsiao, C., Lu, C., Reyzin, L.: Conditional computational entropy, or toward sep-
arating pseudoentropy from compressibility. In: EUROCRYPT. LNCS, vol. 4515,
pp. 169–186. Springer (2007)

30. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. IACR Cryptol. ePrint Arch. 2020, 1003 (2020)

31. Kreuter, B., Lepoint, T., Orrù, M., Raykova, M.: Anonymous tokens with private
metadata bit. In: CRYPTO (1). LNCS, vol. 12170, pp. 308–336. Springer (2020)

32. Libert, B., Vergnaud, D.: Group signatures with verifier-local revocation and back-
ward unlinkability in the standard model. In: CANS. LNCS, vol. 5888, pp. 498–517.
Springer (2009)

33. Ma, S., Huang, Q.: Plaintext-checkable encryption with unlink-cca security in the
standard model. In: ISPEC. LNCS, vol. 11879, pp. 3–19. Springer (2019)

34. Ma, S., Mu, Y., Susilo, W.: A generic scheme of plaintext-checkable database en-
cryption. Inf. Sci. 429, 88–101 (2018)

35. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: STOC. pp. 427–437. ACM (1990)

36. Oleksenko, O., Trach, B., Krahn, R., Silberstein, M., Fetzer, C.: Varys: Protecting
SGX enclaves from practical side-channel attacks. In: USENIX Annual Technical
Conference. pp. 227–240. USENIX Association (2018)

37. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. In: CRYPTO (1). LNCS, vol. 11692, pp. 89–114. Springer (2019)

38. Santis, A.D., Crescenzo, G.D., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: CRYPTO. LNCS, vol. 2139, pp. 566–598. Springer
(2001)

39. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE.
In: FOCS. pp. 600–611. IEEE Computer Society (2017)

30

	Witness Authenticating NIZKs and Applications

