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Abstract. In a proof of partial knowledge, introduced by Cramer, Dam-
gård and Schoenmakers (CRYPTO 1994), a prover knowing witnesses for
some k-subset of n given public statements can convince the verifier of
this claim without revealing which k-subset. Their solution combines
Σ-protocol theory and linear secret sharing, and achieves linear commu-
nication complexity for general k, n. Especially the “one-out-of-n” case
k = 1 has seen myriad applications during the last decades, e.g., in elec-
tronic voting, ring signatures, and confidential transaction systems.
In this paper we focus on the discrete logarithm (DL) setting, where the
prover claims knowledge of DLs of k-out-of-n given elements. Groth and
Kohlweiss (EUROCRYPT 2015) have shown how to solve the special case
k = 1 with logarithmic (in n) communication, instead of linear as prior
work. However, their method takes explicit advantage of k = 1 and does
not generalize to k > 1. Alternatively, an indirect approach for solving
the considered problem is by translating the k-out-of-n relation into a
circuit and then applying communication-efficient circuit ZK. Indeed, for
the k = 1 case this approach has been highly optimized, e.g., in ZCash.
Our main contribution is a new, simple honest-verifier zero-knowledge
proof protocol for proving knowledge of k out of n DLs with logarithmic
communication and for general k and n, without requiring any generic
circuit ZK machinery. Our solution puts forward a novel extension of
the compressed Σ-protocol theory (CRYPTO 2020), which we then uti-
lize to compress a new Σ-protocol for proving knowledge of k-out-of-n
DL’s down to logarithmic size. The latter Σ-protocol is inspired by the
CRYPTO 1994 approach, but a careful re-design of the original protocol
is necessary for the compression technique to apply. Interestingly, even
for k = 1 and general n our approach improves prior direct approaches
as it reduces prover complexity without increasing the communication
complexity. Besides the conceptual simplicity, we also identify regimes of
practical relevance where our approach achieves asymptotic and concrete
improvements, e.g., in proof size and prover complexity, over the generic
approach based on circuit-ZK.
Finally, we show various extensions and generalizations of our core result.
For instance, we extend our protocol to proofs of partial knowledge of
Pedersen (vector) commitment openings, and/or to include a proof that
the witness satisfies some additional constraint, and we show how to
extend our results to non-threshold access structures.
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1 Introduction

1.1 Proofs of Partial Knowledge

Proofs of partial knowledge [14] allow a prover to convince a verifier that the
prover knows k out of n secrets, without revealing which secrets the prover
knows. Typically, these secrets are solutions to public instances of intractable
problems, such as the discrete logarithm problem. The work of [14] gives an el-
egant solution with linear communication complexity that combines Σ-protocol
theory with linear secret sharing. Our goal is to invoke the techniques of Bul-
letproofs [6, 9] and follow-up work, in particular the compressed Σ-protocol
framework of [2], to construct proofs of partial knowledge with logarithmic com-
munication complexity.

Compressed Σ-protocol theory [2] was introduced as a strengthening of Σ-
protocol theory. It inherits the flexibility and versatility of Σ-protocols while
compressing their communication complexity from linear to logarithmic. The
main pivot of this theory is a standard Σ-protocol for opening linear forms on
Pedersen vector commitments, i.e., a Σ-protocol for proving that a committed
vector x satisfies L(x) = y for a public linear form L and a public scalar y. By
an appropriate adaptation of the techniques from [6, 9] this pivotal Σ-protocol
is compressed to achieve communication complexity that is logarithmic in the
dimension of x; additionally a linearization approach to handle non-linearities
is described [2]. As one of the applications of this theory it was shown how to
obtain circuit zero-knowledge (ZK) protocols with logarithmic communication
complexity for arbitrary arithmetic circuits.

An obvious approach for constructing proofs of partial knowledge with loga-
rithmic complexity is to apply recent advances in communication efficient circuit
ZK to a suitably constructed circuit for capturing the k-out-of-n relation. For in-
stance, this is how the decentralized and confidential transaction system ZCash
is designed [22].

In this work here, we take a more direct approach that avoids generic circuit
techniques. We find such a direct solution scientifically more appealing, but
there are also efficiency considerations that may make our solution the preferred
choice (we discuss this in detail in Section 1.5). Our solution is inspired by
the core idea of [14] of exploiting properties of linear secret sharing; however,
the straightforward approach of compressing the original [14]-protocol with the
techniques of [2] does not work; the third message in the [14]-protocol includes
a consistent secret sharing of the challenge, which cannot be compressed.

1.2 Their Applications

Proofs of partial knowledge have seen myriad applications during the last
decades. For instance, they were shown to be applicable to the construction
of group signature schemes [10]. Group signature schemes [11] allow a member
of a group to sign a message without revealing which member it is, while a
designated group manager is capable of revoking the anonymity of the signer.
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Another application is to ring signature schemes [29], which do not contain
such a revocation mechanism. In a ring signature scheme, a group member can
select any ad-hoc subset of group members and anonymously sign a message on
behalf of this subset. Here, 1-out-of-n proofs together with the Fiat-Shamir [16]
heuristic allow for a straightforward construction of ring-signature schemes. Be-
cause of the ad-hoc nature a ring signature must contain a list of the subset’s
members and, therefore, its size grows linearly in the size of the ring; however,
in many practical scenarios the costs of specifying a ring can be amortized over
many instances.

Proofs of partial knowledge, in particular in the form of ring signature
schemes, also play a crucial role in confidential decentralized transactions sys-
tem such as Zerocoin [28]. Zerocoin was proposed as an extension of Bitcoin to
provide stronger privacy guarantees. A Zerocoin transaction requires a ZKPoK
that the transferred coin is an element of a public set of unspent coins. Other
decentralized payment systems that rely on 1-out-of-n proofs to provide confi-
dentiality are, e.g., Lelantus [23], ZCash [22], Zether [8] and Monero [31].

As a generalization of ring signature schemes, threshold ring signatures only
allow a large enough subset to compute a valid signature [7]. These schemes
require a generalization of the special proof of partial knowledge case k = 1. For
instance, Monero is actively working on threshold ring signature schemes [19].
Moreover, in [15], it is shown how their generalization from 1-out-of-n proofs to
so-called many-out-of-many proofs improves the communication complexity of
the Zether payment system. They show that many practical scenarios require
more general proofs of partial knowledge than only 1-out-of-n proofs.

1.3 Our Contributions

In this work, we start off by introducing and analyzing a novel extension of the
core compression protocol from compressed Σ-protocol theory [2]. Namely, we
observe that the compressed Σ-protocol for opening linear forms can be adapted
to apply to general homomorphisms, i.e., for proving that a committed vector
x ∈ Znq satisfies f(x) = y for an arbitrary group homomorphism f : Znq → G
and an element y ∈ G. The loss of efficiency is at most a constant factor and the
adapted protocol still achieves a logarithmic communication complexity. Further-
more, the amortization technique to open multiple linear forms for essentially the
price of one [2] directly carries over to opening multiple homomorphisms. This
generalized functionality has not been considered before in the context of log-
arithmic complexity. As we discuss below, it turns out to be very useful in the
design of efficient proofs of partial knowledge, but possibly also beyond.

Indeed, given n group elements P1, . . . , Pn ∈ G, consider a prover claiming
that it knows k out of the n DLs, i.e., it knows a subset S ⊂ {1, . . . , n} of
cardinality k and exponents xi ∈ Zq such that gxi = Pi for all i ∈ S. Inspired
by the design principle of [14], we reduce this k-out-of-n case to the n-out-of-
n case by having the prover “eliminate” the instances that it does not know,
and then we apply the amortized version of the new compressed Σ-protocol for
opening homomorphisms to prove the n instances in one go, with logarithmic
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complexity. However, the original solution of [14] to reduce the k-out-of-n to the
n-out-of-n case, achieved by secret sharing the challenge, does not work for us,
as the resulting protocol is not in the shape for the (above generalization of the)
[2] compression technique to apply.

Instead, we use the following new solution. The prover first chooses an
(n−k+1)-out-of-n Shamir secret sharing (s1, . . . , sn) of the default secret s = 1,
where it selects the non-constant “random” coefficients a1, . . . , an−k of the shar-
ing polynomial p(X) = 1 + a1X + · · ·+ an−kX

n−k so that si = 0 for i 6∈ S. The
prover then commits to the vector (a, t) = (a1, . . . , an−k, t1, . . . , tn) ∈ Z2n−k

q

with ti set to ti = sixi for any i, understood to be equal to 0 for i /∈ S, i.e., when
si = 0. Finally, it proves that

gti = P si
i (1)

for all i ∈ {1, . . . , n}. Proving this linear relation with a standard Σ-protocol
gives a novel secret-sharing based realization of [14], with linear communication
complexity.

This protocol crucially differs from the original proofs-of-partial knowledge,
making it amenable to our compression techniques. First, it generates a single
compact commitment to the vector of interest (a, t). No compact commitments
are used in the original protocol. Second, the (n− k+ 1, n)-secret sharing of 1 is
implicitly defined by the committed coefficients a1, . . . , an−k. By contrast, in the
original protocol the prover computes an arbitrary (n− k + 1, n)-secret sharing
of a challenge c sampled uniformly at random by the verifier. Since the verifier
has to check the consistency of this secret sharing this approach has an inherent
linear communication complexity.

Let us consider our proofs-of-partial knowledge realization. By the linearity
of Shamir’s secret sharing scheme, for any i Equation 1 can be cast as a homo-
morphism of the committed values a1, . . . , an−k, t1, . . . , tn,4 and thus our novel
variation of [2], including the amortization over the n homomorphisms, applies,
thereby achieving a logarithmic communication complexity.

In total, our k-out-of-n proof protocol requires the prover to send
4 dlog2(2n− k + 1)e− 5 group elements and 4 elements in Zq to the verifier. We
also show how to further reduce this to 2 dlog2(2n− k + 1)e − 1 group elements
and 4 elements in Zq on a pairing-based platform. The protocol is public-coin
and can therefore be made non-interactive by the Fiat-Shamir transform [16].
The public set-up, necessary for the vector commitment, consists of at most 2n
group elements, and the complexity of the prover scales linearly in n.

1.4 Extensions and Variations

The conceptual simplicity of our design principle makes it easy to extend the
protocol in various directions, for instance to proofs of partial knowledge about

4 Concretely, we consider the homomorphism fi : Z2n−k
q → G, (a, t) 7→ gtiP

−`i(a)
i

with `i the linear functional `i(a) = a1i + a2i
2 + · · · + an−ki

n−k, and we ask the
prover to prove that the committed values map to Pi.
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“multi-generator discrete logarithms” and corresponding Pedersen vector com-
mitments. Furthermore, by introducing a pairing and considering a pairing based
extension of Pedersen’s vector commitment scheme, we can reduce the relevant
constant by another factor up to 2. Moreover, we show that our proofs of partial
knowledge are compatible with circuit ZK protocols of [2], allowing the prover to
demonstrate that his secret information satisfies some arbitrary given constraint.
Finally, we generalize the results from threshold access structures to arbitrary
access structures.

1.5 Comparison with Other Approaches

Achieving partial proofs of knowledge with logarithmic complexity has received
quite some attention over the last few years, with different approaches and dif-
ferent (partial) solutions. We discuss here the examples that are most relevant
in the context of our new approach, and we compare them with our results.

In [21], Groth and Kohlweiss consider the special case k = 1, and where the
prover claims to be able to open 1 out of n public commitments to zero. Their
solution is a Σ-protocol that works for any additively homomorphic commitment
scheme over Zq and it achieves a logarithmic communication complexity. To
describe their approach, let 1 ≤ ` ≤ n be the index of the prover’s secret.
The prover commits to each bit of ` and runs dlog2(n)e standard Σ-protocols,
in parallel and on a common challenge, proving that all these commitments
can indeed be opened to a binary value. In addition, the prover shows that the
responses of these parallel Σ-protocols satisfy some multiplicative relation, which
completes the protocol. This approach does not have an obvious generalization
to k-out-of-n proofs.

The 1-out-of-n proof of [21] requires the prover to send 4 dlog2(n)e group ele-
ments and 3 dlog2(n)e+1 field elements. By using Pedersen vector commitments,
instead of ordinary Pedersen commitment, the communication costs can be fur-
ther reduced to dlog2(n)e+4 group elements and dlog2(n)e+3 field elements [5].
Instead of the binary decomposition, the approach of [5] considers the m-ary
decomposition of the secret index `. Here, we have optimized their approach for
proving knowledge of 1-out-of-n discrete logarithms by taking m = 2. The work
of [5] focuses on a slightly different scenario in which the communication costs
are minimized for m = 4.

In comparison, in our protocol, which works for any k, the prover sends
4 dlog2(2n− k + 1)e−5 group elements and 4 field elements to the verifier, which
is reduced to 2 dlog2(2n− k + 1)e − 1 group elements and 4 field elements on a
pairing-based platform. Hence, perhaps surprisingly, our simple protocols are
comparable to dedicated solutions for the special case k = 1.

Recently, a generalization from 1-out-of-n proofs of [21] to “many-out-of-
many” proofs was given [15]. This generalization considers a prover that claims to
know the opening of all commitments in one of the orbits of a public permutation
of n public commitments. However, the protocol only works for permutations
with orbits of equal size. Since the permutation is public and of this specific form,
this protocol does not constitute a general k-out-of-n proof of partial knowledge.
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The prover complexity of the aforementioned 1-out-of-n proofs [21, 5] is
O
(
n log(n)

)
, and that of the “many-out-of-many” proofs [15] is O

(
n log2(n)

)
. By

contrast, our protocol has prover complexity O
(
n
)
. Here and below, we express

the prover complexity in terms of the number of group exponentiations required,
explaining why these complexities are independent of the security parameter κ.
However, note that the size of the group and therefore the complexity of evalu-
ating a single group exponentiation does depend on κ. Similarly, we specify the
communication costs in terms of the number group and field elements.

Aiming to improve the prover complexity of the 1-out-of-n proofs of [21, 5],
Jivanyan and Mamikonyan [24] proposed a hierarchical approach. Their protocol
assumes that n = NM and applies an appropriate 1-out-of-N proof followed by
a 1-out-of-M proof. It reduces the prover complexity from O(n log(n)) down to
O
(
n+N log(N)+M log(M)

)
, which equals O(n) if, for example, N = M =

√
n.

However, this hierarchical approach increases the communication complexity to
O
(
N log(N) +M log(M) +M

)
, hence it is subject to a trade-off between prover

and communication complexity.
Alternatively to our and the above approaches, proofs of partial knowledge

can be constructed via generic circuit ZK protocols. This indirect approach is, for
example, followed by the confidential transaction system ZCash [22]. A standard
construction for the 1-out-of-n case is to incorporate the group elements Pi into
a Merkle tree [27], and ask the prover to prove knowledge of an exponent xi such
that the group element gxi is the leaf of a valid, but secret, Merkle path. In this
case, the arithmetic circuit C implements a composition of the exponentiation
gxi and the log2(n) hash function evaluations corresponding to the validation
of a Merkle path, and it is therefore of size |C| = O

(
κ log(n)

)
, where κ is the

security parameter.
Even though this is obviously possible, to our knowledge this Merkle-tree ap-

proach has not been explicitly generalized to the k-out-of-n case before, making
it difficult to do a rigorous efficiency comparison. However, such a generaliza-
tion would require k Merkle paths to be validated, resulting in circuits of size
|C| = O

(
κk log2(n)

)
. In addition, the circuit has to validate that the k Merkle

paths are distinct. If the (public) Merkle tree is constructed such that its leafs
are in a sorted order, this requires a circuit of size O(k). In these complexity
estimates we neglect the O(κn) size circuit required to construct the Merkle tree,
because these costs can be amortized in some applications.

In Table 1, the asymptotic complexities of our direct approach are compared
with the indirect approach, instantiated with typical communication efficient
circuit ZK protocols for which the size of the public parameters and the prover
complexity are linear and the communication complexity is logarithmic in the
circuit size. We observe that, if k = Ω(n/ log(n)), our approach yields an asymp-
totic improvement over the indirect approach.

Moreover, the constants of our approach are small. By contrast, taking for
instance the case k = 1 and a highly optimized group, associated to a security
parameter κ ≈ 100, the indirect approach can be instantiated with arithmetic
circuits containing approximately 1400 log2(n) multiplication gates [22]. Hence,
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even for the 1-out-of-n case, where the indirect approach has better asymptotic
complexities, we obtain better communication complexity for n ranging up to
roughly 9000.

Table 1. Comparison of the asymptotic complexities of the indirect approach, using
typical communication-efficient circuit ZK protocols, and our direct approach, for k-
out-of-n proofs of partial knowledge, with security parameter κ. The size of the public
parameters and the communication complexity are expressed in the number of group
and field elements. The prover complexity is expressed in the number of group expo-
nentiations.

Indirect Circuit ZK Approach Our Direct Approach
Size of Public Parameters O

(
κk logn

)
O
(
n
)

Prover Complexity O
(
κk logn

)
O
(
n
)

Communication Complexity O
(
log (κk logn)

)
O
(
logn

)
The above circuit approach can further be adjusted, for instance by invok-

ing ZK protocols with constant communication complexity [20], or by replacing
Merkle trees with RSA-accumulators [4], which results in arithmetic circuits
with a number of multiplication gates that is constant in n [30]. However, these
approaches are incomparable in that they are based on computational hardness
assumptions that are considered less standard, like the strong-RSA assumption
or the knowledge-of-exponent assumption. Furthermore, in these protocols, the
size of the public parameters and the prover complexity are still linear in the
circuit size, and for practical instances still result in sizeable circuits, respectively.

1.6 Organization of the Paper

The remainder of paper is organized as follows. In Section 2, we recall the nota-
tion and some of the results from compressed Σ-protocol theory [2]. In Section 3,
we describe our twist on the pivotal Σ-protocol from [2]. In Section 4, we combine
this generalization with an adaptation of the techniques from [14] to construct
our proof of partial knowledge. Finally, in Section 5, we discuss a number of
extensions and generalizations of our proofs of partial knowledge.

2 Preliminaries

2.1 Interactive Proofs

We briefly introduce the concept of an interactive proof5 and some of the basic
(security) properties. An interactive proof Π for relation R is a protocol between
5 In contrast to the original definition [18], we do not require an interactive proof to be
complete and sound by definition; instead, we consider those (and other) properties
as desirable security properties.
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prover P and a verifier V. It takes as public input the statement x and as prover’s
private input the witness w, which is written as Input(x;w). As the output of
the protocol the verifier either accepts or rejects the prover’s claim of knowing a
witness w. Π is called (perfectly) complete if on any input (x;w) ∈ R the verifier
always accepts. Evaluating Π on input (x;w) is also written as Π(x;w).

An interactive proof with µ communication rounds is also called a µ-move
protocol. Note that the final message is always sent from the prover to the verifier.
The messages communicated in one protocol evaluation are also referred to as a
conversation or a transcript. If all of the verifier’s random coins are made public,
one speaks of a public-coin protocol. All our protocols will be public-coin and
thereby suitable for the Fiat-Shamir transformation [16], which turns public-coin
interactive proofs into non-interactive protocols.

An interactive proof Π for relation R is said to have witness extended emu-
lation [26] if there exists algorithm χ (witness extended emulator) that runs in
expected polynomial time and does the following. The algorithm χ, on input x
and given rewindable oracle access to a (possibly dishonest) prover P∗, outputs a
transcript and a witness w such that: (1) the emulated transcript is statistically
indistinguishable from conversations between P∗ and an honest verifier V, and
(2) the probability that the emulated transcript is accepting and the witness w is
not a valid witness for x is negligible. Witness extended emulation gives a notion
for proofs of knowledge (PoKs) that is sufficient in practical applications [6, 9, 2].

We also consider the computational version of a PoK, where witness ex-
tended emulation is required to hold only for computationally bounded dishonest
provers under a computational hardness assumption. In those cases, the relation
R typically depends on a (possibly implicit) security parameter, as well as on
some additional public parameters that are assumed to be chosen according to
a specific probability distribution, and the success probability of the prover is
then understood to be on average over the choice of these public parameters.
These computational variants of proofs of knowledge are also called arguments
of knowledge.

Protocol Π is called honest verifier zero-knowledge (HVZK) if there exists an
efficient simulator that, on input a statement x that admits a witness w, outputs
an accepting transcript, such that the simulated transcripts follow exactly the
same distribution as transcripts between an honest prover and an honest verifier.

A 3-move public-coin interactive proof is called a Σ-protocol. The 3 messages
are then typically denoted (a, c, z) where c is called the challenge. For a HVZK
Σ-protocol the simulator often proceeds by first selecting a random challenge c
and then preparing the messages a and z; in this case, we speak of special honest
verifier zero-knowledge (SHVZK).

A Σ-protocol is called k-special sound if there exists an efficient al-
gorithm that, on input any statement x and k accepting transcripts
(a, c1, z1), . . . , (a, ck, zk) with common first message a and pairwise distinct chal-
lenges ci, outputs a witness w for x.

More generally, we consider (2µ + 1)-move public-coin protocols, in which
all the verifier’s messages are uniformly random challenges. These protocols are

8



called (k1, . . . , kµ)-special sound if there exists an efficient algorithm that, on
input any statement x and a (k1, k2, . . . , kµ)-tree of accepting transcripts, out-
puts a witness w for x. A (k1, k2, . . . , kµ)-tree of accepting transcripts is a set of∏µ
i=1 ki accepting transcripts that are arranged in the following tree structure.

The nodes in this tree correspond to the prover’s messages and the edges corre-
spond to the verifier’s challenges. Every node at depth i has precisely ki children
corresponding to ki pairwise distinct challenges. Every transcript corresponds to
exactly one path from the root node to a leaf node.

We note that in some public-coin protocols the verifier sends µ challenges
in less than 2µ + 1 rounds, i.e., some of the verifier’s messages contain more
than one challenge. For these protocols, we also consider the (k1, . . . , kµ)-special
soundness property. In this case, a (k1, k2, . . . , kµ)-tree of accepting transcripts
contains nodes that do not correspond to a message sent from the prover to the
verifier.

Let us assume that the challenges are sampled uniformly at random from
challenge sets with a cardinality that is exponential in the security parameter.
In this work all challenge sets are equal to Zq ∼= Z/(qZ) for some prime q that is
understood to be exponential in the security parameter. Hence, for the protocols
in this work this assumption is satisfied. Then witness extended emulation is
known to follow from (k1, k2, . . . , kµ)-special soundness [6].6 In this work, we
will show that all protocols are (k1, k2, . . . , kµ)-special sound for some µ and
some list of ki’s, from which witness extended emulation therefore follows.

2.2 Multi-Exponentiation and The Pedersen Vector Commitment
Scheme

We consider statements over the ring Zq ∼= Z/(qZ) with q prime. We let G
be an Abelian group of prime order q for which we write its group operation
multiplicatively. We write vectors in Znq orGn in boldface, i.e., x = (x1, . . . , xn) ∈
Znq and g := (g1, . . . , gn) ∈ Gn, and we write gx for the multi-exponentiation

gx :=
n∏
i=1

gxi
i ∈ G .

Furthermore, for vectors x,y ∈ Znq , g,h ∈ Gn and scalar c ∈ Zq, we have the
following component-wise operations:

g ∗ h := (g1h1, g2h2, . . . , gnhn) ∈ Gn,
gc := (gc1, gc2, . . . , gcn) ∈ Gn,

x ∗ y := (x1y1, x2y2, . . . , xnyn) ∈ Znq .

Additionally, assuming n is even, we write gL := (g1, . . . , gn/2), gR :=
(gn/2+1, . . . , gn) ∈ Gn/2 and xL := (x1, . . . , xn/2), xR := (xn/2+1, . . . , xn) ∈
Zn/2q , for the left and right halves of these vectors.
6 In a recent unpublished work [3], it is shown that (k1, k2, . . . , kµ)-special sound-
ness implies the more standard notion of knowledge soundness. In turn, knowledge
soundness implies witness extended emulation [26].
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We let GT be another Abelian group and denote the set of all group homo-
morphisms f : Znq → GT by Hom(Znq ,GT ). Typically GT = G or GT = Zq, in
the latter case Hom(Znq ,GT ) = Hom(Znq ,Zq) is the set of linear forms on Znq .
For any homomorphism f : Znq → GT it holds that its image im(f) ⊂ GT is a
Zq-module. For this reason, and without loss of generality, we assume that GT
is a Zq-module.

Moreover, we define the left and right part of f as follows:

fL : Zn/2q → GT , x 7→ f(x, 0),
fR : Zn/2q → GT , x 7→ f(0,x),

(2)

where, e.g., (x, 0) ∈ Znq is the vector x ∈ Zn/2q appended with n/2 zeros.
In this work we also consider the Pedersen vector commitment scheme. This

commitment scheme allows a prover to (compactly) commit to an n-dimensional
vector x ∈ Znq in a single group element P ∈ G. We recall that a Pedersen vector
commitment P is simply a multi-exponentiation, i.e.,

P = hγgx,

for public parameters h ∈ G and g ∈ Gn and for a (private) γ ∈ Zq sampled
uniformly at random by the prover.

The Pedersen vector commitment scheme is perfectly hiding and computa-
tionally binding under the discrete logarithm assumption. More precisely, the
commitment scheme is binding under the assumption that a prover does not
know a non-zero vector (γ, x1, . . . , xn) ∈ Zn+1

q such that

hγ
n∏
i=1

gxi
i = 1.

Such a non-zero vector (γ, x1, . . . , xn) is also called a non-trivial discrete log
relation for group elements h, g1, . . . , gn. From here on forward, we assume that
these group elements have been sampled uniformly at random in a setup phase
and that the prover does not know a non-trivial discrete logarithm (DL) relation.
These group elements form the set of public parameters for all our protocols. We
say a protocol is computationally (k1, . . . , kµ)-special sound, under the discrete
logarithm assumption, if (k1, . . . , kµ)-special soundness holds under the assump-
tion that a prover does not know a non-trivial DL relation between the public
parameters.

3 Proving Group Homomorphism Openings on
Multi-Exponentiations

In this section, we construct an interactive proof for proving that a secret multi-
exponent x ∈ Znq for a public multi-exponentiation P = gx ∈ G is mapped to a
given public value y under an arbitrary but given group homomorphism f : Znq →
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GT . Our new protocol has a communication complexity that is logarithmic in the
dimension n. By considering one of the coordinates of x to be “the randomness”,
and considering an f that ignores this coordinate, we immediately get a protocol
that applies to Pedersen vector commitments and proves that the committed
vector satisfied the relation defined by the considered group homomorphism and
the target value y.

Our approach for constructing said protocol is as follows. We start with
the canonical Σ-protocol for the considered problem of proving f(x) = y (Sec-
tion 3.1), and we then adapt the compression mechanism of [2] such that it is
applicable to our setting. Indeed, our setting is a generalization of [2], which ap-
plies to the special case where f is a linear form L : Znq → Zq. This then results
in a compressed Σ-protocol that features the claimed logarithmic complexity
(Section 3.3).

Later in the section, we also discuss a couple of (standard) amortization
techniques applied to our protocol, for instance for proving fi(x) = yi for several
group homomorphisms fi at (essentially) the cost of proving one.

3.1 The Standard Σ-protocol for Opening Homomorphisms

We consider the problem of proving that the multi-exponent x of a multi-
exponentiation P = gx is mapped to a certain value y under a given homo-
morphism f ∈ Hom(Zq,GT ), i.e., that f(x) = y, without revealing x. More
concretely, we want to construct PoK protocols for the relation

Rf =
{ (
P ∈ G, y ∈ GT ; x ∈ Znq

)
: P = gx, y = f(x)

}
. (3)

Protocol 1, denoted by Π0, is the canonical Σ-protocol for this relation
Rf , following the generic construction design for q-one-way group homomor-
phisms7 [12, 13]. The properties of Π0, known to hold for this generic construc-
tion, are summarized in Theorem 1. Note that the only difference between this
protocol and Protocol 2 of [2] is that here we consider multi-exponentiations
and general group homomorphisms instead of Pedersen commitments and linear
forms.

Theorem 1 (Homomorphism Evaluation). Π0 is a Σ-protocol for relation
Rf . It is perfectly complete, special honest-verifier zero-knowledge and uncondi-
tionally special sound. Moreover, the communication costs are:

– P → V: 1 element of G, 1 element of GT and n elements of Zq.
– V → P: 1 element of Zq.

7 Here, applied to the q-one-way group homomorphisms Znq → G×GT , x 7→ (gx, f(x)).
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Protocol 1 Σ-protocol Π0 for relation Rf
Opening a homomorphism on a Pedersen vector commitment.

Public Parameters : g ∈ Gn,
Input(P, y; x)

P = gx ∈ G
y = f(x) ∈ GT

Prover Verifier

r←R Znq
A = gr

t = f(r)
A,t−−−−−−→

c←R Zq
c←−−−−−−

z = cx + r
z−−−−−−→

gz ?= AP c

f(z) ?= cy + t

3.2 Compression mechanism

The Σ-protocol Π0 for opening homomorphisms has a linear communication
complexity. We now deploy the techniques from [6, 9, 2] to compress the com-
munication complexity from linear to logarithmic. A first observation is that the
verifier’s final check verifies that

(AP c, cy + t; z) ∈ Rf ,

i.e., that the prover’s final message z is a witness with respect to the same relation
Rf for the statement (AP c, cy+ t); which is computed by the verifier. This is no
coincidence; this holds generically for this standard construction of Σ-protocols
for q-one-way group homomorphisms. The final message of Π0 can therefore be
understood as a trivial PoK for relation Rf , and replacing this trivial PoK by a
more efficient one will reduce the communication complexity without affecting
security (significantly). In particular, the alternative PoK does not have to be
zero-knowledge since the trivial one obviously is not.

Our compression mechanism is thus an interactive proof Π1 for relation Rf
that is not zero-knowledge anymore but has improved efficiency. The compres-
sion mechanism is very similar to the one used in [2]. The difference is that
we consider the more general case of opening arbitrary group homomorphisms,
rather than restricting ourselves to linear forms. This generalization requires a
minor adaptation. The first step in the compression of [2] is namely to incorpo-
rate the linear form evaluation into the multi-exponentiation as an additional
exponent on a new generator k ∈ G. This reduction step does not apply to
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the general case of opening arbitrary group homomorphisms, and is therefore
omitted in our protocols. For this reason we directly apply (a minor adapta-
tion of) the main compression mechanism of [2]; ultimately this will increase
the communication costs of the compressed Σ-protocol by roughly a factor two
when compared to opening linear forms. However, in contrast to the compressed
Σ-protocol for opening linear forms [2], our protocol is unconditionally sound
rather than computationally. In Section 5.1, we show how a more general class
of homomorphisms can be incorporated into the commitment, thereby avoiding
the factor two loss in the communication efficiency.

The compression mechanism, i.e., our protocol Π1 for relation Rf that has
improved efficiency but is not zero-knowledge, is described in Protocol 2 below.
Here, n is assumed to be even, which is without loss of generality (if not the
witness can be appended with a zero). Also, recall that xL := (x1, . . . , xn/2)
equals the left half of the vector x ∈ Znq and that fR(xL) := f(0, . . . , 0,xL), etc.

Before discussing the security of Π1 as a proof of knowledge in Theorem 2, we
emphasize the following two important properties of Π1. The size of the response
has halved compared to the original protocolΠ0, and thereby the communication
costs are reduced by roughly a factor two, and second, verifying the correctness
of the response is again by means of checking whether it is a witness for the
relation Rf ′ , now instantiated with the group homomorphism f ′ := cfL + fR ∈
Hom

(
Zn/2q ,GT

)
.

Protocol 2 Compression Mechanism Π1 for relation Rf .

Public Parameters : g
Input(P, y; x)

P = gx ∈ G
y = f(x) ∈ GT

Prover Verifier

A = gxL
R , a = fR(xL)

B = gxR
L , b = fL(xR)

A,B,a,b−−−−−−−−−−−−−−→
c←R Zq

c←−−−−−−−−−−−−−−
g′ := gcL ∗ gR ∈ Gn/2

Q := AP cBc
2

f ′ := cfL + fR
z = xL + cxR

z−−−−−−−−−−−−−−→ (g′)z ?= Q

f ′(z) ?= a+ cy + c2b
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Theorem 2 (Compression Mechanism). Let n ∈ Z>0 be even. Then Π1 is
a 3-move protocol for relation Rf . It is perfectly complete and unconditionally
3-special sound. Moreover, the communication costs are:

– P → V: 2 elements of G, 2 elements of GT and n/2 elements of Zq.
– V → P: 1 element of Zq.

Proof. Completeness follows directly.
Special Soundness: We show that the protocol is 3-special sound, i.e., there

exists an efficient algorithm that on input three accepting transcripts computes
a witness for relation Rf .

Let (A,B, a, b, c1, z1), (A,B, a, b, c2, z2) and (A,B, a, b, c3, z3) be three ac-
cepting transcripts for distinct challenges c1, c2, c3 ∈ Zq. Let a1, a2, a3 ∈ Zq be
such that  1 1 1

c1 c2 c3
c21 c

2
2 c

2
3

a1
a2
a3

 =

0
1
0

 .

Note that, since the challenges are distinct, this Vandermonde matrix is invertible
and a solution to this equation exists. We define z̄ =

∑3
i=1 ai(cizi, zi) for which

it is easily verified that

gz̄ = P and f(z̄) = y.

Hence, z̄ is a witness for relation Rf , which completes the proof.

3.3 Compressed Σ-protocol

Finally, we compose Σ-protocol Π0 and its compression mechanism Π1 to obtain
a compressed Σ-protocol for opening homomorphisms on multi-exponentiations
gx such as Pedersen vector commitments. We follow the notation of [2] and write
Πb � Πa for the composition of two composable interactive proofs Πa and Πb.
Protocols Πa and Πb are composable if protocol Πb is a PoK for the prover’s
final message of protocol Πa. Recall that this composition means that the final
message of protocol Πa is replaced by an execution of protocol Πb.

We assume that n is a power of two, if it is not the witness can be appended
with zeros such that its dimension is a power of 2. For n ≤ 2 it is optimal to omit
the compression mechanism, for this reason it is assumed that n > 2. To minimize
the communication complexity we recursively apply the compression protocolΠ1
until the dimension of the witness is reduced to four, i.e., µ = dlog2(n)e−2 times.
For this composition we write

Πc = Π1 � · · · �Π1︸ ︷︷ ︸
µ times

�Π0. (4)

Theorem 3 captures the security and efficiency properties of Protocol Πc.
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Theorem 3 (Compressed Σ-Protocol for Opening Homomorphisms).
Let n > 2, then Πc is a (2µ + 3)-move protocol for relation Rf , where µ =
dlog2(n)e− 2. It is perfectly complete, special honest-verifier zero-knowledge and
unconditionally (2, 3, 3, . . . , 3)-special sound. Moreover, the communication costs
are:

– P → V: 2 dlog2(n)e− 3 elements of G, 2 dlog2(n)e− 3 elements of GT and 4
elements of Zq.

– V → P: dlog2(n)e − 1 elements of Zq.

Proof. Completeness follows in a straightforward manner.
Special Honest Verifier Zero-Knowledge follows since Π0 is SHVZK. A

simulator for Πc runs the simulator for Π0, and replaces the final messages of
the simulated transcripts by honest executions of Π1 � · · · �Π1.

Special Soundness: Since the protocol is the composition of protocols that
are 2- or 3-special sound, it is easily seen that Πc is (2, 3, . . . , 3)-special sound,
i.e., there exists an efficient algorithm that on input a (2, 3, . . . , 3)-tree (depth
µ+ 1) of 2 · 3µ accepting transcripts computes a witness for relation Rf .

Remark 1. We explicitly emphasize once more that the above and below results
on opening homomorphisms f(x) on multi-exponentiations gx immediately carry
over to opening homomorphisms f(x) on Pedersen vector commitments gxhγ ,
simply by renaming the involved variables in the obvious way.

3.4 Amortization Techniques

This section describes two standard amortization techniques. First, we consider
the scenario where a prover wishes to open one homomorphism f on many multi-
exponentiations P1, . . . , Ps, i.e., we consider the relation

RAmorExp =
{

(P1, . . . , Ps, y1, . . . , ys; x1, . . . ,xs) :
P1 = gx1 , y1 = f(x1), . . . , P1 = gx1 , ys = f(xs)

}
.

(5)

The standard (amortized) Σ-protocol for relation RAmorExp is similar to
Σ-protocol Π0 for relation Rf : it has the same first two moves, but then
the prover’s final response is z = r +

∑s
i=1 c

ixi and the verifier checks that
gz = AP c1P

c2

2 · · ·P c
s

s and f(z) = t+ cy1 + c2y2 + · · ·+ csys. The communication
costs of the amortized Σ-protocol are exactly equal to the communication costs
of protocol Π0 and the compression mechanism applies as before. We denote the
compressed amortized Σ-protocol for relation RAmorExp by ΠAmorExp. Its main
properties are summarized in Theorem 4.

Theorem 4 (Amortization over Many Multi-Exponentiations). Let
n > 2, then ΠAmorExp is a (2µ+ 3)-move protocol for relation RAmorExp, where
µ = dlog2(n)e− 2. It is perfectly complete, special honest-verifier zero-knowledge
and unconditionally (s+ 1, 3, 3, . . . , 3)-special sound. Moreover, the communica-
tion costs are:
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– P → V: 2 dlog2(n)e− 3 elements of G, 2 dlog2(n)e− 3 elements of GT and 4
elements of Zq.

– V → P: dlog2(n)e − 1 elements of Zq.

Second, we consider the amortization scenario where a prover wishes to open
many homomorphisms f1, . . . , fs on onemulti-exponentiation P , i.e., we consider
a compressed Σ-protocol for the following relation

RAmorHom =
{

(P, y1, . . . , ys; x) : P = gx, y1 = f1(x), . . . ys = fs(x)
}
. (6)

This scenario is reduced to the original scenario of opening one homomor-
phism on one commitment by means of a standard polynomial amortization
trick. In the first move of the protocol, the verifier sends a random challenge
ρ ∈ Zq to the prover, and then Πc is executed on the instance given by P = gx,
fρ = f1 + ρf2 + · · ·+ ρs−1fs and yρ = y1 + ρy2 + · · ·+ ρs−1ys.

The core idea behind this construction is the observation that if x satisfies
fρ(x) = yρ for s distinct choices of ρ then fi(x) = yi for all i ∈ {1, . . . , s}. A
caveat is that when trying to extract such an x by rewinding s − 1 times and
choosing different ρ’s, one might potentially extract different choices of x’s. How-
ever, since gx = P must still hold, this would lead to a non-trivial DL relation
among the gi’s, and thus cannot happen when the prover is computationally
bounded.

The properties of this protocol for relation RAmorHom, denoted by ΠAmorHom,
are summarized in Theorem 5. Note that the communication from prover to
verifier is identical to that of protocol Πc. However, the polynomial amortization
trick degrades the soundness from unconditional to computational because of the
above reason.

Theorem 5 (Amortization over Many Homomorphisms). Let n > 2,
then ΠAmorHom is a (2µ + 4)-move protocol for relation RAmorHom, where µ =
dlog2(n)e− 2. It is perfectly complete, special honest-verifier zero-knowledge and
computationally (s, 2, 3, 3, . . . , 3)-special sound, under the discrete logarithm as-
sumption in G. Moreover, the communication costs are:

– P → V: 2 dlog2(n)e− 3 elements of G, 2 dlog2(n)e− 3 elements of GT and 4
elements of Zq.

– V → P: dlog2(n)e elements of Zq.

In the above claim on the computational special soundness we take it as
understood that g1, . . . , gn are chosen uniformly at random in G.

Proof. Completeness and SHVZK follow directly from the corresponding
properties of Protocol Πc.

Special Soundness: From the proof of Theorem 3 we know that for every ρ
there exists an efficient algorithm that, from any (2, 3, . . . , 3)-tree (depth µ+ 1)
of accepting transcripts, extracts a witness z such that gz = P and fρ(z) =
y1 + ρy2 + · · ·+ ρs−1ys.
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We show that there also exists an efficient algorithm that, from s exponents
z1, . . . , zs ∈ Znq such that gzi = P and fρi

(zi) = y1 + ρiy2 + · · · + ρs−1
i ys for

all i and for pairwise distinct challenges ρi ∈ Zq, extracts either a non-trivial
DL-relation for the public parameters g or a witness for relation RAmorHom.
Combining these two results shows that Protocol ΠAmorHom is (s, 2, 3, . . . , 3)-
special sound from which knowledge soundness follows from [2].

First suppose that there exist 1 ≤ i, j ≤ s such that zi 6= zj . Then gzi =
P = gzj gives a non-trivial DL-relation, which completes the proof for this case.

Now suppose that zi = z for all i. Let (ai,j)1≤i,j≤s be the inverse of the
Vandermonde matrix generated by the challenges ρ1, . . . , ρs, i.e., 1 · · · 1

...
. . .

...
ρs1 · · · ρss


a1,1 · · · a1,s

...
. . .

...
as,1 · · · as,s

 = Is.

Note that this Vandermonde matrix is invertible because the challenges are pair-
wise distinct. Then for all 1 ≤ i ≤ s it holds that

fi(z) = a1,ifρ1(z) + · · ·+ as,ifρs
(z) = yi.

Hence z is a witness for relation RAmorHom which completes the proof.

4 Proving Partial Knowledge

Here, we show our new efficient proofs for partial knowledge, i.e., for proving
knowledge of k-out-of-n discrete logarithms (Section 4.1), and for proving know-
ledge of k-out-of-n commitment openings (Section 4.2). As we will see, these
new proofs of partial knowledge follow quite easily by exploiting the core idea of
the general construction in [14] and combining it with the techniques and results
from the section above. This further demonstrates the strength of combining the
compression technique introduced by [6, 9] with general Σ-protocol theory.

4.1 Partial Knowledge of DL’s

In this section we construct a simple SHVZK proof of knowledge for proving
knowledge of k-out-of-n discrete logarithms. Our protocol inherits the logarith-
mic communication from the compressed Σ-protocol(s) from the previous sec-
tion. More precisely, we give a SHVZK protocol for the following relation

RPartial =
{ (
g, P1, . . . , Pn ∈ G, k ∈ {1, . . . , n};S ⊂ {1, . . . , n},x ∈ Znq

)
:

|S| = k, Pi = gxi for all i ∈ S
}
.

(7)

Note that, for notational convenience, the witness x is defined as a vector in Znq
while only the k coefficients (xi)i∈S are relevant in this relation.
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The protocol goes as follows. First, the prover computes the unique polyno-
mial

p(X) = 1 +
n−k∑
j=1

ajX
j ∈ Zq[X]

of degree at most n− k such that p(0) = 1 and p(i) = 0 for all i /∈ S.
Second, the prover computes

ti := p(i)xi

for i ∈ {1, . . . , n} (recall that p(i) vanishes for those i for which the prover does
not know xi), and sends a Pedersen commitment P ∈ G to the vector

y = (a1, . . . , an−k, t1, . . . , tn) ∈ Z2n−k
q

to the verifier. Here, the commitment P is computed as P = gyhγ with respect
to public parameters g = (g1, . . . , g2n−k) ∈ G2n−k and h ∈ G for which no
non-trivial DL-relations are known to the prover, i.e., so that the commitment
is indeed binding.

Finally, the prover proves to the verifier that the committed vector y satisfies

gti = P
p(i)
i (8)

for all i ∈ {1, . . . , n}, where the exponent p(i) on the right-hand-side term is un-
derstood as the evaluation of the affine function (w1, . . . , wn−k) 7→ 1+

∑n−k
j=1 wji

j

applied to a1, . . . , an−k. Thus, rewriting (8) as

gtiP
−
∑

j
aji

j

i = Pi (9)

we obtain an expression where the left hand side is a group homomorphism f
applied to the committed committed vector y, and thus the prover can prove one
instance of (8) by means of the compressed protocol from Theorem 3; respec-
tively, for improved efficiency, it can invoke the amortized protocol ΠAmorHom
from Theorem 5 for proving that (8) holds for all i ∈ {1, . . . , n}.

The resulting protocol, denoted ΠPartial, is summarized below in Protocol 3.
We note that, in line with the amortized protocol it uses as a subroutine, it is
computationally special sound, based on the assumption that the prover does not
know any non-trivial DL-relations among the public parameters. The security
and efficiency properties of ΠPartial are formally described in Theorem 6.

Theorem 6 (k-out-of-n SHVZK Proof of Partial Knowledge). Let
n > 1, then ΠPartial is a (2µ + 5)-move protocol for relation RPartial, where
µ = dlog2(2n− k + 1)e − 2. It is perfectly complete, special honest-verifier zero-
knowledge and computationally (n, 2, 3, 3, . . . , 3)-special sound, under the discrete
logarithm assumption in G. Moreover, the communication costs are:

– P → V: 4 dlog2(2n− k + 1)e − 5 elements of G and 4 elements of Zq.
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Protocol 3 SHVZK Proof of Partial Knowledge ΠPartial for Relation RPartial
Proving knowledge of k-out-of-n discrete logarithms.

Public Parameters : g ∈ G2n−k, h ∈ G

Input (g, P1, . . . , Pn, k;S,x)

S ⊂ {1, . . . , n}, |S| = k
gxi = Pi for i ∈ S

Prover Verifier

p(X) = 1 +
∑n−k

i=1 aiX
i s.t.

p(i) = 0 ∀i /∈ S
y = (a1, . . . , an−k,

p(1)x1, . . . , p(n)xn)
γ ←R Zq, P = gyhγ

P−−−−−−−−−−−→

Run ΠAmorHom to prove that y satisfies

gyi+n−kP
−
∑

j
yji

j

i = Pi ∀ i ∈ {1, . . . , n}

– V → P: dlog2(2n− k + 1)e elements of Zq.

Proof. Completeness follows in a straightforward manner.
Special Honest Verifier Zero-Knowledge follows immediately from the

fact that P is uniformly random and from the corresponding zero-knowledge
property of ΠAmorHom.

Special Soundness: The computational special soundness of ΠAmorHom
guarantees existence of an extractor that extracts, from any computationally-
bounded successful prover, an opening y = (a1, . . . , an−k, t1, . . . , tn) of the com-
mitment P for which (9) holds for all i ∈ {1, . . . , n}, and thus, considering the
corresponding polynomial p(X) = 1 +

∑n−k
j=1 ajX

j , for which (8) holds for all
i ∈ {1, . . . , n}. Given the bounded degree of p and the non-zero constant co-
efficient, p(i) = 0 for at most n − k choices of i ∈ {1, . . . , n}. Thus, setting
S := {i : p(i) 6= 0}, we have |S| ≥ k, and for any i ∈ S we can set xi := ti/p(i)
and (8) then implies that gxi = Pi.

4.2 Partial Knowledge of Commitment Openings

In the previous section we constructed a protocol for proving knowledge of k-out-
of-n discrete logarithms or, equivalently, a protocol for showing that a prover can
open k-out-of-n Pedersen commitments to 0. This protocol can easily be adapted
to accommodate, for example, the following variation of this zero-knowledge
scenario.

In this variation we let P1, . . . , Pn be Pedersen commitments, for which the
prover claims to know k-out-of-n openings, not necessarily to 0. More precisely,
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the prover claims to know a witness for the following relation:

RPartialCom =
{(
g, h, P1, . . . , Pn ∈ G, k ∈ {1, . . . , n};S ⊂ {1, . . . , n},
x1, . . . , xn ∈ Zq, γ1, . . . , γn ∈ Zq

)
:

|S| = k, Pi = gxihγi for all i ∈ S
}
.8

(10)

A proof of knowledge for relation RPartialCom is obtained by applying the
following adaptations. After defining the polynomial p(X) as before, the prover
computes

ti := p(i)xi ∈ Zq and si := p(i)γi ∈ Zq,

for i ∈ {1, . . . , n} and sends a Pedersen commitment P ∈ G to the vector

y = (a1, . . . , an−k, t1, . . . , tn, s1, . . . , sn) ∈ Z3n−k
q ,

to the verifier. Finally, by invoking Protocol ΠAmorHom, the prover shows that

gtihsiP
−
∑

j
aji

j

i = Pi

for all i ∈ {1, . . . , n}. Formally, we have the following security and efficiency
properties.

Theorem 7 (k-out-of-n SHVZK Proof of Partial Knowledge for Com-
mitment Openings). ΠPartialCom is a (2µ + 5)-move protocol for relation
RPartialCom, where µ = dlog2 (3n− k + 1)e − 2. It is perfectly complete, spe-
cial honest-verifier zero-knowledge and computationally (n, 2, 3, 3, . . . , 3)-special
sound, under the discrete logarithm assumption in G. Moreover, the communi-
cation costs are:

– P → V: 4 dlog2 (3n− k + 1)e − 5 elements of G and 4 elements of Zq.
– V → P: dlog2 (3n− k + 1)e elements of Zq.

Remark 2. We emphasize that ΠPartialCom is only special sound under the as-
sumption that the prover does not know a non-trivial DL relation between the
public parameters g ∈ G3n−k and h ∈ G for the Pedersen commitment P to the
vector y, i.e., it is crucial that the commitment P is binding. By contrast, the
special soundness of ΠPartialCom does not depend on a computational assump-
tion regarding the public parameters g, h ∈ G for the Pedersen commitments Pi,
i.e., the commitments Pi are not required to be binding for Protocol ΠPartialCom
to be special sound.

5 Extensions and Generalizations

Our techniques from Section 4 for proofs of partial knowledge can be extended
and generalized in various directions. We discuss some examples here.
8 The element h ∈ G, used in the commitments Pi, is not necessarily the same element
as the element h ∈ G used in the Pedersen vector commitment P of ProtocolΠPartial.
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5.1 Pairing Based Commitments to Reduce the Communication
Complexity

We show here that by introducing a pairing and considering a pairing based ex-
tension of Pedersen’s vector commitment scheme (see below), we can incorporate
a trick from [9] to reduce the relevant constant by another factor up to 2.

Recall that, rather than a general homomorphism f : Znq → GT , [2] considers
the special case of a linear form L : Znq → Zq, with the goal to prove that a se-
cret vector x ∈ Znq , committed to as P = gxhγ , satisfies L(x) = y for a publicly
known P and y. The trick then is to include y into the commitment by con-
sidering P ′ = gxhγky instead, and proving it to be of the claimed form using a
Σ-protocol and then compressing it. The gained advantage is not that y becomes
hidden in the commitment— y is still known, and P ′ would actually be com-
puted by the verifier from P and y—but that the public information is reduced
to a single group element. In the language of our general view (Appendix A),
Protocol 4 is applied to the homomorphism Znq → GT , x 7→ gxhγkL(x), rather
than to Znq → GT × Zq, x 7→ (gxhγ , L(x)). Thereby, in every recursion of the
compression mechanism, each “cross term” consists of just one element in GT
now, rather than a pair in GT × Zq. Overall this reduces the communication
costs by roughly a factor up to 2, depending on the choice of the group GT and
the representation of its elements.

To apply this approach to our scenario, and incorporate f(x) ∈ GT into
the commitment, we require a compact vector commitment scheme for vectors
(x, y) ∈ Znq × GT , which have coefficients in both Zq and GT . Under bilinear
pairing assumptions these commitment schemes exist [1, 25]. Namely, let us
assume that there exists a group G2 of prime order q, and a bilinear pairing
e : GT × G2 → G. For public parameters g ∈ Gn, h ∈ G and R ∈ G2 sampled
uniformly at random, we can define the following commitment scheme:

com′ : Znq ×GT × Zq → G, (x, y, γ) 7→ gxhγe(y,R), (11)

where γ ∈ Zq is chosen uniformly at random to commit to an element (x, y) ∈
Znq ×GT . This commitment scheme is unconditionally hiding and binding under
the assumption that the prover does not know a non-zero vector (x, y, γ) ∈
Znq × GT × Zq such that gxhγe(y,R) = 1 ∈ G. This assumption is implied by
the double pairing (DBP) assumption, which is in turn implied by the decisional
Diffie-Hellman assumption over GT [1, 25].

A more efficient protocol for opening arbitrary homomorphisms f : Znq → GT
is now obtained by replacing the Pedersen vector commitment scheme by this
pairing based commitment scheme that allows the group element f(x) to be in-
corporated into the commitment. The resulting compressed Σ-protocol for open-
ing homomorphisms is derived as in Section 3, but with the generic compression
Protocol 4 now instantiated with the group homomorphism Zn+1

q → G, (x, γ) 7→
gxhγe(cf(x), R), for a random challenge c ∈ Zq, rather than Zn+1

q → G × GT ,
(x, γ) 7→ (gxhγ , f(x)). Applying this modification to the k-out-of-n proof of
partial knowledge (Protocol 3) results in communication costs, from prover to
verifier, of exactly 2 dlog2(2n− k + 1)e − 1 elements of G and 4 elements of Zq.
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5.2 Multi-Exponentiations and Vector Commitments

A straightforward generalization of Protocol ΠPartial shows that, instead of
the DL problem for standard exponentiations, we can also consider multi-
exponentiations. More concretely, this generalization gives a protocol for the
following relation

R′ =
{(

h ∈ Gm, P1, . . . , Pn ∈ G, k ∈ {1, . . . , n};S ⊂ {1, . . . , n},
x1, . . . ,xn ∈ Zmq

)
: |S| = k, Pi = hxi for all i ∈ S

}
.

(12)

The only adaptation of protocol ΠPartial that is required is the replacement
of the scalars xi ∈ Zq by vectors xi ∈ Zmq . The communication complexity of
the resulting protocol grows logarithmically in the dimension m of the multi-
exponentiations. In a completely analogous manner, protocol ΠPartialCom from
Section 4.2 can be generalized to proving partial knowledge of Pedersen vector
commitment openings.

5.3 Plug and Play with Circuit Zero-Knowledge

In many practical scenarios, one wishes to prove not only partial knowledge
of commitment openings, but also that the committed values satisfy some ad-
ditional constraints. Typically these constraints are defined by an arithmetic
circuit C : Znq → Zq and the committed values x1, . . . , xn ∈ Zq are claimed to
satisfy C(x1, . . . , xn) = 0. More concretely, we consider a prover that claims to
know a witness for the following relation

RPartialCirc =
{(
g, h, P1, . . . , Pn ∈ G, k ∈ {1, . . . , n};S ⊂ {1, . . . , n},
x1, . . . , xn ∈ Zq, γ1, . . . , γn ∈ Zq

)
: |S| = k,

C(x1, . . . , xn) = 0, Pi = gxihγi for all i ∈ S
}
.

(13)

Note that in this relation the prover is only committed to k-out-of-n scalars xi,
i.e., it can choose n− k scalars freely.

To handle this extension of the partial knowledge scenario we deploy the
circuit ZK techniques from [2]. For these techniques to be applicable all we
need to show is that we can open homomorphisms and linear forms on the same
Pedersen vector commitment. In [2] it is namely shown how circuit ZK protocols,
for arbitrary arithmetic circuits, are derived from the functionality of opening
linear forms on Pedersen vector commitments.

However, for any homomorphism f : Znq → GT and any linear form L : Znq →
Zq it is easily seen that the following map is again a homomorphism

(f, L) : Znq → GT × Zq x 7→ (f(x), L(x)).

So the functionality of Protocol Πc, opening homomorphisms, trivially extends
to the functionality of opening homomorphisms and linear forms on the same
vector commitment.
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Applying this approach directly results in a protocol for relation RPartialCirc
where the communication costs, from prover to verifier, are roughly 6 log2(n)
elements. These communication costs can be reduced to roughly 4 log2(n) el-
ements, or 2 log2(n) on a pairing based platform, by applying the techniques
from Section 5.1 and [2].

Remark 3. Various other (natural) circuit ZK scenarios exist. For example, when
the circuit C : Zkq → Zq only takes the scalars xi for i ∈ S as input. Many of
these scenarios are easily dealt with by plug and play (modular design) with the
techniques from [2].

5.4 General Access Structures

Thus far, we have restricted ourselves to provers that claim to know the solutions
of some (secret) subset S, of cardinality at least k, of n (public) DL problems
Pi = gxi , i.e., the secret subset S is an element of a threshold access structure

Γk,n = {A ⊂ {1, . . . , n} : |A| ≥ k} ⊂ 2{1,...,n}.

Here, we describe how the protocols from Section 4 can easily be generalized to
arbitrary monotone access structures Γ ⊂ 2{1,...,n}, i.e., to provers that claim to
know the solutions of some subset of S ∈ Γ of n DL problems. Recall that Γ
is called a monotone access structure if for all A ∈ Γ and for all B ⊂ 2{1,...,n}
with A ⊂ B it holds that B ∈ Γ . The proofs of partial knowledge of [14]
already considered arbitrary access structures and we adapt their techniques by
combining them with our compression framework.

Our proofs of k-out-of-n partial knowledge implicitly deploy a linear secret
sharing scheme (LSSS) for access structure Γ ∗k,n = Γn−k,n. Here, Γ ∗ denotes the
dual of access structure Γ , generally given by

Γ ∗ = {A ⊂ {1, . . . , n} : Ac /∈ Γ}.

More concretely the protocols of Section 4 use Shamir’s secret sharing scheme
and the polynomial p(X) = 1 +

∑n−k
j=1 ajX

j defines a secret sharing of the field
element 1.

To construct a proof of partial knowledge for monotone access structure Γ
we simply replace p(i) by the i-th share (which may consist of several field
elements, depending on the expansion factor) of a linear secret sharing of 1,
with the randomness chosen so that the “right” shares (i.e, those corresponding
to the xi’s that the prover does not know) vanish.

Note that an honest prover knows (xi)i∈S for some S ∈ Γ . Hence, Sc /∈ Γ ∗
and for this reason the appropriate secret sharing of 1 exists, showing complete-
ness of the generalized proof of partial knowledge.

Special soundness follows from the following observation. Let A ⊂ {1, . . . , n}
be the subset for which all the corresponding shares vanish. Then, by linearity
of the secret sharing scheme and since the secret sharing reconstructs to 1, it
follows that A /∈ Γ ∗. Hence, Ac ∈ Γ and special soundness follows as before.
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The communication complexity of the resulting protocol depends logarith-
mically on the size of the LSSS for Γ ∗, which is given by the monotone-span-
program complexity of Γ ∗ [32] and which coincides with the monotone-span-
program complexity of Γ [17].
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A General View on the Compression

We consider here the natural generalization of the compression Protocol 2 to
an arbitrary group homomorphism Ψ : H → G for groups H and G of prime
exponent9 q and for which H is a direct sum H = H′ ⊕ H′ of a group H′ with
itself. Thus, any x ∈ H can be written as a tuple x = (xL, xR) of group elements
xL, xR ∈ H′. By convention, we write H′, and thus H, as an additive group and
G as a multiplicative group. Protocol 4, denoted by ΠΨ , below is a proof of
knowledge for the relation

RΨ =
{

(P ;x) ∈ G×H : Ψ(x) = P
}
.

Its properties are summarized in the following theorem. The proof is along the
very same lines as the proof of Theorem 2, with obvious adjustments. We provide
it here for completeness.

Theorem 8 (General Compression Mechanism). Let H = H′ ⊕ H′ for
some group H′. Then ΠΨ is a 3-move protocol for relation RΨ . It is perfectly com-
plete and unconditionally 3-special sound. Moreover, the communication costs
are:

– P → V: 2 elements of G and 1 element of H′.
– V → P: 1 element of Zq.

Proof. Completeness follows directly.
Special Soundness: We show that the protocol is 3-special sound. Let

(A,B, c1, z1), (A,B, c2, z2) and (A,B, c3, z3) be three accepting transcripts for
distinct challenges c1, c2, c3 ∈ Zq. Let a1, a2, a3 ∈ Zq be such that 1 1 1

c1 c2 c3
c21 c

2
2 c

2
3

a1
a2
a3

 =

0
1
0

 .

Note that, since the challenges are distinct, this Vandermonde matrix is invertible
and a solution to this equation exists. We define z̄ =

∑3
i=1 ai(cizi, zi) for which

it is easily verified that Ψ(z̄) = P . Hence, z̄ is a witness for relation RΨ , which
completes the proof.

Considering the setting of Section 3 and instantiating Ψ with Ψ : Znq → G×
GT , x 7→ (gx, f(x)) for the considered group homomorphism f : Znq → GT , with
n assumed to be even so that Znq = Zn/2q ⊕ Zn/2q , we recover the relation Rf and
Protocol 2 from Section 3. Similarly, we recover the pairing-based compression
protocol of Section 5.1 by instantiating Ψ with Ψ : Znq → G, x 7→ gxe(f(x), R).

Consider the final verification Ψ(cz, z) ?= AP cBc
2 in Protocol 4. In line with

Protocol 2 in Section 3, when we define, for an arbitrary given c ∈ Zq, the group
9 Recall that the exponent of group is the least common multiple of the orders of all
group elements, i.e., it is the smallest e such that ge = 1 for all group elements g.
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Protocol 4 Generic Compression Mechanism ΠΨ for relation RΨ .

Input(P ;x = (xL, xR))

P = Ψ(xL, xR) ∈ G
Prover Verifier

A = Ψ(0, xL), B = Ψ(xR, 0)
A,B−−−−−−−−−−−−−−→

c←R Zq
c←−−−−−−−−−−−−−−

z = xL + cxR
z−−−−−−−−−−−−−−→ Ψ(cz, z) ?= AP cBc

2

homomorphism Ψ ′ : H′ → G, z 7→ Ψ(cz, z) and the group element P ′ = AP cBc
2 ,

we observe that the final verification step in Protocol 4 is to check if (P, z)
satisfies the relation RΨ ′ . Therefore, if H′ happens to again be a direct sum
H′ = H′′ ⊕H′′ of a group H′′ with itself, we can replace the last communication
and verification step in Protocol 2 by an execution of Protocol 2 for the relation
RΨ ′ . Thus, if H is actually the n-fold direct sum of a group H◦ with itself for
n a power of 2 (which we may assume without loss of generality), we obtain a
proof of knowledge for relation RΨ , where the communication costs, from prover
to verifier, are 2 log(n) elements of G and 1 element of H◦.
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