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Abstract. An Oblivious RAM (ORAM), introduced by Goldreich and
Ostrovsky (J. ACM 1996), is a (probabilistic) RAM that hides its access
pattern, i.e., for every input the observed locations accessed are similarly
distributed. In recent years there has been great progress both in terms
of upper bounds as well as in terms of lower bounds, essentially pinning
down the smallest overhead possible in various settings of parameters.

We observe that there is a very natural setting of parameters in which
no non-trivial lower bound is known, even not ones in restricted models
of computation (like the so called balls and bins model). Let N and w be
the number of cells and bit-size of cells, respectively, in the RAM that we
wish to simulate obliviously. Denote by b the cell bit-size of the ORAM.
All previous ORAM lower bounds have a multiplicative w/b factor which
makes them trivial in many settings of parameters of interest.

In this work, we prove a new ORAM lower bound that captures this
setting (and in all other settings it is at least as good as previous ones,
quantitatively). We show that any ORAM must make (amortized)
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memory probes for every logical operation. Here, m denotes the bit-
size of the local storage of the ORAM. Our lower bound implies that
logarithmic overhead in accesses is necessary, even if b � w. Our lower
bound is tight for all settings of parameters, up to the log(b/w) factor.
Our bound also extends to the non-colluding multi-server setting.

As an application, we derive the first (unconditional) separation between
the overhead needed for ORAMs in the online vs. offline models. Specif-
ically, we show that when w = logN and b,m ∈ poly logN , there exists
an offline ORAM that makes (on average) o(1) memory probes per logical
operation while every online one must make Ω(logN/ log logN) memory
probes per logical operation. No such previous separation was known for
any setting of parameters, not even in the balls and bins model.
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1 Introduction

An oblivious RAM (ORAM), introduced by Goldreich and Ostrovsky [22], is a
probabilistic RAM machine whose goal is to simulate an arbitrary RAM program
while ensuring observable access patterns do not reveal information neither about
the underlying data nor about the program being executed. This is obtained by
making sure that any two sequences of logical operations on the memory (either
reads or writes) translate into indistinguishable sequences of physical probes to
the memory. ORAMs have become an indispensable tool in the design of cryp-
tographic systems where it is necessary to make the observable access pattern
independent of the underlying sensitive data. Somewhat surprisingly, this task
comes up not only in the context of software protection, as originally suggested
by [22], but also in less directly related contexts such as the design of secure
processor [15,16], secure multi-party computation [5,21,25,38,40,56], and other
central notions in computer science [4, 6, 9, 12,20,37,39,46,52,53,59,61].

A trivial way to construct an ORAM is to replace every logical access with
a scan of the entire memory. While this solution is perfectly secure, it is highly
inefficient and so the question is how efficient could an ORAM be compared to
an insecure RAM. The primary efficiency metric of interest is:

I/O efficiency: The total number of physical probes to the memory of the
ORAM amortized per logical operation.

Some previous works use bandwidth as the metric, but we chose to use I/O
efficiency as our central metric since it is robust and well-defined in various
ORAM settings. I/O efficiency can be translated into communication/bandwidth
by multiplying by the ORAM cell size. See Remark 2.

Following Boyle and Naor [7], we shall distinguish between two classes of
ORAM schemes: offline and online. An ORAM scheme is online if it supports
accesses arriving in an online manner, one by one. An ORAM scheme is offline
if it requires all accesses to be specified at once in advance. Most known ORAM
constructions (e.g., [3,10,22,24,30,41,48,51,55]) work in the online setting as well
with few exceptions (e.g., [7,28,47]). Also, most applications of ORAM schemes
require that the scheme is online.

Existing lower bounds. Assume that the goal is to obliviously simulate a
RAM of N cells each of size w bits on a RAM with N ′ cells each of size b bits
and using a local storage of size m bits. In the original work of Goldreich and
Ostrovsky [22] it was shown that any ORAM scheme (even offline ones) must
have I/O efficiency3 4
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3 To the best of our knowledge, the lower bound technique of [22] was never ana-
lyzed without assuming that b = w. For completeness, we add a proof in the full
version [29]. The bound that we state here is a little bit simplified for presentation
purposes.

4 Throughout this paper, unless otherwise stated, log stands for log2.
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In one sense, this lower bound is very powerful: (1) It is pretty robust to the
choice of w and b as long as b = w, (2) it can be cast for few other efficiency
metrics besides I/O (see [55] for details), and (3) it applies to schemes that have
O(1) statistical failure probability. However, as observed by Boyle and Naor [7]
this lower bound only applies to schemes in the so called “balls and bins” model5

which do not use cryptographic assumptions, leaving the possibility of more
efficient constructions outside of this model.

In a beautiful recent work, Larsen and Nielsen [33, Theorem 2] proved a lower
bound that applies to any online ORAM scheme, even ones that are not in the
balls and bins model and ones that use cryptographic assumptions. They prove
that any online ORAM must have I/O efficiency
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.

Similarly to the lower bound of Goldreich and Ostrovsky [22], this lower bound
is also pretty robust to the choice of b and w as long as b = w.

Is sub-logarithmic efficiency possible? The above two lower bounds become
completely trivial in the setting where, say, w = logN and b,m ∈ Θ(log2N).
In this case, both lower bounds simplify to Ω(1). This is by no means an eso-
teric setting of parameters. It is quite common and natural to consider RAM
algorithms that take advantage of being able to place multiple elements in one
cell and process all of them within a single memory access. Indeed, there is a
long line of work in core algorithms literature designing efficient algorithms and
studying tradeoffs in this setting (e.g., [2, 17,23,54]).

Focusing on oblivious sorting, one notable result is due to Goodrich [23] (see
also a follow-up by Chan et al. [11]6) who showed an oblivious sorting algorithm
that sorts N elements each of size w bits with O((Nw/b) · logm/b(Nw/b))
memory probes on a RAM with cells of size b bits and local storage of size m
bits. Setting w = logN and b,m ∈ O(log3N) (see also the full version [29]
for the parameterization), we obtain an oblivious sorting algorithm with O(N)
memory probes. In contrast, when w = b we have existing Ω(N · logN) lower
bounds on the number of memory probes, either in the balls and bins model [36]
or assuming a well-known network coding conjecture [14].

Oblivious sorting is one of the core building blocks in the design of many
oblivious RAM constructions (for example, [3,10,22,24,30,41]), suggesting that
it may be possible to use the algorithms of [11,23] to get an ORAM construction
with sub-logarithmic I/O efficiency. This direction was pursued first by Goodrich
and Mitzenmacher [23,24] and then by Chan et al. [11], but they were only able

5 In the balls and bins model, items are modeled as “balls”, CPU registers and server-
side data storage locations are modeled as “bins”, and the set of allowed data op-
erations consists only of moving balls between bins. See the full version [29] for the
definition of the model.

6 Chan et al. [11]’s algorithm has the same asymptotic efficiency and it is additionally
in the balls and bins model.
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to construct an ORAM with O(logN) I/O efficiency,7 assuming that w = logN
and b,m ∈ O(log3N). By now, we already have an ORAM construction, due
to Asharov et al. [3], with O(logN) I/O efficiency assuming only w = b and
m ∈ O(b).

Given the state of affairs, it is an intriguing question whether more efficient
ORAM constructions exist when b� w:

Is the linear dependence on w/b necessary? Alternatively,
is it possible to break the logarithmic barrier for ORAM efficiency if b� w?

1.1 Our Results

In this work, we answer the above question negatively by showing that any online
ORAM construction, including ones that are not in the balls and bins model
and perhaps use cryptographic assumptions, cannot go below the logarithmic
I/O efficiency barrier even if b � w. Restricted to online schemes, for a wide
ranges of parameters, our lower bound improves on the lower bound of Goldreich
and Ostrovsky [22] as well as the one of Larsen and Nielsen [33]. Specifically, we
prove the following theorem.

Theorem 1 (Informal; See Theorem 3). Consider a RAM with memory of
N cells, each of size w bits. Any online ORAM that simulates such a RAM using
cells of size b bits and local storage of size m bits, must have I/O efficiency
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.

When b = w, our lower bound is identical to the one of Larsen and Nielsen [33]
and is at least as good as the one of Goldreich and Ostrovsky [22]. However,
when b ∈ ω(w), our lower bound is already better than both. For example,
when w = logN and b,m ∈ O(logcN) for any c ≥ 2, our lower bound is
Ω(logN/ log logN) while the ones of Goldreich and Ostrovsky [22] and Larsen
and Nielsen [33] are both onlyΩ(1). As in [33]’s lower bound, our lower bound ap-
plies to ORAM schemes satisfying computational indistinguishability only with
probability p and having δ failure probability in correctness for some fixed con-
stants 0 < p, δ < 1. While this makes schemes somewhat weak, this only makes
our lower bound stronger. Lastly, let us mention that our technique is pretty
general and can be used to extend and improve other related lower bounds when
b � w (see Section 1.2 for pointers). For example, in the full version [29] we
extend our lower bound to apply to the non-colluding multi-server setting, im-
proving the recent lower bound of Larsen et al. [34] whenever b� w.

We remark that our lower bound in Theorem 1 is tight for all settings of
parameters up to the log(b/w) factor. This is due to the construction of Asharov

7 Actually, these works [11, 24] give ORAM constructions in a more general model
called the external memory model, where there are three entities, a CPU, a cache,
and a memory. The standard ORAM setting (which we consider here) is a special
case of that model.
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et al. [3] who constructed an ORAM with O(logN) I/O efficiency for all values
of w ≥ logN assuming only m ≥ b ≥ w (and assuming that one-way functions
exist).8

Separating offline and online ORAM. We use Theorem 1 to obtain the first
separation between offline and online ORAM schemes. Specifically, we show that
when we want to obliviously simulate a RAM with N cells of logarithmic size
using a RAM with cells and local storage of poly-logarithmic size (in N), then
there is an offline ORAM with o(1) I/O efficiency while every online ORAM must
have Ω̃(logN) I/O efficiency. This separation is essentially optimal in terms of
the gap between the cost of the offline and the online oblivious simulations.

Theorem 2 (Informal; See Theorem 6). Consider the task of obliviously
simulating a RAM with N cells each of size w = logN bits using an ORAM
with cells of size b bits and using local storage of size m bits such that b,m ∈
poly logN . There exists an offline ORAM scheme with o(1) I/O efficiency, while
every online ORAM scheme for this task must have Ω(logN/ log logN) I/O
efficiency.

We emphasize that the separation is unconditional in the sense that it neither
assumes that schemes are in the balls and bins model (for the lower bound), nor
that one-way functions exist (for the upper bound). Prior to this work, there
was no such separation, even assuming either of these assumptions (and in any
range of parameters).

1.2 Related Work

Passive Server. It is implicit in the standard definition of an ORAM that the
server merely acts as a storage provider and does not perform any computation
for the client. There are constructions where the server is actively perform-
ing computation (including memory I/O) for the client and this is not counted
in the total I/O efficiency of the scheme (e.g., [1, 13, 19–21, 45, 53]). Many of
these schemes achieve sub-logarithmic client-side I/O efficiency. Our lower bound
shows that, in such cases, the server must have logarithmic I/O efficiency.

Related oblivious lower bounds. The beautiful result and technique of Larsen
and Nielsen [33] inspired a fruitful line of works [26,27,32,34,42,43]. Most related
to the ORAM problem are [26,27,34,43] on which we briefly elaborate. Jacob et
al. [27] showed that the lower bound technique of [33] can be used to show loga-
rithmic lower bounds on the overhead of oblivious simulation of various specific
data structures like stacks, queues, and more. Persiano and Yeo [43] showed that
logarithmic overhead is necessary for RAM simulation even if the the security

8 We believe that the log(b/w) factor is necessary in the lower bound, at least for
some range of parameters. Specifically, when b,m ∈ NΘ(1) and w = logN , by re-
parameterizing Path ORAM [51], we obtain an ORAM with O(1) I/O efficiency.
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requirement is differential privacy, intuitively hiding only one access.9 Hubáček
et al. [26] extended [33]’s logarithmic lower bound to the setting where the ad-
versary does not see boundaries between queries. Larsen et al. [34] showed that
logarithmic overhead in oblivious simulation is necessary even if data is allowed
to be split over multiple servers, only one of which is controlled by an attacker.

All of the above papers give lower bounds that mostly apply to the symmetric
setting where the cell size is identical in the given RAM and the simulated one
since they suffer from a w/b factor loss. We believe that considering those prob-
lems and extending the lower bounds to the asymmetric setting (when possible)
is intriguing, and we hope that our techniques in this paper will be helpful. In the
full version [29], we show that using our techniques it is possible to improve the
lower bound of Larsen et al. [34] to not suffer from a loss of w/b multiplicative
factor even in the multi-server setting. This lower bound generalized our main
result (Theorem 1) as it implies the latter when restricting to a single server.
We refer to the full version [29] for the precise problem definition and statement
of the result.

We believe that similarly, using our technique, one can improve the results
in [26, 42] as they rely on a similar hard distribution to that of [33]. This is left
for future work.

The cell probe model. Following Larsen and Nielsen [33], our lower bound
holds in an augmented version of the well known cell probe model (to capture
the obliviousness requirement). Details about our model are given in Section 3;
Here, we mention some classical and notable facts about the cell probe model.
The cell probe model, introduced by Yao [60], is a model of computation similar
to the RAM model, except that all computational operations are free of charge
except memory access. This model is useful in the analysis of data structures,
especially for proving lower bounds on the number of memory accesses needed
to solve a given problem.

By now, there are few techniques for proving lower bounds in the cell probe
model. The strongest technique [31,35] can prove super-logarithmic lower bounds
and therefore should not be applicable as is to the ORAM setting where log-
arithmic upper bounds are known (unless additional requirements are made).
Another technique, due to Pǎtraşcu and Demaine [44], is the so called informa-
tion transfer method which is used to prove logarithmic lower bounds in the cell
probe model. Larsen and Nielsen [33] were able to use this technique to prove
their lower bound on ORAM constructions. We also use this technique. Persiano
and Yeo’s [43] lower bound, mentioned above, were able to adapt the chrono-
gram technique due to Fredman and Saks [18] which can also be used to prove
logarithmic lower bounds.

Other related work. In the balls and bins model and where the server is
passive (i.e., not performing any computation), Cash et al. [8] proved that any

9 The lower bound of Persiano and Yeo [43] also looses the w/b factor, similarly to
Larsen and Nielsen. Specifically, it is Ω((w/b) · log(N/m)) which is trivial if b� w.
It is an open problem to improve their lower bound in the setting where b� w.
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one-round ORAM must have either Ω(
√
N) I/O efficiency or Ω(

√
N)-bit local

storage.
Boyle and Naor [7] proved that an unconditional lower bounds for offline

ORAMs would imply a non-trivial circuit lower bound which is a long standing
open problem. This result is obtained by constructing an offline ORAM from any
sorting circuit, where the efficiency of the resulting ORAM is proportional to the
size of the circuit. In a followup work, Weiss and Wichs [58] showed that proving
a lower bound for online read-only ORAM is at least as hard as either proving a
non-trivial circuit lower bound or ruling out a very good locally decodable code.

As mentioned, some ORAM constructions have improved I/O efficiency at
the cost of setting the cell size b to be super-logarithmic in the memory size.
These works include not only schemes based on oblivious sorting [11,23,24,53],
but also several “tree-based” constructions [48,51].

2 Technical Overview

This section gives a high level overview of our results. We first briefly recall the
model and problem we want to solve. We proceed with explaining the beautiful
technique of Larsen and Nielsen [33] and why it fails to give our desired lower
bound. Lastly, building on the intuition we gained up to that point, we explain
the main ideas in our proof and highlighting some of the technical challenges we
are faced with.

2.1 The Model, Problem, and Recap of Larsen and Nielsen [33]

The model and problem. As observed by Larsen and Nielsen [33], it is con-
venient to state the ORAM problem as an oblivious data structure, as defined
in [57], solving the array maintenance problem, where the goal is to maintain
an array of N entries, each of size w bits, while supporting two operations: (1)
(write, a, x): set the content of entry a ∈ [N ] to x ∈ {0, 1}w and (2) (read, a):
return the content of entry a ∈ [N ]. The lower bound that we prove, identical
to [33], is on the cell probe complexity of any oblivious data structures solving
the array maintenance problem. To get a lower bound on the I/O efficiency of
ORAMs, it suffices to divide the number of probes by the number of operations.

Briefly, an oblivious data structure is a data structure that solves some given
problem with an additional security guarantee which says that the (physical,
observable) access patterns resulting from a sequence of logical data structure
operations should reveal nothing on the latter sequence other than its length.
For this purpose the oblivious data structure can use a small trusted/secure
local storage (“cache”) on which it can perform operations “for free” and with-
out leaking any data. The oblivious data structure is therefore parametrized by
N ′, b,m, its total number of cells, the bit-size of each cell, and the bit-size of
its local storage, respectively. The efficiency metric of interest is the number of
probes to the physical memory needed to answer one logical access. It is typically
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assumed that m ≥ b ≥ logN ′ so that the local storage can hold at least a single
cell from the memory and that a single cell can hold a pointer to another cell.

Throughout most of this overview (except where we explicitly say other-
wise), we consider the simpler setting where the oblivious data structure has
perfect security and correctness. Perfect security means that for all sequence of
logical operations of the same length, the observable sequence of physical mem-
ory probes is identically distributed. Perfect correctness means that the data
structure never makes mistakes. With some additional technical work, these two
assumptions can be relaxed.

Larsen and Nielsen’s lower bound. The lower bound of Larsen and Nielsen [33]
adapts the information transfer technique of Pǎtraşcu and Demaine [44] to the
oblivious setting. We give a high level overview next. Fix a given oblivious data
structure for the array maintenance problem (i.e., an ORAM). For any sequence
of N operations, we associate a complete binary tree with N leaves (we assume
that N is a power of two for simplicity). The leaves are associated with the logical
operations and their associated physical probes, in chronological order. That is,
during the execution of the sequence, for each i, all cell addresses probed during
the ith operation are associated with the ith leaf. Next, the leaf-level probes
are partially assigned to internal nodes: for each probe to cell address q that is
associated with leaf i, if chronologically the most recent probe to cell q happened
during the jth operation (so that j < i), then the probe (i, q) is assigned to the
lowest common ancestor of leaves i and j. Notice that the assignment is partial,
i.e., some physical probes may not be assigned to any internal node, and thus
it suffices to prove a lower bound on the total number of probes assigned to
internal nodes.

For each fixed internal node v, Larsen and Nielsen [33] used the information
transfer technique [44] to prove a lower bound on the number of associated phys-
ical probes with v by designing a hard distribution of sequences of operations.
Let n be the number of leaves and thus operations in the subtree induced by
v. In the hard distribution, all N − n operations that are not in the subtree of
v are just dummy reads from a fixed address. In the subtree induced by v, the
first n/2 operations are writes to addresses 1, 2, . . . , n/2 with uniformly random
values x1, . . . , xn/2 ← {0, 1}w, and then the second n/2 operations are reads
from addresses 1, 2, . . . , n/2. That is,

(write, 1, x1), . . . , (write, n, xn/2), (read, 1), . . . , (read, n/2).

To show that node v is associated with “many” probes when executing a
sequence of operations from this distribution, the intuition is that in order to
correctly answer the n/2 read operations, any data structure for the array main-
tenance problem (even non-oblivious ones!) must probe “many” cells that were
also probed during the n/2 write operations. This intuition is formalized by a
compression argument. Quantitatively, recalling that each cell in the array main-
tenance problem consists of w bits and each cell in the data structure consists
of b bits, there must exist a set of Ω(n ·w/b) cells from the data structure that
are probed during the first as well as the second n/2 operations (here, we ignore

8



the local storage of m bits for simplicity). By the definition of our binary tree,
all of these Ω(n ·w/b) probes are associated with node v.

The proof proceeds by using the security guarantee of the data structure (as
the above argument relied solely on correctness). The main observation is that
since the tree and the associated probes of each node are efficiently computable
by the adversary who only sees physical probes, then by security, the number of
associated probes of each node must be the same for all sequences of operations.
Namely, if node v is associated with Ω(n ·w/b) probes when executing the hard
distribution, then node v must also be associated with Ω(n ·w/b) probes when
executing any other sequence of operations of the same length; otherwise, an
adversary can easily distinguish the two. Since the tree is a complete binary tree
with N leaves, by summation there are Ω(N · (w/b) · logN) associated probes
to internal nodes which implies their lower bound.

Losing the w/b term is inherent when using the hard distribution designed
by Larsen and Nielsen [33]. Recall that in their distribution we first write random
values to addresses 1, . . . , n/2 and then read those addresses in order. Indeed,
using only correctness, each probe can carry information regarding b/w values
and so the whole sequence of writes can be read using only O(n ·w/b) probes.
The fundamental reason for the loss is therefore that the sequence of addresses
in the read phase is completely determined a priori and the data structure can
use this information during the write phase to organize data cleverly.

2.2 Our Hard Distribution and Information Transfer Tree

We propose the following hard distribution of sequences of n + k ≤ N opera-
tions. The first n operations are writes to addresses 1, 2, . . . , n with uniformly
random values x1, . . . , xn ← {0, 1}w (same as in [33]). Then, in the last k op-
erations, instead of sequentially reading from those addresses, we perform read
from uniformly random words a1, a2, . . . , ak ← [n]. That is,

(write, 1, x1), . . . , (write, n, xn), (read, a1), . . . , (read, ak).

Indeed, now the sequence of reads is not known during the write phase so we
avoid the aforementioned optimization the construction can use. But is this the
only optimization? We prove that it is. The intuition is that no matter how large
the cell size b is, no matter how the data structure scheme processes the n write
requests, in order to read from a uniformly random address ai ∈ [n] correctly,
the construction must probe at least one cell (unless the construction got lucky
and the corresponding value to address ai was accidentally in the local storage).
That is true only because the address ai is chosen both randomly and online
and therefore any pre-computation or pre-fetching that uses the fact that cells
are moderately large is useless. In a high level, using a compression argument
we show that for k ≤ n ·w/b, the following holds:

Lemma: Any correct data structure solving the array maintenance prob-
lem when fed a length n+k sequence of requests sampled from our hard
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distribution, must probe Ω(k) cells during the read phase that were also
probed during the write phase.

Whenever b ∈ ω(w), this lower bound is better than the Ω(k · w/b) lower
bound obtained with Larsen and Nielsen’s hard distribution. We note that we are
only able to prove that the above statement holds with high-enough probability,
smaller than 1 (which is enough to carry out the rest of the argument). Indeed,
there will always be “easy” read sequences, like the one of Larsen and Nielsen,
where the number of necessary probes will be smaller. Finally, we emphasize that
in the above lemma, the read phase consists of only k operations (which differs
from Larsen and Nielsen’s hard distribution which has n reads). This is specially
designed to work with the information transfer tree that we will introduce below.

This lemma is central to our proof and while it may seem intuitively correct,
the actual proof turns out to require very delicate and non-trivial probability
analysis. We will get back to this in Section 2.3, where we will explain the main
challenges and describe our solutions. Meanwhile, we proceed to explain how the
lemma is used to derive the final lower bound using a generalized version of the
information transfer tree described above.

Revisiting the information transfer tree. Recall that in the partial assign-
ment of Larsen and Nielsen [33], a probe to a cell is assigned to a node v only if
v is the lowest common ancestor between the probe and the most recent probe
to the same cell. However, if a cell is probed 100 times during the read phase
corresponding to v (i.e., v’s right subtree), it will be counted and associated to
v at most once! Working out the details, it turns out that even if we use our
improved lemma from above in the binary tree approach, we would still lose the
w/b factor. Therefore, we need to find a more fine-grained way to account for
multiple probes to the same cell during the read phase.

Our solution is to consider a tree with larger arity so that we could count
several probes to the same cell during the read phase of a given node (i.e.,
with multiplicity). We let χ, the arity of the tree, be proportional to b/w and
consider a complete χ-ary tree with N leaves. Consider a node v that has an
induced subtree of 2n leaves and consider an associated sequence of n writes
followed by n reads. Divide the n read operations into χ/2 equal-size groups so
that each group has k , n/(χ/2) reads. For each such group we imagine a child
node which is “in charge” of this group. Let the children of v that correspond
to the read phase be u1, . . . , uχ/2 so that each ui is in charge of k disjoint read
operations. Next in the partial assignment, we associate with v index-cell pairs
of the form (i, q), where i is an index from [χ/2] and q is a physical address of a
probed cell. The index i tells us from which group the probe came and q tells us
to which cell. Intuitively, this allows us to count probes to the same cell q with
multiplicity, distinguishing them by the value of i. (In comparison, Larsen and
Nielsen [33] only associated q’s to nodes and so they do not distinguish multiple
accesses to the same cell.) See Figure 1 for an illustration.

Using our Lemma. Our lemma from above almost fits this framework. To
prove that a group of k operations associated to node ui introduces Ω(k) accesses
that are counted in v, we slightly modify the hard distribution to consist of a
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sequence

Fig. 1: Hard distribution on χ-ary tree.

padding sequence of read operations (say from address 1) between the write phase
and the reads that ui is in charge of. Summing up over all ui’s, the node v will
be associated with Ω(χ · k) = Ω(n) index-cell pairs, which is our goal and the
best one can hope for.

The last step, where we use the obliviousness of the data structure in order
to argue that any sequence of operations behaves as “the hardest one”, is similar
to Larsen and Nielsen [33]. Recall that the tree is of depth logχN , the arity is

χ, and for each level d, there are χd nodes at that level each has associated
Ω(N/χd) probes. Therefore, we get a lower bound of Ω(N · logN/ log(b/w))
probes to perform N operations. This is essentially the lower bound claimed in
Theorem 1, omitting the size of local storage m (which we ignored throughout
this overview and only complicates the proof slightly).

Remark 1 (Relation to [44]). Pǎtraşcu and Demaine [44, Section 7] consider a
related problem in a somewhat different context. There, they observe that the
basic information transfer method suffers from the w/b factor loss. To remedy
the situation they propose a new hard distribution, similar to ours, and also
propose to consider an information transfer tree with higher arity, as we do.
Essentially, our proof could be seen as an extension of their technique to the
oblivious setting. The latter introduces many technical challenges, especially in
the compression argument, as we elaborate next.

2.3 Our Compression Argument

Recall that our hard sequence consists of n writes to fixed addresses 1, . . . , n of
uniformly random values followed by k ≤ n ·w/b reads from uniformly random
addresses from [n].10 Our goal is to argue that during the read phase, Ω(k)
distinct cells must be probed. Let us refer to the write sequence as L and the
read sequence as R (for left- and right-side). Denote by Cells(L) the cells probed

10 In fact, as mentioned we will need to consider an augmented sequence that has a
padding sequence of reads from some fixed address in between the write sequence
and the read sequence mentioned above. This will complicate the argument slightly
so for simplicity we ignore it here.
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during the execution of the L sequence of accesses and by Cells(R) the cells
probed during the execution of the R sequence (after executing the L sequence).
Note that L,R,Cells(L),Cells(R) are all random variables. We want to prove
that with high probability |Cells(L) ∩ Cells(R)| ∈ Ω(k). That is, for some constant
ε < 1,

Pr [|Cells(L) ∩ Cells(R)| ≥ εk] > 3/4, (1)

where the probability is over the choice of L and R, and the randomness of the
ORAM which influences Cells(L) and Cells(R).

The proof is done via a compression argument where we imagine two com-
munication parties Alice and Bob. Alice gets as input x = x1, . . . , xn ← {0, 1}w
(chosen uniformly at random) and she sends one message to Bob who is able to
recover x. If the message sent by Alice contains < n ·w bits, we get a contradic-
tion. To this end, we assume that Inequality (1) is false, namely that the read
phase can be implemented with εk probes for some small enough ε, and use that
to get a too good to be true encoding scheme. This implies a contradiction, as
needed. This proof is somewhat technical so we provide some intuition on how
it works and refer to the technical section for full details.

Warmup: an expectation argument. It is insightful to first prove a weaker
statement (which does not suffice for us) and then explain how to improve it.
Here, we argue that

E [|Cells(L) ∩ Cells(R)|] ≥ εk. (2)

The proof is by contradiction, namely, we assume that Inequality (2) is false and
obtain an impossible compression scheme. To this end, Alice and Bob share a
long string S that is chosen completely independent of the input to Alice. The
string consists of (1) a sequence of k addresses a1, . . . , ak ← [n] that define the R,
(2) a random tape ρ for the ORAM, and (3) an integer t← [k] sampled uniformly
at random. Note that even conditioned on the shared string S, the entropy in the
input to Alice, namely x1, . . . , xn ← {0, 1}w, is still nw. Therefore, by Shannon’s
source coding theorem, the only way for Alice to correctly transmit them to Bob
is by sending at least nw bits.

In a high level, Alice splits the indices [n] into two groups: easy and hard.
An index i is easy if Bob can learn value xi without making a probe to Cells(L),
that is, a probe to a cell that was written to during the write sequence. All other
indices are hard. By our assumption, the set of hard indices cannot be too large.
Alice sends those hard values explicitly to Bob. To learn the values corresponding
to easy indices, we use the correctness of the data structure to transfer them.
The challenging part is for Alice to determine which index is easy and which is
hard. Alice does this by seeing how likely it is to make the probe in Cells(L) from
a given index by “planting” that index in the random read operation given in
S (while keeping the rest of the operations fixed). If any Cells(L)-probe occurs,
this index is considered hard, otherwise it is easy. A more precise description
follows.

Alice’s encoding on input nw bits interpreted as x1, . . . , xn ∈ {0, 1}w:

12



1. Using the ORAM, Alice executes the sequence of operations (L,R) pre-
scribed by x1, . . . , xn and a1, . . . , ak. Then, Alice sends the contents of over-
lapping cells (yielded by the execution) to Bob, where the overlapping cells
are defined as the cells probed during the write sequence L and then probed
during the read sequence R (i.e., Cells(L) ∩ Cells(R)).

2. For each i ∈ [n], Alice replaces the tth read with operation (read, i) and
(using the ORAM) executes the replaced sequence, that is, the sequence

(L, R̂t,i) where

L := (write, 1, x1), . . . , (write, n, xn)︸ ︷︷ ︸
write phase

,

R̂t,i :=(read, a1), . . . , (read, at−1), (read, i)︸ ︷︷ ︸
planted read

, (read, at+1), . . . , (read, ak).

Depending on the probed locations induced by (read, i), do:
(a) If (read, i) probes at least one cell that was written to during the write

phase (i.e., in Cells(L)), then i is called hard. Alice sends value (i, xi)
directly to Bob.

(b) Otherwise, (read, i) probes no cell in Cells(L) and i is called easy. Alice
sends nothing to Bob as Bob can recover xi by executing (read, i) himself.

On Bob’s side, the hard xi’s are received from Alice directly, while the easy
xi’s are recovered by executing (read, i) planted as the tth read operation, that
is, after the prefix (read, a1), . . . , (read, at−1). Bob indeed recovers all easy xi’s
correctly: Bob received the content of the overlapping cells that suffice to execute
the prefix read sequence.

Analyzing the size of the message from Alice to Bob is a bit more challeng-
ing. In a high level, Alice’s message consists of just two parts, the contents of
overlapping cells and the values of “hard” inputs. By assumption (Inequality (2)
is false), the number of overlapping cells is εk and so the first part consists of
at most εkb ≤ εnw bits. For the second part, roughly speaking, we consider
all possible samples of (a1, a2, . . . , ak, t) ∈ [n]k × [k] while fixing x1, . . . , xn. By
assumption, with probability at most ε, (read, at) is hard, which means that at
most ε fraction of all such samples are hard. Then, for any set of n distinct
samples, on average, there are at most εn hard samples. Noticing that Alice’s
procedure is choosing a random set of n samples, we conclude that in expecta-
tion there are εn hard samples, which means εn hard xi’s on average. It follows
that the second part of Alice’s message consumes εnw bits, and then the total
message length is 2εnw bits, which is a contradiction when ε is small enough.

The high probability argument. Recall that in the last step of lower bound
proof we need to move from a claim about the load of a node in the information
transfer tree to the load of the same node under any other input sequence of
operations. Since security only holds with constant probability, this step loses
a constant factor and therefore we need our original compression argument to
hold with high probability and not just in expectation.
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This complicates the compression argument as follows. Now, Alice cannot
just send the content of the overlapping cells directly to help Bob answer easy
queries (for which it uses the correctness of the data structure), since there is no
bound on the expected number of overlapping cells. Instead, we modify Alice’s
procedure to distinguish between two cases, either sending the overlapping cells
directly is too expensive or it is not. In the latter case, we need to analyze and
bound the number of hard indices i conditioned on the event that the number of
overlapping cells is small. This requires delicate conditional probability analysis
on which we elaborate next. In the former case, there is no compression since
Alice just sends all x1, . . . , xn in the clear but we can show that this case does
not happen too often due to the assumption (Inequality (1) is false).

Specifically, the most challenging is to prove that conditioned on the over-
lapping cells set being small, the expected size of the set of hard indices is
bounded by a sufficiently small constant times n. Let GoodL,R be the con-
ditioned event. What we show is that if β < 3/4 is a constant for which
Pr [|Cells(L) ∩ Cells(R)| ≥ εk] = β (our assumption, see Inequality (1)), then:

Lemma: E [|H| | GoodL,R] < (β + ε/(1− β))n.

We define GoodL,R̂t,i
similarly as the event when the overlapping cells between

(L, R̂t,i) is small. By linearity of expectation and the law of total probability:

E [|H| | GoodL,R] =
∑
i∈[n]

Pr[i ∈ H | GoodL,R]

=
∑
i∈[n]

Pr[i ∈ H ∧ ¬GoodL,R̂t,i
| GoodL,R]+

∑
i∈[n]

Pr[i ∈ H ∧ GoodL,R̂t,i
| GoodL,R].

We now bound each of these terms separately. It is rather easy (though a bit
technical) to bound the second term. Specifically, we show that

∑
i∈[n] Pr[i ∈

H ∧ GoodL,R̂t,i
| GoodL,R] ≤ εn/(1 − β). Indeed, for each i ∈ [n], Pr[i ∈

H ∧ GoodL,R̂t,i
| GoodL,R] ≤ Pr[i ∈ H ∧ GoodL,R̂t,i

]/Pr[GoodL,R]. So, the de-

nominator is exactly 1− β. The fact that the nominator is bounded by ε follows
from the definition of GoodL,R̂t,i

.

The bound on the first term is much more interesting. In words, the event we
are trying to bound corresponds to sampling the sequences L and R and then
R̂t,i and asking what is the probability that GoodL,R̂t,i

occurs conditioned on

GoodL,R occurring (ignoring event i ∈ H). To analyze this event, we recall that

R̂t,i is obtained by resampling the tth operation in R. So, what is the probability
that by resampling only one read operation in R we suddenly do not satisfy the
event Good? We prove a general lemma that partial resampling cannot reduce
the probability beyond a certain point! Here is a simple variant of the lemma
(we state and prove a more general version in the full version [29]):
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Partial Resampling Lemma: Consider two independent random variables
X and Y . Let Y ∗ be an independent random variable distributed iden-
tically to Y . Let f be an arbitrary Boolean function. Then,

Pr[f(X,Y ∗) = 1 | f(X,Y ) = 1] ≥ Pr[f(X,Y ) = 1].

This means that if the event GoodL,R occurs, then it must also occur in GoodL,R̂t,i

with good probability. Plugging in the assumption, we can bound the second
term by βn.

Together, the two bounds imply that E [|H| | GoodL,R] < (β + ε/(1 − β))n,
as needed.

3 The Model

This section introduces the model in which our lower bound is proven. As in pre-
vious works [27,33,43], we start-off with the cell probe model, first described by
Yao [60]. Traditionally, this model is used to prove lower bounds for word-RAM
data structures and is extremely powerful in the sense that it allows arbitrary
computations and only charges for memory accesses.

In a high-level, the cell probe model models the interaction between a CPU
and a memory. The memory is modeled as a word-RAM, that is, an array of cells
such that each cell can contain at most b bits. The CPU can perform operations
on the memory, namely, either reading the content of some cell or overwriting
the content of some cell. An algorithm executed in this setting is charged one
unit of cost on every operation it makes (read or write) and all computation
based on the contents of probed cells is free of charge.

Whereas this model captures traditional data structures, it does not capture
data structures that have privacy requirements for the stored data and/or the
operations performed. Indeed, the latter are usually modeled in the client-server
model, where a client wishes to outsource data to server while retaining the
ability to perform computation over the data. At the same time, the client wishes
to hide the performed operations as well as the contents of its data cells from
the server who sees the entire memory and the memory accesses. To address
this gap, Larsen and Nielsen [33] introduced the Oblivious Cell Probe Model, an
augmented version of the cell probe model. We briefly introduce this model next,
mostly following Larsen and Nielsen.

Data structure problems. A data structure problem in the oblivious cell
probe model is defined by a tuple (U ,Q,O, f), where U is a universe of update
operations, Q is a universe of queries, and O is an output domain. Furthermore,
there is a query function f : U∗×Q → O. For a sequence of updates u1, . . . , uM ∈
U and a query q ∈ Q, we say that the answer to the query q after updates
u1, . . . , uM is f(u1, . . . , uM , q).

Oblivious Cell Probe Data Structures. An oblivious cell probe data struc-
ture for a given data structure problem P = (U ,Q,O, f), consists of a random-
ized algorithm implementing the update and query operations for P. The data
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structure is parametrized by three integers m, b, and N ′, denoting the client
storage and cell size in bits, and the number of cells respectively. We follow the
standard assumption logN ′ ≤ b so that any cell can store the address of any
other cell. We further assume that the data structure has access to a finite string
of randomness ρ of length `. The parameter ` can be arbitrary large and so ρ can
contain a random oracle. Fixing ρ, the algorithm DS is deterministic. As such,
the data structure can be described by a decision tree Top for every operation
op ∈ U ∪Q, i.e., it has one decision tree for every possible operation in the data
structure problem. Each node in the decision tree is labelled by an index indi-
cating the location to probe in the memory (held by the server). The decision
of which path to continue to in the tree depends on the answer to the probe to
the memory and small local information stored by the client.

More precisely, each node in the decision tree Top, where op ∈ U ∪ Q, is
labeled by an address i ∈ [N ′] and it has one child for every triple of the form
(m0, c0, ρ) ∈ {0, 1}m×{0, 1}b×{0, 1}`. Each edge to a child is further labeled by
(j,m1, c1) ∈ [N ′] × {0, 1}m × {0, 1}b. To process an operation op, the oblivious
cell probe data structure starts its execution at the root of the tree and traverses
from root to leaf. When visiting a node v in this traversal, labelled with some
address iv ∈ [N ′], it probes the memory cell iv. If C denotes its content, M
denotes the current contents of the client memory and ρ denotes the random
bit-string, the process continues by descending to the child of v corresponding
to the tuple (M,C, ρ). If the edge to the child is labelled (j,m1, c1), then the
memory cell of address j has its contents updated to c1 and the client memory is
updated to m1. We say that memory cell j is probed. The execution stops when
reaching a leaf. Each leaf v of the decision tree Top, where op ∈ Q, is labeled
with an element ansv in O (the answer to the query). We say that the oblivious
cell probe data structure returns ansv as its answer to the query op.

I/O efficiency. The I/O efficiency of an oblivious data structure is related to the
depth of the decision tree as each edge corresponds to a cell probe. Furthermore,
our model assumes that the server is passive, i.e., it can only update or retrieve
a cell for the client.

Definition 1 (Expected amortized I/O efficiency). An oblivious cell probe
data structure has expected amortized I/O efficiency t(M) on a sequence y of M
operations from U ∪ Q if the total number of memory probes is no more than
t(M) · M in expectation. The expectation is taken over the random choice of
the randomness ρ ∈ {0, 1}`. An oblivious cell probe data structure has expected
amortized I/O efficiency t(M) if it has expected amortized I/O efficiency t(M)
on all sequences y of operations from U ∪ Q.

Remark 2 (Other efficiency notions). There are few other metrics of efficiency
of interest in the context of ORAM constructions. It is common to consider the
bandwidth efficiency of a construction, namely, the communication complexity
consumed by the construction when processing a sequence of operations, amor-
tized per operation. This is equal to b times the I/O efficiency. Vice versa, if the
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amortized bandwidth of a construction is t(·), then the I/O efficiency of that
construction is t/b.

Thus, there is a Q = Q(N, b,w) lower bound on I/O efficiency if and only if
there is a b ·Q lower bound on bandwidth. For example, suppose that w = logN
and b,m ∈ Θ(log2N). Then, the previously known lower bound [33] says that
Ω(log2N) amortized bandwidth is necessary (that is Ω(1) I/O efficiency), but
our improved lower bound says that Ω(log3N/ log logN) bandwidth is necessary
(that is Ω(logN/ log logN) I/O efficiency).

It is also common to measure the complexity of an ORAM construction in
the language of efficiency overhead (either I/O or bandwidth) where we compare
the ratio between the efficiency of the ORAM and the efficiency of the insecure
RAM. This makes complete sense when b = w, but when b ∈ ω(w) it is more
confusing since the basic unit of cost (cell size) is different between the two
settings. Some papers do explicitly distinguish between w and b [49, 50, 53, 58]
and measure complexity correctly. For clarity, we will avoid the term overhead.

Correctness and security. Let y = (op1, . . . , opM ) be a sequence of M op-
erations to the given data structure problem, where each opi ∈ U ∩ Q. For
an oblivious cell probe data structure, define the (possibly randomized) probe
sequence on y as the tuple:

Access(y) = (Access(op1), . . . ,Access(opM )),

where Access(opi) is the sequence of memory addresses probed while processing
opi. More precisely, let Access(y; ρ) := (Access(op1; ρ), . . . ,Access(opM ; ρ)) be
the deterministic sequence of operations when the random bit-string fixed to ρ
and let Access(y) be the random variable describing Access(y; ρ) for a random
ρ ∈ {0, 1}`.

Definition 2 (Correctness and security). An oblivious cell probe data struc-
ture is said to be δ-correct and ε-secure if the following two properties hold:

– Security: For any two data request sequences y and z of the same length
M , their probe sequences Access(y) and Access(z) cannot be distinguished
with probability better than ε by an algorithm which is polynomial time in
M + log|U|+ log|Q|+ b.

– Correctness: The oblivious cell probe data structure has failure probability
at most δ, namely, for every sequence and any operation op in the sequence,
the data structure answers op correctly with probability at least 1− δ.

ORAM is array maintenance. As observed in previous work [33], the def-
inition of an online ORAM coincides with the definition of an oblivious data
structure (see [57]) solving the array maintenance problem. In this problem, the
goal is to maintain an array of N entries, each of size w bits, while allowing write
and read operations, where (write, i, a) sets the content of the ith cell to the value
a and (read, i) return the content of the ith cell (for i ∈ [N ] and a ∈ {0, 1}w).
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Therefore, in order to prove a lower bound on the I/O efficiency of an ORAM
scheme, it suffices to prove a lower bound on the I/O efficiency of any correct
and secure data structure for the array maintenance problem in the oblivious
cell probe model.

Remark 3 (Operation boundaries). We follow Larsen and Nielsen [33] and as-
sume that the adversary sees which cell access belongs to which operation from y.
Hubáček et al. [26] were able to extend the lower bound of Larsen and Nielsen [33]
to account for this gap. We suspect that our techniques and lower bound could
be extended to capture this stronger setting, but it is left for future work.

4 An ORAM Lower Bound

This section is devoted to the proof of our lower bound on the I/O efficiency of
oblivious cell probe data structures solving the array maintenance problem. As
mentioned, such a lower bound directly implies an I/O efficiency lower bound
for online ORAMs. Our main theorem is stated next.

Theorem 3 (Main theorem). Let DS be an oblivious cell probe data structure
for the array maintenance problem on arrays of N entries, each of size w bits.
Let N ′ denote the number of cells in DS, b denote the cell size in bits, and
m denote the number of bits of client memory. Assume that 16 ≤ w ≤ b and
w ≤ m ≤ Nw.

If DS is (1/128)-correct and (1/4)-secure, then there is a sequence of ` ∈
(N/(2db/we), N ] operations such that the expected amortized I/O efficiency of
DS on this sequence is

Ω

(
log(Nw/m)

1 + logdb/we

)
.

In particular, when w ≤ m ≤ N1−ε for ε > 0, b = logcN for c > 1, and

w = logN , the I/O efficiency is Ω
(

logN
log logN

)
. The rest of this section is devoted

to the proof of Theorem 3.

Proof (Proof of Theorem 3). We start with the following definition.

Definition 3 (Set of probed cells). Given a length M sequence of operations,
seq = (op1, . . . , opM ), define Cells(opi | op1, . . . , opi−1) as the set of addresses
of (physical) cells accessed by DS during its execution of operation opi after
executing the sequence (op1, . . . , opi−1). Similarly, given seq and i, j ∈ [M ] such
that i < j, Cells(opi, opi+1, . . . , opj | op1, . . . , opi−1) is defined as the set of
addresses of cells accessed by DS during its execution of operations (opi, . . . , opj)
after executing the sequence (op1, . . . , opi−1).

Notice that we define Cells(opi | op1, . . . , opi−1) as a set and so its cardinality
does not account for multiplicities. Therefore, we will use the sum of cardinali-
ties

∑
i∈[M ]

∣∣Cells(opi | op1, . . . , opi−1)
∣∣ as a lower bound on the total number of

accesses made by DS.
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We now construct the information transfer tree. Fix ` to be a power of
χ := 2db/we in the range (N/(2db/we), N ]. Let T be the complete χ-ary tree
consisting of ` leaves (see Figure 2 for visualization). For any sequence of oper-
ations seq = (op1, . . . , op`), for each i ∈ [`], we associate opi to the ith leaf of T.
Additionally, Cells(opi | op1, . . . , opi−1) (i.e., the addresses of cells accessed by
DS during its execution of the ith operation in the sequence) are associated to
the same ith leaf. For each accessed cell q that is associated with a leaf i, we
map q to at most one internal node v of T, where v is an ancestor of i. This is
described next.

First, for each internal v ∈ T, we define a set of index-cell pairs, Pv(seq), as
follows. A pair of index-cell (i, q) ∈ [`]× [N ′] is in Pv(seq) if and only if

– i is a leaf in the subtree induced by v and q ∈ Cells(opi | op1, . . . , opi−1),
– There exists j < i such that q ∈ Cells(opj | op1, . . . , opj−1),
– For all j′ ∈ {j + 1, . . . , i − 1}, it holds that q /∈ Cells(opj′ | op1, . . . , opj′−1),

and
– The lowest common ancestor of i and j is v.

Notice that each cell access q ∈ Cells(opi | op1, . . . , opi−1) during the execution
of opi is assigned to at most one v ∈ T. Hence, for any seq and execution of DS,
we have that ∑

i∈[`]

∣∣Cells(opi | op1, . . . , opi−1)
∣∣ ≥∑

v∈T

|Pv(seq)|.

We conclude the proof of the theorem using the following lemma whose proof
is given below.

Lemma 1. Let ε := 1/128. Fix any sequence seq consisting of ` operations. Let
v ∈ T be an internal node whose subtree consists of at least 2 ·max{8,m/(εw)}
leaves. For any (1/4)-secure and (1/128)-correct DS against ` operations, it holds
that

E [|Pv(seq)|] ≥ ε · `/(4χd(v)),

where d(v) is the depth of v (i.e. the distance from v to the root).

Let us first explain why Lemma 1 implies Theorem 3. Let d∗ be the maximum
depth for which Lemma 1 applies. Summing over all nodes in T, by linearity of
expectation, we have that

E

[∑
v∈T

|Pv(seq)|

]
=
∑
v∈T

E [|Pv(seq)|] ≥
∑

v∈T,d(v)∈[0,d∗]

E [|Pv(seq)|] ≥ (d∗+1)·ε`/4,

where the last inequality follows by Lemma 1. Since Lemma 1 applies to any
node v that has at least 2 · max{8,m/(εw)} leaves in its induced subtree, we
have

d∗ :=

⌊
logχ

⌈
`

2 ·max{8,m/(εw)}

⌉⌋
∈ Ω

(
log(Nw/m)

1 + log(b/w)

)
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· · · · · · · · ·u

A L B R C
n = `v/2 writes k reads

depth d

`v = `/χd write/read operations

total ` operations

root of complete χ-ary tree

1 χ/2 χ/2 + 1 χ

padding reads padding padding reads

Fig. 2: The ditribution D(v, u) of hard sequences for the parent-child pair (v, u)
in the complete χ-ary tree of ` leaves. Each leaf is associated with a read or write
operation, and the hard sequence is the operations from the left-most to the right-
most leaves. Given the internal node v and its child u where u is in the right-side
of the subtree induced by v, we focus on the operations in the Left-side of the
subtree of v, i.e., L part, and on the operations in the subtree induced by u, i.e.,
R (for right-side) part. The L part is n = `v/2 write operations to fixed locations
with random contents (where `v = `/χd is the number of leaves in the subtree of
v), and the R part is k = `v/χ read operations from random locations that were
written in L part. The remaining parts A,B,C are all padding operations that
just read the fixed location 1. The overall hard sequence is then (A,L,B,R,C).

for all m, b,w, N such that b ≥ w ≥ 16 and w ≤ m ≤ Nw (which ensure
that the logs are nonnegative). Hence, for any seq of ` operations, the expected

number of accesses is lower bounded by ` ·Ω
(

log(Nw/m)
1+log(b/w)

)
, which concludes the

proof of Theorem 3.

We conclude this section with the proof of Lemma 1. Note that this proof
will rely on Theorem 5 which is stated and proved in Section 5.

Proof (Proof of Lemma 1). Recall that Pv(seq) consists of pairs of index-cell
pairs (i, q) such that during the ith operation DS accesses physical cell q and
also the most recent access to q was made at some operation j < i such that j
is a leaf in the induced subtree of v and v is the the lowest common ancestor
of i and j. Denote Pv,u(seq) the subset of (i, q) in Pv(seq) that result from an
operation i that happens in the subtree induced by u. It holds that

|Pv(seq)| =
∑

u is a child of v

|Pv,u(seq)|. (3)

We therefore prove a lower bound on each |Pv,u(seq)|. To this end, for a
given pair of parent-child, (v, u), in the tree, we design a distribution of access
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seqhard which causes |Pv,u(seqhard)| to be large with high probability. We then
use the security guarantee of DS, ensuring that the access pattern resulting
from executing any seq must be indistinguishable, and therefore the same large
number of probes must occur on any input sequence. That is, |Pv,u(seq)| is large
with high probability. We give the hard distribution next.

The hard distribution. To describe the distribution of hard sequences, we set
up some notation. Specifically, we will explain how to “split” a given length `
sequence of operations w.r.t a given internal node v ∈ T.

– Let d := d(v) be the depth of the node v, and let l := l(v) ∈
[
χd
]

be the
index of v in the dth level.

– Let `v := `/χd be the number of leaves in the subtree induced by v. Set
n := `v/2, and k := `v/χ.

– Recall that v has χ children. Let U := {χ/2 + 1, χ/2 + 2, . . . , χ} be the set
of indices of second half children of v (i.e., the right half of children). Given
u ∈ U , we slightly abuse notation and say that the uth child of v is u.

Because our goal is to bound the number of probes during the subtree of u,
we choose to perform n writes during the first n leaves of v, and then perform
k reads during the k leaves of u ∈ U (Figure 2). The remaining parts are just
padding to ` operations. Formally, the distribution of hard sequence D(v, u),
with induced parameters l, `v, n, k as above, is sampled as follow:

1. Let A be the sequence consisting of (l − 1) · `v dummy reads, i.e., repeating
(read, 1) for (l − 1) · `v times.

A := (read, 1), . . . , (read, 1)︸ ︷︷ ︸
(l−1)·`v times

,

2. Let L (for left-side) be the sequence of n writes to fixed locations with random
words, i.e.,

L := (write, 1, x1), (write, 2, x2), . . . , (write, n, xn),

where x1, . . . , xn ← {0, 1}w are chosen independently uniformly at random.
3. Let B be the sequence consisting of k · (u− 1)− n dummy reads,

B := (read, 1), . . . , (read, 1)︸ ︷︷ ︸
k·(u−1)−n times

,

4. Let R (for right-side) be the sequence of k reads from random addresses in
[n], i.e.,

R := (read, a1), (read, a2), . . . , (read, ak),

where a1, . . . , ak ← [n] are chosen independently uniformly at random.
5. Let C be the sequence of dummy reads whose goal is to pad the whole

sequence to length `,

C := (read, 1), . . . , (read, 1)︸ ︷︷ ︸
`−(l−1)·`v−u·k times

,
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* Output the concatenated length ` sequence

seqhard = A,L,B,R,C.

We are interested in the set of cells that are touched both during the L,B
sequence and during the R sequence, i.e., the set Cells(L,B | A) ∩ Cells(R |
A,L,B) (see Definition 3 for Cells(. . . ) notation). By definition, it holds that

|Pv,u(seqhard)| ≥ |Cells(L,B | A) ∩ Cells(R | A,L,B)|.

In Theorem 5 we prove the following.

Theorem 4 (See Theorem 5). Let δ := 1/128 and ε := 1/128. If DS is δ-
correct (for the array maintenance problem), then as long as n ∈ [max{8,m/(εw)},
N ] and k ≤ n ·w/b, it holds that

Pr [|Cells(L,B | A) ∩ Cells(R | A,L,B)| ≥ εk] > 3/4.

Indeed, observe that the conditions to apply this theorem are met since k ≤
nw/b as n = `v/2, k = `v/χ, and χ = 2db/we. Also, since v is an internal node
whose induced subtree consists of `v ≥ 2 ·max{8,m/(εw)} leaves, we also have
n ∈ [max{8,m/(εw)}, N ]. Therefore, Pr [|Pv,u(seqhard)| ≥ εk] > 3/4.

Due to the security guarantee of DS, we deduce that for any (equal-length)
sequence seq the above should hold. Namely, denoting the randomness of the
DS by ρ, we have

Pr
seqhard,ρ

[|Pv,u(seqhard)| ≥ εk]−Pr
ρ

[|Pv,u(seq)| ≥ εk] ≤ 1/4.

Therefore, we obtain that Pr [|Pv,u(seq)| ≥ εk] > 1/2 and so E [|Pv,u(seq)|] >
εk/2. Using Eq. (3) and linearity of expectation we obtain that

E[|Pv(seq)|] = E

[ ∑
u is a child of v

|Pv,u(seq)|

]
=

∑
u is a child of v

E [|Pv,u(seq)|]

> (χ/2) · (εk/2) = ε`/(4χd).

5 The Compression Argument

Let DS be an oblivious cell probe data structure for the array maintenance
problem on arrays of N entries, each of w bits. Let N ′ denote the number of
cells in DS, let b denote the bit-length of each cell, and let m denote the number
of bits of client memory.

Consider the following distribution over sequences of operations given to DS.
The distribution is denoted DA,B,n,k and it is parametrized by two sequences
of operations A and B, and by two positive integers n, k ≤ N . The sequence
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A consist of arbitrary reads and writes (A is going to be a prefix sequence)
and B consist of arbitrary reads but no writes (B is going to be a padding
sequence). Each sequence of operations sampled from DA,B,n,k consists of 4
parts, A,L,B,R, in this order, where L (for left-side) is a sequence of n writes
to fixed addresses 1, . . . , n with uniformly random data, and R (for right-side)
is a sequence of k reads from uniformly random indices in [n]. The full sequence
(A,L,B,R) looks as follows:

A : Fixed sequence of reads and writes;

L : (write, 1, x1), (write, 2, x2), . . . , (write, n, xn),

where x1, . . . , xn ← {0, 1}w, chosen uniformly at random;

B : Fixed sequence of reads;

R : (read, a1), (read, a2), . . . , (read, ak),

where a1, . . . , ak ← [n], chosen uniformly at random.

Recall that in Definition 3, given a sequence of operations (X,Y ) and ran-
domness ρ, we let Cells(Y | X) be the set of addresses of (physical) cells probed
by DS during its execution of the Y sequence after executing the X sequence.11

For example, in an instance of sequence (A,L,B,R) sampled from our distri-
bution, (1) Cells(L,B | A) contains the (physical) addresses of cells probed by
DS during the execution of the L and B parts after executing the A sequence,
and (2) Cells(R | A,L,B) contains the (physical) addresses of cells probed by
DS during the execution of the R sequence after executing the A,L, and B
sequences. We prove the following theorem.

Theorem 5. Let δ := 1/128, ε := 1/128 and α := 3/4. Further, fix integers n ∈
[max{8,m/(εw)}, N ], w ≥ 16, and k ≤ n ·w/b. Lastly, fix arbitrary sequences A
and B as above. Then, if DS is δ-correct (for the array maintenance problem),
then it holds that

Pr [|Cells(L,B | A) ∩ Cells(R | A,L,B)| ≥ εk] > α,

where the probability is taken over the choice of L and R (i.e., over the choice
of (A,L,B,R) from DA,B,n,k), and over the internal randomness of DS.

In order to prove Theorem 5, we assume for contradiction that the statement
is false, namely that there are A,B, n, k as in the theorem statement and a β ≤ α
for which

Pr [|Cells(L,B | A) ∩ Cells(R | A,L,B)| ≥ εk] = β. (4)

To reach a contradiction, we construct a randomized compression scheme that
encodes nw uniformly random bits into a message that is less than nw bits.
Section 5.1 describes the encoding and decoding procedure of such compression,

11 Notice that Cells(Y | X) is a set of addresses, whereas Access(X‖Y ) is a sequence of
addresses.

23



and it also shows the compression is correct. We then in Section 5.2 prove that
the expected size of the encoding is less then nw bits, which is a contradiction
to Shannon’s source coding theorem and concludes the proof of Theorem 5.

The reader may find it helpful to first read the full version [29] where we
prove a weaker version of Theorem 5. Specifically, we show that the expected
size of the intersection of both sets from Theorem 5 is Ω(k) (rather than that it
holds with high probability).

5.1 The Encoding and Decoding Procedures

The encoder, Alice, gets as input the nw random bits interpreted as x1, . . . , xn ∈
{0, 1}w, and the decoder, Bob, aims to recover x1, . . . , xn. Our compression
scheme uses a long string which is shared by Alice and Bob but is completely
independent of x1, . . . , xn. This shared string consists of

– Fixed read/write sequence A and read-only sequence B;
– A sequence R of k reads where the indices are sampled uniformly at random

(i.e., (read, a1), (read, a2), . . . , (read, ak), where a1, . . . , ak ← [n]);
– An integer t← [k] sampled uniformly at random; and
– A random tape ρ used by DS.

Since x1, . . . , xn are sampled independently and uniformly, their entropy con-
ditioned on the shared string is nw. Therefore, by Shannon’s source coding
theorem, the only way for Alice to correctly transmit them to Bob is by sending
at least nw bits.

Alice’s encoding:

– Input: nw bits interpreted as x1, . . . , xn ∈ {0, 1}w.
– Procedure:

1. Using ρ and DS, execute the sequence of requests

A,L,B,R,

where A,B, and R are taken from the shared string, and L := (write, 1,
x1), (write, 2, x2), . . . , (write, n, xn). Define the following collections of cells’
indices that are physically probed during the execution:
• C0 := Cells(L,B | A). That is, the cells probed during the execution

of the L,B sequences.
• C := C0 ∩ Cells(R | A,L,B). That is, the cells probed during the

execution of the L,B sequences which are also probed during the
execution of the R sequence.

Right after executing A,L,B using ρ, let σ be the local state of DS, and
let content(C) be the contents of the cells in C.

2. Define R[1 . . . t − 1] := (read, a1), . . . , (read, at−1) to be the sequence of
operations that consists of the first t− 1 reads from R. For each i ∈ [n],

define R̂t,i to be a sequence of operations that consists of R[1 . . . t − 1]
and then, as its tth operation, it performs a read from index i. That is,

R̂t,i := (read, a1), . . . , (read, at−1), (read, i).
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3. For each i ∈ [n], using ρ and DS, execute the sequence of operations

A,L,B, R̂t,i.

• We say that i ∈ [n] (or R̂t,i correspondingly) is easy iff

Cells((read, i) | A,L,B,R[1 . . . t− 1]) ∩ C0 = ∅,

and hard otherwise. Let H ⊂ [n] be the set of hard i’s and h :=
(xi)i∈H (written in increasing order w.r.t. i).

• For each i ∈ [n], add i into set H0 iff DS answers operation (read, i)
incorrectly (after the execution of A,L,B,R[1 . . . t− 1]). That is, let
i ∈ H0 iff the answer to (read, i) is not xi. Let h0 := (xi)i∈H0

(written
in increasing order w.r.t. i).

– Output:
• If |C| ≥ εk, output a bit 0, followed by msg0 := (x1, . . . , xn).
• Else (i.e., |C| < εk), output a bit 1, followed by msg1 := (σ, C,
content(C), H,h,H0, h0).

Bob’s decoding:

– Input from Alice is either
• the first bit is 0, followed by msg0 := (x′1, . . . , x

′
n), or

• the first bit is 1, followed by msg1 := (σ,C, content(C), H, h,H0, h0).
– Procedure:

1. If the first bit is 0, output the received x′1, . . . , x
′
n directly. Otherwise,

continue as follows.
2. For each hard i ∈ [n], i.e., i ∈ H, recover x′i by reading it from h (recall

that elements in h are ordered in increasing i).
3. For each incorrect index i ∈ H0, recover x′i by reading it from h0 (recall

that elements in h0 are ordered in increasing i).
4. For each easy and correct i ∈ [n], i.e., i /∈ H ∪H0, recover x′i using the

following steps:
(a) Using DS and randomness ρ, execute the sequence of operations A.

Then, replace the content of cells in C with content(C) and replace
the local state of DS with σ.

(b) Using this configuration, randomness ρ, and DS, execute R̂t,i and

let x′i be the result of the tth operation in R̂t,i, i.e., (read, i).
– Output: x′1, . . . , x

′
n.

Correctness of compression. For correctness, we show that Bob always out-
puts values x′1, . . . , x

′
n such that x′i = xi for all i ∈ [n], where x1, . . . , xn are the

inputs of Alice. Whenever |C| ≥ εk, correctness holds immediately since Alice
just sends x1, . . . , xn explicitly to Bob. We therefore consider the case where
|C| < εk. For every hard i ∈ H or incorrect i ∈ H0, we have x′i = xi by con-
struction (since it is transmitted explicitly as part of h or h0). For each easy and
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correct i ∈ [n], executing R̂t,i (using DS, local state σ, and random tape ρ) needs
only the contents of cells either in C or not in C0 (observe that R[1 . . . t − 1]
needs both and then easy (read, i) needs only those not in C0). Bob can obtain
the content of these cells not in C0 by executing the sequence of operations A.
Hence, all the needed information can be obtained by Bob and it is identical
to that of Alice. Recall that sequence B is read-only so the output is indeed
xi written by L. Therefore, by correctness of DS (as writes to and reads from
i ∈ [n] ⊆ [N ] are valid operations), Bob indeed obtains x′i = xi for all i ∈ [n].

5.2 Encoding Size Analysis

We upper bound the expected size of the encoding outputted by Alice. We follow
the conventions that i) |s| denotes the number of bits of s for any sequence s,
and ii) |S| denotes the cardinality of S for any set S.

The encoding consists of a bit j and the message msgj , where j depends on
whether |C| ≥ εk. Let Good be the indicator for the event that |C| < εk. By the
law of total expectation, the expected size is the sum of two cases,

E
[∣∣j,msgj

∣∣] = 1+E [|msg0| | ¬Good]·Pr [¬Good]+E [|msg1| | Good]·Pr [Good] .

By Eq. (4), we have

Pr[Good] = 1− β and Pr[¬Good] = β, (5)

and by construction, |msg0| is always nw bits. We thus focus on proving an upper
bound on the second conditional expectation, namely on E[|msg1| | Good].

Recall that the encoding msg1 consists of σ,C, content(C), H, h,H0, h0 and
so by linearity of expectation, it suffices to bound the expected size of each
component marginally. First, since the local state of DS is m bits, we know that
|σ| ≤ m. Second, by the definition of the event Good, we have that

E [|C| | Good] < εk and E [|content(C)| | Good] < εkb,

where the latter inequality follows since each cell consists of b bits. Third, for
H0 and h0, we have E[|H0|] ≤ δn by δ-correctness of DS and then linearity of
expectation. Hence, we have E[|h0|] ≤ δnw without conditioning on Good. That
is, it takes just δnw bits even if Alice had always sent h0.

We are therefore left with upper bounding the number of hard read requests
R̂t,i, namely, the cardinality of H. For this, we use the fact that the tth read
request is online and is made after the previous t−1 requests are executed. That
is, after executed t − 1 requests where DS reads cells in C, the set C is fixed.
Then, when given the tth request, DS must touch a new cell not in C (unless it
got lucky and it was already in C). Intuitively, this means that DS must spend
probes in order to answer the tth random read request (no matter how many
probes were spent on write requests and on previous read requests). Formalizing
this intuition into a bound on |H| is done in the following Lemma (see the full
version [29] for the proof).
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Lemma 2. Assuming Eq. (4), then E [|H| | Good] < (β + ε/(1− β))n.

Expected size of encoding. We now sum up the expected size of msg1 sent
by Alice conditioned on the case Good. Recall that σ takes m bits, and C and
content(C) consume together at most 2εkb bits conditioned on Good. The set
H can be described simply using a binary string of n bits, where the ith bit
indicates whether i ∈ H or not. To describe h, by Lemma 2, h can be described
with at most (β + ε/(1 − β))nw bits in expectation. The set H0 is described
using n bits as well, but we defer h0 since its expectation is not conditional. So,
the expected size conditioned on Good is

m+ 2εkb + n+ (β + ε/(1− β)) · nw + n ≤ m+ 2εnw + n+ (β + ε/(1− β)) · nw + n

≤ (3ε+ ε/(1− β) + 1/8 + β) · nw,

where the first inequality follows since k ≤ nw/b, and the second is since m ≤
εnw and w ≥ 16. The total expected size is then

1 + E[|h0|] + E[|msg0| | ¬Good] ·Pr[¬Good] + E[|msg1| | Good] ·Pr[Good]

≤ 1 + δnw + nw ·Pr[¬Good] + (3ε+ ε/(1− β) + 1/8 + β) · nw ·Pr[Good]

= 1 + δnw + nwβ + (3ε+ ε/(1− β) + 1/8 + β) · (1− β) · nw,

where the first term 1 is the bit indicating if the case is Good in Alice’s encoding,
and the last equality follows since Pr[Good] = 1 − β (Eq. (5)). Plugging in
δ = 1/128, ε = 1/128 and β ≤ α = 3/4, we obtain that the expected encoding
size is strictly smaller than

1 + (1/128 + 3/4 + (1/4)(1/16 + 1/8 + 3/4)) · nw < nw

in bits, where the inequality follows since n ≥ 8 and w ≥ 16. By Shannon’s
source coding theorem, we thus reached a contradiction which completes the
proof of Theorem 5.

6 Separating Offline and Online ORAM

In this section we prove a separation between the offline and online ORAM
models. Concretely, we prove the following result.

Theorem 6. Consider the task of obliviously simulating a RAM with N cells
each of size w = logN bits using a RAM of N ′ cells each of size b bits and using
local memory of size m bits for b,m ∈ poly logN . There exists an offline ORAM
scheme with N ′ ∈ O(N) for this task with o(1) I/O efficiency, while every online
ORAM scheme for this task must have Ω(logN/ log logN) I/O efficiency (no
matter how large N ′ is).

Proof. The lower bound follows directly from Theorem 3. Plugging in the val-
ues of w, b,m, we get that every online ORAM scheme for this task must have
Ω(logN/ log logN) I/O efficiency. The upper bound follows from existing re-
sults [7, 11] and is deferred to the full version [29].
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