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Abstract. We prove that quantum-hard one-way functions imply simulation-
secure quantum oblivious transfer (QOT), which is known to suffice for
secure computation of arbitrary quantum functionalities. Furthermore,
our construction only makes black-box use of the quantum-hard one-way
function.
Our primary technical contribution is a construction of extractable and
equivocal quantum bit commitments based on the black-box use of quantum-
hard one-way functions in the standard model. Instantiating the Crépeau-
Kilian (FOCS 1988) framework with these commitments yields simulation-
secure QOT.

1 Introduction

The complexity of cryptographic primitives is central to the study of cryptog-
raphy. Much of the work in the field focuses on establishing reductions between
different primitives, typically building more sophisticated primitives from sim-
pler ones. Reductions imply relative measures of complexity among different
functionalities, and over the years have resulted in an expansive hierarchy of
assumptions and primitives, as well as separations between them.

One-way functions (OWFs) lie at the center of cryptographic complexity:
their existence is the minimal assumption necessary for nearly all classical cryp-
tography [28, 23, 22]. One-way functions are equivalent to so-called “minicrypt”
primitives like pseudorandom generators, pseudorandom functions and symmet-
ric encryption; but provably cannot imply key exchange when used in a black-box
way [24, 3]. Thus, the existence of key exchange is believed to be a stronger as-
sumption than the existence of one-way functions. Oblivious transfer (OT) is
believed to be even stronger : it implies key exchange, but cannot be obtained
from black-box use of a key exchange protocol [29].

The importance of OT stems from the fact that it can be used to achieve
secure computation, which is a central cryptographic primitive with widespread
applications. In a nutshell, secure computation allows mutually distrusting par-
ticipants to compute any public function over their joint private inputs while
revealing no private information beyond the output of the computation.
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The Quantum Landscape. The landscape of cryptographic possibilities changes
significantly when participants have quantum computation and communication
capabilities. For one, unconditionally secure key distribution — commonly known
as quantum key distribution (QKD) — becomes possible [5]. Moreover, quantum
oblivious transfer (QOT) is known to be achievable from special types of com-
mitments, as we discuss next.

Crépeau and Kilian [11] first proposed a protocol for QOT using quantum bit
commitments. The central idea in these QKD and QOT protocols is the use of
(what are now known as) “BB84 states”. These are single qubit states encoding
either 0 or 1 in either the computational or Hadamard basis. Crucially, measuring
(or essentially attempting to copy the encoded bit) in the wrong basis completely
destroys information about the encoded bit. Then [6] presented a transmission-
error resistant version of the [11] protocol. These protocols did not come with a
proof of security, but subsequently Mayers and Salvail [31] proved that the [11]
protocol is secure against a restricted class of attackers that only perform single-
qubit measurements. This was later improved by Yao [37], who extended the [31]
result to handle general quantum adversaries.

By an unfortunate historical accident, the aforementioned security proofs
claimed the [11] QOT could be information-theoretically secure, since at the
time it was believed that information-theoretic quantum bit commitment was
possible [9]. Several years later, Mayers [30] and Lo and Chau [27] independently
proved the impossibility of information-theoretic quantum bit commitment, and
as a consequence, the precise security of [11] QOT was once again unclear. This
state of affairs remained largely unchanged until 2009, when Damgard, Fehr,
Lunemann, Salvail, and Schaffner [13] proved that bit commitment schemes sat-
isfying certain additional properties, namely extraction and equivocation, suffice
to instantiate [11] QOT. [13] called their commitments dual-mode commitments,
and provided a construction based on the quantum hardness of the learning
with errors (QLWE) assumption. We remark that assumptions about the hard-
ness of specific problems like QLWE are qualitatively even worse than general
assumptions like QOWFs and QOT. Thus, the following basic question remains:

Do quantum-hard one-way functions suffice for quantum oblivious transfer?

Quantum OT: The Basis of Secure Quantum Computation. There is a natural
extension of secure computation to the quantum world, where Alice and Bob wish
to compute a quantum circuit on (possibly entangled) quantum input states. This
setting, usually referred to as secure quantum computation, has been previously
studied and in fact has a strong tradition in the quantum cryptography literature.

[10, 4] constructed unconditional maliciously-secure multi-party quantum
computation with honest majority. The setting where half (or more) of the play-
ers are malicious requires computational assumptions due to the impossibility of
unconditionally secure quantum bit commitment [30, 27].

In this computational setting, [16, 17] showed the feasibility of two-party
quantum computation (2PQC) assuming post-quantum OT. More recently, [15]
constructed maliciously-secure general multi-party quantum computation (MPQC)
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secure against a dishonest majority from any maliciously-secure post-quantum
multi-party computation (MPC) protocol for classical functionalities, which can
itself be obtained from post-quantum OT [2].

Nevertheless, the following natural question has remained unanswered:

Can secure (quantum) computation be obtained from quantum-hard one-way
functions?

1.1 Our Results

Our main result is the following:

Quantum oblivious transfer can be based on the assumption that quantum-hard
one-way functions exist.

In fact, we prove a stronger result: we show that quantum oblivious transfer
can be based on the black-box use of any statistically binding, quantum computa-
tionally hiding commitment. Such commitments can be based on the black-box
use of quantum-hard one-way functions. This in turn implies secure two-party
computation of classical functionalities, in the presence of quantum computation
and communication capabilities, from (black-box use of) quantum-hard one-way
functions [26]. The latter can then be used to obtain secure two-party quantum
computation, by relying on the work of [17]. Quantum OT can also be used
to obtain multi-party secure computation of all classical functionalities, in the
presence of quantum computation and communication capabilities, and addi-
tionally assuming the existence of authenticated channels. This follows from the
techniques in [26, 12, 14, 25] which obtain classical MPC based on black-box
use of any OT protocol. By relying on [15], this also implies multi-party secure
quantum computation.

In summary, our main result implies that: (1) 2PQC can be obtained from
(black-box use of) quantum-hard OWFs and (2) assuming the existence of au-
thenticated channels, MPQC can be obtained from (black-box use of) quantum-
hard OWFs.

This gives a potential separation between the complexity of cryptographic
primitives in the classical and quantum worlds. In the former, (two-party) se-
cure computation provably cannot be based on black-box use of quantum-hard
one-way functions. It is only known from special types of enhanced public-key
encryption schemes or from the hardness of specific problems, both of which
are believed to be much stronger assumptions than one-way functions. But in
the quantum world, prior to our work, (two-party) secure computation was only
known from the special commitments required in the protocol of [13], which can
be based on QLWE following [13], or post-quantum OT (implicit in [20, 7, 2])
— but were not known to be achievable from quantum-hard one-way functions.

On the Significance of the Black-Box use of Cryptography in the Quantum Set-
ting. Making black-box use of a cryptographic primitive refers to only having
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oracle access to its input/output behavior, without having the ability to ex-
amine the actual code (i.e., representation as a sequence of symbols) of the
primitive. For instance, proving in zero-knowledge that a committed value sat-
isfies some given predicate often requires explicit knowledge of the commitment
algorithm; classifying the resulting proof as making “non-black-box” use of the
one-way function. In the literature, constructions that make black-box use of
cryptographic primitives are often preferred over those that make non-black-box
use of cryptography. Besides their conceptual simplicity and elegance, black-box
constructions are also of practical interest since they avoid expensive NP reduc-
tions involving circuits of primitives. Perhaps most importantly, in the case of
black-box constructions, one can instantiate the underlying primitive with an ar-
bitrary implementation, including physical implementations via secure hardware
or those involving quantum communication.

In many quantum protocols, which involve quantum states being transferred
between two or more players, black-box constructions are not only significantly
preferable but often become a necessity. Let us illustrate this with an example.
The GMW protocol [18] first showed that secure multi-party computation can
be based on any oblivious transfer protocol; however the protocol involved zero-
knowledge proofs involving the description of the (classical) oblivious transfer
protocol. Due to the GMW [18] protocol being non-black-box in the underly-
ing OT, our OT protocols cannot be used with GMW to obtain multi-party
computation of classical functionalities. We instead need to rely on compilers
like [26, 12, 14, 25] that only make black-box use of the underlying OT proto-
col. As discussed above, the black-box nature of these compilers makes them
applicable irrespective of whether they are instantiated with classical or QOT.

In a similar vein, we believe that our black-box use of any statistically bind-
ing, quantum computationally hiding commitment in our QOT protocol is of
particular significance. For instance, one can substitute our statistically binding,
quantum computationally hiding commitment with an unconditionally secure
one in the quantum random oracle model [34], resulting in unconditional quan-
tum OT in the quantum random oracle model. Moreover if in the future, new
constructions of statistically binding, quantum computationally hiding commit-
ments involving quantum communication are discovered based on assumptions
weaker than quantum-hard one-way functions, it would be possible to plug those
into our protocol compilers to obtain QOT. These applications would not have
been possible had we required non-black-box use of the underlying commitment.

Primary Tool: Stand-alone Extractable and Equivocal Commitments. As dis-
cussed earlier, [13] show that simulation-secure QOT can be obtained from com-
mitments satisfying certain properties, namely extraction and equivocation.

– At a high level, extraction requires that there exist an efficient quantum
“extractor” that is able to extract a committed message from any quantum
committer.

– Equivocality requires that there exist an efficient quantum “equivocator”
capable of simulating an interaction with any quantum receiver such that it
can later open the commitment to any message of its choice.
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These two properties are crucial for proving simulation security of the [11]
OT protocol: extraction implies receiver security and equivocality implies sender
security1. Our key technical contribution is the following:

Extractable and equivocal commitments can be based on the black-box use of
quantum-hard one-way functions.

We obtain this result via the following transformations, each of which only makes
black-box use of the underlying primitives.

– Step 1: Quantum Equivocal Commitments from Quantum-Hard One-Way
Functions. We describe a generic unconditional compiler to turn any com-
mitment into an equivocal commitment in the plain model. By applying
our compiler to Naor’s statistically binding commitment [32] — which can
be based on quantum-hard one-way functions — we obtain a statistically
binding, equivocal commitment.

– Step 2: Quantum Extractable Commitments from Quantum Equivocal Com-
mitments. We show that the [11, 13, 8] framework can be used to obtain an
extractable commitment that leverages quantum communication, and can be
based on the existence of any quantum equivocal commitment. This com-
bined with the previous step implies the existence of quantum extractable
commitments based on the existence of quantum-hard one-way functions.
This is in contrast to existing approaches (eg., [20]) that require classical
communication but rely on qualitatively stronger assumptions like classical
OT with post-quantum security.

– Step 3: From Extractable Commitments to Extractable and Equivocal Com-
mitments. We apply the black-box equivocality compiler from the first step
to the quantum extractable commitment obtained above, to produce an ex-
tractable and equivocal commitment.
We point out that it is generally straightforward to make a classical com-
mitment equivocal using zero-knowledge proofs, but this approach does not
apply to quantum commitment protocols. We therefore devise our own equiv-
ocality compiler capable of handling quantum commitments and use it in
both Step 1 and Step 3.

Plugging our quantum extractable and equivocal commitments into the [11]
framework yields a final QOT protocol with an interaction pattern that readers
familiar with [5, 11] may find interesting: the sender sends the receiver several
BB84 states, after which the receiver proves to the sender that it has honestly
measured the sender’s BB84 states by generating more BB84 states of their
own and asking the sender to prove that they have measured the receiver’s BB84
states. An intriguing open question is whether obtaining QOT from one-way
1 It is important to note that extraction and equivocation are only made possible in an

ideal world where a simulator has access to the adversary’s state. Participants in the
real protocol cannot access each others’ state, which prevents them from extracting
or equivocating.
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functions requires this type of two-way quantum communication or, alternatively,
quantum memory.2

1.2 Related Work
For some readers, it may appear that the central claim of this work — that
quantum-hard one-way functions suffice for oblivious transfer — has already
been established [13, 8]. Indeed, prior work [13, 8] showed that statistically bind-
ing and computational hiding commitments (which are weaker than extractable
and equivocal commitments), known to exist from one-way functions, can be
plugged into the [11] template to achieve an oblivious transfer protocol satisfy-
ing indistinguishability-based security.

However, the indistinguishability-based security definition for oblivious trans-
fer is not standard in the cryptographic literature. When cryptographers refer
to “oblivious transfer”, they almost always mean the standard simulation-based
security notion. Indeed, the fundamental importance of oblivious transfer in
modern cryptography is due to the fact that it is necessary and sufficient for
secure computation, but this is only true for the simulation-based notion.

1.3 Concurrent and Independent Work
In a concurrent and independent work, Grilo, Lin, Song, and Vaikuntanathan [19]
also construct simulation-secure quantum oblivious transfer from quantum-hard
one way functions via the intermediate primitive of extractable and equivocal
commitments. However, the two works take entirely different approaches to con-
structing these commitments. We briefly summarize these strategies below.

This work:
1. Construct equivocal commitments from statistically binding commitments

via a new “equivocality compiler” based on Watrous [35] rewinding.
2. Construct extractable commitments from equivocal commitments via a new

“extractability compiler” based on the [11] template.
3. Construct extractable and equivocal commitments from extractable commit-

ments via the same compiler from Step 1.
[19]:
1. Construct selective opening secure commitments with inefficient simulation

against malicious committers from statistically binding commitments and
zero-knowledge proofs.

2. Construct QOT with inefficient simulation against malicious receivers from
selective opening secure commitments with inefficient simulation against ma-
licious committers, following the [11] QOT template.3

2 Naive approaches to removing one direction of quantum communication appear to
require the honest parties to be entangled and subsequently perform quantum tele-
portation.

3 [19] point out that the conclusions of Steps 1 and 2 together had also been established
in prior works of [33, 13, 8].
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3. Construct parallel QOT with inefficient simulation against malicious re-
ceivers from (stand-alone) QOT with inefficient simulation against malicious
receivers via a new lemma for parallel repetition of protocols.

4. Construct verifiable conditional disclosure of secrets, a new primitive intro-
duced in [19], from parallel QOT with inefficient simulation against ma-
licious receivers, statistically binding commitments, Yao’s garbled circuits,
and zero-knowledge proofs.

5. Construct extractable commitments from verifiable conditional disclosure of
secrets, statistically binding commitments, and zero-knowledge proofs.

6. Construct extractable and equivocal commitments from extractable commit-
ments and zero-knowledge proofs.

We believe that our result is easier to understand and conceptually simpler,
as we do not need to define additional primitives beyond extractable and/or
equivocal commitments. Aside from differences in approach, there are several
other places where the results differ:

– This Work: Black-Box Use of One-Way Functions. A significant ad-
vantage of our work over [19] is that we construct quantum OT from black-
box use of statistically binding commitments or one-way functions. The OT
in [19] makes non-black-box use of the underlying one-way function. As dis-
cussed above, making black-box use of underlying cryptographic primitives
is particularly useful in the quantum setting. Due to the extensive use of
zero-knowledge proofs and garbled circuits in [19], it appears difficult to
modify their approach to be black-box in the underlying one-way function.

– This Work: One-Sided Statistical Security. Additionally, our oblivious
transfer protocol offers one-sided statistical security. As written, our quan-
tum OT protocol satisfies statistical security against malicious senders (and
computational security against malicious receivers). Moreover, this OT can
be reversed following the techniques in eg., [36] to obtain a quantum OT pro-
tocol that satisfies statistical security against malicious receivers (and com-
putational security against malicious senders). On the other hand, the quan-
tum OT protocol in [19] appears to achieve computational security against
both malicious senders and malicious receivers.

– [19]: Verifiable Conditional Disclosure of Secrets. Towards achieving
their main result, [19] introduce and construct verifiable conditional disclo-
sure of secrets (vCDS). This primitive may be of independent interest.

– [19]: Constant Rounds in the CRS Model. While both works construct
poly(𝜆)-round protocols in the plain model, [19] additionally construct a
constant round OT protocol in the CRS model based on (non-black-box use
of) quantum-hard one-way functions.
In an earlier version of this work, we did not consider the CRS model. After
both works were posted to the Cryptology ePrint Archive, we realized that
our techniques could be straightforwardly adapted to achieve constant round
complexity in the CRS model, while still making black-box use of one-way
functions. However, unlike [19], our CRS is non-reusable. For the interested
reader, we sketch how this can be achieved in the full version.

7



2 Technical Overview

This work establishes that (1) black-box use of post-quantum one-way functions
suffices for post-quantum extractable and equivocal commitment schemes and
moreover, that (2) [11] quantum oblivious transfer instantiated with such com-
mitments is a standard simulation-secure oblivious transfer. Crucially, the stan-
dard notion of simulation-secure (quantum) oblivious transfer that we achieve is
sequentially composable and suffices to achieve general-purpose secure quantum
computation. Before explaining our technical approach, we provide a complete
review of the original [11] protocol.

2.1 Recap: Quantum Oblivious Transfer from Commitments

In quantum oblivious transfer (QOT), a quantum sender holding two classical
messages 𝑚0,𝑚1 engages in an interactive protocol over a quantum channel
with a quantum receiver holding a classical choice bit 𝑏. Correctness requires the
receiver to learn 𝑚𝑏 by the end of the protocol. Informally, security demands
that a malicious receiver only learn information about one of 𝑚0,𝑚1, and that
a malicious sender learn nothing about 𝑏. Somewhat more formally, as discussed
earlier, our focus is on the standard simulation-based notion of security. This
stipulates the existence of an efficient quantum simulator that generates the view
of an adversary (sender/receiver) when given access to an ideal OT functionality.
In particular, when simulating the view of a malicious sender, this simulator must
extract the sender’s inputs (𝑚0,𝑚1) without knowledge of the receiver’s input
𝑏. And when simulating the view of a malicious receiver, the simulator must
extract the receiver’s input 𝑏, and then simulate the receiver’s view given just
𝑚𝑏.

We recall the construction of quantum oblivious transfer due to [11] (hence-
forth CK88), which combines the information theoretic quantum key distribution
protocol of [5] (henceforth BB84) with cryptographic bit commitments.

CK88 First Message. The first message of the CK88 protocol exactly follows
the beginning of the BB84 protocol. For classical bits 𝑦, 𝑧, let |𝑦⟩𝑧 denote |𝑦⟩ if
𝑧 = 0, and (|0⟩ + (−1)𝑦 |1⟩)/

√
2 if 𝑧 = 1, i.e. the choice of 𝑧 specifies whether

to interpret 𝑦 as a computational or Hadamard basis vector. Let 𝜆 denote the
security parameter. The sender samples two random 2𝜆-bit strings 𝑥 and 𝜃,
and constructs “BB84 states” |𝑥𝑖⟩𝜃𝑖

for 𝑖 ∈ [2𝜆]. The sender forwards these 2𝜆
BB84 states (|𝑥𝑖⟩𝜃𝑖

)𝑖∈[2𝜆] to the receiver. Next, the receiver samples a 2𝜆-bit
string 𝜃, measures each |𝑥𝑖⟩𝜃𝑖

in the basis specified by 𝜃𝑖, and obtains a 2𝜆-bit
measurement result string �̂�.

CK88 Measurement-Check Subprotocol. At this point, the CK88 and BB84 pro-
tocols diverge. Since the BB84 protocol is an interaction between two honest
parties, it assumes the parties comply with the protocol instructions. However,
in the CK88 protocol, a malicious receiver who does not measure these BB84
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states will be able to compromise sender privacy later in the protocol. There-
fore, the next phase of CK88 is a measurement-check subprotocol designed to
catch a malicious receiver who skips the specified measurements. This subproto-
col requires the use of a quantum-secure classical commitment scheme; for the
purposes of this recap, one should imagine a commitment with idealized hiding
and binding properties. The subprotocol proceeds as follows:

– For each 𝑖 ∈ [2𝜆], the receiver commits to (𝜃𝑖, �̂�𝑖).
– Next, the sender picks a random set 𝑇 of 𝜆 indices from [2𝜆], and challenges

the receiver to open the corresponding commitments.
– The receiver sends (𝜃𝑖, �̂�𝑖) along with the corresponding opening for each
𝑖 ∈ 𝑇 .

– The sender verifies each commitment opening, and furthermore checks that
�̂�𝑖 = 𝑥𝑖 for each 𝑖 ∈ 𝑇 where 𝜃𝑖 = 𝜃𝑖. If any of these checks fail, the sender
aborts.

The rough intuition for the subprotocol is simple: from the receiver’s point of
view, the BB84 states are maximally mixed and therefore completely hide 𝑥𝑖 and
𝜃𝑖. For any index 𝑖 that the receiver does not measure, it must guess �̂�𝑖. From
the receiver’s perspective, the sender checks �̂�𝑖 against 𝑥𝑖 if two 1/2-probability
events occur: (1) 𝑖 is included in 𝑇 , and (2) 𝜃𝑖 = 𝜃𝑖. This means a malicious
receiver who skips a significant number of measurements will be caught with
overwhelming probability.

CK88 Privacy Amplification. If all the subprotocol checks pass, the sender con-
tinues to the final stage of the CK88 protocol. For convenience, relabel the 𝜆
indices in [2𝜆]∖𝑇 from 1 to 𝜆; all indices corresponding to opened commitments
are discarded for the remainder of the protocol.

For each 𝑖 ∈ [𝜆], the sender reveals the correct measurement basis 𝜃𝑖. The
receiver then constructs the index set 𝐼𝑏 — where 𝑏 is its choice bit for the
oblivious transfer — as the set of all 𝑖 ∈ [𝜆] where 𝜃𝑖 = 𝜃𝑖. It sets 𝐼1−𝑏 to be
the remaining indices, and sends (𝐼0, 𝐼1) to the sender. Note that by the hiding
property of the commitments, the sender should not be able to deduce 𝑏 from
(𝐼0, 𝐼1); furthermore, 𝐼0 and 𝐼1 will both be close to size 𝜆/2, since for each
𝑖 ∈ [𝜆], the receiver committed to 𝜃𝑖 before obtaining 𝜃𝑖.

On receiving 𝐼0, 𝐼1, the sender sets 𝑥0 := (𝑥𝑖)𝑖∈𝐼0 and 𝑥1 := (𝑥𝑖)𝑖∈𝐼1 . The
intuition is that if a receiver honestly constructs (𝐼0, 𝐼1), it will only have infor-
mation about 𝑥𝑏 corresponding to its choice bit 𝑏. However, it turns out that
even if the receiver maliciously constructs (𝐼0, 𝐼1), at least one of 𝑥0 and 𝑥1 will
have high min-entropy from its point of view. Thus, by standard privacy ampli-
fication techniques, the sender can complete the oblivious transfer as follows. It
samples two universal hash functions ℎ0 and ℎ1, both with ℓ-bit outputs, and
uses ℎ0(𝑥0) to mask the ℓ-bit message 𝑚0, and uses ℎ1(𝑥1) to mask 𝑚1. That is,
the sender sends (ℎ0, ℎ1, ℎ0(𝑥0)⊕𝑚0, ℎ1(𝑥1)⊕𝑚1) to the receiver, who can then
use 𝑥𝑏 to recover 𝑚𝑏. Since 𝑥1−𝑏 will have high entropy, the leftover hash lemma
implies that ℎ1−𝑏(𝑥1−𝑏) is statistically close to uniform, which hides 𝑚1−𝑏 from
the receiver.

9



Simulation-Based Security. Turning this intuition into a proof of simulation-
based security of the resulting QOT requires some additional insights [13], and
requires the commitments used in the measurement-check subprotocol to satisfy
two additional properties: extractability and equivocality. In what follows, we
briefly summarize why these properties help achieve simulation-based security.

To argue that the resulting QOT protocol satisfies security against a mali-
cious sender, one must demonstrate the existence of a simulator that simulates
the sender’s view by generating messages on behalf of an honest receiver, and
extracts both QOT inputs of the sender4. Now, the measurement-check sub-
protocol described above is designed to ensure that at least one of the sender’s
inputs is hidden from a receiver. To nevertheless enable the simulator to ex-
tract both sender inputs, the idea in [13] is to modify the commitments used
in the measurement-check subprotocol with equivocal commitments that allow
the simulator to later open these commitments to any value of its choice. This
enables the simulator to defer any measurements until after it obtains the set 𝑇
from the sender, and then selectively measure only the states that correspond
to indices in 𝑇 . All other states are left untouched until the sender reveals its
measurement bases in the final stage of the CK88 protocol. Upon obtaining the
sender’s “correct” measurement bases, the simulator measures all the remaining
states in the correct bases, allowing it to learn both the inputs of the sender.

To demonstrate that the resulting QOT protocol satisfies security against
a malicious receiver, one must demonstrate the existence of a simulator that
simulates the receiver’s view by generating messages on behalf of an honest
sender, and extracts the receiver’s choice bit. Again by design, the measurement-
check subprotocol ensures that the receiver’s choice bit hidden is hidden from the
sender. To nevertheless enable the simulator to extract this choice bit, [13] modify
the commitments in the measurement-check subprotocol so that the simulator
is able to extract all of the {(̂︀𝜃𝑖, ̂︀𝑥𝑖)}𝑖∈[2𝜆] from the receiver’s commitments.
This enables the simulator to compute which one of the sets 𝐼0, 𝐼1 contain more
indices 𝑖 for which 𝜃𝑖 = ̂︀𝜃𝑖; clearly the set with more indices corresponds to the
receiver’s choice bit. In summary, the key tool that enables simulation against a
malicious receiver is an extractable commitment, that forces the receiver to use
commitments for which the simulator can extract the committed value, without
ever running the opening phase.

To conclude, following [13] the CK88 protocol can be shown to satisfy simulation-
based security as long as the commitments used in the measurement-check sub-
protocol satisfy both the extractability and equivocality properties that were in-
formally described above.

With this in mind, we now describe our primary technical contribution: a
construction of the required extractable and equivocal commitments based on
black-box use of quantum-hard one-way functions.

4 We refer the reader to Section 6.1 for a formal definition of simulation-based QOT.
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2.2 Our Construction: A High-Level Overview

The rest of this technical overview describes our black-box construction of si-
multaneously extractable and equivocal quantum bit commitments from any
quantum-hard one-way function.

The ingredients for our construction are the following:

– A general-purpose “equivocality compiler” that turns any bit commitment
scheme — classical or quantum — into an equivocal quantum commitment
scheme. Moreover, if the original commitment scheme is extractable, this
compiler outputs an extractable and equivocal commitment scheme.

– A general-purpose “extractability compiler” that turns any equivocal bit
commitment scheme — classical or quantum — into an extractable but not
equivocal commitment scheme.

Both of these compilers require no additional computational assumptions be-
yond those of the original commitment schemes. Given these compilers, we build
extractable and equivocal commitments via the following steps:

– Instantiation: Begin with Naor’s statistically-binding, computationally hid-
ing commitments [32]. Naor’s construction makes black-box use of one-way
functions and achieves post-quantum computational hiding assuming post-
quantum security of the one-way function.5

– Step 1: Plug Naor’s commitments into our equivocality compiler to obtain
an equivocal quantum bit commitment scheme.

– Step 2: Feed the resulting equivocal quantum bit commitments into our
extractability compiler to obtain an extractable but not equivocal quantum
bit commitment.

– Step 3: Run the equivocality compiler a second time, but now starting with
the extractable commitments produced by the previous step. This gives the
desired extractable and equivocal quantum bit commitments.

2.3 Making Any Quantum (or Classical) Commitment Equivocal

Recall that a quantum commitment protocol is equivocal if an efficient quantum
algorithm called the equivocator, with access to the receiver, can generate com-
mitments that can be opened to any value. More precisely, for any receiver (mod-
5 In slightly more detail, Naor’s commitment scheme makes black-box use of any

pseudo-random generator (PRG). It is straightforward to verify that if the PRG is
post-quantum secure, the commitment satisfies computational hiding against quan-
tum attackers. A black-box construction of pseudo-random generators from one-way
functions is due to [21]; Aaronson [1] and Zhandry [38] observed that [21] applies to
non-uniform quantum attackers with classical advice. This can be extended to han-
dle non-uniform quantum advice by giving the one-way function attacker constructed
in the [21] reduction many copies of the PRG attacker’s non-uniform quantum ad-
vice (which only requires some polynomial upper bound on the number of times the
reduction invokes the PRG attacker).
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eled as an efficient malicious quantum algorithm), there must exist an equivoca-
tor who can generate a computationally indistinguishable commitment that the
equivocator can later open arbitrarily.

In this subsection, we describe a black-box compiler for a fairly general task
(which may be of independent interest): making any classical or quantum com-
mitment equivocal. Recall from Section 2.2 that we will need to invoke our equiv-
ocality compiler twice, once on a classical bit commitment scheme, and once on
an extractable quantum bit commitment scheme; in the latter case, our com-
piler will need to preserve the extractability of the original commitment. Since
classical commitments are a subclass of quantum commitments, our exposition
will focus on challenges unique to the quantum setting.

Our Equivocality Compiler. In our construction, to commit to a bit 𝑏, the com-
mitter and receiver will perform 𝜆 sequential repetitions of the following subpro-
tocol:

– The (honest) committer samples 2 uniformly random bits 𝑢0, 𝑢1, and com-
mits to each one twice using the base commitment scheme. Let the resulting
commitments be c(0)

0 , c(1)
0 , c(0)

1 , c(1)
1 , where the first two are to 𝑢0 and the

second two are to 𝑢1. Note that since the base commitment scheme can be
an arbitrary quantum interactive commitment, each commitment c(𝑏2)

𝑏1
cor-

responds to the receiver’s quantum state after the commitment phase of the
base commitment.

– The receiver sends the committer a random challenge bit 𝛽.
– The committer opens the two base commitments c(0)

𝛽 , c(1)
𝛽 . If the openings

are invalid or the revealed messages are different, the receiver aborts the
entire protocol.

If these 𝜆 executions pass, the receiver is convinced that a majority of the com-
mitter’s remaining 2𝜆 unopened commitments are honestly generated, i.e. most
pairs of commitments are to the same bit.

Rewriting the (honest) committer’s unopened bits as 𝑢1, . . . , 𝑢𝜆, the final
step of the commitment phase is for the committer to send ℎ𝑖 := 𝑢𝑖 ⊕ 𝑏 for each
𝑖 ∈ [𝜆] (recall that 𝑏 is the committed bit).

To decommit, the committer reveals each 𝑢𝑖 by picking one of the two corre-
sponding base commitments at random, and opening it. The receiver accepts if
each one of the base commitment openings is valid, and the opened 𝑢𝑖 satisfies
ℎ𝑖 ⊕ 𝑢𝑖 = 𝑏 for every 𝑖.

The (statistical) binding property of the resulting commitment can be seen
to follow from the (statistical) binding of the underlying commitment. For any
commitment, define the unique committed value as the majority of (ℎ𝑖⊕𝑢𝑖) val-
ues in the unopened commitments, setting 𝑢𝑖 to ⊥ if both committed bits in the
𝑖𝑡ℎ session differ. Due to the randomized checks by the receiver, any committer
that tries to open to a value that differs from the unique committed value will
already have been caught in the commit phase, and the commitment will have
been rejected with overwhelming probability. A similar argument also allows us
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to establish that this transformation preserves extractability of the underlying
commitment. We now discuss why the resulting commitment is equivocal.

Quantum Equivocation. The natural equivocation strategy should have the equiv-
ocator (somehow) end up with 𝜆 pairs of base commitments where for each
𝑖 ∈ [𝜆], the pair of commitments is to 𝑢𝑖 and 1−𝑢𝑖 for some random bit 𝑢𝑖. This
way, it can send an appropriately distributed string ℎ1, · · · , ℎ𝜆, and later open
to any 𝑏 by opening the commitment to 𝑏⊕ ℎ𝑖 for each 𝑖.

We construct our equivocator using Watrous’s quantum rewinding lemma [35]
(readers familiar with Watrous’s technique may have already noticed our con-
struction is tailored to enable its use).

We give a brief, intuition-level recap of the rewinding technique as it pertains
to our equivocator. Without loss of generality, the malicious quantum receiver
derives its challenge bit 𝛽 by performing some binary outcome measurement
on the four quantum commitments it has just received (and on any auxiliary
states). Our equivocator succeeds (in one iteration) if it can prepare four quan-
tum commitments c(0)

0 , c(1)
0 , c(0)

1 , c(1)
1 where:

1. c(0)
𝛼 , c(0)

𝛼 are commitments to the same random bit,
2. c(0)

1−𝛼, c
(0)
1−𝛼 are commitments to a random bit and its complement,

3. on input c(0)
0 , c(1)

0 , c(0)
1 , c(1)

1 , the receiver produces challenge bit 𝛽 = 𝛼.

That is, the equivocator is successful if the receiver’s challenge bit 𝛽 corresponds
to the bit 𝛼 that it can open honestly. Watrous’s [35] rewinding lemma applies if
the distribution of 𝛽 is independent of the receiver’s choice of 𝛼, which is guar-
anteed here by the hiding of the base commitments. Thus, the rewinding lemma
yields a procedure for obtaining an honest-looking interaction where all three
properties above are met. Given the output of the rewinding process, the equiv-
ocator has successfully “fooled” the committer on this interaction and proceeds
to perform this for all 𝜆 iterations. As described above, fooling the committer on
all 𝜆 iterations enables the equivocator to later open the commitment arbitrarily.

2.4 An Extractability Compiler for Equivocal Commitments

In this subsection, we compile any classical or quantum equivocal bit commit-
ment into a quantum extractable bit commitment. We stress that even though
this compiler is applied to equivocal bit commitments, the resulting commitment
is not guaranteed to be simultaneously extractable and equivocal; we refer the
reader to Section 2.2 for details on how this compiler fits into our final con-
struction. Recall that a commitment scheme is extractable if for any adversarial
quantum committer that successfully completes the commitment phase, there
exists an efficient quantum algorithm (called the extractor) which outputs the
committed bit.
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Construction. The committer, who intends to commit to a classical bit 𝑏, begins
by sampling 2𝜆-bit strings 𝑥 and 𝜃. It generates the corresponding 2𝜆 BB84 states
|𝑥𝑖⟩𝜃𝑖

and sends this to the receiver. The receiver picks 2𝜆 random measurement
bases 𝜃𝑖, and measures each |𝑥𝑖⟩𝜃𝑖

in the corresponding basis, obtaining outcomes
�̂�𝑖.

Next, the receiver and committer engage in a CK88-style measurement-check
subprotocol. That is, they temporarily switch roles (for the duration of the sub-
protocol), and perform the following steps:

1. The receiver (acting as a committer in the subprotocol), commits to each 𝜃𝑖

and �̂�𝑖 (for each 𝑖 ∈ [2𝜆]) with an equivocal commitment.
2. The committer (acting as a receiver in the subprotocol), asks the receiver to

open the equivocal commitments for all 𝑖 ∈ 𝑇 , where 𝑇 ⊂ [2𝜆] is a random
set of size 𝜆.

3. The receiver (acting as a committer in the subprotocol) opens the 𝜆 com-
mitments specified by 𝑇 .

Provided the receiver passes the measurement-check subprotocol, the com-
mitter generates the final message of the commitment phase as follows:

– Discard the indices in 𝑇 and relabel the remaining 𝜆 indices from 1 to 𝜆.
– Partition {𝑥1, . . . , 𝑥𝜆} into

√
𝜆 strings �⃗�1, . . . , �⃗�√

𝜆 each of length
√
𝜆.

– Sample
√
𝜆 universal hash functions ℎ1, . . . , ℎ√

𝜆 each with 1-bit output.
– Finally, send (𝜃𝑖)𝑖∈[𝜆], (ℎ𝑗 , ℎ𝑗(�⃗�𝑗)⊕ 𝑏)𝑗∈[

√
𝜆].

This concludes the commitment phase.
To decommit, the committer reveals 𝑏 and (�⃗�1, . . . , �⃗�√

𝜆). The receiver accepts
if (1) for each 𝑗, the bit 𝑏 and the value �⃗�𝑗 are consistent with the claimed value
of ℎ𝑗(�⃗�𝑗)⊕𝑏 from the commit phase, and (2) for each index 𝑖 ∈ [𝜆] where 𝜃𝑖 = 𝜃𝑖,
the 𝑥𝑖 from the opening is consistent with �̂�𝑖.

Extraction. The use of equivocal commitments in the measurement-check sub-
protocol makes extraction simple. Given any malicious committer, we construct
an extractor as follows.

The extractor plays the role of the receiver and begins an interaction with
the malicious committer. But once the committer sends its 2𝜆 BB84 states,
the extractor skips the specified measurements, instead leaving these states un-
measured. Next, instead of performing honest commitments to each 𝜃𝑖, �̂�𝑖, the
extractor invokes (for each commitment) the equivocator algorithm of the un-
derlying equivocal commitment scheme. Since the equivocator is guaranteed to
produce an indistinguishable commitment from the point of view of any ma-
licious receiver for the equivocal commitment, this dishonest behavior by the
extractor will go undetected.

When the malicious committer responds with a challenge set 𝑇 ⊂ [2𝜆], the
extractor samples uniformly random bases 𝜃𝑖 for each 𝑖 ∈ 𝑇 , measures the cor-
responding BB84 states to obtain �̂�𝑖 values, and sends (𝜃𝑖, �̂�𝑖)𝑖∈𝑇 . Moreover,
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the equivocator (for each commitment) will enable the extractor to generate
valid-looking openings for all of these claimed values.

Thus, the malicious committer proceeds with the commitment protocol, and
sends

(𝜃𝑖)𝑖∈[𝜆], (ℎ𝑗 , ℎ𝑗(�⃗�𝑗)⊕ 𝑏)𝑗∈[
√

𝜆]

to the extractor. These correspond to the 𝜆 BB84 states that the extractor has
not yet measured, so it can simply read off the bases 𝜃𝑖, perform the specified
measurements, and extract the committer’s choice of 𝑏.

Statistical Hiding. Intuitively, statistical hiding of the above commitment pro-
tocol follows because the measurement-check subprotocol forces the receiver to
measure states in arbitrary bases, which destroys information about the corre-
sponding 𝑥𝑖 values whenever ̂︀𝜃𝑖 ̸= 𝜃𝑖. The formal argument is a straightforward
application of a quantum sampling lemma of [8], devised in part to simplify
analysis of [11]-style protocols, and we defer further details to the supplemen-
tary materials.

2.5 Putting it Together: From Commitments to Secure
Computation.

Plugging the compilers of Sections 2.3 and 2.4 into the steps described in Sec-
tion 2.2 yields a black-box construction of simultaneously extractable and equiv-
ocal quantum bit commitments from quantum-hard one-way functions. Follow-
ing [13], these commitments can be plugged into CK88 to obtain maliciously
simulation-secure QOT (see Section 6 for further details). Finally, going from
QOT to arbitrary secure computation (in a black-box way) follows from prior
works of [26, 25, 17, 15]; a more thorough discussion is available in the supple-
mentary materials.

3 Preliminaries

Notation. We will write density matrices/quantum random variables (hence-
forth, QRVs) in lowercase bold font, e.g. x. A quantum register X will be written
in uppercase (grey) serif font. A collection of (possibly entangled) QRVs will be
written as (x,y, z).

Throughout this paper, 𝜆 will denote a cryptographic security parameter.
We say that a function 𝜇(𝜆) is negligible if 𝜇(𝜆) = 1/𝜆𝜔(1).

The trace distance between two QRVs x and y will be written as ‖x − y‖1.
Recall that the trace distance captures the maximum probability that two QRVs
can be distinguished by any (potentially inefficient) procedure. We therefore say
that two infinite collections of QRVs {x𝜆}𝜆∈N and {y𝜆}𝜆∈N are statistically indis-
tinguishable if there exists a negligible function 𝜇(𝜆) such that ||x𝜆−y𝜆||1 ≤ 𝜇(𝜆),
and we will frequently denote this with the shorthand {x𝜆}𝜆∈N ≈𝑠 {y𝜆}𝜆∈N.
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Non-Uniform Quantum Advice. We will consider non-uniform quantum polynomial-
time (QPT) algorithms with quantum advice, denoted by 𝒜 = {𝒜𝜆,𝜌𝜆}𝜆∈N,
where each 𝒜𝜆 is the classical description of a poly(𝜆)-size quantum circuit, and
each 𝜌𝜆 is some (not necessarily efficiently computable) non-uniform poly(𝜆)-
qubit quantum advice. We remark that “non-uniform quantum polynomial-time
algorithms” often means non-uniform classical advice, but the cryptographic ap-
plications in this work will require us to explicitly consider quantum advice.

Definitions for Cryptographic Commitments. Full definitions of cryptographic
commitments can be found in the supplementary materials.

4 A Quantum Equivocality Compiler

In this section, we show a generic black-box compiler that takes any quantum-
secure bit commitment scheme and produces a quantum-secure equivocal bit
commitment scheme.

The compiler is described in Protocol 1, where (Commit,Decommit) denotes
some statistically binding and computationally hiding bit commitment scheme.
We describe how to equivocally commit to a single bit, and note that commit-
ment to an arbitrary length string follows by sequential repetition.

Furthermore, we show that if the underlying commitment (Commit,Decommit)
is extractable, then the resulting commitment is both extractable and equivocal.

These results are captured in the following theorems.

Theorem 1. For 𝒳 ∈ {quantum extractability, statistical binding} and 𝒴 ∈
{computationally, statistically}, if Commit is a 𝒴-hiding quantum bit commit-
ment satisfying 𝒳 , then Protocol 1 is a 𝒴-equivocal bit commitment satisfying
𝒳 .

These theorems follow from establishing statistical binding, equivocality, and
extractability of the commitment in Protocol 1, as we do next. First, we note that
if Commit is statistically binding, then Protocol 1 is statistically binding. For any
adversarial committer strategy, consider the 𝜆 unopened pairs of commitments
after the commit phase. Since Commit is statistically binding, we can assume that
each of the 2𝜆 commitments is binding to a particular bit, except with negligible
probability. Now, if any single pair contains binding commitments to the same
bit 𝑑𝑖, then the committer will only be able to open its Protocol 1 commitment
to the bit 𝑑𝑖 ⊕ 𝑒𝑖. Thus, to violate binding, the adversarial committer will have
to have committed to different bits in each of the 𝜆 unopened pairs. However, in
this case, the committer will be caught and the receiver will abort except with
probability 1/2𝜆.

4.1 Equivocality

The equivocal simulator (𝒬ℛ*,com,𝒬ℛ*,open) is obtained via the use of Watrous’s
quantum rewinding lemma [35]; a full statement of the lemma is available in the
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Protocol 1

Committer 𝒞 Input: Bit 𝑏 ∈ {0, 1}.
The Protocol: Commit Phase

1. 𝒞 samples uniformly random bits 𝑑𝑖,𝑗 for 𝑖 ∈ [𝜆] and 𝑗 ∈ {0, 1}.
2. For every 𝑖 ∈ [𝜆], 𝒞 and ℛ sequentially perform the following steps.

(a) 𝒞 and ℛ execute four sessions sequentially, namely:
– x0,0, y0,0 ← Commit⟨𝒞(𝑑𝑖,0),ℛ⟩,
– x0,1, y0,1 ← Commit⟨𝒞(𝑑𝑖,0),ℛ⟩,
– x1,0, y1,0 ← Commit⟨𝒞(𝑑𝑖,1),ℛ⟩ and
– x1,1, y1,1 ← Commit⟨𝒞(𝑑𝑖,1),ℛ⟩.

(b) ℛ sends a choice bit 𝑐𝑖 ← {0, 1}.
(c) 𝒞 and ℛ execute two decommitments, obtaining the opened bits:

– 𝑢← Decommit⟨𝒞(x𝑐𝑖,0),ℛ(y𝑐𝑖,0)⟩ and
– 𝑣 ← Decommit⟨𝒞(x𝑐𝑖,1),ℛ(y𝑐𝑖,1)⟩.

If 𝑢 ̸= 𝑣, ℛ aborts. Otherwise, 𝒞 and ℛ continue.
3. For 𝑖 ∈ [𝜆], 𝒞 sets 𝑒𝑖 = 𝑏⊕ 𝑑𝑖,1−𝑐𝑖 and sends {𝑒𝑖}𝑖∈[𝜆] to 𝑅.

The Protocol: Decommit Phase

1. 𝒞 sends 𝑏 to ℛ. In addition,
– For 𝑖 ∈ [𝜆], 𝒞 picks 𝛼𝑖 ← {0, 1} and sends it to ℛ.
– 𝒞 and ℛ execute ̂︀𝑑𝑖 ← Decommit⟨𝒞(x1−𝑐𝑖,𝛼𝑖 ),ℛ(y1−𝑐𝑖,𝛼𝑖 )⟩.

2. ℛ accepts the decommitment and outputs 𝑏 if for every 𝑖 ∈ [𝜆], ̂︀𝑑𝑖 = 𝑏⊕ 𝑒𝑖.

Fig. 1. Equivocal Bit Commitment.

supplementary materials. For the purposes of defining the simulation strategy,
it will be sufficient (w.l.o.g.) to consider a restricted receiver ℛ* as follows, for
the 𝑖𝑡ℎ sequential step of the protocol. In our simulation, the state of ℛ* will be
initialized to the final state at the end of simulating the (𝑖− 1)𝑡ℎ step.

1. ℛ* takes a quantum register W, representing its auxiliary quantum input.
ℛ* will use two additional quantum registers that function as work space:
V, which is an arbitrary (polynomial-size) register, and A, which is a single
qubit register. The registers V and A are initialized to their all-zero states
before the protocol begins.

2. Let M denote the polynomial-size register used by 𝒞 to send messages to
ℛ*. After carrying out step 2(a) by running on registers (W,V,A,M), ℛ*

measures the register A to obtain a bit 𝑐𝑖, for Step 2(b), which it sends back
to 𝒞.

3. Next, ℛ* computes the decommitment phases (with messages from 𝒞 placed
in register M) according to Step 2(c). ℛ* outputs registers (W,V,A,M).

Any polynomial-time quantum receiver can be modeled as a receiver of this
restricted form followed by some polynomial-time post-processing of the re-
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stricted receiver’s output. The same post-processing can be applied to the output
of the simulator that will be constructed for the given restricted receiver.

Following [35], we define a simulator that uses two additional registers, C and
Z. C is a one qubit register, while Z is an auxiliary register used to implement the
computation that will be described next. Consider a quantum procedure 𝒬partial
that implements the strategy described in Protocol 2 using these registers.

Protocol 2

Circuit 𝒬partial.

1. Sample a uniformly random classical bit ̂︀𝑐, and store it in register C.
2. Sample uniformly random bits (𝑧, 𝑑).
3. If ̂︀𝑐 = 0, initialize committer input as follows, corresponding to four sequential

sessions:
– For the first two sessions, set committer input to 𝑧.
– For the third and fourth sessions, set committer input to 𝑑 and 1 − 𝑑

respectively.
4. If ̂︀𝑐 = 1, initialize committer input as follows, corresponding to four sequential

sessions:
– For the first and second sessions, set committer input to 𝑑 and 1 − 𝑑

respectively.
– For the last two sessions, set committer input to 𝑧.

5. Run the commitment phase interaction between the honest committer and
ℛ*’s sequence of unitaries on registers initialized as above.

6. Measure the qubit register 𝐴 to obtain a bit 𝑐. If 𝑐 = ̂︀𝑐, output 0, otherwise
output 1.

Fig. 2. Equivocal Simulator.

Next, we would like to apply Watrous’s quantum rewinding lemma to the
𝒬partial circuit. In order to do this, we will argue that the probability 𝑝(𝜓) that
this circuit outputs 0 is such that |𝑝(𝜓)− 1

2 | = negl(𝜆), regardless of the auxiliary
input |𝜓⟩ to ℛ*. This follows from the fact that the commitments are (statisti-
cally/computationally) hiding. In more detail, by definition, Step 5 produces a
distribution on the ℛ*’s side that is identical to the distribution generated by ℛ*

in its interaction with the committer. If |𝑝(𝜓)− 1
2 | were non-negligible, then the

sequence of unitaries applied by ℛ* could be used to distinguish commitments
generated according to the case ̂︀𝑐 = 0 from commitments generated according
to the case ̂︀𝑐 = 1, leading to a contradiction.

Now consider the state of the residual qubits of 𝒬partial conditioned on a mea-
surement of its output qubit being 0. The output state of the general quantum
circuit ̂︀𝒬 resulting from applying Watrous’s quantum rewinding lemma will have
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negligible trace distance from this state. This state is over all of the registers
discussed above, so the simulator 𝒬com,ℛ* must further process this state as:

– Measure the register C, obtaining challenge 𝑐.
– Compute decommitment information corresponding to challenge 𝑐, as in Step

2(c) of the protocol (recall that this information is stored in the message
register M).

– Output registers (W,V,A,M). All remaining registers are traced out.

The simulator 𝒬ℛ*,com executes all 𝑖 sequential interactions in this manner,
and then samples 𝑒1, . . . , 𝑒𝜆 ← {0, 1}𝜆, as the committer messages for Step
3 of Protocol 1. It runs the receiver’s unitary on the resulting protocol, and
outputs the resulting registers (W,V,A,M). It additionally outputs private state
st = (𝑐1, 𝑑1, . . . , 𝑐𝜆, 𝑑𝜆) where 𝑐𝑖, 𝑑𝑖 were sampled during the 𝑖th execution of
Protocol 2.

The simulator 𝒬ℛ*,open(𝑏, st,w,v,a,m) parses st as (𝑐1, 𝑑1, . . . , 𝑐𝜆, 𝑑𝜆). For
every 𝑖 ∈ [𝜆] it does the following:

– Let ̂︀𝑑𝑖 = 𝑏⊕ 𝑒𝑖.
– If 𝑐𝑖 = 0, it executes the decommitment phase for the (( ̂︀𝑑𝑖⊕𝑑𝑖)+2)𝑡ℎ session.
– If 𝑐𝑖 = 1, it executes the decommitment phase for the ( ̂︀𝑑𝑖 ⊕ 𝑑𝑖)𝑡ℎ session.

𝒬ℛ*,open then executes the receiver’s algorithm on these decommitments and
outputs the resulting state. Note that each decommitment will be to the bit̂︀𝑑𝑖 = 𝑏⊕ 𝑒𝑖.

To complete the proof of equivocality, we must establish that the view of the
receiver interacting with an honest committer the view of the receiver interact-
ing with the equivocator are indistinguishable. This follows from the (statisti-
cal/computational) hiding of the commitment scheme, via an identical argument
to the one used above. In particular, if the equivocal simulator produces a distri-
bution that is distinguishable from the real distribution, then there exists a ses-
sion 𝑖 ∈ [𝜆] such that the distribution in the real and ideal experiments upto the
𝑖− 1𝑡ℎ session are indistinguishable, but upto the 𝑖𝑡ℎ session are distinguishable.
This contradicts the above guarantee given by the quantum rewinding lemma,
since for any 𝑖, the post-processed residual qubits of 𝒬partial are indistinguishable
from the state of ℛ* after the 𝑖𝑡ℎ sequential session in the real protocol (due to
the hiding of the commitment scheme).

4.2 Extractability

Next, we prove that Protocol 1 satisfies extractability as long as the underlying
commitment (Commit,Decommit) is extractable; in other words, this compiler
preserves extractability. Consider the following extractor ℰ𝒞* .

– For 𝑖 ∈ [𝜆]:
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∙ Execute four sequential commitment sessions with 𝒞*, where the extrac-
tor of Commit is run on all sessionss. Obtain outputs (𝜌𝒞* , stℛ,𝑖,0, 𝑑

′
𝑖,0, stℛ,𝑖,1, 𝑑

′
𝑖,1),

where 𝜌𝒞* is the final state of the committer after engaging in all four
sequential sessions, and stℛ,𝑖,0, stℛ,𝑖,1 are receiver states output by the
extractor corresponding to the first and third sessions.

∙ Corresponding to Step 2(b), compute and send 𝑐𝑖 ← {0, 1}.
∙ Execute Step 2(c) identically to Protocol 1.

– Executes Step 3 of Protocol 1, receiving bits {𝑒𝑖}𝑖∈[𝜆]. Fix 𝑏* to be the most
frequently ocurring bit in {𝑒𝑖⊕𝑑′

𝑖,1−𝑐𝑖
}𝑖∈[𝜆], and output the final state of 𝒞*,

the receiver states {stℛ,𝑖,0, stℛ,𝑖,1}𝑖∈[𝜆], and the extracted bit 𝑏*.

Indistinguishability between the distributions Real and Ideal defined by the
above extractor follows by a hybrid argument, and is based on the definition
of extractability of the underlying commitment (Commit,Decommit). In more
detail, recall that Real denotes the distribution (𝜌𝒞*,final, 𝑏) where 𝜌𝒞*,final denotes
the final state of 𝒞* and 𝑏 the output of the receiver, and Ideal denotes the final
committer state and opened bit after the opening phase of the scheme is run on
the output of the extractor.

Note that there are a total of 4𝜆 commitment sessions. For each 𝑖 ∈ [𝜆], 𝑗 ∈
[0, 3], define Hyb𝑖,𝑗 to be the distribution of the committer’s state and receiver
output when extracting from all commitments in sessions 1, . . . , 𝑖−1 and extract-
ing from the first 𝑗 commitments in the 𝑖𝑡ℎ session, but computing the receiver’s
output as in the honest protocol.

Claim. There exists a negligible function 𝜇(·) such that for every 𝑖 ∈ [𝜆], 𝑗 ∈
[0, 2], and every QPT distinguisher 𝒟,

|Pr
[︀
𝒟(Hybrid𝑖,𝑗) = 1

]︀
− Pr

[︀
𝒟(Hybrid𝑖,𝑗+1) = 1

]︀
| = 𝜇(𝜆),

and for every 𝑖 ∈ [𝜆] and every QPT distinguisher 𝒟,

|Pr
[︀
𝒟(Hybrid𝑖,3) = 1

]︀
− Pr

[︀
𝒟(Hybrid𝑖+1,0) = 1

]︀
| = 𝜇(𝜆).

Proof. Suppose this is not the case, then there exists an adversarial committer
𝒞*, a distinguisher 𝒟, a polynomial 𝑝(·), and an initial committer state 𝜓 that
corresponds to a state just before the beginning of the (𝑖, 𝑗 + 1)𝑡ℎ commitment,
and where

Pr
[︀
𝒟(Hybrid𝑖,𝑗) = 1

]︀
− Pr

[︀
𝒟(Hybrid𝑖,𝑗+1) = 1

]︀
| ≥ 1

𝑝(𝜆) .

Consider a reduction/adversarial committer ̃︀𝒞 that obtains initial state 𝜓,
then internally runs 𝒞*, forwarding all messages between an external receiver and
𝒞* for the (𝑖, 𝑗 + 1)𝑡ℎ commitment. It then begins the opening phase, running
𝒞* internally and forwarding the opening of the (𝑖, 𝑗 + 1)𝑡ℎ commitment (if
it is executed) to an external receiver. Finally, it outputs the final state of the
committer, and 𝑏 is output by the external receiver. The claim being false directly
implies that ̃︀𝒞 contradicts extractability of the bit commitment.
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Now for every commitment strategy, every 𝑖 ∈ [𝜆], the probability that 𝑑′
𝑖,1−𝑐𝑖

is not equal to the other bit committed in its pair, and yet the receiver does not
abort in Step 2(c) in the 𝑖𝑡ℎ sequential repetition, is ≤ 1

2 + negl(𝜆). Then with
probability 1− negl(𝜆), the same also holds for the extracted bits. Thus, by the
correctness of the extractor, this implies that the probability that an adversarial
committer opens to 1 − 𝑏* is at most 1/2𝜆/2 + negl(𝜆) = negl(𝜆). This implies
that Hybrid𝜆,2 is indistinguishable from the Ideal distribution defined by the
extractor defined above, since the only difference lies in the computation of the
receiver’s output 𝑏*. Since Real is indistinguishable from Hybrid1,0, this completes
the proof.

5 Quantum Extractable Commitments

We construct extractable commitments by making use of the following building
blocks.

– We let (EqCommit,EqDecommit) denote any statistically binding, equivo-
cal quantum commitment scheme. Such a commitment can be obtained by
applying the compiler from last section to Naor’s commitment scheme [32].

– For a suitable polynomial 𝑘(·), let ℎ : {0, 1}𝑘(𝜆) × {0, 1}𝜆2 → {0, 1} be a
universal hash function that is evaluated on a random seed 𝑠 ∈ {0, 1}𝑘(𝜆)

and input 𝑥 ∈ {0, 1}𝜆2 .

Our extractable commitment scheme is described formally in Figure 3. We
show how to commit to a single bit, though commitment to any arbitrary length
string follows by sequential repetition. Correctness of the protocol follows by
inspection. In the remainder of this section, we prove the following theorem.

Theorem 2. Protocol 3 describes a quantum statistically hiding and extractable
bit commitment whenever (EqCommit,EqDecommit) is instantiated with any quan-
tum statistically binding and equivocal bit commitment scheme.

Throughout, we will consider non-uniform adversaries, but for ease of expo-
sition we drop the indexing by 𝜆.

5.1 Extractability

Consider any adversarial committer 𝒞* with advice 𝜌. The extractor ℰ𝒞*(𝜌) is
constructed as follows.

1. Run the first message algorithm of 𝒞* on input 𝜌, obtaining message 𝜓.
2. For 𝑖 ∈ [2𝜆3], sequentially execute equivocal commitment sessions with the

equivocal simulator 𝒬𝑅*,com, where 𝑅* is the part of 𝒞* that participates as
receiver in the 𝑖𝑡ℎ session. Session 𝑖 results in output (z𝑖,ycom,𝑖), where z𝑖 is
stored by the extractor, and ycom,𝑖 is the current state of 𝒞*, which is fed as
input into the next session.
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Protocol 3

Committer 𝒞 Input: Bit 𝑏 ∈ {0, 1}.

The Protocol: Commit Phase.

1. 𝒞 chooses 𝑥← {0, 1}2𝜆3
, 𝜃 ← {+,×}2𝜆3

and sends |𝑥⟩𝜃 to ℛ.
2. ℛ chooses ̂︀𝜃 ← {+,×}2𝜆3

and obtains ̂︀𝑥 ∈ {0, 1}2𝜆3
by measuring |𝑥⟩𝜃 in basiŝ︀𝜃.

ℛ commits to ̂︀𝜃 and ̂︀𝑥 position-wise: ℛ and 𝒞 execute sequentially 2𝜆3 equiv-
ocal commitment sessions with ℛ as committer and 𝒞 as receiver. That is, for
each 𝑖 ∈ [2𝜆3], they compute (xcom,𝑖, ycom,𝑖)← EqCommit⟨ℛ(̂︀𝜃𝑖, ̂︀𝑥𝑖), 𝒞⟩.

3. 𝒞 sends a random test subset 𝑇 ⊂ [2𝜆3] of size 𝜆3 to ℛ.
4. For every 𝑖 ∈ 𝑇 , ℛ and 𝒞 engage in (̂︀𝜃𝑖, ̂︀𝑥𝑖) ←

EqDecommit⟨ℛ(xcom,𝑖), 𝒞(ycom,𝑖)⟩, and 𝒞 aborts if any commitment fails
to open.

5. 𝒞 checks that 𝑥𝑖 = ̂︀𝑥𝑖 whenever 𝜃𝑖 = ̂︀𝜃𝑖. If all tests pass, 𝒞 proceeds with the
protocol, otherwise, 𝒞 aborts.

6. The tested positions are discarded by both parties: 𝒞 and ℛ restrict 𝑥 and 𝜃,
respectively ̂︀𝑥 and ̂︀𝜃, to the 𝜆3 indices 𝑖 ∈ 𝑇 . 𝒞 sends 𝜃 to ℛ.

7. 𝒞 partitions the remaining 𝜆3 bits of 𝑥 into 𝜆 different 𝜆2-bit strings
𝑥(1), . . . , 𝑥(𝜆). For each ℓ ∈ [𝜆], sample a seed 𝑠ℓ ← {0, 1}𝑘(𝜆) and compute
𝑑ℓ := ℎ(𝑠ℓ, 𝑥(ℓ)). Then output (𝑠ℓ, 𝑏⊕ 𝑑ℓ)ℓ∈[𝜆].

The Protocol: Decommit Phase.

1. 𝒞 sends 𝑏 and (𝑥(1), . . . , 𝑥(𝜆)) to ℛ.
2. If either of the following fails, ℛ rejects and outputs ⊥. Otherwise, ℛ accepts

and outputs 𝑏.
– Let {𝑠ℓ, 𝑣ℓ}ℓ∈[𝜆] be the message received by ℛ in step 7. Check that for

all ℓ ∈ [𝜆], 𝑣ℓ = 𝑏⊕ ℎ(𝑠ℓ, 𝑥(ℓ)).
– For each 𝑗 ∈ [𝜆3] such that ̂︀𝜃𝑗 = 𝜃𝑗 , check that ̂︀𝑥𝑗 = 𝑥𝑗 .

Fig. 3. Extractable Commitment.

3. Obtain 𝑇 from 𝒞*, and sample ̂︀𝜃 ← {+,×}2𝜆3 . Let 𝜓𝑖 denote the 𝑖𝑡ℎ qubit
of 𝜓, and measure the qubits 𝜓𝑖 for 𝑖 ∈ 𝑇 , each in basis ̂︀𝜃𝑖. Let {̂︀𝑥𝑖}𝑖∈[𝑇 ] be
the results of the measurements.

4. Let xcom be the current state of 𝒞*. For each 𝑖 ∈ [𝑇 ], execute𝒬𝑅*,open((̂︀𝜃𝑖, ̂︀𝑥𝑖), z𝑖,xcom),
where 𝑅* is the part of 𝒞* that participates in the 𝑖𝑡ℎ opening, and xcom is
updated to be the current state of 𝒞* after each sequential session.

5. If 𝒞* aborts at any point, abort and output ⊥, otherwise continue.
6. Discard tested positions and restrict ̂︀𝜃 to the indices in 𝑇 . Obtain 𝜃 ∈
{+,×}𝜆3 from 𝒞*. Measure the qubits 𝜓𝑖 in basis 𝜃𝑖 to obtain ̂︀𝑥𝑖 for 𝑖 ∈ 𝑇 ,
and then partition ̂︀𝑥 into 𝜆 different 𝜆2-bit strings ̂︀𝑦1, . . . , ̂︀𝑦𝜆.
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7. Obtain {𝑠ℓ, 𝑣ℓ}ℓ∈[𝜆] from 𝒞*. Let 𝑏* be the most frequently occurring bit in
{ℎ(𝑠ℓ, ̂︀𝑥(ℓ)) ⊕ 𝑣ℓ}ℓ∈[𝜆]. Output (xcom,ycom, 𝑏

*), where xcom is the resulting
state of 𝒞* and ycom = (𝜃, ̂︀𝜃, ̂︀𝑥).

We now prove that ℰ𝒞* is a secure extractor; for space reasons, a full definition
of extractability in the quantum setting is in the supplementary materials (Def-
inition 3.3).

Hyb1. Define distribution Hyb1 identically to Real (the honest interaction), except
that in Step 2, for 𝑖 ∈ [2𝜆3], sequentially execute equivocal commitment sessions
using the equivocal simulator 𝒬𝑅*,com, as described in the extractor. In Step 4,
for every 𝑖 ∈ 𝑇 , open the 𝑖’th commitment to (̂︀𝜃𝑖, ̂︀𝑥𝑖) using 𝒬𝑅*,open, as described
in the extractor.

By the equivocal property of Commit, for any QPT distinguisher (𝒟*,𝜎),
there exists a negligible function 𝜈(·) such that⃒⃒⃒

Pr[𝒟*(𝜎,Hyb1) = 1]− Pr[𝒟*(𝜎,Hyb0) = 1]
⃒⃒⃒

= 𝜈(𝜆).

Hyb2. This is identical to Hyb1, except that the verifier measures qubits of |𝑥⟩𝜃
only after obtaining a description of the set 𝑇 , and only measures the qubits
𝑖 ∈ [𝑇 ]. The output of this experiment is identical to Hyb1, therefore for any
QPT distinguisher (𝒟*,𝜎),

Pr[𝒟*(𝜎,Hyb3) = 1] = Pr[𝒟*(𝜎,Hyb2) = 1].

Moreover, the only difference between Hyb2 and Ideal is that Ideal outputs
FAIL when the message 𝑏 opened by 𝒞* is not ⊥ and differs from the one extracted
by ℰ𝒞* . Therefore, to derive a contradiction it will suffice to prove that there
exists a negligible function 𝜈(·) such that

Pr[FAIL|Ideal] = 𝜈(𝜆).

Consider any sender 𝒞* that produces a committer state xcom and then de-
commits to message 𝑏′ using strings (𝑦1, . . . , 𝑦𝜆) during the decommit phase.
Let 𝑇 ′ ⊆ [𝜆] denote the set of all indices ℓ ∈ [𝜆] such that the corresponding
𝑥(ℓ) ̸= 𝑣ℓ, where ̂︀𝑥(ℓ) denotes the values obtained by the extractor in Step 6.
Then we have the following claim.

Claim. There exists a negligible function 𝜈(·) such that

Pr[|𝑇 ′| > 𝜆/2] = 𝜈(𝜆)

where the probability is over the randomness of the extractor.

Proof. For every ℓ ∈ [𝜆], we have that (over the randomness of the extractor):

Pr
[︁
ℛopen(ycom) outputs ⊥ in ⟨𝒞*

open(xcom),ℛopen(ycom)⟩
⃒⃒⃒
𝑥(ℓ) ̸= ̂︀𝑥(ℓ)

]︁
≥ 1

2 .
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Indeed, the receiver will reject if for some position 𝑖 for which 𝑥(ℓ) ̸= ̂︀𝑥(ℓ), it holds
that 𝜃𝑖 = ̂︀𝜃𝑖. Since ̂︀𝜃 was sampled uniformly at random, this will occur for a single
𝑖 with independent probability 1/2. This implies that Pr[|𝑇 ′| > 𝜆/2] ≤ 1

2𝜆/2 , and
the claim follows.

By construction of ℰ𝒞* , Pr[FAIL|Ideal] < Pr[|𝑇 ′| > 𝜆/2], and therefore it fol-
lows that there exists a negligble function 𝜈(·) such that

Pr[FAIL|Ideal] = 𝜈(𝜆).

The proof of that the extractable commitment scheme described in Fig. 3 is
statistically hiding follows readily from quantum sampling techniques developed
by [8], and is deferred to the supplementary materials.

6 Quantum Oblivious Transfer from Extractable and
Equivocal Commitments

6.1 Definitions for Oblivious Transfer with Quantum
Communication

An oblivious transfer with quantum communication is a protocol between a
quantum interactive sender 𝒮 and a quantum interactive receiver ℛ, where the
sender 𝒮 has input 𝑚0,𝑚1 ∈ {0, 1}𝜆 and the receiver ℛ has input 𝑏 ∈ {0, 1}.
After interaction the sender outputs (𝑚0,𝑚1) and the receiver outputs (𝑏,𝑚𝑏).

Let ℱ(·, ·) be the following functionality. ℱ(𝑏, ·) takes as input either (𝑚0,𝑚1)
or abort from the sender, returns end to the sender, and outputs𝑚𝑏 to the receiver
in the non-abort case and ⊥ in the abort case. ℱ(·, (𝑚0,𝑚1)) takes as input either
𝑏 or abort from the receiver, returns 𝑚𝑏 to the receiver, and returns end to the
sender in the non-abort case, and returns ⊥ to the sender in the abort case.

Definition 1. We let ⟨𝑆(𝑚0,𝑚1), 𝑅(𝑏)⟩ denote an execution of the OT protocol
with sender input (𝑚0,𝑚1) and receiver input bit 𝑏. We denote by 𝜌out,𝑆*⟨𝑆*(𝜌), 𝑅(𝑏)⟩
and OUT𝑅⟨𝑆*(𝜌), 𝑅(𝑏)⟩ the final state of a non-uniform malicious sender 𝑆*(𝜌)
and the output of the receiver 𝑅(𝑏) at the end of an interaction (leaving the index-
ing by 𝜆 implicit). We denote by 𝜌out,𝑅*⟨𝑆(𝑚0,𝑚1), 𝑅*(𝜌)⟩ and OUT𝑆⟨𝑆(𝑚0,𝑚1), 𝑅*(𝜌)⟩
the final state of a non-uniform malicious receiver 𝑅*(𝜌) and the output of the
sender 𝑆(𝑚0,𝑚1) at the end of an interaction. We require OT to satisfy the
following security properties:

– Receiver Security. For every receiver bit 𝑏 ∈ {0, 1}, every QPT non-
uniform malicious sender 𝑆*(𝜌), and QPT non-uniform distinguisher 𝐷*(𝜎, ·),
where 𝜌 and 𝜎 may be entangled, there exists a simulator Sim𝑆* such that
the following holds. Sim𝑆*(𝜌) sends inputs (𝑚0,𝑚1) or abort to the ideal
functionality ℱOT(𝑏, ·), whose output to the receiver is denoted by OUT𝑅.
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Sim𝑆*(𝜌) also outputs a final state 𝜌Sim,out,𝑆* such that⃒⃒⃒⃒
Pr

[︀
𝐷* (︀

𝜎,
(︀
𝜌Sim,out,𝑆* ,OUT𝑅

)︀)︀
= 1

]︀
− Pr

[︀
𝐷* (︀

𝜎,
(︀
𝜌out,𝑆*⟨𝑆*(𝜌), 𝑅(𝑏)⟩,OUT𝑅⟨𝑆*(𝜌), 𝑅(𝑏)⟩

)︀)︀
= 1

]︀ ⃒⃒⃒⃒
= negl(𝜆).

– Sender Security. For every pair of sender inputs (𝑚0,𝑚1), every QPT
non-uniform malicious receiver 𝑅*(𝜌), and QPT non-uniform distinguisher
𝐷*(𝜎, ·), where 𝜌 and 𝜎 may be entangled, there exists a simulator Sim𝑅*

such that the following holds. Sim𝑅*(𝜌) sends bit 𝑏 or abort to the ideal
functionality ℱOT(𝑚0,𝑚1, ·), whose output to the sender is denoted by OUT𝑆.
Sim𝑅*(𝜌) also outputs a final state 𝜌Sim,out,𝑅* such that⃒⃒⃒⃒
Pr

[︀
𝐷* (︀

𝜎,
(︀
𝜌Sim,out,𝑅* ,OUT𝑆

)︀)︀
= 1

]︀
− Pr

[︀
𝐷* (︀

𝜎,
(︀
𝜌out,𝑅*⟨𝑆(𝑚0,𝑚1), 𝑅*(𝜌)⟩,OUT𝑆⟨𝑆(𝑚0,𝑚1), 𝑅*(𝜌)⟩

)︀)︀
= 1

]︀ ⃒⃒⃒⃒
= negl(𝜆).

6.2 Our Construction

We construct simulation-secure quantum oblivious transfer by making use of the
following building blocks.

– Let (EECommit,EEDecommit) denote any quantum bit commitment scheme
satisfying extractability and equivocality. Such a commitment scheme may
be obtained by applying the compiler from Section 4 to the extractable
commitment constructed in Section 5.

– Let ℎ : {0, 1}𝑘(𝜆)×𝒳 → {0, 1}𝜆 be a universal hash with seed length 𝑘(𝜆) =
poly(𝜆) and domain 𝒳 the set of all binary strings of length at most 8𝜆.

Our QOT protocol is described in Protocol 4, which is essentially the [11]
protocol instantiated with our extractable and equivocal commitment scheme.

Theorem 3. The protocol in Figure 4 is a simulation-secure QOT protocol
whenever (EECommit,EEDecommit) is instantiated with a quantum bit commit-
ment satisfying extractability and equivocality.

We prove that the resulting QOT protocol satisfies standard simulation-based
notions of receiver and sender security.

The proof of sender security follows readily from quantum sampling tech-
niques developed by [8], and is deferred to the full version.

6.3 Receiver Security

Consider any adversarial sender 𝑆* with advice 𝜌. The simulator Sim𝑆*(𝜌) is
constructed as follows.
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Protocol 4

Sender 𝑆 Input: Messages 𝑚0, 𝑚1 ∈ {0, 1}𝜆 × {0, 1}𝜆

Receiver 𝑅 Input: Bit 𝑏 ∈ {0, 1}

The Protocol:

1. 𝑆 chooses 𝑥← {0, 1}16𝜆 and 𝜃 ← {+,×}16𝜆 and sends |𝑥⟩𝜃 to 𝑅.
2. 𝑅 chooses ̂︀𝜃 ← {+,×}16𝜆 and obtains ̂︀𝑥 ∈ {0, 1}16𝜆 by measuring |𝑥⟩𝜃 in basiŝ︀𝜃. Then, 𝑆 and 𝑅 execute 16𝜆 sessions of EECommit sequentially with 𝑅 acting

as committer and 𝑆 as receiver. In session 𝑖, 𝑅 commits to the bits ̂︀𝜃𝑖, ̂︀𝑥𝑖.
3. 𝑆 sends a random test subset 𝑇 ⊂ [16𝜆] of size 8𝜆 to 𝑅.
4. For each 𝑖 ∈ 𝑇 , 𝑅 and 𝑆 sequentially execute the 𝑖’th EEDecommit, after which

𝑆 receives the opened bits ̂︀𝜃𝑖, ̂︀𝑥𝑖.
5. 𝑆 checks that 𝑥𝑖 = ̂︀𝑥𝑖 whenever 𝜃𝑖 = ̂︀𝜃𝑖. If all tests pass, 𝑆 accepts, otherwise,

𝑆 rejects and aborts.
6. The tested positions are discarded by both parties: 𝑆 and 𝑅 restrict 𝑥 and 𝜃,

respectively ̂︀𝑥 and ̂︀𝜃, to the 8𝜆 indices 𝑖 ∈ 𝑇 . 𝑆 sends 𝜃 to 𝑅.
7. 𝑅 partitions the positions of 𝑇 into two parts: the “good” subset 𝐼𝑏 = {𝑖 : 𝜃𝑖 =̂︀𝜃𝑖} and the “bad” subset 𝐼1−𝑏 = {𝑖 : 𝜃𝑖 ̸= ̂︀𝜃𝑖}. 𝑅 sends (𝐼0, 𝐼1) to 𝑆.
8. 𝑆 samples seeds 𝑠0, 𝑠1 ← {0, 1}𝑘(𝜆) and sends

(𝑠0, ℎ(𝑠0, 𝑥0)⊕𝑚0, 𝑠1, ℎ(𝑠1, 𝑥1)⊕𝑚1), where 𝑥0 is 𝑥 restricted to the
set of indices 𝐼0 and 𝑥1 is 𝑥 restricted to the set of indices 𝐼1.

9. 𝑅 decrypts 𝑠𝑏 using ̂︀𝑥𝑏, the string ̂︀𝑥 restricted to the set of indices 𝐼𝑏.

Fig. 4. Quantum Oblivious Transfer.

1. Run the first message algorithm of 𝑆* on input 𝜌 to obtain message 𝜓.
2. Execute 16𝜆 sequential sessions of EECommit. In each session, run the equiv-

ocator 𝒬ℛ*,com, where ℛ* denotes the portion of 𝑆* that participates as
receiver in the 𝑖𝑡ℎ sequential EECommit session.

3. Obtain test subset 𝑇 of size 8𝜆 from 𝑆*.
4. For each 𝑖 ∈ 𝑇 , sample ̂︀𝜃𝑖 ← {+,×}. Obtain ̂︀𝑥𝑖 by measuring the 𝑖𝑡ℎ qubit

of 𝜓 in basis ̂︀𝜃𝑖. For each 𝑖 ∈ 𝑇 , sequentially execute the equivocal simulator
𝒬ℛ*,open on input (̂︀𝜃𝑖, ̂︀𝑥𝑖) and the state obtained from 𝒬ℛ*,com.

5. If 𝑆* continues, discard positions indexed by 𝑇 . Obtain 𝜃𝑖 for 𝑖 ∈ 𝑇 from
𝑆*, and compute 𝑥𝑖 for 𝑖 ∈ 𝑇 by measuring the 𝑖𝑡ℎ qubit of 𝜓 in basis 𝜃𝑖.

6. For every 𝑖 ∈ 𝑇 , sample bit 𝑑𝑖 ← {0, 1}. Partition the set 𝑇 into two subsets
(𝐼0, 𝐼1), where for every 𝑖 ∈ 𝑇 , place 𝑖 ∈ 𝐼0 if 𝑑 = 0 and otherwise place
𝑖 ∈ 𝐼1. Send (𝐼0, 𝐼1) to 𝑆.

7. Obtain (𝑦0, 𝑦1) from 𝑆. Set 𝑥0 to be 𝑥 restricted to the set of indices 𝐼0 and
𝑥1 to be 𝑥 restricted to the set of indices 𝐼1. For 𝑏 ∈ {0, 1}, parse 𝑦𝑏 = (𝑠𝑏, 𝑡𝑏)
and compute 𝑚𝑏 = 𝑡𝑏 ⊕ ℎ(𝑠𝑏, 𝑥𝑏).
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8. If 𝑆* aborts anywhere in the process, send abort to the ideal functionality.
Otherwise, send (𝑚0,𝑚1) to the ideal functionality. Output the final state
of 𝑆*.

Next, we establish receiver security according to Definition 1. Towards a
contradiction, suppose there exists a bit 𝑏 ∈ {0, 1}, a non-uniform QPT sender
(𝑆*,𝜌), a non-uniform QPT distinguisher (𝐷*,𝜎), and polynomial poly(·) s.t.⃒⃒⃒

Pr
[︀
𝐷* (︀

𝜎,
(︀
𝜌Sim,out,𝑆* ,OUT𝑅

)︀)︀
= 1

]︀
− Pr

[︀
𝐷* (︀

𝜎,
(︀
𝜌out,𝑆*⟨𝑆*(𝜌), 𝑅(𝑏)⟩,OUT𝑅⟨𝑆*(𝜌), 𝑅(𝑏)⟩

)︀)︀
= 1

]︀ ⃒⃒⃒
≥ 1

poly(𝜆) .

Fix any such 𝑏, sender (𝑆*,𝜌) and distinguisher (𝐷*,𝜎). We derive a contradic-
tion via an intermediate hybrid experiment, defined as follows with respect to
bit 𝑏 and sender (𝑆*,𝜌).

Hyb. In this hybrid, we generate the QOT receiver commitments via the equiv-
ocal simulator 𝒬ℛ* (where ℛ* is derived from the malicious QOT sender 𝑆*),
and otherwise follow the honest QOT receiver’s algorithm.

1. Run the first message algorithm of 𝑆* on input 𝜌 to obtain message 𝜓.
2. Choose ̂︀𝜃 ← {+,×}16𝜆 and obtain ̂︀𝑥 ∈ {0, 1}16𝜆 by measuring 𝜓 in basiŝ︀𝜃. Execute 16𝜆 sequential sessions of EECommit. In each session, run the

equivocator 𝒬ℛ*,com, where ℛ* denotes the portion of 𝑆* that participates
as receiver in the 𝑖𝑡ℎ sequential EECommit session.

3. Obtain test subset 𝑇 of size 8𝜆 from 𝑆*.
4. For each 𝑖 ∈ 𝑇 , sequentially execute the equivocal simulator 𝒬ℛ*,open on

input ̂︀𝜃𝑖, ̂︀𝑥𝑖 and the state obtained from 𝒬ℛ*,com.
5. If 𝑆* continues, discard positions indexed by 𝑇 . Obtain 𝜃𝑖 for 𝑖 ∈ 𝑇 from 𝑆*.
6. Partition the set 𝑇 into two subsets: the “good” subset 𝐼𝑏 = {𝑖 : 𝜃𝑖 = ̂︀𝜃𝑖}

and the “bad” subset 𝐼1−𝑏 = {𝑖 : 𝜃𝑖 ̸= ̂︀𝜃𝑖}. Send (𝐼0, 𝐼1) to 𝑆.
7. Obtain (𝑦0, 𝑦1) from 𝑆. Set 𝑥𝑏 to be ̂︀𝑥 restricted to the set of indices 𝐼𝑏, and

compute and set 𝑚𝑏 = 𝑡𝑏 ⊕ ℎ(𝑠𝑏, 𝑥𝑏). If 𝑆* aborts anywhere in the process,
let ⊥ be the output of the receiver, otherwise let 𝑚𝑏 be the output of the
receiver.

The output of Hyb is the joint distribution of the final state of 𝑆* and the output
of the receiver. Receiver security then follows from the following two claims.

Claim. Pr
[︀
𝐷* (︀

𝜎,
(︀
𝜌Sim,out,𝑆* ,OUT𝑅

)︀)︀
= 1

]︀
≡ Pr [𝐷*(𝜎,Hyb) = 1] .

Proof. The only differences in the simulated distribution are (1) that measure-
ments of 𝑆*’s initial message 𝜓 are delayed (which cannot be noticed by 𝑆*),
and (2) a syntactic difference in that the ideal functionality is queried to produce
the receiver’s output.
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Claim. There exists a negligible function 𝜈(·) such that⃒⃒⃒
Pr[𝐷*(𝜎,Hyb) = 1]−Pr

[︀
𝐷* (︀

𝜎,
(︀
𝜌out,𝑆*⟨𝑆*(𝜌), 𝑅(𝑏)⟩,OUT𝑅⟨𝑆*(𝜌), 𝑅(𝑏)⟩

)︀)︀
= 1

]︀ ⃒⃒⃒
= 𝜈(𝜆).

Proof. The only difference between the two distributions is that in the first,
the receiver generates commitments according to the honest commit algorithms
of EECommit while in the second, commitments in step 2 are generated via
the equivocal simulator 𝒬ℛ* of EECommit. Therefore, this claim follows by the
equivocality of (EECommit,EEDecommit) .

Finally, Theorems 1, Theorem 2, and Theorem 3 give the following.

Corollary 1. Quantum oblivious transfer (QOT) satisfying Definition 1 can be
based on black-box use of statistically binding bit commitments, or on black-box
use of quantum-hard one-way functions.
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