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Abstract. In this work we resolve the open problem raised by Prab-
hakaran and Rosulek at CRYPTO 2007, and present the first anonymous,
rerandomizable, Replayable-CCA (RCCA) secure public-key encryption
scheme. This solution opens the door to numerous privacy-oriented ap-
plications with a highly desired RCCA security level. At the core of our
construction is a non-trivial extension of smooth projective hash func-
tions (Cramer and Shoup, EUROCRYPT 2002), and a modular generic
framework developed for constructing rerandomizable RCCA-secure en-
cryption schemes with receiver-anonymity. The framework gives an en-
hanced abstraction of the original Prabhakaran and Rosulek’s scheme
(which was the first construction of rerandomizable RCCA-secure en-
cryption in the standard model), where the most crucial enhancement is
the first realization of the desirable property of receiver-anonymity, es-
sential to privacy settings. It also serves as a conceptually more intuitive
and generic understanding of RCCA security, which leads, for example,
to new implementations of the notion. Finally, note that (since CCA se-
curity is not applicable to the privacy applications motivating our work)
the concrete results and the conceptual advancement presented here,
seem to substantially expand the power and relevance of the notion of
rerandomizable RCCA-secure encryption.

Keywords: RCCA security · Receiver-anonymity · Smooth projective
hash function.

1 Introduction

RCCA security. Security against adaptive chosen-ciphertext attacks (CCA)
is widely considered as a de facto security standard for public-key encryption



2 Y. Wang et al.

(PKE). However, it is evidenced that for some practical purposes, a somewhat
weaker security notion than CCA security is already sufficient [16,25,1]. To this
end, Canetti et al. [5] introduced the notion of Replayable-CCA (RCCA) security,
which is essentially the same as CCA security, except that no guarantees are
given against adversaries with the capability of malleating a ciphertext into a new
one of the same plaintext. Such a relaxation endows PKE with desirable features
such as rerandomizable RCCA (Rand-RCCA) security which was proposed by
Canetti et al. [5] and later formalized by Groth [14]. This notion turns out to
have numerous practical applications, such as: cryptographic reverse firewalls
[18,9,12], mixnets [13,20] and controlled-malleable NIZK [11].

Constructing Rand-RCCA-secure PKE has been generally considered a diffi-
cult problem, and was posed as an open problem in [5]. The difficulty is mainly
due to the fact that RCCA security and rerandomizability are seemingly incom-
patible in some sense. In particular, the construction has to be almost CCA
secure while at the same time has special mathematical structure for realizing
rerandomizability. A notable construction was by Prabhakaran and Rosulek [22]
at CRYPTO 2007 (hereafter referred to as PR scheme) which is the first perfect
Rand-RCCA-secure PKE based on the DDH assumption in the standard model.

Receiver-anonymity in the RCCA setting. In [22], Prabhakaran and Ro-
sulek further defined a new notion called RCCA receiver-anonymity which is
similar to the notion of key-privacy introduced by Bellare et al. in [2] but in
the RCCA setting. For an RCCA receiver-anonymous encryption scheme, the
generated ciphertext should not tell the adversary any information about the
underlying public key. Such a property turns out to be essential in privacy-
oriented applications where ciphertext-rerandomizability, adaptive security (i.e.,
permitting strong adversary who may probe the system with ciphertexts), and
receiver-anonymity are required simultaneously.

A typical example—given by Prabhakaran and Rosulek [22]—is the applica-
tion of rerandomizable encryption in mixnets where receiver-anonymity is indis-
pensable. More precisely, consider an anonymous communication (AC) protocol
based on universal mixnet [13] where a set of message relays (called mixnodes or
mixes) receive a batch of encrypted messages, rerandomize and randomly per-
mute them, and send them on their way forward. Unfortunately, the requirement
of ciphertext-rerandomizability, while enabling unlinkability of multiple cipher-
texts in terms of their contents, contradicts the desirable strong CCA security.
Thus, as it turned out, only rerandomizable CPA-secure encryption schemes are
used in previous universal mixnet-based AC protocols [13]. To strengthen the se-
curity to the adaptive one (i.e., allowing an adversary of the network to attempt
sending ciphertexts of its own to the network as part of its attack), RCCA secu-
rity is the alternative as it reconciles the required rerandomizability and adaptive
security (this active attacker, in fact, is what most earlier works on anonymity
are not protected against due to the encryption being CPA-secure only). How-
ever, as pointed out by Prabhakaran and Rosulek, without receiver-anonymity,
the attacker might still be able to correlate the ciphertexts for the same re-
cipient (i.e., sender-receiver relationships are not broken by the mixing!). This
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example application demonstrates that anonymous Rand-RCCA-secure PKE is
meaningful to strengthening the security of universal mixnet-based AC proto-
col on the one hand, and to allowing it to achieve anonymity (breaking com-
pletely sender-receiver relationship) at the same time. More broadly, for various
other privacy-oriented applications [28,23,19,24], RCCA receiver-anonymity is
also desirable for privacy protection while withstanding strong adversary with
decryption query capability (see the full version [29] for further motivating ap-
plications).

The open problem. Unfortunately, the PR scheme [22] does not achieve receiver-
anonymity, and therefore, how to construct an anonymous Rand-RCCA-secure
PKE to support the above mentioned applications under strong adversary was
left as an explicit open problem by Prabhakaran and Rosulek in [22]:

“Adding anonymity brings out the power of rerandomizability and yields a
potent cryptographic primitive. We note that our scheme does not achieve
this definition of anonymity, and leave it as an interesting open problem.”

Somewhat surprisingly, in spite of further developments in constructing Rand-
RCCA encryption throughout many years [14,13,22,6,17,11,10], the above open
problem remains unsolved to date. The main technical challenge of achieving
RCCA receiver-anonymity arises from the fact that different from the typical
CCA game, the decryption oracle in the RCCA game would output “replay”
if the query decryption result equals to either of the challenge plaintexts. Such
a relaxation, in fact, gives the adversary more power and consequently raises
the difficulty to achieve receiver-anonymity in the RCCA setting. Specifically,
the adversary can guess the underlying public key, re-encrypt the challenge ci-
phertext and verify its guess via querying the decryption oracle. Thus, to defend
against this attack, it is required that the rerandomization of ciphertext should
not involve the public key. Such a feature was originally referred to as “univer-
sal rerandomization” by Golle et al. [13]. However, achieving receiver-anonymity
is more challenging than realizing universal rerandomizability, since there may
exist other ways allowing the adversary to rerandomize a ciphertext using the
public key. In other words, receiver-anonymity is strictly stronger than universal
rerandomizability. An example is the PR scheme which is universally rerandom-
izable but not receiver-anonymous (see Section 2 for the detailed analysis).

Motivated by the aforementioned state of affairs and the requirement of
receiver-anonymity for privacy-oriented applications, our main goal in this work
is to resolve the above challenging problem of achieving RCCA receiver-anonymity.
More specifically, we ask whether it is possible to achieve receiver-anonymity
in the RCCA setting; and if the answer is positive, how to attempt a solution
which is as generic as possible. Our second question is motivated by the fact
that a generic paradigm would enable a better understanding of the underlying
key ideas and more diversified constructions of anonymous Rand-RCCA-secure
encryption in a conceptually clear and modular way. Also, a framework using
abstract building blocks enables more concrete instantiations from various as-
sumptions, leading to better security (as will be demonstrated by our additional
results below).
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Our Results. We resolve the Prabhakaran and Rosulek’s open problem in this
work. We design a modular framework for constructing anonymous Rand-RCCA-
secure PKE via an extension of the notion of smooth projective hash functions
by Cramer and Shoup [8]. Our contributions can be summarized as follows:

– We formalize a novel extension of smooth projective hash function with
various types of rerandomizability (Re-SPHF), and redefine the property of
smoothness which is crucial to generally realize Rand-RCCA security with
receiver-anonymity;

– We design a framework for constructing anonymous Rand-RCCA-secure
PKE from Re-SPHFs, and rigorously prove its RCCA security and receiver-
anonymity. These turn out to provide a conceptually intuitive understanding
of RCCA security and receiver-anonymity;

– We provide the first anonymous Rand-RCCA-Secure PKE scheme from k-
linear (k-Lin) assumption, which—putting anonymity aside—also improves
the PR scheme with its more general hardness assumption.

Remark. It is worth noting that in [22], Prabhakaran and Rosulek also pointed
out the potential of generalizing their scheme by following the Cramer-Shoup
paradigm [8] (hereafter referred to as CS-paradigm), but they left such an in-
vestigation open as well. In fact, as we will illustrate in this work, our proposed
framework can, in fact, be viewed as an abstraction of a modified PR scheme.
Thus, while mainly motivated by achieving a solution to the RCCA receiver-
anonymity, our work also closes Prabhakaran and Rosulek’s second open ques-
tion of generalization via SPHFs.

2 Technical Overview and Related Work

First, let us explain why the PR scheme does not satisfy receiver-anonymity. As a
countermeasure, we introduce a concrete approach to achieving RCCA receiver-
anonymity based on the PR scheme. To generalize our proposed approach, fol-
lowing the SPHF-based CS-paradigm [8], we then define an extension of SPHF
that could well explain the modified PR scheme and its security. To this end,
we successfully design a general framework for anonymous, Rand-RCCA-secure
PKE, which can, in turn, be instantiated based on different assumptions.

Why the PR scheme is not receiver-anonymous? We start by reviewing
the PR scheme and its core idea leading to the RCCA security. The crucial idea
toward achieving this goal is using two “strands” of Cramer-Shoup ciphertexts
[8] which can be “uniquely” recombined with each other for rerandomization
without changing the underlying plaintext.

Overview of the PR scheme. Let G, G be two cyclic groups of prime orders p, q

where p = 2q+1 where G is also a subgroup of Z∗p. Let g and g be generators of G
and G respectively, [a] denotes vector (ga1 , · · · , gan) for a = (a1, · · · , an) ∈ Znp ,
and [a] denotes vector (ga1 , · · · , gan) for a = (a1, · · · , an) ∈ Znq . The ciphertext
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of the PR scheme is

ζ :=
(

[u(x + z)] ,M ·
[
b>x

]
,
[
α>x

]
︸ ︷︷ ︸

C1: message-carrying strand

, [uy] ,
[
b>y

]
,
[
α>y

]
︸ ︷︷ ︸
C2: rerandomization strand

, %
)

% :=
(

[x] , u ·
[
b
>
x
]
,
[
c>x

]
︸ ︷︷ ︸
C3: mask-carrying strand

, [y] ,
[
b
>
y
]
,
[
c>y

]
︸ ︷︷ ︸
C4: rerandomization strand

) (1)

where u ∈ G, given fixed g ∈ Z4
p and g ∈ Z2

q, x,y, z,b, c,d ∈ Z4
p with x = xg,

y = yg for x, y ∈ Zp and z 6= zg for any z ∈ Zp, x,y,b, c ∈ Z2
q with x = xg,

y = yg for x, y ∈ Zq, α = c + τd, τ = Ψ(M) and Ψ : G → Zp is a collision-
resistant hash function. % is the ciphertext of random mask u under a malleable
(and also rerandomizable) encryption scheme (see Section 3.1). At the high level,
the strand C1 carries the message while the strand C2 is to help rerandomize C1

without public key. The encrypted mask u shared between C1 and C2 disables
the adversary to mix together strands from two different ciphertexts (of the same
plaintext) to obtain a valid ciphertext. The exponents of strand C1 are perturbed
by an additional vector z to restrict the manner of recombining the two strands.
Consequently, to rerandomize ciphertext ζ, one randomly picks υ ∈ G, s, t ∈ Z∗p,
s, t ∈ Z∗q and computes

C′1 :=
(
[υ · u(x + z) + sυ · uy] , M ·

[
b>x

]
·
[
sb>y

]
,
[
α>x

]
·
[
sα>y

])
,

C′3 :=
(

[x + s · y] , υ · u ·
[
b
>
x
]
·
[
sb
>
y
]
,
[
c>x

]
·
[
sc>y

])
,

C′2 :=
(
[tυ · uy] ,

[
tb>y

]
,
[
tα>y

])
and C′4 :=

([
t · y

]
,
[
tb
>
y
]
,
[
tc>y

])
.

Partial rerandomizability breaking the receiver-anonymity. It is shown in [22] that
the above is the only valid way for full rerandomization of ciphertext. However,
one can note that strands C3 and C4 can also be rerandomized with public keys[
b
>

g
]

and
[
c>g

]
as follows.

C′3 :=
(

[x + s · g] , u ·
[
b
>
x
]
·
[
sb
>
g
]
,
[
c>x

]
·
[
sc>g

])
,

C′4 :=
([

y + t · g
]
,
[
b
>
y
]
·
[
tb
>
g
]
,
[
c>y

]
·
[
tc>g

])
,

where s, t ∈ Z∗q . We now demonstrate why the PR scheme is not RCCA receiver-
anonymous. Recalling the game of RCCA receiver-anonymity in Fig. 2, the ad-
versary has access to a guarded decryption oracle which on input ζ, first com-
putes M0 = Dec(SK0, ζ) and M1 = Dec(SK1, ζ), then checks if M ∈ {M0,M1}.
If so, it returns replay, otherwise it returns (M0,M1). As for the PR scheme,
adversary could obtain a ciphertext ζ∗0 by rerandomizing strands C3 and C4 in
the challenge ciphertext ζ∗ with public key PK0 in the above way. If b = 0, ζ∗0
is a valid ciphertext of M ; otherwise, ζ∗0 is invalid. With the response of the
guarded decryption oracle, the adversary is able to distinguish these two cases.

Our concrete treatment of the PR scheme for RCCA receiver-anonymity.
To achieve RCCA receiver-anonymity, we have to disable the rerandomization
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of strands C3 and C4 employing the public key. Note that the rerandomization
of strands C1 and C2 is restricted by mask u and vector z. If we also apply this
technique to C3 and C4, extra strands are required to encrypt the mask in C3

and C4, which would incur the partial rerandomization of ciphertext employing
the public key again. To bypass this problem, we move the masks and additional
vectors to the validity checking components of strands. Since the validity check-
ing part contains only one component, an additional component is appended
to each strand for perturbation on the validity checking part. Concretely, the
ciphertext of our variant is:

ζ :=
(

[x] ,M ·
[
b>x

]
,
[
uα>x†

]
,
[
uβ>x‡

]
︸ ︷︷ ︸

C1: message-carrying strand

, [y] ,
[
b>y

]
,
[
uα>y

]
,
[
uβ>y

]
︸ ︷︷ ︸

C2: rerandomization strand

, %
)
,

% :=
(

[x] , u ·
[
b
>
x
]
,
[
uc>x†

]
,
[
ud
>
x‡
]

︸ ︷︷ ︸
C3: mask-carrying strand

, [y] ,
[
b
>
y
]
,
[
uc>y

]
,
[
ud
>
y
]

︸ ︷︷ ︸
C4: rerandomization strand

)
(2)

where u ∈ G, x† = x + z1g, x‡ = x + z2g for z1, z2 ∈ Z∗p with z1 6= z2,

x† = x + z1g, x‡ = x + z2g for z1, z2 ∈ Z∗q with z1 6= z2, c,d, e, f ∈ Z2
p,

α = c + md, β = e + mf , m = Ψ(M) and Ψ : G → Zp is a collision-resistant
hash function. The rerandomization of strands C1, C2 is still restricted by mask u
and vector (z1, z2). As for strands C3, C4, their rerandomization can be restricted
by mask u and vector (z1, z2), since u is placed on validity checking part.

We stress that the above modifications are carefully conducted to preserve
the RCCA security of the encryption scheme. First of all, extra secret keys (e.g.,
e, f and d) are introduced to compute the additional component in validity
checking part such that, given a valid ciphertext ζ, the attacker cannot infer a
new validity checking part for particular [x] or [x] (that cannot be obtained by
re-encrypting ζ). Secondly, the usage of mask u in strands C3, C4 is safe and
sound. Taking component

[
uc>x†

]
as example, it is equivalent to the value of[

(u mod q)c>x†
]
, as mask u is an integer in Z∗p. Since the modular operation

satisfies the homomorphism property, the re-encryption on strands C3, C4 main-
tains correctness. Note that a component in the validity checking part actually
corresponds to two different masks u, u′ with u′ = u mod q. We remark that
this would not affect the RCCA security as long as the size of the modulus q is
large enough so that the attacker cannot guess the value of mask u trivially.

Generalization of our approach. Note that the ciphertext structure of our
above variant still shares some similarities with that of the PR scheme which is
essentially a double “strand” of Cramer-Shoup ciphertext. We turn to explore
whether it is possible to generalize our treatment following the CS-paradigm [8].

We start by recalling the CS-paradigm based on SPHF, and then seek to
extend the notion of SPHF to interpret our proposed variant and its security.

Recalling Cramer-Shoup paradigm from SPHFs. Smooth Projective Hash Func-
tion (SPHF) was originally proposed by Cramer and Shoup [8] for generally
constructing practical CCA-secure PKE. Roughly, SPHF is a family of hash
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functions H = (Hsk)sk∈K indexed by K that map the non-empty element set X
onto the hash value set Π. Each SPHF is associated with an NP-language L ⊂ X
where elements in L are computationally indistinguishable from those in X\L
(i.e., hard subset membership problem). For any x ∈ L, Hsk(x) could be effi-
ciently computed using either the hashing key sk ∈ K, i.e., Priv(sk, x) = Hsk(x)
(private evaluation mode), or the projection key pk = φ(sk) ∈ P with the witness
w ∈ W to the fact x ∈ L, i.e., Pub(pk, x, w) = Hsk(x) (public evaluation mode).
The notion of SPHF could be generalized to tag-based SPHF where a tag τ is also
taken as an auxiliary input by H(·),Priv and Pub. The CS-paradigm is based on

a Smooth1 SPHF = (H(·), φ,Priv,Pub) and a Smooth2 tag-based ŜPHF = (Ĥ(·), φ̂,

P̂riv, P̂ub). The public key is (pk, p̂k) = (φ(sk), φ̂(ŝk)) and the ciphertext is

ζ :=
(
x, M · Pub(pk, x, w), P̂ub(p̂k, x, w, τ)

)
=
(
x, M ·Hsk(x), Ĥŝk(x, τ)

)
,

where x ∈ L, w is the witness of x, τ = Ψ (x, M ·Hsk(x)) and Ψ is a collision-
resistant hash function. To make our later argument easier to follow, below we
first provide an overview of justification of CCA security from SPHF. Consider
the challenge ciphertext ζ∗ = (x∗, Mb · π∗, π̂∗) in the CCA security game.

1) Due to the hard subset membership problem, we can replace x∗ ∈ L in ζ∗

with x∗ ∈ X\L and compute π∗ = Priv(sk, x∗), π̂∗ = P̂riv(ŝk, x∗, τ∗).

2) By the Smooth2 property of tag-based ŜPHF, any “bad” ciphertext ζ including

x 6= x∗ ∈ X\L will be rejected by the decryption oracle as π̂ = Ĥŝk(x, τ) is

uniformly distributed, even conditioned on p̂k and π̂∗.
3) By the Smooth1 property of SPHF, π∗ in ζ∗ is uniformly distributed and thus

ζ∗ perfectly hides Mb, which yields the CCA security.

Generalization of our construction via newly extended SPHFs. As the first at-
tempt to generalize our variant, we abstract strands C1 and C2 in Eq. (2) using
the following SPHFs:

SPHF = (H(·), φ,Priv,Pub), ŜPHF = (Ĥ(·), φ̂, P̂riv, P̂ub), S̃PHF = (H̃(·), φ̃, P̃riv, P̃ub),

based on which C1 and C2 in our variant could be written as

C1 :=

(
[x], M ·Hsk([x]), Ĥŝk([x], τ)

)
, C2 :=

(
[y], Hsk([y]), H̃s̃k([y], τ)

)
, (3)

where tag τ = (u,m), hashing key ŝk = (c,d, e, f) and s̃k = ŝk. Note that
these SPHFs are defined on the same set X =

{
[a]
∣∣a ∈ Z2

p

}
with NP-language

L = {[rg]|r ∈ Zp} for g ∈ Z2
p. The rerandomization of C1 and C2 is defined as

C′1 =
(

[x + sy], M ·

Hsk([x])·(Hsk([y]))
s︷ ︸︸ ︷[

b>x
]
·
[
sb>y

]
,

(Ĥŝk
([x],τ))υ·(H̃s̃k

([y],τ))sυ︷ ︸︸ ︷[
υuα>x†

]
·
[
sυuα>y

]
,
[
υuβ>x‡

]
·
[
sυuβ>y

])

C′2 =
(

[ty] ,

(Hsk([y]))
t︷ ︸︸ ︷[

tb>y
]
,

(H̃s̃k
([y],τ))tυ︷ ︸︸ ︷[

tυ · uα>y
]
,
[
tυ · uβ>y

])
,
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where υ←$G, s, t←$Z∗p. The generalization of strand C3(C4) is similar to that of

C1(C2) and can be denoted by SPHFs defined on the same set X =
{

[a]
∣∣a ∈ Z2

q

}
with NP-language L = {[rg]|r ∈ Zq} for g ∈ Z2

q. The ciphertext rerandomization
in our variant could be classified with respect to SPHFs as follows.

– Self-rerandomization within same SPHF, e.g.,

(Hsk([x]), Hsk([y])) Hsk([x]) · (Hsk([y]))
s

– Pairwise-rerandomization between different SPHFs, e.g.,(
Ĥŝk([x], τ), H̃s̃k([y], τ)

)
 
(
Ĥŝk([x], τ)

)υ
·
(
H̃s̃k([y], τ)

)sυ
Motivated by these observations, we put forward the notion of rerandomizable

SPHF (Re-SPHF) which is a regular SPHF augmented with self- and pairwise-
rerandomizability. Specifically, based on the typical definition of SPHF, we for-
malize three extra algorithms namely RandX, RandT and RandH to capture both
cases of rerandomization. The correctness of ciphertext in our variant is guar-
anteed by the rerandomization correctness with respect to RandX, RandT and
RandH in Re-SPHF, while the perfect rerandomization of ciphertext is captured
by the notion of perfect rerandomization in Re-SPHFs.

Arguments of RCCA security with receiver-anonymity. Analogous to the classi-
fication of rerandomization, we redefine two types of smoothness for Re-SPHF
as below. Let CRX(x∗) denote the set of all rerandomization of x∗ obtained
via RandX, CRX(x∗1, x

∗
2) denote the set of all rerandomization of x∗1 obtained via

RandX with x∗2 and CRT(τ∗) denote the set of all rerandomization of τ∗ obtained

via RandT. Let
s≡ denote statistical indistinguishability between distributions.

– Controlled-Self-Rerandomizable Smoothness (CSR-Smooth). For any x∗ ∈ X ,
τ∗ ∈ T and (x, τ) ∈ X\L × T with x /∈ CRX(x∗) or τ /∈ CRT(τ∗),(

pk, Hsk(x
∗, τ∗), Hsk(x, τ)

)
s≡
(
pk, Hsk(x

∗, τ∗), π ←$Π
)
.

– Controlled-Pairwise-Rerandomizable Smoothness (CPR-Smooth). For any x∗1,
x∗2 ∈ X , τ∗ ∈ T and (x, τ) ∈ X\L × T with x /∈ CRX(x∗1, x

∗
2) or τ /∈ CRT(τ∗),(

p̂k, Ĥŝk(x
∗
1, τ
∗), H̃s̃k(x

∗
2, τ
∗), Ĥŝk(x, τ)

)
s≡
(
p̂k, Ĥŝk(x

∗
1, τ
∗), H̃s̃k(x

∗
2, τ
∗), π ←$ Π̂

)
,

where ŝk = s̃k. Also, we redefine two enhanced Smooth1 for Re-SPHF as below.
– Self-Twin 1-Smoothness (ST-Smooth1). For x1, x2←$X\L and τ ←$ T ,(

pk, Hsk(x1, τ) , Hsk(x2, τ)
)

s≡
(
pk, π1 ←$Π, π2 ←$Π

)
.

– Pairwise-Twin 1-Smoothness (PT-Smooth1). For x1, x2←$X\L and τ ←$ T ,(
p̂k, Ĥŝk(x1, τ) , H̃s̃k(x2, τ)

)
s≡
(
p̂k, π1 ←$ Π̂, π2 ←$ Π̃

)
.
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We now show how to realize RCCA security and receiver-anonymity with
these new properties. Consider a challenge ciphertext ζ∗ with words [x∗], [y∗] ∈ L
and [x∗], [y∗] ∈ L in the RCCA security game. Similar to the security justification
of CS-paradigm, below we provide the arguments to justify the RCCA security
of our variant.

1) Due to the hard subset membership problems on (X ,L) and (X ,L), the
challenge ciphertext ζ∗ generated by alternative encryption algorithm, where
[x∗], [y∗] ∈ L and [x∗], [y∗] ∈ L are replaced with non-words (i.e., [x∗], [y∗] ∈
X\L and [x∗], [y∗] ∈ X\L) and the corresponding hash values are computed
with hashing keys, is computationally indistinguishable from one generated
by original encryption algorithm.

2) Note that the Smooth2 property used for proving the CS-paradigm is not
satisfied here as the adversary may construct a valid ciphertext with at least
one non-word via rerandomizing ζ∗. Fortunately, the manner to rerandomize
ζ∗ in our variant is restricted by z1, z2, z1, z2, u and querying such a “valid”
rerandomization of ζ∗ will not leak information about private key. To the
end, a computationally unbounded decryption oracle with public key and
challenge ciphertext ζ∗ only will reject “bad” ciphertext ζ that includes
at least one non-word but is not a “valid” rerandomization of ζ∗, as the
corresponding hash values (e.g., H̃s̃k([y], τ) and Ĥŝk([x], τ)) in ciphertext ζ
are uniformly distributed by properties CSR-Smooth and CPR-Smooth.

3) By properties ST-Smooth1 and PT-Smooth1, all the hash values in ζ∗ are
uniformly distributed conditioned on public key, and Mb is perfectly hidden
in ζ∗, which yields the RCCA security of our variant.

Note that RCCA security guarantees the privacy of the underlying plaintext,
while RCCA receiver-anonymity captures the privacy of the public key. The jus-
tification for receiver-anonymity is indeed similar to the above arguments. In
particular, the decryption oracle also relies on CSR-Smooth and CPR-Smooth
properties to reject all the “bad” ciphertexts. In the end, the uniform distribu-
tions of all the hash values in ζ∗ imply the receiver-anonymity in RCCA setting.

Related Work. Here we illustrate several previous constructions of Rand-
RCCA-secure PKE and provide an efficiency comparison with our scheme, putting
aside the receiver-anonymity. Also, some related SPHFs variants will be given.

Non-anonymous constructions. Groth [14] presented a perfect Rand-RCCA-secure
scheme, where the ciphertext can be rerandomized into another one in an un-
linkable way, under the generic group model, and the ciphertext size expansion
is as large as the bit-length of the plaintext. Phan and Pointcheval [21] then
designed an efficient framework of RCCA-secure scheme, while Faonio and Fiore
[10] showed that the rerandomizability of its ElGamal-based instantiation in [20]
cannot resist any active attacks. Chase et al. [6] introduced a new way to con-
struct perfect Rand-RCCA-secure PKE from a malleable NIZK system, where
their construction has public verifiability property. Libert et al. [17] proposed a
new construction that improves on Chase et al.’s scheme but still suffers from
high computational costs and large ciphertext size (of 62 group elements) due
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Table 1: Comparison of Rand-RCCA-secure PKE schemes (k=2). |PK| and |CT | represent the num-
ber of elements in public key and ciphertext, where ` denotes the bit-length of plaintext. Here G and
G are standard DDH groups that satisfy certain requirements. G1,G2 and GT are groups in bilinear
pairing. Here E,E,E1, E2, ET denote the execution time of exponentiation on G,G,G1,G2,GT and
the time cost of pairing is P. “Std” refers to standard model, “GGM” refers to generic group model,
and “NPR” refers to non-programmable random oracle model. “Perfect” indicates perfect rerandom-
izability, “Universal” indicates that ciphertext rerandomization does not require the public key, and
“Anonymity” refers to RCCA receiver-anonymity.

PKE Groth04[14] PR07[22] LPQ17[17] FFHR19[11] FF20[10] Ours (k-Lin)

|PK| O(`)G 4G + 7G 11G1 + 16G2 7G1 + 7G2 + 2GT 11G 6G + 10G
|CT | O(`)G 8G + 12G 42G1 + 20G2 3G1 + 2G2 + GT 11G 12G + 12G
Enc O(`)E 8E + 14E 79E1 + 64E2 4E1 + 5E2 + 3ET + 5P 15E 12E + 16E

Dec O(`)E 8E + 24E 1E1 + 142P 8E1 + 4E2 + 4P 18E 18E + 18E

Rerand O(`)E 8E + 16E 48E1 + 24E2 6E1 + 7E2 + 3ET + 9P 11E 14E + 14E
Model GGM Std Std Std NPR Std

Assumption DDH DDH SXDH Dk-MDDH DDH k-Linear
Perfect X X X X × X

Universal × X × × × X
Anonymity × × × × × X

to the adoption of NIZK. Recently, Faonio et al. [11] gave a new construction of
perfect Rand-RCCA-secure PKE from Dk-MDDH assumption. The ciphertext
in their scheme (when k=1) is extremely short and consists of only 6 group el-
ements. In a most recent work, Faonio and Fiore [10] proposed a more efficient
Rand-RCCA-secure PKE with only weak rerandomizability, and where security
is justified in the random oracle model.

In Table 1, we compare our scheme with previous works, putting aside our ex-
clusive property of receiver-anonymity. Compared with the recent work of Faonio
et al. [11], our 2-Lin-based instantiation, although based on special groups which
are larger than a regular setting, does not involve any pairing computations.

SPHF variants. Variants of SPHF with new properties have also been proposed
in the literature [7,27,4,15,11]. Here we briefly introduce two works that are
closely related to our Re-SPHF. Wee [27] built the frameworks for construct-
ing PKE satisfying key-dependent message (KDM) security using SPHF with
homomorphic hash function. Faonio et al. [11] presented controlled-malleable
smooth-projective hash function (cmSPHF), an extension of malleable smooth-
projective hash function (mSPHF) by Chen et al. in [7] with respect to elements
and tags. However, the cmSPHF cannot support universal rerandomizability.

3 Preliminaries

Let n ∈ N denote the security parameter and negl(·) denote the negligible func-
tion. For x = (x1, · · · , xn) ∈ Znp and g ∈ G, [x] denotes vector (gx1 , · · · , gxn).
For set X , x←$X denotes that x is sampled uniformly from X at random. For
any randomized algorithm F , y←$F(x) denotes the random output of F .
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3.1 Public-Key Encryption (PKE)

A PKE scheme consists of algorithms (KGen,Enc,Dec): KGen(1n) takes as input
the security parameter 1n, and outputs the key pair (PK,SK); The encryption
algorithm Enc(PK,M) takes as input the public key PK and the plaintext M , and
outputs the ciphertext ζ; The decryption algorithm Dec(SK, ζ) takes as input
the secret key SK and the ciphertext ζ, and outputs the plaintext M or ⊥.

A PKE scheme should satisfy decryption correctness which captures the fact
that, for (PK,SK)←$KGen(1n), for any M ∈M (in valid message space),

Pr[Dec(SK, ζ) 6= M : ζ ←$Enc(PK,M)] ≤ negl(n) .

Below we provide the definitions of rerandomizable PKE. As mentioned
above, in this work, we are mainly interested in “universal rerandomization” that
does not require the public key, which is crucial to realize receiver-anonymity.
Therefore, we mainly follow the definitions given in [22].

Rerandomizable PKE. We say a PKE scheme is (universally) rerandomizable
if there exists algorithm Rerand that takes as input ciphertext ζ and outputs
a new ciphertext ζ ′; and for (PK,SK)←$KGen(1n), any (possibly malicious)
ciphertext ζ,

Pr[Dec(SK, ζ ′) 6= Dec(SK, ζ) : ζ ′←$Rerand(ζ)] ≤ negl(n) .

Definition 1 (Perfectly Rerandomizable PKE [11]). Assume PKE = (KGen,
Enc,Dec,Rerand) is rerandomizable. We say PKE is perfectly rerandomizable if
following properties are satisfied.

– For (PK,SK)←$KGen(1n), any M ∈ M and any (honestly generated) ci-
phertext ζ in the support of Enc(PK,M), the distribution of Rerand(ζ) is
identical to that of Enc(PK,M).

– For (PK,SK)←$KGen(1n) and any (possibly unbounded) adversary A, given
PK, the probability of A generating a ciphertext ζ such that Dec(SK, ζ) =
M 6= ⊥ for some M and ζ is not in the range of Enc(PK,M) is negligible.

Coupled with the second property, called the tightness of decryption in both
[22] and [11], the first property can be extended to any malicious ciphertext that
decrypts successfully.

Malleable PKE. We say a PKE scheme is malleable if there exists an algo-
rithm Maul that takes as input a ciphertext ζ and a message M ′, and out-
puts a new ciphertext ζ ′; and for (PK,SK)←$KGen(1n), any M,M ′ ∈ M and
ζ ←$Enc(PK,M),

Pr[Dec(SK, ζ ′) 6= M ·M ′ : ζ ′←$Maul(ζ,M ′)] ≤ negl(n) .

W.l.o.g., we assume that message spaceM is a multiplicative group, and let “ ·”
denote multiplication operation on M.

Security definitions. We follow the definitions of RCCA security and RCCA
receiver-anonymity in [22].
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IND-RCCAAPKE(n)

(PK, SK)←$KGen(1n)

(M0,M1)← ADOSK(PK)

b←$ {0, 1}
ζ∗ ←$Enc(PK,Mb)

b′ ← AGDO
M0,M1
SK (PK, ζ∗)

if b = b′, return 1

else return 0

DOSK(ζ)

return Dec(SK, ζ)

GDOM0,M1
SK (ζ)

M := Dec(SK, ζ)

if M ∈ {M0,M1}, return replay

else return M

Fig. 1: Definition of IND-RCCA game.

ANON-RCCAAPKE(n)

(PK0, SK0)←$KGen(1n)

(PK1, SK1)←$KGen(1n)

M ← ADOSK0,SK1 (PK0,PK1)

b←$ {0, 1}
ζ∗ ←$Enc(PKb,M)

b′ ← AGDO
M
SK0,SK1 (PK0,PK1, ζ

∗)

if b = b′, return 1

else return 0

DOSK0,SK1(ζ)

return (Dec(SK0, ζ),Dec(SK1, ζ))

GDOMSK0,SK1
(ζ)

M0 := Dec(SK0, ζ); M1 := Dec(SK1, ζ)

if M ∈ {M0,M1}, return replay

else return (M0,M1)

Fig. 2: Definition of ANON-RCCA game.

Definition 2 (RCCA Security). Let PKE = (KGen,Enc,Dec) be a PKE scheme.
Consider the security game IND-RCCAAPKE(n) in Fig. 1. We say PKE is RCCA-
secure if for any PPT algorithm A in game IND-RCCAAPKE(n),

AdvIND-RCCA
A,PKE (n) :=

∣∣∣∣Pr
[
IND-RCCAAPKE(n) = 1

]
− 1

2

∣∣∣∣ ≤ negl(n) .

Definition 3 (RCCA Receiver-Anonymity). Let PKE = (KGen,Enc,Dec)
be a PKE scheme. Consider the security game ANON-RCCAAPKE(n) in Fig. 2.
We say PKE is RCCA receiver-anonymous if for any PPT algorithm A in game
ANON-RCCAAPKE(n),

AdvANON-RCCA
A,PKE (n) :=

∣∣∣∣Pr
[
ANON-RCCAAPKE(n) = 1

]
− 1

2

∣∣∣∣ ≤ negl(n) .
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3.2 Smooth Projective Hash Function (SPHF)

In this work, we focus on a more general version of smooth projective hash
function, called tag-based smooth projective hash function (tag-SPHF)[8]. The
regular SPHF can be regarded as a special case of tag-SPHF with empty tag
space T = ∅. A tag-SPHF is associated with set X , NP-language L where L ⊂ X ,
and defined by four algorithms (Setup, φ,Priv,Pub) as follows:

– Setup(1n) takes as input a security parameter 1n, and outputs public pa-
rameters pp =

(
K, T , Π,H(·)

)
, where K is the hashing key space, T is the

tag space, Π is the hash value space, H(·) : X × T → Π is an efficiently
computable hash function family indexed by hashing key sk ∈ K.

– φ(sk) derives the projection key pk from the hashing key sk ∈ K.
– Priv(sk, x, τ) takes as input an element x ∈ X , tag τ ∈ T and hashing key

sk, and outputs hash value π = Hsk(x, τ) ∈ Π.
– Pub(pk, x, w, τ) takes as input a word x ∈ L with witness w, tag τ and

projection key pk, and outputs hash value π = Hsk(x, τ) ∈ Π.

In regular SPHF, both the input of algorithms Priv(sk, x) and Pub(pk, x, w)
do not include tag τ , and the outputted hash value is π = Hsk(x).

Definition 4 (Correctness). For pp←$ Setup(1n), sk←$K and pk = φ(sk),
any x ∈ L with witness w to the fact of x ∈ L and any τ ∈ T ,

Pr[Priv(sk, x, τ) 6= Pub(pk, x, w, τ)] ≤ negl(n).

Assume that SPHF = (Setup, φ,Priv,Pub) is associated with X , L and T .

Definition 5 (1-Smoothness). We say SPHF is Smooth1 if for pp←$Setup(1n),
sk←$K, pk = φ(sk) and any (x, τ) ∈ X\L × T , the following two distributions
are statistically indistinguishable:

V1 = {(pk, x, τ, π)|π = Hsk(x, τ)}, V2 = {(pk, x, τ, π′)|π′←$Π}.

For certain tag-SPHFs, the smoothness property may be enhanced as follows.

Definition 6 (2-Smoothness). We say SPHF is Smooth2 if for pp←$Setup(1n),
sk←$K, pk = φ(sk), any (x∗, τ∗) ∈ X × T and any (x, τ) ∈ X\L × T with
(x, τ) 6= (x∗, τ∗), the following two distributions are statistically indistinguish-
able:

V1 = {(pk, x∗, τ∗, x, τ,Hsk(x
∗, τ∗), π)|π = Hsk(x, τ)},

V2 = {(pk, x∗, τ∗, x, τ,Hsk(x
∗, τ∗), π′)|π′←$Π}.

We assume that it is efficient to sample elements from set X and L. Below
we define the hard subset membership problem (SMP) between X and L.

Definition 7 (Hard Subset Membership Problem). We say the subset
membership problem is hard on (X ,L) if for any PPT adversary A,

|Pr[A(x) = 1]− Pr[A(x′) = 1]| ≤ negl(n) ,

where x←$L and x′←$X .
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4 Rerandomizable Tag-SPHF

4.1 Syntax of Rerandomizable Tag-SPHF

We slightly extend the typical SPHF syntax in such a way that the hash function
family H is indexed not only by the hashing key sk ∈ K (as the typical case)
but also by some (possible) auxiliary information ax, which is fixed as part of
the public parameter. For generality and simplicity considerations, hereafter we
assume that such information is public and implicitly included in the description
of hash function family, and remain to use H(·) instead of Hax,(·). Note that ax
is set as “null” for typical SPHFs. We remark that since now the hash function
family is not solely indexed by the hash key, for two SPHFs that are even with
the same (X ,L,K, T , Π), their corresponding hash function families are not
necessarily the same due to the possibly different auxiliary index ax.

Definition 8 (Rerandomizable Tag-SPHF (Re-T-SPHF)). Let I and I ′

be two tag-SPHFs associated with same sets X and L, sharing partially the same
public parameter (K, T , Π) but having (possibly) different hash function families
H(·) and H ′(·). We say I is pairwise-rerandomizable with respect to I ′ if:

– There exist three efficient algorithms as below.

• I.RandX(x, x′, rx) takes as input elements x, x′ ∈ X and randomness
rx ∈ Rx, outputs a new element x∗ ∈ X ;

• I.RandT(τ, rτ ) takes as input tag τ ∈ T and randomness rτ ∈ Rτ , out-
puts a new tag τ∗ ∈ T ;

• I.RandH(π, π′, rx, rτ ) takes as input hash values π, π′ ∈ Π and random-
nesses rx ∈ Rx, rτ ∈ Rτ , outputs a rerandomized hash value π∗ ∈ Π,

where Rx and Rτ are randomness space for element and tag respectively.

– For sk←$K, any x, x′ ∈ X , any τ ∈ T , let π = Hsk(x, τ) and π′ = H ′sk(x
′, τ),

Pr

Hsk(x
∗, τ∗) 6= π∗ :

rx←$Rx; rτ ←$Rτ
x∗ := I.RandX(x, x′, rx);
τ∗ := I.RandT(τ, rτ )
π∗ := I.RandH(π, π′, rx, rτ )

 ≤ negl(n) .

If I ′ = I6, we say that I is self-rerandomizable. In this case, the input x and x′

for algorithm RandX could be the same element. We say that I is linearly reran-
domizable if for any π, π′, ∆ ∈ Π (w.l.o.g., considering Π as a multiplicative
group), rx←$Rx, rτ ←$Rτ , I.RandH(π·∆,π′, rx, rτ ) = I.RandH(π, π′, rx, rτ )·∆.

Remark (Re-SPHF). For a regular rerandomizable SPHF (hereafter referred
to as Re-SPHF) where tag space T = ∅, the algorithm RandT is absent and the
parameter rτ in the input of algorithm RandH is explicitly omitted.

6 That is, H(·) and H ′(·) have the same auxiliary index (which could be “null”), and
thus are the same (since they work on the same K).
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Definition 9 (Perfect Re-T-SPHF). Assume I is pairwise-rerandomizable
with respect to I ′. We say that I is perfectly rerandomizable on Ts with
respect to I ′ if for sk←$K, any x, x′ ∈ X , any τ ∈ Ts ⊆ T , rx←$Rx, rτ ←$Rτ
and π = Hsk(x, τ), π′ = H ′sk(x

′, τ), the following distributions are identical:

V1 = {(x′′, τ ′′, π′′)|x′′←$X ; τ ′′←$ Ts; π′′ = Hsk(x
′′, τ ′′)},

V2 =

{
(x∗, τ∗, π∗)

∣∣∣∣x∗ := I.RandX(x, x′, rx); τ∗ := I.RandT(τ, rτ )
π∗ := I.RandH(π, π′, rx, rτ )

}
.

If Ts = T , we say I is perfectly pairwise-rerandomizable with respect to I ′.
If I ′ = I, we say I is perfectly self-rerandomizable on Ts.

4.2 Redefining Smoothness for Re-T-SPHFs

We define the property of smoothness for Re-T-SPHFs as below.

Definition 10 (Controlled-Self-Rerandomizable Smoothness). Let I be
self-rerandomizable. Assume it is associated with sets X and L, and the public
parameter is (K, T , Π,H(·)). Denote CRX(x) = {I.RandX(x, x, rx)|rx ∈ Rx}
and CRT(τ) = {I.RandT(τ, rτ )|rτ ∈ Rτ}. We say I satisfies controlled-self-
rerandomizable smoothness (CSR-Smooth) if for sk←$K and pk := I.φ(sk),
any (x∗, τ∗) ∈ X × T and any (x, τ) ∈ X\L × T with x /∈ CRX(x∗) or τ /∈
CRT(τ∗), the following two distributions are statistically indistinguishable,

V1 = {(pk, x∗, x,Hsk(x
∗, τ∗), π)|π = Hsk(x, τ)},

V2 = {(pk, x∗, x,Hsk(x
∗, τ∗), π′)|π′←$Π}.

Definition 11 (Controlled-Pairwise-Rerandomizable Smoothness). Let
I be pairwise-rerandomizable with respect to I ′. Assume they are associated with
sets X and L, and work on (K, T , Π). Let H(·) and H ′(·) be the hash function

family of I and I ′ respectively. Denote CRX(x, x′) = {I.RandX(x, x′, rx)|rx ∈
Rx} and CRT(τ) = {I.RandT(τ, rτ )|rτ ∈ Rτ}. We say I satisfies controlled-
pairwise-rerandomizable smoothness (CPR-Smooth) with respect to I ′ if for
sk←$K and pk := I.φ(sk), any (x∗1, τ

∗
1 ), (x∗2, τ

∗
2 ) ∈ X × T with τ∗1 = τ∗2 and any

(x, τ) ∈ X\L × T with x /∈ CRX(x∗1, x
∗
2) or τ /∈ CRT(τ∗1 ), the following two

distributions are statistically indistinguishable:

V1 = {(pk, x∗1, x∗2, x,Hsk(x
∗
1, τ
∗
1 ), H ′sk(x

∗
2, τ
∗
2 ), π)|π = Hsk(x, τ)},

V2 = {(pk, x∗1, x∗2, x,Hsk(x
∗
1, τ
∗
1 ), H ′sk(x

∗
2, τ
∗
2 ), π′)|π′←$Π}.

Definition 12 (Self-Twin 1-Smoothness). Let I be self-rerandomizable. As-
sume it is associated with sets X and L, and the public parameter is (K, T , Π,H(·)).
We say I satisfies self-twin 1-smoothness (ST-Smooth1) if for sk←$K and
pk := I.φ(sk), x∗, x←$X\L, τ ←$ T , the following two distributions are statis-
tically indistinguishable:

V1 = {(pk, x∗, x, τ, π∗, π)|π∗ = Hsk(x
∗, τ), π = Hsk(x, τ)},

V2 = {(pk, x∗, x, τ, π′′, π′)|π′′, π′←$Π}.
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Definition 13 (Pairwise-Twin 1-Smoothness). Let I be pairwise-rerandomizable
with respect to I ′. Assume they are associated with sets X and L, and work on
(K, T , Π). Let H(·) and H ′(·) be the hash function family of I and I ′ respectively.

We say I satisfies pairwise-twin 1-smoothness (PT-Smooth1) with respect
to I ′ if for sk←$K and pk := I.φ(sk), x∗, x←$X\L, τ ←$ T , the following two
distributions are statistically indistinguishable:

V1 = {(pk, x∗, x, τ, π∗, π)|π∗ = Hsk(x
∗, τ), π = H ′sk(x, τ)},

V2 = {(pk, x∗, x, τ, π′′, π′)|π′′, π′←$Π}.

5 A General Framework of Rand-RCCA-secure PKE

5.1 Our Generic Construction

The generic construction of the anonymous Rand-RCCA-secure scheme PKE

=(KGen, Enc, Dec, Rerand) is depicted in Fig. 3 where the sub-scheme MPKE

=(MKGen, MEnc, MDec, MRerand, Maul) is given in Fig. 4.

KGen(1n)

sk0 ←$K0; sk1 ←$K1

pk0 := I0.φ(sk0); pk1 := I1.φ(sk1)

sk2 := sk1; pk2 := pk1

(mpk,msk)←$MKGen(1n)

SK := (sk0, sk1, sk2,msk)

PK := (pk0, pk1, pk2,mpk)

return (PK, SK)

Enc(PK,M ∈ Π0)

x1 ←$L with witness w1

x2 ←$L with witness w2

u←$Π0; τ := (u, ψ(M))

e1 := I0.Pub(pk0, x1, w1) ·M
π̂1 := I1.Pub(pk1, x1, w1, τ)

π2 := I0.Pub(pk0, x2, w2)

π̃2 := I2.Pub(pk2, x2, w2, τ)

%←$MEnc(mpk, u)

return ζ := (x1, e1, π̂1, x2, π2, π̃2, %)

Dec(SK, ζ)

u := MDec(msk, %); if u = ⊥, return ⊥
π′1 := I0.Priv(sk0, x1); π′2 := I0.Priv(sk0, x2)

M := e1 · π′−1
1 ; τ := (u, ψ(M))

π̂′1 := I1.Priv(sk1, x1, τ)

π̃′2 := I2.Priv(sk2, x2, τ)

if (π̂′1, π̃
′
2, π
′
2) 6= (π̂1, π̃2, π2), return ⊥

else return M

Rerand(ζ)

r1, r2 ←$Rx; rτ ←$Π0

x′1 := I0.RandX(x1, x2, r1)

x′2 := I0.RandX(x2, x2, r2)

e′1 := I0.RandH(e1, π2, r1)

π̂′1 := I1.RandH(π̂1, π̃2, r1, rτ )

π′2 := I0.RandH(π2, π2, r2)

π̃′2 := I2.RandH(π̃2, π̃2, r2, rτ )

%′ := MRerand(Maul(%, rτ ))

return ζ′ := (x′1, e
′
1, π̂
′
1, x
′
2, π
′
2, π̃
′
2, %
′)

Fig. 3: Our anonymous Rand-RCCA-secure scheme PKE
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MKGen(1n)

sk0 ←$K0; sk3 ←$K3

pk0 := I0.φ(sk0)

pk3 := I3.φ(sk3)

sk4 := sk3; pk4 := pk3

msk := (sk0, sk3, sk4)

mpk := (pk0, pk3, pk4)

return (mpk,msk)

MEnc(mpk, u ∈ Π0)

x3 ←$L with witness w3

x4 ←$L with witness w4

τ := u

e3 := I0.Pub(pk0, x3, w3) · u
π̂3 := I3.Pub(pk3, x3, w3, τ)

π4 := I0.Pub(pk0, x4, w4)

π̃4 := I4.Pub(pk4, x4, w4, τ)

% := (x3, e3, π̂3, x4, π4, π̃4)

return %

MDec(msk, %)

π′3 := I0.Priv(sk0, x3); u := e3 · π′−1
3

π′4 := I0.Priv(sk0, x4)

π̂′3 := I3.Priv(sk3, x3, u); π̃′4 := I4.Priv(sk4, x4, u)

if (π̂′3, π̃
′
4, π
′
4) 6= (π̂3, π̃4, π4), return ⊥

else return u

Maul(%, rτ ∈ Π0)

π̂′3 := I3.RandH(π̂3, π̃4, 1Rx , rτ )

π̃′4 := I4.RandH(π̃4, π̃4, 1Rx , rτ )

return %′ := (x3, e3 · rτ , π̂′3, x4, π4, π̃
′
4)

MRerand(%)

r3, r4 ←$Rx
x′3 := I0.RandX(x3, x4, r3);x′4 := I0.RandX(x4, x4, r4)

e′3 := I0.RandH(e3, π4, r3);π′4 := I0.RandH(π4, π4, r4)

π̂′3 := I3.RandH(π̂3, π̃4, r3, 1Π0
)

π̃′4 := I4.RandH(π̃4, π̃4, r4, 1Π0
)

return %′ := (x′3, e
′
3, π̂
′
3, x
′
4, π
′
4, π̃
′
4)

Fig. 4: Generic rerandomizable and malleable encryption scheme MPKE

Table 2: Descriptions of Re-(T)-SPHFs in the PKE. The first four rows describe the
sets on which subset membership problems are defined, hash value spaces, tag spaces
and hashing key spaces respectively. The rest of rows indicate certain algorithms in
these Re-(T)-SPHFs are required to be identical.

SPHF I0 I1 I2 I0 I3 I4

SMP (X ,L) (X ,L)

Hash Value Π0 Π1 Π0 Π3

Tag − Π0 × Z − Π0

Hashing Key K0 K1 K0 K3

Alg. φ I0.φ I1.φ I0.φ I3.φ

Alg. RandX I0.RandX I0.RandX

Alg. RandT − I1.RandT − I3.RandT

Descriptions of underlying SPHFs. We firstly describe the details of all the
building blocks, i.e., the underlying Re-(T)-SPHFs, in Table 2.

For the Rand-RCCA security of the PKE, the underlying subset membership
problems must be hard. Besides, we require that both I0 and I0 are perfectly self-
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rerandomizable and ST-Smooth1; and I1 is perfectly pairwise-rerandomizable on
Π0 × {s} for any s ∈ Z, CPR-Smooth and PT-Smooth1 with respect to I2; and
I2 is perfectly self-rerandomizable on Π0 × {s} for any s ∈ Z and CSR-Smooth;
and I3 is perfectly pairwise-rerandomizable, CPR-Smooth and PT-Smooth1 with
respect to I4; and I4 is perfectly self-rerandomizable and CSR-Smooth.

To ensure the consistency of rerandomization, we require that I0 and I0
are linearly rerandomizable. Let ψ be an injection that maps Π0 into Z, T1 =
Π0 × Z and T3 = Π0. It is required that I1.RandT(τ, rτ ) = (rτ · u, ψ(M)) and
I3.RandT(τ ′, rτ ) = rτ · u for any τ = (u, ψ(M)) ∈ T1, any τ ′ = u ∈ T3 and any
rτ ∈ Π0. In algorithms Maul and MRerand, 1Rx and 1Π0

denote the identity

elements in groups Rx and Π0 respectively.

Correctness. Below we analyze the correctness of the MPKE and then the PKE.

Theorem 1. For any key pair (mpk,msk), any randomness rτ ∈ Π0, any ci-
phertext % and %′ = MRerand(Maul(%, rτ )) in the scheme MPKE, we have

MDec(msk, %′) =

{
rτ ·MDec(msk, %), MDec(msk, %) 6= ⊥
⊥, MDec(msk, %) = ⊥ .

Proof. Let % = (x3, e3, π̂3, x4, π4, π̃4), msk = (sk0, sk3, sk4) and u = MDec(msk, %).
If u 6= ⊥, then e3 ·u−1 = I0.Priv(sk0, x3) holds and validity checking on % passes.
Let %′ = (x′3, e

′
3, π̂
′
3, x
′
4, π
′
4, π̃
′
4) = MRerand(Maul(%, rτ )). By the requirement on

I3.RandT, the linear rerandomizability of I0 and the consistency of rerandomiza-
tion in I0, I3 and I4, let u′ = rτ ·u, we have e′3 ·u′−1 = I0.Priv(sk0, x

′
3) and the va-

lidity checking on %′ also passes. Thus, MDec(msk, %′) = rτ ·u = r ·MDec(msk, %).

If u = ⊥, then π4 6= I0.Priv(sk0, x4), π̂3 6= I3.Priv(sk3, x3, u) or π̃4 6= I4.Priv(
sk4, x4, u) holds. In this case, the corresponding inequalities also hold in cipher-
text %′, then MDec(msk, %′) = ⊥. �

Theorem 2. For any public/private key pair (PK,SK), any ciphertext ζ and
ζ ′ = Rerand(ζ) in the scheme PKE, we have Dec(SK, ζ) = Dec(SK, ζ ′).

Proof. Let ζ = (x1, e1, π̂1, x2, π2, π̃2, %) and ζ ′ = (x′1, e
′
1, π̂
′
1, x
′
2, π
′
2, π̃
′
2, %
′) be a

rerandomized ciphertext of ζ. Let SK = (sk0, sk1, sk2,msk), u = MDec(msk, %),
M = Dec(SK, ζ) and τ = (u, ψ(M)).

If M 6= ⊥, then u = MDec(msk, %) 6= ⊥, e1 · M−1 = I0.Priv(sk0, x1) and
the validity checking on ζ passes. By the requirement on I1.RandT, the linear
rerandomizability of I0 and the consistency of rerandomization in I0, I1 and I2,
we have e′1 ·M−1 = I0.Priv(sk0, x

′
1) and the validity checking on %′ passes. Thus,

we have Dec(SK, ζ ′) = M .

If M = ⊥, then u = ⊥, π2 6= I0.Priv(sk0, x2), π̂1 6= I1.Priv(sk1, x1, τ) or π̃2 6=
I2.Priv(sk2, x2, τ) holds. In this case, u′ = ⊥, by Theorem 1, or the corresponding
inequalities hold in ζ ′ as well, and then Dec(SK, ζ ′) = ⊥. �
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5.2 Security Analysis

Noting that the scheme MPKE is a sub-scheme of PKE, below we will provide the
security of PKE as the whole but will not separately give one regarding MPKE.

Theorem 3 (Perfect Rerandomization). The scheme PKE is a perfectly reran-
domizable encryption scheme.

Proof. Given fixed plaintext M , key pair (PK,SK), the distribution of the ci-
phertexts of M is determined by x1, x2, x3, x4 and u. Let ζ∗ be a ciphertext
in the support of Enc(PK,M). Consider random variables ζ ←$Enc(PK,M) and
ζ ′←$Rerand(ζ∗). In ciphertext ζ, u is uniformly sampled from Π0, while u′ =
rτ · u∗ in ζ ′ is also uniformly distributed on Π0 as rτ is randomly picked from
Π0. By the perfect rerandomizability of I0, I3 and I4, the distribution of %
and %′ is identical. Since I0 is perfectly self-rerandomizable, the distribution of
(x1, e1) (resp. (x2, π2)) in ζ is identical to that of (x′1, e

′
1) (resp. (x′2, π

′
2)) in ζ ′.

The distributions of (x1, π̂1) and (x′1, π̂
′
1) are identical by the perfect pairwise-

rerandomizability of I1. Similarly, the distribution of (x2, π̃2) is the same as that
of (x′2, π̃

′
2) by the perfect self-rerandomizability of I2. The 1-smoothness of all

the Re-(T)-SPHFs guarantees that any (possibly unbounded) adversary is un-
able to generate a malicious ciphertext that is decryptable. Put it all together,
the theorem follows. �

Theorem 4 (RCCA Security). For any (X ,L) and (X ,L) where subset mem-
bership problems are hard, the proposed PKE in Fig. 3 is RCCA-secure.

Proof. We prove the RCCA security of the scheme PKE by constructing a se-
quence of games G0-G3 and demonstrating the indistinguishability between them.
Game G0: This is the IND-RCCA game. Specifically, challenger generates key
pair (PK,SK) via KGen, and sends PK to adversary A. After querying decryption
oracle DOSK, A chooses two plaintexts M0, M1. Then, challenger randomly picks
b ∈ {0, 1} and sends ζ∗←$Enc(PK,Mb) toA. Finally, A outputs b′ after querying

guarded decryption oracle GDOM0,M1

SK .

Let Si denote the event that b = b′ in game Gi, we have AdvIND-RCCA
A,PKE (n) =

|Pr[S0 ] − 1/2|. Let the challenge ciphertext be ζ∗ = (x∗1, e
∗
1, π̂
∗
1 , x
∗
2, π
∗
2 , π̃
∗
2 , %
∗)

and %∗ = (x∗3, e
∗
3, π̂
∗
3 , x
∗
4, π
∗
4 , π̃
∗
4). Below we describe the modifications in G1-G3.

Game G1: This game is the same as G0 except that challenge ciphertext ζ∗ is
generated by using secret key. Specifically, for the challenge ciphertext ζ∗, all
the hash values are computed using hashing key. By the correctness of Re-(T)-
SPHFs, same values would be computed in G0. The differences between G0 and
G1 are only syntactical.

We call a ciphertext ζ bad if it is invalid (i.e., Dec(SK, ζ) = ⊥) or at least
one of its elements is non-language (i.e., x1 ∈ X\L, x2 ∈ X\L, x3 ∈ X\L or
x4 ∈ X\L) unless it is a rerandomization of the challenge ciphertext.

Lemma 1. In game G1, the decryption oracle rejects all the bad ciphertexts
except with negligible probability.
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AltEnc(SK,M ∈ Π0)

x1, x2 ←$X\L
u←$Π0; τ := (u, ψ(M))

e1 := I0.Priv(sk0, x1) ·M
π̂1 := I1.Priv(sk1, x1, τ)

π2 := I0.Priv(sk0, x2)

π̃2 := I2.Priv(sk2, x2, τ)

%←$AltMEnc(msk, u)

return ζ := (x1, e1, π̂1, x2, π2, π̃2, %)

AltMEnc(msk, u ∈ Π0)

x3, x4 ←$X\L
e3 := I0.Priv(sk0, x3) · u
π̂3 := I3.Priv(sk3, x3, u)

π4 := I0.Priv(sk0, x4)

π̃4 := I4.Priv(sk4, x4, u)

return % := (x3, e3, π̂3, x4, π4, π̃4)

Fig. 5: Modified encryption algorithms AltEnc and AltMEnc

Proof. First, querying a valid ciphertext ζ with x1, x2 ∈ L and x3, x4 ∈ L does
not reveal more information about the secret key SK.

Consider the first bad ciphertext ζ submitted to the decryption oracle. If at
least one of its elements is non-language, by the 1-smoothness of I0, I1, I2, I0, I3
and I4, the corresponding hash value is uniformly distributed over appropri-
ate domain and the probability that ζ is valid is negligible. If ζ is invalid, the
decryption oracle rejects it with probability 1. Meanwhile, the rejection from
decryption oracle rules out a negligible faction of secret keys, and the correct se-
cret key is still uniformly distributed among the rest of secret keys in adversary’s
view. Since the number of query is polynomial, the probability that adversary
generates a “valid” bad ciphertext is negligible. �

Game G2: This game is the same as G1 except that challenge ciphertext ζ∗ is
generated with x∗3, x

∗
4←$X\L and x∗1, x

∗
2←$X\L. That is, ζ∗ is generated using

AltEnc in Fig. 5. By the hardness of SMP on (X ,L) and (X ,L), games G1 and G2

are of computational indistinguishability. Here we omit the details of reduction.

Lemma 2. In game G2, if the decryption oracles reject all the bad ciphertexts
except with negligible probability, then the challenge ciphertext ζ∗ is distributed
independently of plaintext Mb and mask u∗, even given public key PK.

Proof. Since x∗1, x
∗
2 ∈ X\L, by the pairwise-twin 1-smoothness of I1 with re-

spect to I2, π̂∗1 and π̃∗2 are uniformly distributed over appropriate domains given
pk1(pk2). Similarly, π̂∗3 and π̃∗4 are uniformly distributed over appropriate do-
mains given pk3(pk4) by the pairwise-twin 1-smoothness of I3 with respect to
I4. By the self-twin 1-smoothness of I0, both π∗1 and π∗2 are statistically close to
random. Similarly, π∗3 and π∗4 are statistically close to random by the self-twin
1-smoothness of I0. �

By Lemma 1, in Phase 1, the decryption oracle rejects all the bad cipher-
texts except with negligible probability. Thus, before Phase 2, u∗ is uniformly
distributed in adversary’s view. This is crucial to the proof of Lemma 4.



Receiver-Anonymity in Rand-RCCA Secure Cryptosystems Resolved 21

Game G3: This game is the same as G2 except that both decryption oracle DOSK

(in Phase 1) and guarded decryption oracle GDOM0,M1

SK (in Phase 2) return the
output of alternate decryption algorithm AltDec (described below) that uses
public keys and challenge ciphertext to decrypt ciphertexts instead of secret
keys. We now prove that G2 and G3 are statistically indistinguishable. Note that
in this case AltDec is allowed to run in unbounded time. In fact, this is essentially
why AltDec is able to answer any decryption query using the public key and the
challenge ciphertext only.

For any decryption query ζ = (x1, e1, π̂1, x2, π2, π̃2, %), we first describe the
sub-algorithm AltMDec which is called by AltDec to decrypt % = (x3, e3, π̂3, x4, π4,
π̃4). Let %∗ = (x∗3, e

∗
3, π̂
∗
3 , x
∗
4, π
∗
4 , π̃
∗
4) denote the encryption of u∗ in challenge ci-

phertext ζ∗. To decrypt %, AltMDec performs as below.

(i) Check that x3, x4 ∈ L. If not, go to (ii). Otherwise, let w3, w4 be the wit-
nesses of x3, x4, check that π4 = I0.Pub(pk0, x4, w4) holds. If not, output
⊥. Otherwise, compute u = e3 · (I0.Pub(pk0, x3, w3))−1, and check that
π̂3 = I3.Pub(pk3, x3, w3, u) and π̃4 = I4.Pub(pk4, x4, w4, u) hold. If not, out-
put ⊥. Otherwise, output (σ = u, s = 0).

(ii) If AltMDec is called in Phase 1, output ⊥. Otherwise, check that there exist
r3, r4 ∈ Rx and rτ ∈ Π0 such that % = MRerand(Maul(%∗, rτ )). If r3, r4 or
rτ does not exist, output ⊥. Otherwise, output (σ = rτ , s = 1).

The correctness of AltMDec is proved in Lemma 3.

Lemma 3. Let (mpk,msk) be a public/secret key pair of the MPKE and %∗ be a
ciphertext generated using AltMEnc. Let (σ, s) = AltMDec(mpk, %∗, %), if (σ, s) 6=
⊥, then MDec(msk, %) = σ ·MDec(msk, %∗)s.

Proof. If s = 0, % is a fresh encryption of u with x3, x4 ∈ L. By the correctness
of I0, I3 and I4, MDec also decrypts % into u. If s = 1, % is a derivative ciphertext
of %∗. Although % and %∗ both are not generated by MEnc, one can verify that
MDec(msk, %) = rτ · u∗ = rτ ·MDec(msk, %∗). �

Now we are ready to describe AltDec. Let ζ∗ = (x∗1, e
∗
1, π̂
∗
1 , x
∗
2, π
∗
2 , π̃
∗
2 , %
∗) be

the challenge ciphertext. AltDec then decrypts ζ = (x1, e1, π̂1, x2, π2, π̃2, %) with
PK and ζ∗ as below.

(i) Compute (σ, s) = AltMDec(mpk, %∗, %). If AltMDec returns ⊥, then also re-
turn ⊥.

(ii) If s = 0, then σ = u. Check that there exist message M and witnesses w1,
w2 such that x1, x2 ∈ L and

e1 = I0.Pub(pk0, x1, w1) ·M π2 = I0.Pub(pk0, x2, w2)
π̂1 = I1.Pub(pk1, x1, w1, τ) π̃2 = I2.Pub(pk2, x2, w2, τ),

where τ = (u, ψ(M)). If not, output ⊥. If M /∈ {M0,M1}, output M ; other-
wise, output replay.
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(iii) If s = 1, then σ = rτ . Check that there exist randomness r1, r2 ∈ Rx such
that following equalities hold.

x1 = I0.RandX(x∗1, x
∗
2, r1) x2 = I0.RandX(x∗2, x

∗
2, r2)

e1 = I0.RandH(e∗1, π
∗
2 , r1) π2 = I0.RandH(π∗2 , π

∗
2 , r2)

π̂1 = I1.RandH(π̂∗1 , π̃
∗
2 , r1, rτ ) π̃2 = I2.RandH(π̃∗2 , π̃

∗
2 , r2, rτ ).

If not, output ⊥. Otherwise, output replay.

Lemma 4. The output of DOSK(resp. GDOM0,M1

SK ) in G3 agrees with the output

of DOSK(resp. GDOM0,M1

SK ) in G2 with overwhelming probability.

Proof. In the cases where DOSK(resp. GDOM0,M1

SK ) in G3 outputs M , DOSK(resp.

GDOM0,M1

SK ) in G2 also outputs M by Lemma 3 and the correctness of decryption.

Similarly, when GDOM0,M1

SK in G3 outputs replay, GDOM0,M1

SK in G2 also outputs
replay by Lemma 3 and correctness of decryption and rerandomization.

We now prove that whenDOSK(resp. GDOM0,M1

SK ) in G3 outputs⊥ on query ζ,

DOSK(resp. GDOM0,M1

SK ) in G2 also would output ⊥ with overwhelming probabil-
ity. That is, when AltDec outputs ⊥, Dec also would output ⊥ with overwhelming
probability. Let ζ∗ = (x∗1, e

∗
1, π̂
∗
1 , x
∗
2, π
∗
2 , π̃
∗
2 , %
∗) denote the challenge ciphertext

where %∗ = (x∗3, e
∗
3, π̂
∗
3 , x
∗
4, π
∗
4 , π̃
∗
4) and ζ = (x1, e1, π̂1, x2, π2, π̃2, %) denote the

decryption query input where % = (x3, e3, π̂3, x4, π4, π̃4).
Case 1. If AltDec outputs ⊥ due to AltMDec returning ⊥, there are following
possible sub-cases.

– In Phase 1, x3 /∈ L or x4 /∈ L. By the 1-smoothness of I0, π3 = e3 · u−1 or
π4 is statistically close to random, and thus ζ will be rejected by Dec with
overwhelming probability.

– In Phase 2, r3, r4 ∈ Rx or rτ ∈ Π0 does not exist for % = MRerand(Maul(%∗, rτ ))
with x3 or x4 /∈ L. If rτ does not exist, by the CPR-Smooth of I3 or
CSR-Smooth of I4, π̂3 or π̃4 is close to random, as x3 or x4 /∈ L. If r3
does not exist and x3 /∈ L, π̂3 is close to random by the CPR-Smooth of I3.
If r4 does not exist and x4 /∈ L, π̃4 is close to random by the CSR-Smooth of
I4. If r3 does not exist and x3 ∈ L, then x4 /∈ L. In this case, we assume that
there exists r4 such that x4 = I0.RandX(x∗4, x

∗
4, r4). Since u∗ is uniformly

sampled from Π0 at random, the underlying u of π̃4 equals to rτ · u∗ which
is uniformly distributed over Π0. Then, π̂3 is close to random, as u is uni-
formly distributed and π̂3 is independent of π̂∗3 . Similarly, we can prove that
π̃4 is close to random when r4 does not exist, r3 exists, x4 ∈ L and x3 /∈ L.

– In both Phase 1 and 2, π4 6= I0.Pub(pk0, x4, w4), π̂3 6= I3.Pub(pk3, x3, w3, u)
or π̃4 6= I4.Pub(pk4, x4, w4, u) holds. Obviously, MDec would reject % and
Dec would reject ζ.

Case 2. Suppose that (σ, s) = AltMDec(mpk, %∗, %) and (σ, s) 6= ⊥. There are
following sub-cases where AltDec outputs ⊥.

– In Phase 1, (σ, s) = (u, 0) and x1 or x2 /∈ L. By the 1-smoothness of I0, I1
and I2, π2, π̂1 or π̃2 is statistically close to random. Suppose x1, x2 ∈ L and
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pk0, pk1(pk2) are fixed. If any equation in decryption rule (ii) of AltDec does
not hold for any M ∈ Π0, ζ would be rejected due to the validity checking.

– In Phase 2, (σ, s) = (u, 0) and x1 or x2 /∈ L. If x1 = I0.RandX(x∗1, x
∗
2, r1)

or x2 = I0.RandX(x∗2, x
∗
2, r2), the underlying tag τ = (u, ψ(M)) of π̂1 or

π̃2 which is derived from π̂∗1 and π̃∗2 via I1.RandH or I2.RandH would be
related to τ∗ = (u∗, ψ(M∗)) where u∗ is uniformly distributed over Π0.
However, s = 0 indicates that the value of u is fixed and u = σ. Thus, the
validity checking on ζ would fail. Otherwise, x1 6= I0.RandX(x∗1, x

∗
2, r1) and

x2 6= I0.RandX(x∗2, x
∗
2, r2). Given fixed pk1, π̂∗1 and π̃∗2 , the value of π̂1 is

statistically close to random as I1 is CPR-Smooth.
– In Phase 1 and 2, (σ, s) = (u, 0) and x1, x2 ∈ L. If equations in rule (ii) of

AltDec do not hold simultaneously for any M ∈ Π0, the validity checking on
ζ in Dec would fail.

– In Phase 2, (σ, s) = (rτ , 1), and there do not exist r1, r2 ∈ Rx such that
equations in decryption rule (iii) of AltDec hold at the same time. If x1 6=
I0.RandX(x∗1, x

∗
2, r1) for any r1 ∈ Rx or τ 6= I0.RandT(τ∗, rτ ), due to the fact

that I1 is CPR-Smooth, π̂1 is statistically indistinguishable from random hash
value given fixed pk1, π̂∗1 and π̃∗2 . Similarly, if x2 6= I0.RandX(x∗2, x

∗
2, r2) for

any r2 ∈ Rx or τ 6= I0.RandT(τ∗, rτ ), due to the fact that I2 is CSR-Smooth,
π̃2 is statistically close to random hash value given fixed pk2 and π̃∗2 . Sup-
pose that x1 = I0.RandX(x∗1, x

∗
2, r1), x2 = I0.RandX(x∗1, x

∗
2, r2) and τ =

I0.RandT(τ∗, rτ ). If equations in rule (iii) of AltDec do not hold simultane-
ously, the validity checking on ζ in Dec would fail.

In conclusion, The output of DOSK(resp. GDOM0,M1

SK ) in G3 is the same as
that in G2 in every case with overwhelming probability. �

Lemma 5. Pr[S3 ] = 1/2.

Proof. Note that AltMDec and AltDec do not use secret key to perform decryp-
tion. The decryption oracle responses in game G3 do not provide extra informa-
tion about secret key besides public key and challenge ciphertext ζ∗ generated
using AltEnc. Lemma 2 shows that ζ∗ is distributed independently of bit b, from
which the lemma follows. �

Putting it all together, the theorem follows. �

Theorem 5 (RCCA Receiver-Anonymity). For any (X ,L) and (X ,L) where
subset membership problems are hard, the proposed PKE in Fig. 3 is RCCA
receiver-anonymous.

Proof. We prove the receiver-anonymity of PKE by constructing a sequence of
games G0-G3 and demonstrating the indistinguishability between them.
Game G0: This is the ANON-RCCA game. Specifically, challenger generates
two key pairs (PK0,SK0) and (PK1,SK1) via KGen, and sends (PK0,PK1) to
adversary A. After querying decryption oracle DOSK0,SK1

, A chooses a plaintext
M . Then, challenger randomly picks b ∈ {0, 1} and sends ζ∗←$Enc(PKb,M) to
A. Finally, A outputs b′ after querying guarded decryption oracle GDOMSK0,SK1

.
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Let Si denote the event that b = b′ in game Gi, we have AdvANON-RCCA
A,PKE (n) =

|Pr[S0 ]− 1/2|.
Game G1: This game is the same as G0 except that challenge ciphertext ζ∗ is
generated by using secret key SKb. According to the analysis in Theorem 4, game
G1 is identical to G0 by the correctness of SPHFs.
Game G2: This game is the same as G1 except that challenge ciphertext ζ∗ is
generated with x∗3, x

∗
4←$X\L and x∗1, x

∗
2←$X\L. That is, ζ∗ is generated using

AltEnc in Fig. 5. By the hardness of SMP on (X ,L) and (X ,L), games G1 and
G2 are of computational indistinguishability.
Game G3: This game is the same as G2 except that both decryption oracle
DOSK0,SK1

(in Phase 1) and guarded decryption oracle GDOMSK0,SK1
(in Phase 2)

work as follows. First, it runs alternative decryption algorithm AltDec∗, which
is the same as AltDec in Theorem 4 except that it outputs replay when de-
cryption result equals to M , with PK0 and PK1 respectively. If AltDec∗ outputs
replay, it returns replay, otherwise, it returns the results of running AltDec∗.
By Lemma 4, the output of DOSK0,SK1(GDOMSK0,SK1

) in G3 agrees with the output

of DOSK0,SK1
(GDOMSK0,SK1

) in G2 with overwhelming probability. Thus, games G2

and G3 are statistically indistinguishable.
Note that AltDec∗ does not use secret key to perform decryption. The de-

cryption oracle responses in game G3 do not provide extra information about
secret key SKb besides public keys PK0,PK1 and challenge ciphertext ζ∗ gener-
ated using AltEnc. By Lemma 2, ζ∗ is distributed independently of PKb. Thus,
we have Pr[S3 ] = 1/2, from which the theorem follows. �

6 Instantiations

In this section, we show how to instantiate our framework from the k-Lin as-
sumption. More generally, it could be constructed from graded rings [3] and we
provide the details in the full version [29].

6.1 Regular SPHF from k-Lin assumption

Let G be a cyclic group with prime order p. The k-Lin assumption says that[
r>gk+1

]
is pseudorandom given [g>], [gk+1], [r>G] where r,g←$Zkp, gk+1←$Zp

and G = diag(g>) ∈ Zk×kp , gk+1 = (gk+1, · · · , gk+1)> ∈ Zkp.

Let element set X =
{[

x>
]∣∣x ∈ Zk+1

p

}
and L =

{[
w>P

]∣∣w ∈ Zkp
}

where

P = (G gk+1) ∈ Zk×(k+1)
p . Below is a regular SPHF from k-Lin assumption.

– Setup(1n). Let K = Zk+1
p , Π = G and T = ∅. Since the tag space is empty,

H(·) : X → G is an efficient hash function family indexed by sk ∈ Zk+1
p .

– φ(sk). For sk = a ∈ Zk+1
p , outputs pk = [Pa] ∈ Gk.

– Priv(sk, x). For sk = a ∈ Zk+1
p and x =

[
x>
]
∈ X , outputs π =

[
x>a

]
∈ G.

– Pub(pk, x, w). For pk = [Pa] ∈ Gk and x =
[
w>P

]
∈ L with witness w ∈ Zkp,

outputs π =
[
w>(Pa)

]
∈ G.
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Since
[
w>(Pa)

]
=
[
(w>P)a

]
, the correctness of SPHF holds. For any x /∈ L

and pk = [Pa], vector x> is not in the linear span of P, then hash value Hsk(x) =[
x>a

]
is independent from pk = [Pa]. This guarantees the 1-smoothness.

6.2 Instantiating the underlying Re-(T)-SPHFs of Our Framework

(1) Construction of I0 and I0. The algorithms (I0.Setup, I0.φ, I0.Priv, I0.Pub)
are the same as those of regular SPHF from k-Lin assumption, and thus the 1-
smoothness of I0 is obvious. Below we provide the remaining algorithms, i.e.,
I0.RandX and I0.RandH.

– I0.RandX(x, x′, rx). For x =
[
x>
]
, x′ =

[
x′>
]
∈ X and rx ∈ Zp, outputs

x∗ =
[
x> + rxx

′>].
– I0.RandH(π, π′, rx). For π =

[
x>a

]
, π′ =

[
x′>a

]
∈ G and rx ∈ Zp, outputs

π∗ = π · (π′)rx =
[
x>a + rxx

′>a
]
.

Since π∗ =
[
(x> + rxx

′>)a
]

= I0.Priv(sk, I0.RandX(x, x′, rx)), the correct-
ness of rerandomization holds. For any π, π′, ∆ ∈ G and any rx ∈ Zp, we have
I0.RandH(π ·∆,π′, rx) = (π ·∆) · (π′)rx = (π · (π′)rx) ·∆ = I0.RandH(π, π′, rx) ·∆
and I0 is linearly rerandomizable. Due to lack of space, the proofs of following
theorems appear in the full version [29].

Theorem 6. I0 is perfectly self-rerandomizable.

Theorem 7. I0 is ST-Smooth1 when k ≥ 2.

The construction of I0 is exactly the same as I0. In concrete scheme, it

is associated with X and NP-language L that are defined over Gk+1
where G

is a cyclic group with prime order q and a subgroup of Z∗p. Specifically, X ={[
x>
]∣∣x ∈ Zk+1

q

}
, and L =

{[
w>P

]∣∣w ∈ Zkq
}

where P = (G gk+1) ∈ Zk×(k+1)
q ,

G = diag(g>) ∈ Zk×kq , gk+1 = (gk+1, · · · , gk+1)> ∈ Zkq , g←$Zkq , gk+1←$Zq.
(2) Construction of I1 and I2. We first describe the framework of I1 as below.

– I1.Setup(1n). Let K1 = (Zk+1
p )4, Π1 = G2, T1 = G × Z∗p. Pick λ1,λ2←$Zkp

with λ1 6= λ2, ax = (λ1,λ2). Ĥ(·) : X ×T1 → G2 is indexed by sk1 ∈ K1 and
ax.

– I1.φ(sk1). For sk1 = (b, c,d, e) ∈ (Zk+1
p )4, outputs

pk1 = ([Pb], [Pc], [Pd], [Pe]).

– I1.Priv(sk1, x, τ). For sk1 = (b, c,d, e), x =
[
x>
]

and τ = (τ0, τ1), outputs

hash value π = Ĥsk1(x, τ) = (π1, π2) =([
(x> + λ>1 P)(τ0(b + τ1c))

]
,
[
(x> + λ>2 P)(τ0(d + τ1e))

])
.

– I1.Pub(pk1, x, w, τ). For pk1 = ([Pb], [Pc], [Pd], [Pe]), x =
[
w>P

]
with wit-

ness w and τ = (τ0, τ1), outputs π = Ĥsk1(x, τ) = (π1, π2) =([
(w> + λ>1 )(τ0(Pb + τ1Pc))

]
,
[
(w> + λ>2 )(τ0(Pd + τ1Pe))

])
.



26 Y. Wang et al.

– I1.RandX(x, x′, rx). For x =
[
x>
]
, x′ =

[
x′>
]

and rx ∈ Zp, outputs x∗ =[
x> + rxx

′>] .
– I1.RandT(τ, rτ ). For τ = (τ0, τ1) and rτ ∈ Zp, outputs τ∗ = (rτ · τ0, τ1).
– I1.RandH(π, π′, rx, rτ ). For π = (π1, π2), π′ = (π′1, π

′
2), rx ∈ Zp and rτ ∈ Zp,

outputs π∗ = ((π1 · (π′1)rx)rτ , (π2 · (π′2)rx)rτ ).

As for I2, its algorithms I2.φ, I2.RandX, I2.RandT and I2.RandH are the same
as I1.φ, I1.RandX, I1.RandT and I1.RandH. Besides, I2.Setup is the same as
I1.Setup except that ax is null and the hash function family is H̃(·) : X ×T2 → G2

where T2 = T1. I2.Priv and I2.Pub are equivalent to I1.Priv and I1.Pub with
λ1 = λ2 = 0.

– I2.Priv(sk2, x, τ). For sk2 = (b, c,d, e) ∈ (Zk+1
p )4, x =

[
x>
]

and τ = (τ0, τ1),

outputs hash value π = H̃sk2(x, τ) = (π1, π2) =([
x>(τ0(b + τ1c))

]
,
[
x>(τ0(d + τ1e))

])
.

– I2.Pub(pk2, x, w, τ). For pk2 = ([Pb], [Pc], [Pd], [Pe]), x =
[
w>P

]
with wit-

ness w and τ = (τ0, τ1), outputs π = H̃sk2(x, τ) = (π1, π2) =([
w>(τ0(Pb + τ1Pc))

]
,
[
w>(τ0(Pd + τ1Pe))

])
.

One can verify the correctness of I1 and I2 easily. For any x /∈ L, any τ ∈ T1
and pk1 = ([Pb], [Pc], [Pd], [Pe]), vector x> is not in the linear span of P,
then

([
(x> + λ>1 P)(τ0(b + τ1c))

]
,
[
(x> + λ>2 P)(τ0(d + τ1e))

])
is independent

of pk1, from which the 1-smoothness property holds for both I1 and I2. As for the

correctness of rerandomization, we consider π = Ĥsk1(x, τ) and π′ = H̃sk2(x′, τ)
as I1 is rerandomizable with respect to I2. For rx, rτ ∈ Zp, one can verify
that rerandomized hash value π∗ = I1.RandH(π, π′, rx, rτ ) = I1.Priv(sk1, x

∗, τ∗)
where x∗ = I1.RandX(x, x′, rx) and τ∗ = I1.RandT(τ, rτ ). This also holds for

π = H̃sk2(x, τ) and π′ = H̃sk2(x′, τ). The proofs of following theorems are pro-
vided in the full version [29].

Theorem 8. Let T1(s) = G × {s} ⊆ T1 with s ∈ Z∗p. I1 is perfectly pairwise-
rerandomizable on T1(s) with respect to I2 for any s ∈ Z∗p.

Theorem 9. Let T2(s) = G × {s} ⊆ T2 with s ∈ Z∗p. I2 is perfectly self-
rerandomizable on T2(s) for any s ∈ Z∗p.

Theorem 10. I1 is PT-Smooth1 with respect to I2 when k ≥ 2.

Theorem 11. I1 is CPR-Smooth with respect to I2.

Theorem 12. I2 is CSR-Smooth.

(3) Construction of I3 and I4. We first describe the framework of I3 as below.

– I3.Setup(1n). Let K3 = (Zk+1
q )2, Π3 = G2

and T3 = G. Pick λ1,λ2←$Zkq
with λ1 6= λ2, ax = (λ1,λ2) and Ĥ(·) : X × T3 → G2

is indexed by sk3 ∈ K3

and ax.
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KGen(1n)

a←$Zk+1
p ; A := [Pa] ; (b, c,d, e)←$ (Zk+1

p )
4

(B,C,D,E) := ([Pb], [Pc], [Pd], [Pe])

(mpk,msk)←$ MKGen(1n)

msk := (a,b, c)←$Zk+1
q

A := [Pa]

(B,C) := ([Pb], [Pc])

mpk := (A,B,C)

return (mpk,msk)

PK := (A,B,C,D,E,mpk)

SK := (a,b, c,d, e,msk)

return (PK, SK)

Enc(PK,M ∈ G)

[x
>
1 ], [x

>
2 ]←$L with witness w1,w2

u←$G; m := ψ(M)

%←$ MEnc(mpk, u ∈ G)

[x
>
3 ], [x

>
4 ]←$L with witness w3,w4

e3 := u · [w>3 Pa]; π4 := [w
>
4 Pa]

π̂31 :=
[
(w
>
3 + λ

>
1 )uPb

]
π̂32 :=

[
(w
>
3 + λ

>
2 )uPc

]
π̃41 :=

[
w
>
4 uPb

]
; π̃42 :=

[
w
>
4 uPc

]
π̂3 := (π̂31, π̂32); π̃4 := (π̃41, π̃42)

return % := ([x
>
3 ], e3, π̂3, [x

>
4 ], π4, π̃4)

e1 := M · [w>1 Pa]; π2 := [w
>
2 Pa]

π̂11 :=
[
(w
>
1 + λ

>
1 )(u(Pb +mPc))

]
π̂12 :=

[
(w
>
1 + λ

>
2 )(u(Pd +mPe))

]
π̃21 :=

[
w
>
2 (u(Pb +mPc))

]
π̃22 :=

[
w
>
2 (u(Pd +mPe))

]
π̂1 := (π̂11, π̂12); π̃2 := (π̃21, π̃22)

return ζ := ([x
>
1 ], e1, π̂1, [x

>
2 ], π2, π̃2, %)

Dec(SK, ζ)

M := e1 · [x>1 a]
−1

; m := ψ(M)

u := MDec(msk, %)

u := e3 · [x>3 a]
−1

π̂
′
31 :=

[
(x
>
3 + λ

>
1 P)ub

]
π̂
′
32 :=

[
(x
>
3 + λ

>
2 P)uc

]
; π
′
4 := [x

>
4 a]

π̃
′
41 :=

[
x
>
4 ub

]
; π̃
′
42 :=

[
x
>
4 uc

]
π̂
′
3 := (π̂

′
31, π̂

′
32); π̃

′
4 := (π̃

′
41, π̃

′
42)

if (π̂
′
3, π̃
′
4, π
′
4) 6= (π̂3, π̃4, π4), return ⊥

else return u

if u = ⊥, return ⊥

π̂
′
11 :=

[
(x
>
1 + λ

>
1 P)(u(b +mc))

]
π̂
′
12 :=

[
(x
>
1 + λ

>
2 P)(u(d +me))

]
π̃
′
21 :=

[
x
>
2 (u(b +mc))

]
π̃
′
22 :=

[
x
>
2 (u(d +me))

]
π
′
2 := [x

>
2 a]; π̂

′
1 := (π̂

′
11, π̂

′
12); π̃

′
2 := (π̃

′
21, π̃

′
22)

if (π̂
′
1, π̃
′
2, π
′
2) 6= (π̂1, π̃2, π2), return ⊥

else return M

Rerand(ζ)

r, r
′ ←$Zp; r∗ ←$G; [x

′>
1 ] := [x

>
1 + rx

>
2 ]

e
′
1 := e1π

r
2 ; π̂

′
1 := ((π̂11π̃

r
21)

r∗
, (π̂12π̃

r
22)

r∗
)

[x
′>
2 ] := [r

′
x
>
2 ]; π

′
2 := π

r′
2 ; π̃

′
2 := (π̃

r′r∗
21 , π̃

r′r∗
22 )

%
′ := MRerand(Maul(%, r∗))

e
′
3 := r

∗ · e3; r, r′ ←$Z∗q
([x
′>
3 ], e

′′
3 ) := ([x

>
3 + rx

>
4 ], e

′
3π
r
4)

([x
′>
4 ], π

′
4) := ([r

′
x
>
4 ], π

r′
4 )

π̂
′
3 := ((π̂31π̃

r
41)

r∗
, (π̂32π̃

r
42)

r∗
)

π̃
′
4 := (π̃

r′r∗
41 , π̃

r′r∗
42 )

return %
′ := ([x

′>
3 ], e

′′
3 , π̂

′
3, [x

′>
4 ], π

′
4, π̃
′
4)

return ζ
′ := ([x

′>
1 ], e

′
1, π̂
′
1, [x

′>
2 ], π

′
2, π̃
′
2, %
′
)

Fig. 6: k-Lin-based anonymous Rand-RCCA-secure scheme PKE

– I3.φ(sk3). For sk3 = (b, c) ∈ (Zk+1
q )2, outputs pk3 =

(
[Pb], [Pc]

)
.

– I3.Priv(sk3, x, τ). For sk3 = (b, c) ∈ (Zk+1
q )2, x =

[
x>
]

and τ ∈ G, outputs

hash value π = (π1, π2) =
([

(x> + λ
>
1 P)τb

]
,
[
(x> + λ

>
2 P)τc

])
.
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– I3.Pub(pk3, x, w, τ). For pk3 =
(
[Pb], [Pc]

)
, x =

[
w>P

]
with witness w and

τ ∈ G, outputs π = (π1, π2) =
([

(w> + λ
>
1 )τPb

]
,
[
(w> + λ

>
2 )τPc

])
.

– I3.RandX(x, x′, rx). For x =
[
x>
]
, x′ =

[
x′>
]
∈ X and rx ∈ Zq, outputs

x∗ =
[
x> + rxx

′>].
– I3.RandT(τ, rτ ). For τ ∈ G and rτ ∈ Zq, outputs τ∗ = rτ · τ .
– I3.RandH(π, π′, rx, rτ ). For π = (π1, π2), π′ = (π′1, π

′
2), rx ∈ Zq and rτ ∈ Zq,

outputs π∗ = ((π1 · (π′1)rx)rτ , (π2 · (π′2)rx)rτ ).

As for I4, its algorithms I4.φ, I4.RandX, I4.RandT and I4.RandH are the same
as I3.φ, I3.RandX, I3.RandT and I3.RandH. Besides, I4.Setup is the same as

I3.Setup except that ax is null and the hash function family is H̃(·) : X ×T4 → G2

where T4 = T3. I4.Priv and I4.Pub are equivalent to I3.Priv and I3.Pub with
λ1 = λ2 = 0.

– I4.Priv(sk4, x, τ). For sk4 = (b, c) ∈ (Zk+1
q )2, x =

[
x>
]
∈ X and τ ∈ G,

outputs π = (π1, π2) =
([

x>τb
]
,
[
x>τc

])
.

– I4.Pub(pk4, x, w, τ). For pk4 =
([

Pb
]
,
[
Pc
])

, x =
[
w>P

]
with witness w

and τ ∈ G, outputs π = (π1, π2) =
([

w>τPb
]
,
[
w>τPc

])
.

One can verify the correctness and 1-smoothness of I3 and I4. Analogous to
the proofs of Theorem 8, 9, 10, 11 and 12, one can easily prove that if k ≥ 2, I3 is
perfectly pairwise-rerandomizable, PT-Smooth1 and CPR-Smooth with respect to
I4, and I4 is perfectly self-rerandomizable and CSR-Smooth. The concrete proofs
are given in the full version [29].

6.3 Concrete PKE from k-Lin Assumption

Fig. 6 depicts the full concrete scheme PKE based on k-Lin assumption. Note that
the group G and G should be chosen relevantly to ensure that u in tag τ could
be encrypted with proper group. Concretely, let G = QR∗2q+1 and G = QR∗2p+1

be two groups of quadratic residues where p = 2q + 1 and (q, 2q + 1, 4q + 3) is a
sequence of primes, called a Cunningham chain (of the first kind) of length 3.
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