Upslices, Downslices, and Secret-Sharing with Complexity of 1.5^{n}

Benny Applebaum and Oded Nir
Tel Aviv University, Tel Aviv, Israel
bennyap@post.tau.ac.il, odednir123@gmail.com

Abstract

A secret-sharing scheme allows to distribute a secret s among n parties such that only some predefined "authorized" sets of parties can reconstruct the secret, and all other "unauthorized" sets learn nothing about s. The collection of authorized/unauthorized sets can be captured by a monotone function $f:\{0,1\}^{n} \rightarrow\{0,1\}$. In this paper, we focus on monotone functions that all their min-terms are sets of size a, and on their duals - monotone functions whose max-terms are of size b. We refer to these classes as (a, n)-upslices and (b, n)-downslices, and note that these natural families correspond to monotone a-regular DNFs and monotone $(n-b)$-regular CNFs. We derive the following results. 1. (General downslices) Every downslice can be realized with total share size of $1.5^{n+o(n)}<2^{0.585 n}$. Since every monotone function can be cheaply decomposed into n downslices, we obtain a similar result for general access structures improving the previously known $2^{0.637 n+o(n)}$ complexity of Applebaum, Beimel, Nir and Peter (STOC 2020). We also achieve a minor improvement in the exponent of linear secrets sharing schemes. 2. (Random mixture of upslices) Following Beimel and Farràs (TCC 2020) who studied the complexity of random DNFs with constantsize terms, we consider the following general distribution F over monotone DNFs: For each width value $a \in[n]$, uniformly sample k_{a} monotone terms of size a, where $\mathbf{k}=\left(k_{1}, \ldots, k_{n}\right)$ is an arbitrary vector of non-negative integers. We show that, except with exponentially small probability, F can be realized with share size of $2^{0.5 n+o(n)}$ and can be linearly realized with an exponent strictly smaller than $2 / 3$. Our proof also provides a candidate distribution for "exponentially-hard" access structure. We use our results to explore connections between several seemingly unrelated questions about the complexity of secret-sharing schemes such as worst-case vs. average-case, linear vs. non-linear and primal vs. dual access structures. We prove that, in at least one of these settings, there is a significant gap in secret-sharing complexity.

1 Introduction

Secret-sharing schemes, introduced by Shamir [32] and Blakley [12], are a central cryptographic tool with a wide range of applications including secure multiparty
computation protocols [9, 14], threshold cryptography [17], access control [28], attribute-based encryption [22,36], and oblivious transfer [33, 35]. In its general form [24], an n-party secret-sharing scheme for a family of authorized sets $F \subseteq$ $2^{[n]}$ (referred to as access structure) allows to distribute a secret s into n shares, s_{1}, \ldots, s_{n}, one for each party, such that: (1) every authorized set of parties, $A \in F$, can reconstruct s from its shares; and (2) every unauthorized set of parties, $A \notin F$, cannot reveal any partial information on the secret even if the parties are computationally unbounded. For example, in the canonical case of threshold secret sharing the family F contains all the sets whose cardinality exceeds some certain threshold. For this case, Shamir's scheme [32] provides a solution whose complexity, measured as the total share-size $\sum_{i}\left|s_{i}\right|$, is quasilinear, $O(n \log n)$, in the number of parties n. Moreover, Shamir's scheme is linear, that is, each share can be written as a linear combination of the secret and the randomness that are taken from a finite field. This form of linearity turns to be useful for many applications. (See the full version of the paper for a formal definition of secret sharing and linear secret sharing.)

The complexity of general secret-sharing schemes. Determining the complexity of general access structures is a basic, well-known, open problem in informationtheoretic cryptography. Formally, given a (monotone) access structure ${ }^{1} F$ we let $\operatorname{SSize}(F):=\min _{\mathcal{D} \text { realizes } F}|\mathcal{D}|$, where $|\mathcal{D}|$ denotes the total share size of a secret-sharing scheme \mathcal{D}. For over 30 years, since the pioneering work of Ito et al. [24], all known upper-bounds on $\operatorname{SSize}(F)$ are tightly related to the computational complexity of the characteristic function F. Here we think of F as the monotone function that given a vector $x \in\{0,1\}^{n}$ outputs 1 if and only if the corresponding characteristic set $A=\left\{i: x_{i}=1\right\}$ is an authorized set. Specifically, it is known that the complexity of an access structure is at most polynomial in the representation size of F as a monotone CNF or DNF [24], as a monotone formula [10], as a monotone span program [25], or as a multi-target monotone span program [11]. This leads to an exponential upper-bound of $2^{n(1-o(1))}$ for any n-party access structure F.

On the other hand, despite much efforts, the best known lower-bound on the complexity of an n-party access structure is $\Omega\left(n^{2} / \log n\right)$ due to [15]. Moreover, we have no better lower-bounds even for non-explicit functions! This leaves a huge exponential gap between the upper-bound and the lower-bound. For the case of linear schemes, a counting argument (see, e.g., [8]) shows that for most monotone functions $F:\{0,1\}^{n} \rightarrow\{0,1\}$, the complexity of the best linear secretsharing (LSS) scheme, denoted by LSSize (F), is at least $2^{n / 2-o(n)} .{ }^{2}$ Furthermore, Pitassi and Robere [30] (building on results of [31, 29]) prove that for every n there exists an explicit n-input function F such that $\operatorname{LSSize}(F)=2^{\Omega(n)}$. In his

[^0]1996 thesis [4], Beimel conjectured that an exponential lower-bound of $2^{\Omega(n)}$ also holds for the general case. Resolving this conjecture has remained one of the main open problems in the field of secret sharing [5]. Taking a broader view, similar exponential communication-complexity gaps exist for a large family of information-theoretic secure computation tasks [19, 23, 3, 21, 6]. Among these, secret-sharing is of special interest due to its elementary nature: Secret data is only stored and revealed without being processed or manipulated.

Recent advances: slices, multislices and general access structures. In the past three years, the seemingly tight correspondence between computational complexity and secret-sharing complexity was challenged by several works. In a breakthrough result, Liu, Vaikuntanathan and Wee [27,26] showed that any general access structure can be realized with complexity of $2^{0.994 n}$, thus breaking the formula-size (or even circuit-size) barrier of $2^{n-o(n)}$. The exponent was further reduced to 0.64 in follow-up works of Applebaum, Beimel, Farràs, Nir and Peter [1, 2]. From a technical point of view, all these works reduced the problem of realizing a general monotone function F to the problem of realizing the simpler case of slice functions and multislice functions (originally referred to as "fat slices" by [26]). Formally, $(a: b, n)$-multislices are monotone functions that are unconstrained on inputs x of weight $\mathrm{wt}(x) \in[a, b]$, but must take the value 0 on lighter inputs, and the value 1 on heavier inputs. An ($a: a, n$)-multislice is referred to as an (a, n)-slice. Roughly, the results of [26] were obtained by a sequence of 3 reductions: (1) Secret sharing for slice functions with sub-exponential share size of $2^{\tilde{O}(\sqrt{n})}$ based on constructions of Conditional Disclosure of Secrets (CDS) $[27] ;(2)$ Secret sharing for $((0.5-\epsilon) n,(0.5+\epsilon) n, n)$-multislices (aka ϵ midslice) with non-trivial cost of $2^{c n}$ for some $c<1$ based on slice functions; and (3) Secret sharing for general access structures with $2^{c n}$ complexity based on midslice secret sharing. The work of [1] showed how to improve Step 3 based on combinatorial covers, and the work of [2] improved the second step by presenting and constructing robust- $C D S$ schemes. A combination of these results allows us to realize any n-party access structure by a secret sharing scheme of complexity $2^{0.64 n+o(n)}$ and by a linear secret sharing scheme of complexity $2^{0.762 n+o(n)}$.

Intriguing questions. This state of affairs leaves open several intriguing questions. Firstly, what is the best-achievable exponent of secret-sharing schemes? Secondly, which access structures are the hardest to realize? While the above results do not seem to yield sub-exponential share size, they also do not give rise to a candidate "hard" access structure. That is, to the best of our knowledge, we do not have an explicit candidate distribution over access structures whose cost is $2^{\Omega(n)}$ even if one restricts the attention to the current schemes. Indeed, it was recently observed by Beimel and Farràs [7] that a randomly chosen monotone function is likely to be a $(n / 2-1, n / 2+2, n)$-multislice, and therefore it can be realized with sub-exponential complexity.

2 Our Contribution

We make progress towards answering the above questions by shifting the focus from slices and multislices to downslices and upslices. Before stating our results, let us introduce these new access structures.

2.1 Upslice and Downslices

A monotone function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is an (a, n)-upslice if all its minterms are of size exactly a. Similarly to (a, n)-slice functions, an (a, n)-upslice is unconstrained for inputs of weight a and takes the value 0 on lighter inputs, however, in contrast to slice functions, an input y of weight larger than a takes the value 1 only if there exists a smaller input $x \leq y$ of weight a on which the function takes the value $1 .{ }^{3}$ This means that f is the pointwise smallest function among all the monotone functions that agree with f on inputs of weight a. Downslices are defined in a dual way. That is, a monotone function f is a (b, n)-downslice if all its max-terms are of size exactly b. This means that f is unconstrained over b-weight inputs, takes the value 1 on heavier inputs, and (unlike slice functions) evaluates to 0 on an input y of weight smaller than b only if there exists a larger input $x \geq y$ of weight b on which the function evaluates to 0 . Accordingly, f is the pointwise largest function among all the monotone functions that agree with f on inputs of weight b. (An example of upslices and downslices is depicted in Figure 1.)

Fig. 1: An example of a 2-upslice access structure F and a 2-downslice access structure G. Both access structures are defined over 4 parties and colored nodes correspond to authorized sets. Note that in this example F and G agree on sets of size 2 .

[^1]Why Upslices and Downslices? Upslices and downslices are natural classes of monotone functions. Indeed, (a, n)-upslices (resp., (b, n)-downslices) are exactly the functions that can be represented by logical formulas in a Disjunctive Normal Form (resp., Conjunctive Normal Form) in which each term (resp., clause) consists of exactly a variables (resp., $n-b$ variables). Therefore, these function families capture the basic computational models of regular monotone-DNFs and regular monotone-CNFs. Additionally, every monotone function can be decomposed into a disjunction of its upslices, i.e., $f=\bigvee_{a \in[n]} f_{a}$ where f_{a} is the (a, n) slice function that agrees with f on its a-weight inputs (hereafter referred to as the a-upslice of f). Similarly, f can be written as a conjunction of its downslices. Using standard closure properties of secret sharing, we conclude that the secretsharing complexity of worst-case monotone functions is at most n times larger than the secret-sharing complexity of downslices/upslices. This should be contrasted with the status of "simple" slice functions whose complexity seems significantly smaller (i.e., sub-exponential) than the complexity of general monotone functions. Indeed, one can show that the complexity of an a-slice function f is the smallest among all monotone functions that agree with f on inputs of weight a (ignoring low-order terms). ${ }^{4}$ For general values of a and b, the best known secret sharing schemes of (a, n)-upslices and (b, n)-downslices are based on their DNF and CNF representations and therefore have total share size of $\binom{n}{a}$ and $\binom{n}{b}$, respectively. Up to logarithmic improvements, these worst-case bounds have remained unchanged even for the special case of $(2, n)$-upslices that correspond to graph access structures [13] (not to be confused with forbidden graph access structures [34] that correspond to $(2, n)$-slices). See [7] for additional references.

2.2 Worst-Case Downslices

In Section 4 we show that every (b, n)-downslice admits a secret sharing scheme with complexity of $(3 / 2)^{n+o(n)}$. Using the completeness of downslices this allows us to improve the complexity of general access structures. Formally, following [2], we define the secret-sharing exponent of a monotone function $f:\{0,1\}^{n} \rightarrow$ $\{0,1\}$, denoted by $\mathbf{S}(f):=n^{-1} \cdot \log _{2} \operatorname{SSize}(f)$ and define the (worst-case) secretsharing exponent \mathbf{S} to be $\mathbf{S}=\lim \sup _{n \rightarrow \infty} \max _{f \in \mathcal{M}(n)} \mathbf{S}(f)$, where $\mathcal{M}(n)$ is the family of all monotone functions over $\{0,1\}^{n}$ (equivalently, all n-party access structures). We prove the following theorem.

Theorem 2.1 (Main theorem). Every access structure over n parties can be realized by a secret-sharing scheme with a total share-size of $1.5^{n+o(n)}$. That is, $\mathbf{S} \leq \log \frac{3}{2}<0.585$.

Recall that the previous best exponent, due to [2], was 0.637. The proof of the theorem is based on two schemes for $(\beta n, n)$-downslices. The first scheme

[^2]is tailored to low downslices with $\beta \leq 1 / 2$ and achieves an exponent of β, and the second scheme is tailored to high downslices with $\beta \geq 1 / 2$ and achieves an exponent of $\mathrm{H}_{2}(\beta)-(1-\beta)$ where H_{2} is the binary entropy function. The most expensive downslice corresponds to the case where $\beta=2 / 3$ and has an exponent of $\log \left(\frac{3}{2}\right)$. (See Figure 2 in Section 4.) The two schemes are based on adaptation of previous tools, such as robust-CDS and combinatorial covers, to the current setting. See Section 4 for details.

Linear schemes. We also obtain a minor improvement for the exponent of linear secret-sharing schemes. Let \mathbf{S}_{ℓ} denote the linear exponent, that is defined analogously to \mathbf{S}, except that $\operatorname{SSize}(F)$ is replaced with $\operatorname{LSSize}(F)$, the minimal complexity of a linear scheme that realizes F.

Theorem 2.2 (Worst-case linear exponent). Every access structure over n parties can be realized by a linear secret sharing scheme with a total share-size of $2^{0.7576 n+o(n)}$. That is, the linear exponent \mathbf{S}_{ℓ} is at most 0.7576 .

Recall that the previous best linear exponent, due to [2], was 0.762. Again the theorem is based on LSS for $(\beta n, n)$-downslices for an arbitrary density β. Unfortunately, a naive approach that mimics the proof of Theorem 2.2 yields an exponent of $\frac{1}{2}+\frac{\beta}{2}$ or, for $\beta>0.5$, an exponent of $\mathrm{H}_{2}(\beta)-\frac{1}{2}(1-\beta)$. For densities larger than $1 / 2$, the exponent can be as large as 0.772 which is strictly larger than the exponent 0.762 that is achieved by [2]. To overcome this difficulty, we introduce several additional tools that are tailored to the linear setting. Most notably, we present a bootstrapping technique that starts with an LSS for a target downslice with a given density γ, transforms it into an LSS for upslices of various densities and then exploits the new schemes, to obtain a better LSS for the target $(\gamma n, n)$-downslice. We apply this procedure iteratively to several key values of γ, and use these pivots to propagate the improvement to all other values of β. See Section 5 for details.

2.3 Random Upslices and Mixed DNFs

Following [7], we study the complexity of randomly-chosen upslices. For this we define a family of distributions over monotone-DNFs that is parameterized by an arbitrary vector $\mathbf{k}=\left(k_{1}, \ldots, k_{n}\right)$ of non-negative integers. We sample a DNF from the k-DNF distribution as follows: For each width parameter a, select k_{a} random clauses uniformly at random from the set of all possible $\binom{n}{a}$ monotone a-clauses. We prove the following theorem.

Theorem 2.3 (Average case exponents). For every non-negative vector \mathbf{k}, a randomly chosen $\mathbf{k}-D N F f$ can be realized with complexity of $2^{0.5 n+o(n)}$ except with exponentially small probability of $2^{-\Omega(n)}$. For linear schemes, we get an exponent which is strictly smaller than $2 / 3$.

Observe that there is a polynomial gap between the average-case complexity and the best-known worst-case complexity. It is instructive to compare this gap with
the results of Beimel and Farràs [7] who considered (1) The uniform distribution over all access structures, and (2) the uniform distribution over $(a=O(1), n)$ upslices with exactly k_{a} min-terms for an arbitrary value of k_{a}. For these distributions, [7] have established super-polynomial gaps between the average case complexity and the best-known worst-case complexity. Our results may indicate that such dramatic gaps are an artifact of the chosen distribution. Technically, the proof of Theorem 2.3 extends the ideas of [7] to handle arbitrary large values of $a \in[n]$. (We note that the proof of [7] suffers from an a^{a} dependency and so it cannot be applied to ($a=\Omega(n), n$)-upslices.)

Candidate hard distribution. We believe that random upslices form a good candidates for exponentially-hard distributions. Concretely, the proof of Theorem 2.3 suggests that the hardest case (for existing schemes) corresponds to the uniform distribution over $(n / 2, n)$-upslices with $\sqrt{\binom{n}{n / 2}}=2^{n / 2+o(n)}$ min-terms. (Equivalently, random DNF that contains $\sqrt{\binom{n}{n / 2}}$ random monotone terms of width $n / 2$). We believe that identifying such a candidate hard distribution is a valuable first step towards achieving further progress either at the upper-bound front or at the lower-bound front.

Is the worst-case/average-case gap real? Recall that in the average-case, we derive an exponent of 0.5 for general schemes and an exponent slightly better than $2 / 3$ for linear schemes, whereas the worst-case exponents are $\log (3 / 2)$ and slightly over $3 / 4$ respectively. Admittedly, we do not know whether this gap is "real", and as far as we can see, there may be a way to reduce the worstcase exponents to the average-case ones. (We do not have good candidates for separation either.) While we cannot prove the existence of such a gap, we can relate it to other central questions in the complexity of secret sharing like the power of non-linearity and closure under duality. Define the dual access structure of an n-party access structure f to be the n-party access structure that accepts of all sets x whose complements \bar{x} are unauthorized under f, i.e., $\operatorname{DuAL}(f)(x)=$ $1-f(\bar{x})$. We prove the following gap theorem.

Theorem 2.4 (Gap theorem). At least one of the following gaps hold:

1. (Duality gap) There exists an n-party monotone access structure ${ }^{5} f$ whose secret-sharing exponent is strictly smaller than the secret-sharing exponent of its dual.
2. (Non-linearity gap) The (general) secret sharing exponent \mathbf{S} is strictly smaller than the linear secret sharing exponent \mathbf{S}_{ℓ}.
3. (Average-case gap) Every $\mathbf{k}-D N F$ distribution can be realized, except with exponentially small probability, with an exponent $\overline{\mathbf{S}}$ that is strictly smaller than the worst-case secret sharing exponent \mathbf{S}.
[^3]Let us elaborate on the first two possibilities. The first item asserts that $\operatorname{SSize}(f)<\operatorname{SSize}(\operatorname{DuAL}(f)) \cdot 2^{\Omega(n)}$. The absence of a duality gap, hereafter referred to as the duality hypothesis, asserts that $\operatorname{SSize}(f)=\operatorname{SSize}(\operatorname{DuAL}(f)) \cdot 2^{o(n)}$. That is, the primal and dual access structure have similar secret-sharing complexity up to sub-exponential difference. This hypothesis is known to hold for LSS, and, to the best of our knowledge, its status for general secret-sharing schemes is wide open. In fact, a recent paper of Csirmaz [16] refers to a stronger version of this hypothesis (e.g., $\operatorname{SSize}(f)=\operatorname{SSize}(\operatorname{DuAL}(f))$ as a long-standing open problem. Item 1 asserts that the complexity-gap between primal and dual structures may be exponentially large.

The second item asserts that there is an exponential gap between linearschemes and non-linear schemes even in the worst-case! While we can prove such a result for concrete cases (e.g., random slice functions), we do not know whether non-linearity significantly helps for worst-case functions, and one may guess that eventually the two exponents \mathbf{S}_{ℓ} and \mathbf{S} will collapse to, say 1/2. Item 2 asserts that this is not the case.

Proving Theorem 2.4. To prove the theorem, we show that, under the duality hypothesis, one can improve Theorem 2.3 so that a random DNF, that is sampled from an arbitrary k-DNF distribution, can be realized with an exponent that is strictly smaller than 0.5 , except with exponentially small probability. If, in addition, there is no Average-case gap, we get that the worst-case exponent \mathbf{S} is smaller than 0.5 . Since it is known that the linear exponent \mathbf{S}_{ℓ} cannot be smaller that 0.5 (e.g., by counting), we conclude that the linear exponent must be strictly larger than the general exponent. (See Section 6.)

3 Preliminaries

General. By default, all logarithms are taken to base 2. For positive integers $k \leq n$, we let $\binom{n}{\geq a}:=\sum_{a \leq i \leq n}\binom{n}{i}$. We use the following standard estimate for the binomial coefficients

$$
\begin{equation*}
\binom{n}{k}=\Theta\left(k^{-1 / 2} 2^{\mathrm{H}_{2}(k / n) n}\right) \tag{1}
\end{equation*}
$$

where $\mathrm{H}_{2}(\cdot)$, denotes the binary entropy function, that maps a real number $\alpha \in$ $(0,1)$ to $\mathrm{H}_{2}(\alpha)=-\alpha \log \alpha-(1-\alpha) \log (1-\alpha)$ and is set to zero for $\alpha \in\{0,1\}$.

Secret sharing. Standard background on secret-sharing schemes is deferred to the full version of the paper, while formal definitions of slices, multislices, downslices, and upslices can be found in Appendix A. Let us just mention the following complexity conventions. Given a (monotone) access structure $f:\{0,1\}^{n} \rightarrow$ $\{0,1\}$ we let $\operatorname{SSize}(f):=\min _{\mathcal{D} \text { realizes } f}|\mathcal{D}|$, where $|\mathcal{D}|$ denotes the total share size of a secret-sharing scheme \mathcal{D}. The exponent of f is $n^{-1} \cdot \log _{2} \operatorname{SSize}(f)$, and it is denoted by $\mathbf{S}(f)$. If \mathcal{F} is a collection of n-party access structures then

$$
\operatorname{SSize}(\mathcal{F}):=\max _{f \in \mathcal{F}} \operatorname{SSize}(f), \quad \text { and } \quad \mathbf{S}(\mathcal{F}):=\max _{f \in \mathcal{F}} \mathbf{S}(f)
$$

When $\mathcal{F}=\left\{\mathcal{F}_{n}\right\}$ is a sequence of collections \mathcal{F}_{n} of n-party access structures we think of $\operatorname{SSize}(\mathcal{F})$ as a function of n, and define the secret-sharing exponent $\mathbf{S}(\mathcal{F})$ to be $\mathbf{S}(\mathcal{F}):=\lim \sup _{n \rightarrow \infty} \mathbf{S}\left(\mathcal{F}_{n}\right)$. All these definitions naturally extend to the linear setting as well.

We denote by $\mathbf{D}(b, n)$ (resp., $\mathbf{D}_{\ell}(b, n)$) the secret-sharing exponent (resp., the LSS exponent) of (b, n)-downslices and by $\mathbf{D}(\beta)$ (resp., $\mathbf{D}_{\ell}(\beta)$) the secretsharing exponent (resp., the LSS exponent) of $(\beta n, n)$-downslices. The notation $\mathbf{U}(a, n), \mathbf{U}_{\ell}(a, n), \mathbf{U}(\alpha)$ and $\mathbf{U}_{\ell}(\alpha)$ is defined analogously for the secret-sharing exponents and LSS exponents of (a, n)-upslices and ($\alpha n, n$)-upslices. The secretsharing exponents and LSS exponents of $(a: b, n)$-multislices and $(\alpha n: \beta n, n)$ multislices are denoted by $\mathbf{M}(a: b, n), \mathbf{M}_{\ell}(a: b, n), \mathbf{M}(\alpha: \beta)$ and $\mathbf{M}_{\ell}(\alpha: \beta)$.

3.1 Covers

We will make use of the following combinatorial concept of "covers".
Definition 3.1 (Covering a slice). We say that a collection of subsets $\mathcal{G}=$ $\left\{G_{i}\right\}$ over a ground set $[n]$ upcovers a slice t if for every set A of size t, exists a set $G_{i} \in \mathcal{G}$ such that $A \subseteq G_{i}$. Analogously, we say that \mathcal{G} downcovers a slice t, if for every set A of size t, exists a set $G_{i} \in \mathcal{G}$ such that $G_{i} \subseteq A$.

We start by introducing a fact about combinatorial covering designs by Erdős and Spenser:

Fact 3.2 ([18]). For every positive integers $a \leq b \leq n$, there exists a family $\mathcal{G}=\left\{G_{i}\right\}_{i=1}^{L}$ of b-subsets of $[n]$ that upcovers the slice a where \mathcal{G} is of size $L=L(n, a, b) \leq\left[\binom{n}{a} /\binom{b}{a}\right]\left[1+\log \binom{b}{a}\right]$.
We will make use of the following dual fact.
Fact 3.3. For every positive integers $a \leq b \leq n$, there exists a family $\mathcal{G}=$ $\left\{G_{i}\right\}_{i=1}^{L}$ of a-subsets of $[n]$ that downcovers the slice b where \mathcal{G} is of size $L=$ $L(n, a, b) \leq\left[\binom{n}{n-b} /\binom{n-a}{n-b}\right]\left[1+\log \binom{n-a}{n-b}\right]$.

Moreover, for some constant $C>1$, a random family \mathcal{G} of a-subsets of n of size at least $\bar{L}(n, a, b)=\left[\binom{n}{a} /\binom{b}{a}\right] \cdot n$ downcovers the slice b except with probability C^{-n}.
The reader should note that $\left[\binom{n}{a} /\binom{b}{a}\right]=\left[\binom{n}{n-b} /\binom{n-a}{n-b}\right]$.
Proof. Whenever a collection $\left\{G_{i}\right\}_{i=1}^{L}$ upcovers the slice a, the collection of complement sets $\left\{\bar{G}_{i}\right\}_{i=1}^{L}$ downcovers the slice $n-a$. Fact 3.2 therefore implies the first part.

For the "Moreover" part. Sample \mathcal{G} by sampling each G_{i} uniformly at random among all a-subsets of $[n]$. Fix some b-subset $B \subseteq[n]$. For every $i \in[L]$, the probability that $G_{i} \subseteq B$ is $p=\binom{b}{a} /\binom{n}{a}$, and therefore

$$
\operatorname{Pr}\left[\forall i, G_{i} \nsubseteq B\right] \leq(1-p)^{L}=(1-p)^{n / p}<e^{-n}
$$

where the equality follows by noting that $\bar{L}(n, a, b) \cdot p=n$. Therefore, by a union bound over all sets of size b, the probability that there is some b-set that does not contain any G_{i} is at most $\binom{n}{b} \cdot e^{-n}<2^{n} \cdot e^{-n}=1 / C^{n}$ for $C=e / 2$.

4 General secret-sharing for downslices

Recall that $\mathbf{D}(\beta)$ and $\mathbf{D}_{\ell}(\beta)$ denote the secret-sharing exponent and LSS exponent of ($\beta n, n$)-downslices. The classical CNF-based scheme [24] that enumerates over all of the max-terms of size βn, yields an LSS exponent of $\mathrm{H}_{2}(\beta)$. One can also get an exponent of 0.637 via the general-purpose secret-sharing scheme of [2]. In this section, we improve these results and show that $\mathbf{D}(\beta) \leq \log (3 / 2)$ for any β.

Theorem 4.1. Every n-party downslice access structure can be realized with complexity of $2^{\log (3 / 2) n+o(n)}$. Additionally, for $L S S, \mathbf{D}_{\ell}(\beta) \leq \frac{1}{2}+\frac{\beta}{2}$ and, for $\beta>0.5$, it holds that $\mathbf{D}_{\ell}(\beta) \leq \mathrm{H}_{2}(\beta)-\frac{1}{2}(1-\beta)$.

The linear exponent will be improved in the next section. Before proving Theorem 2.1, we will need the following simple observation whose proof is deferred to the full version of the paper.

Observation 4.2. Let f be an access structures over n parties, and assume that F_{i}, the i-downslice of f, can be realized (resp., linearly realized) with total share size of S_{i} for every $i \in[0, n]$. Then, f can be realized (resp., linearly realized) with share size of $\sum_{i=0}^{n} S_{i} \leq n \max _{i} S_{i}$.

We can now prove Theorem 2.1.
Proof (Proof of Theorem 2.1). Fix some access structure f over n parties and let F_{b} denote the (b, n)-downslice of f. By Theorem 4.1 the access structure F_{b} can be realized with total share size S_{b} of at most $2^{\log \left(\frac{3}{2}\right) n+o(n)}$, and so by Observation $4.2, f$ can be realized with complexity of $\max _{b}\left(S_{b}\right) \cdot n \leq 2^{\log \left(\frac{3}{2}\right) n+o(n)}$.

The proof of Theorem 4.1 is based on the following two lemmas.
Lemma 4.3 (low-density downslices). Secret sharing for (b, n)-downslices can be realized (resp., linearly realized) with share size of $2^{b+o(n)}$ (resp., $\left.2^{b / 2+n / 2+o(n)}\right)$. Consequently, for any constant $\beta \in[0,1]$, it holds that

$$
\mathbf{D}(\beta) \leq \beta \quad \text { and } \quad \mathbf{D}_{\ell}(\beta) \leq \frac{1}{2}+\frac{\beta}{2}
$$

The proof of Lemma 4.3 appears in Section 4.1 and it is based on a scheme for multislices that will be employed also in the next sections. Lemma 4.3 presents an improvement over previously known schemes for (b, n)-downslices in the regime $b \in[0,0.637 n]$, i.e., as long as the level b is smaller than the exponent of [2]. Higher levels, for which Lemma 4.3 provides no improvement, are treated by the following lemma.

Lemma 4.4 (high-density downslices). For every integers n and $b \in$ $(0.5 n, n]$, every (b, n)-downslice can be realized with share size of

$$
\left[\binom{n}{n-b} /\binom{2 n-2 b}{n-b}\right] \cdot 2^{n-b+o(n)}
$$

and can be realized by a linear scheme with share size

$$
\left[\binom{n}{n-b} /\binom{2 n-2 b}{n-b}\right] \cdot 2^{(3 n-3 b) / 2+o(n)}
$$

Consequently, for every constant $\beta \in(0.5,1]$, it holds that

$$
\mathbf{D}(\beta) \leq \mathrm{H}_{2}(\beta)-(1-\beta) \quad \text { and } \quad \mathbf{D}_{\ell}(\beta) \leq \mathrm{H}_{2}(\beta)-\frac{1}{2}(1-\beta)
$$

We note that the maximal value of $\mathbf{D}(\beta)$ is $\log \left(\frac{3}{2}\right)$ and it is obtained when $\beta=$ $2 / 3$. Therefore, a combination of Lemma 4.3 and Lemma 4.4 yield Theorem 4.1. The proof Lemma 4.4 is deferred to Section 4.2 and is based on a general coverreduction that will be also useful for the next sections.

The exponents of the above lemmas together with the CNF-based exponent and the exponent of [2] are depicted in Figure 2.

4.1 Low-density downslices via multislices

Secret sharing schemes for $(a: b, n)$ multislice access structures were considered in $[26,1,2]$, for the special cases of "mid-slices" where $a=\left(\frac{1}{2}-\delta\right) n$, $b=\left(\frac{1}{2}+\delta\right) n$ for some constant $\delta \in[0,0.5]$. It is possible to generalize the scheme of [2] that was originally designed to handle mid-slices to handle any pair $a<b \in[n]$ as follows. Recall that, for every constants $0 \leq \alpha<\beta \leq 1$, we let $\mathbf{M}(\alpha: \beta)$ (resp., $\mathbf{M}_{\ell}(\alpha: \beta)$) denote the exponent (resp., LSS exponent) of ($\alpha n: \beta n, n$)-multislice access structures.

Lemma 4.5 (multislice lemma). For every $a<b \in[n]$, every ($a: b, n$)multislice access structure can be realized by a secret-sharing scheme with share size $\binom{b}{\geq a} \cdot 2^{o(n)}$ and by a linear scheme with share size $\sqrt{\binom{b}{\geq a}} \cdot 2^{n / 2+o(n)}$. Consequently, for every constants $0 \leq \alpha<\beta \leq 1$, the exponent $\mathbf{M}(\alpha: \beta)$ of ($\alpha n: \beta n, n$)-multislice access structures satisfies

$$
\mathbf{M}(\alpha: \beta) \leq \begin{cases}\beta \mathrm{H}_{2}\left(\frac{\alpha}{\beta}\right) & \text { if } \alpha>\beta / 2 \\ \beta & \text { if } \alpha \leq \beta / 2\end{cases}
$$

and, for the linear case, the exponent $\mathbf{M}_{\ell}(\alpha: \beta)$ satisfies

$$
\mathbf{M}_{\ell}(\alpha: \beta) \leq \begin{cases}\frac{1}{2}+\frac{\beta}{2} \cdot \mathrm{H}_{2}\left(\frac{\alpha}{\beta}\right) & \text { if } \alpha>\beta / 2 \\ \frac{1}{2}+\frac{\beta}{2} & \text { if } \alpha \leq \beta / 2\end{cases}
$$

Fig. 2: A description of the exponents of four general schemes for $(\beta n, n)$ downslices. The horizontal axis represents the density β of the slice, and the vertical axis represents the resulting exponents. The solid red curve corresponds to the exponent of the CNF-based scheme. The constant exponent of the general access structures scheme of [2] appears as the dashed blue line. The dotted green straight line represents the exponent that is achieved by the scheme of Lemma 4.3, and the dotted green curve which starts at $x=0.5$ represents the scheme for downslices of Lemma 4.4.

The proof follows the exact steps of the proof of Lemma 5.10 from [2] except that we use a more general setting of parameters. See the full version of the paper for details. By using multislices to implement downslices, we derive Lemma 4.3.

Proof (Proof of Lemma 4.3). Let F be a (b, n)-downslice and let F^{\prime} be the ($0: b, n$)-multislice of F. Observe that F equals F^{\prime}, and so by Lemma 4.5 it can be implemented with the desired share sizes since $\binom{b}{\geq 0}=2^{b}$.

4.2 Reducing high-density downslices to low downslices

In order to prove Lemma 4.4 we reduce the problem of realizing (b, n)-downslices for $b>0.5 n$ to the problem of realizing $\left(b^{\prime}, n^{\prime}\right)$-downslices over a smaller set of parties $n^{\prime}<n$ and for density $b^{\prime}=n^{\prime} / 2$. This is, in fact, a special case of the following more general reduction that will be also applied in its full power later in Section 5.

Lemma 4.6 (cover reduction lemma). Let $v<b \leq n$ be positive integers. If $(b-v, n-v)$-downslices can be realized (resp., linearly realized) with share size $z(b-v, n-v)$ then (b, n)-downslices can be realized (resp., linearly realized) with
share size of

$$
\begin{equation*}
\left[\binom{n}{n-b} /\binom{n-v}{n-b}\right]\left[1+\log \binom{n-v}{n-b}\right] \cdot z(b-v, n-v) \tag{2}
\end{equation*}
$$

Consequently, for every constants $0<\alpha \leq \beta<1$, if ($\alpha m, m$)-downslices can be realized (resp., linearly realized) with exponent of $z^{\prime}(\alpha)$ then $(\beta n, n)$-downslices can be realized with an exponent of

$$
\begin{equation*}
\mathrm{H}_{2}(\beta)-(1-\beta)\left(\frac{\mathrm{H}_{2}(\alpha)-z^{\prime}(\alpha)}{1-\alpha}\right) \tag{3}
\end{equation*}
$$

The proof of Lemma 4.6 is deferred to Section 4.3.
Remark 4.7 (Generalizations of Lemma 4.6 and completeness of downslices). The proof of Lemma 4.6 relies on downcovers. One can use upcovers to prove a similar lemma that reduces low-density downslices to high-density downslices. Moreover, both, Lemma 4.6 and its low-to-high variant, can be also proved for the dual setting of upslices. So overall, Lemma 4.6 represents four possible transformations. (The other three will not be used in this work.) By combining these reductions with the completeness of downslices/upslices (Observation 4.2), we conclude that it is possible to reduce a general access structure to downslices or upslices of specific density.

We are now ready to realize high-density downslices.
Proof (Proof of Lemma 4.4). Let f be a (b, n)-downslice with $b \in(0.5 n, n]$. Let $v=2 b-n$, and observe that $v \in(0, b]$ since $b \in(0.5 n, n]$. We use the cover reduction lemma (Lemma 4.6) to realize f based on secret-sharing scheme for downslices with parameters $(b-v, n-v)=(n-b, 2 n-2 b) .{ }^{6}$ The latter can be realized (non-linearly) with share size of $2^{n-b+o(n)}$ by Lemma 4.3. Overall, Lemma 4.6 yields a (non-linear) scheme for f with total share size of

$$
\left[\binom{n}{n-b} /\binom{2 n-2 b}{n-b}\right]\left[1+\log \binom{2 n-2 b}{n-b}\right] \cdot 2^{n-b+o(n)}
$$

which equals $\left.\left[\begin{array}{c}n \\ n-b\end{array}\right) /\binom{2 n-2 b}{n-b}\right] \cdot 2^{n-b+o(n)}$. In the linear case, we realize $(n-b, 2(n-$ $b)$)-downslices using the linear secret-sharing scheme promised by Lemma 4.3. This results in the desired share size:

$$
\left[\binom{n}{n-b} /\binom{2 n-2 b}{n-b}\right]\left[1+\log \binom{2 n-2 b}{n-b}\right] \cdot 2^{(3 n-3 b) / 2+o(n)}
$$

which equals $\left[\binom{n}{n-b} /\binom{2 n-2 b}{n-b}\right] \cdot 2^{(3 n-3 b) / 2+o(n)}$. If we plug in $b=\beta n$ for a constant $\beta \in(0.5,1]$ and make use of (1), the general and linear share sizes translate to $2^{\left(\mathrm{H}_{2}(\beta)-2(1-\beta)+(1-\beta)\right) n+o(n)}$ and $2^{\left(\mathrm{H}_{2}(\beta)-2(1-\beta)+\frac{3}{2}(1-\beta)\right) n+o(n)}$, leading to the desired exponents.

[^4]
4.3 Proof of the cover reduction

The proof of Lemma 4.6 is based on the following construction.
Construction 4.8. Let F be a (b, n)-downslice. We share the secret s according to F as follows:

1. Pick a family $\mathcal{G}=\left\{G_{i}\right\}_{i=1}^{L}$ of sets of size v that downcovers the slice b.
2. For every $G_{i} \in \mathcal{G}$ define the access structure F_{i} over the participant's set $[n] \backslash G_{i}$ as follows:

$$
F_{i}\left(x^{\prime}\right)=F\left(x^{\prime} \cup G_{i}\right)
$$

where x^{\prime} is viewed as a subset of $[n] \backslash G_{i}$.
3. Split the secret s with an (L-out-of-L) LSS scheme to random shares $s_{1}, \ldots, s_{L} \in\{0,1\}$ such that $s_{1} \oplus \cdots \oplus s_{L}=s$. For every $1 \leq i \leq L$ share s_{i} according to the access structure F_{i}.

Claim 4.9. Construction 4.8 realizes the access structure F.
Proof. It suffices to show that $F=\bigwedge_{i} F_{i}$. Assume that x is authorized under F, we will show that it is also authorized by F_{i} for every i. Fix i and let $x^{\prime}=x \cap \bar{G}_{i}$, we claim that x^{\prime} is authorized under F_{i}. Indeed, by definition, $F_{i}\left(x^{\prime}\right)=F\left(x^{\prime} \cup G_{i}\right)$ which is 1 since $x^{\prime} \cup G_{i}$ contains x and is therefore authorized under F.

Next, assume that x is unauthorized under F. Since F is a (b, n)-downslice, x must be a subset of some unauthorized set B of size b, and by the down-covering property there exists an index $i \in[L]$ such that G_{i} is a subset of the same set B. Again letting $x^{\prime}=x \cap \bar{G}_{i}$, we then get that $x^{\prime} \cup G_{i} \subseteq B$, and therefore $F_{i}\left(x^{\prime}\right)=F\left(x^{\prime} \cup G_{i}\right)=0$. The claim follows.

Claim 4.10. For every $1 \leq i \leq L, F_{i}$ is $a(b-v, n-v)$-downslice access structure.

Proof. Fix a maximal unauthorized set $x^{\prime} \subset[n] \backslash G_{i}$ of F_{i}. We show that x^{\prime} contains exactly $b-v$ parties. For this, it suffices to show that $x=x^{\prime} \cup G_{i}$ is a maximal unauthorized set of F. By definition, $x^{\prime} \cup G_{i}$ is unauthorized under F. Moreover, every strict super-set y of $x^{\prime} \cup G_{i}$ must be F-authorized. Otherwise, if y is F-unauthorized then the set $y^{\prime}=y \cap \bar{G}_{i}$ must be also F_{i}-unauthorized and since y^{\prime} is a strict-super set of x^{\prime}, this contradicts the fact that x^{\prime} is max-unauthorized under F_{i}. Finally, since any max-term of F is of size b, the max-terms of F_{i} is of size $b-v$.

Share size analysis: Due to Fact 3.3 we can pick a family \mathcal{G} for step 1 of the scheme of size

$$
L=\left[\binom{n}{n-b} /\binom{n-v}{n-b}\right]\left[1+\log \binom{n-v}{n-b}\right]
$$

and for every set in \mathcal{G} we use a secret sharing scheme with share size $z(b-v, n-v)$, which results in the desired share size. This completes the proof of the first part of Lemma 4.6.

The "Consequently" part follows immediately by plugging-in $b=\lceil\beta n\rceil, v=$ $\left\lceil\frac{\beta-\alpha}{1-\alpha} n\right\rceil$, and noting that $\alpha_{n}=\frac{b-v}{n-v}$ converges to α when n goes to infinity. Observe that the exponent of $\left(\alpha_{n}(n-v),(n-v)\right)$-downslices is the same as the exponent, $z^{\prime}(\alpha)$, of α-downslice. ${ }^{7}$ Now, by applying (1) and noting that $\beta_{n}=b / n=\lceil\beta n\rceil / n$ converges to β when n grows, we derive an exponent of

$$
\mathrm{H}_{2}(\beta)-\frac{1-\beta}{1-\alpha} \mathrm{H}_{2}(1-\alpha)+z^{\prime}(\alpha) \cdot \frac{1-\beta}{1-\alpha},
$$

which equals the expression in (3), as required.

5 Linear secret sharing for downslices

In this section we present a LSS for general access structures with an exponent of 0.7576 (Theorem 2.2). As in Section 4, this is done by showing that downslices can be linearly realized with this exponent.

Theorem 5.1. Every n-party downslice access structure can be linearly realized with complexity of $2^{0.7576 n+o(n)}$.

The proof of Theorem 5.1 is based on a bootstrapping procedure which strongly exploits the duality properties of LSS.

Section Organization In Section 5.1 we describe a property of linear schemes for dual access structures. In Section 5.2 we reduce downslices to upslices and vice versa. In Section 5.3 we iteratively employ these reductions together with tools from the previous section, to obtain a LSS for downslices with lower exponents than before. Lastly in Section 5.4 we prove Theorem 2.2. Some additional optimizations for low downslices (that do not affect Theorem 5.1) appear in the full version of the paper.

5.1 Exploiting duality

Definition 5.2 (Dual Access structures). The dual access structure of an n-party access structure f is an n-party access structure, denoted by $\operatorname{DuAL}(f)$, that consists of all sets x whose complements \bar{x} are unauthorized under f. Viewing f as a function, this means that for every input x

$$
\operatorname{DuaL}(f)(x)=1-f(\bar{x}) .
$$

Consequently, the complement of every min-term of f is a max-term of the dual $\operatorname{DUAL}(f)$, and the complement of every max-term of f is a min-term of $\operatorname{DuAL}(f)$.

We make the following observation.

[^5]Fact 5.3 (Duals of slice access structures). Let f be an access structure. Then:

1. If f is an (a, n)-slice then its dual is an $((n-a), n)$-slice.
2. If f is an (a, n)-upslice then its dual is $a((n-a), n)$-downslice, and vice versa.
3. If f is an $(a: b, n)$-multislice then its dual is an $(n-b: n-a, n)$-multislice.

It is known that for linear schemes the total share size of an access structure is equal to the total share size of its dual.

Fact 5.4 ([20]). A linear secret sharing scheme for an access structure f can be converted into a linear scheme for the dual access structure $\operatorname{DUAL}(f)$ with the same total share size.

By Fact 5.4, Fact 5.3, Lemma 4.3, and Lemma 4.4, we get the following corollary.
Corollary 5.5 (Duality reduction). For every integers $a \leq n$, the LSS complexity of the family of (a, n)-downslices equals to the LSS complexity of the family $(n-a, n)$-upslices.

By Lemma 4.4 and Lemma 4.3, for any constant $0<\alpha<1$, the family of ($\alpha n, n$)-upslices can be linearly realized with an exponent of

$$
\mathbf{U}_{\ell}(\alpha) \leq \begin{cases}\mathrm{H}_{2}(\alpha)-\frac{1}{2}(\alpha) & \text { if } \alpha<\frac{1}{2} \\ \frac{1}{2}+\frac{1-\alpha}{2} & \text { if } \alpha \geq \frac{1}{2}\end{cases}
$$

5.2 High-density downslices from low-density upslices and mid-range multislices

In the following lemma we improve the exponent of a (c, n)-downslice f by decomposing it into two access structures: one that has the same min-terms as f up to a specific size u (which will be realized using low-density upslices), and one that is simply the $(u: c, n)$ multislice of f.

Lemma 5.6 (Reducing downslices to upslices). Let $u \leq c<n$ be integers. Given a LSS that realizes (a, n)-upslices with an exponent of $\mathbf{U}_{\ell}^{\prime}(a, n)$ and a LSS that realizes the $(u: c, n)$-multislices with an exponent of $\mathbf{M}_{\ell}^{\prime}(u: c, n)$, there exists a LSS that realizes (a, n)-downslices with an exponent of

$$
\mathbf{D}_{\ell}(c, n) \leq \min _{u}\left[\max \left(\max _{i \leq u}\left\{\mathbf{U}_{\ell}^{\prime}(i, n)\right\}, \mathbf{M}_{\ell}^{\prime}(u: c, n)\right)\right]+o(1)
$$

where o(1) stands for a quantity that tends to zero as n increases, regardless of the values of u and c.

Proof. It suffices to show that for every $u \leq c$ any downward-induced (c, n) access structure f can be realized with an exponent of

$$
\begin{equation*}
\max \left(\max _{i \leq u}\left\{\mathbf{U}_{\ell}^{\prime}(i, n)\right\}, \mathbf{M}_{\ell}^{\prime}(u: c, n)\right)+o(1) . \tag{4}
\end{equation*}
$$

Fix some $u \in[0, c]$. Define $f_{u, c}$ to be the $(u: c, n)$-multislice of f, and $f_{0, u}^{\text {up }}$ as the disjunction of the first u upslices of f. More formally, $f_{0, u}^{\mathrm{up}}:=\bigvee_{i=0}^{u} f_{i}$ where f_{i} is the i-upslice of f. Clearly, $f_{0, u}^{\mathrm{up}}$ can be linearly realized with an exponent of $\max _{i \leq u}\left\{\mathbf{U}_{\ell}^{\prime}(i, n)\right\}+O\left(n^{-1} \log n\right)$ (just duplicate the secret u times and deal the i-th copy via the access structure f_{i}). Consequently, the access structure $f_{0, u}^{\mathrm{up}} \vee f_{u, c}$ can be linearly realized with an exponent of (4). We complete the proof by showing that $f=f_{0, u}^{\mathrm{up}} \vee f_{u, c}$.

For inputs x such that $|x| \leq u, f(x)=f_{0, u}^{\mathrm{up}}(x)$ and $f_{u, c}(x)=0$. For inputs x such that $u<|x| \leq c$, it holds that (1) $f(x)=f_{u, c}(x)$, and (2) $f_{0, u}^{\mathrm{up}} \leq f$ since the min-terms of $f_{0, u}^{\mathrm{up}}$ are a subset of those of f. We therefore conclude that for such inputs $f(x)=f_{0, u}^{u p}(x) \vee f_{u, c}(x)$. Finally, for inputs x with $|x|>c$, both $f(x)$ and $f_{u, c}(x)$ take the value 1 , and so equality holds in this case as well.

5.3 Bootstrapping (c, n)-downslices

In this section we construct an LSS for (c, n)-downslices via an iterative process. In each iteration, we will start with an LSS for (c, n)-downslices and end-up with a new LSS for (c, n)-downslices whose exponent is at least as good as the one achieved in the previous iteration. Each iteration i is composed of three steps: (1) We generate LSS for all downslices of density larger than c; (2) We generate LSS for all upslices of density smaller than $n-c$; (3) We use the current schemes for (u, n)-upslices for $u<u_{i}$ for some parameter u_{i} to obtain a new LSS for (c, n)-downslices. Note that the target slice c is kept fixed across iterations. The structure of a single iteration that consists of the three reductions is depicted below. The process is formally defined in Construction 5.7.

Construction 5.7 (Bootstrapping downslices). Given integer n, a target slice $c<n$, and time-bound $t \in \mathbb{N}$, initialize an LSS for (c, n)-downslice based on Theorem 4.1 and set $\mathbf{D}_{\ell}(c, n)[0]$ to be its exponent, and repeat the following steps for $i \in[t]$ iterations:

1. For every $d \in(c, n]$, apply the cover reduction (Lemma 4.6) and transform the current LSS for (c, n)-downslices to an LSS for (d, n)-downslices with exponent

$$
\begin{equation*}
\mathbf{D}_{\ell}(d, n)[i+1]=\mathrm{H}_{2}(d / n)-(1-d / n)\left(\frac{\mathrm{H}_{2}(c / n)-\mathbf{D}_{\ell}(c, n)[i]}{1-c / n}\right)+o(1) \tag{5}
\end{equation*}
$$

2. For every $d \in(c, n]$, apply the duality reduction (Corollary 5.5) and transform the LSS for (d, n)-downslices to an LSS for $(n-d, n)$-upslices with an exponent of

$$
\begin{equation*}
\mathbf{U}_{\ell}(n-d, n)[i+1]=\mathbf{D}_{\ell}(d, n)[i+1] \tag{6}
\end{equation*}
$$

Three reductions of Construction 5.7

1. The cover reduction (Lemma 4.6): Transform a scheme for (c, n)-downslices with to a scheme for downslices with higher density.
2. Duality reduction: Transform high downslices to low upslices (Corollary 5.5): Transform a scheme for downslices of high density in $(c, n]$ to a scheme for upslices with low density in $[0, n-c)$.

3. Reducing high downslices to low

 upslices (Lemma 5.6): For an integer $u \leq$ c, transform a scheme for upslices in the range $[0, u]$ and a scheme for the $(u: c, n)$ - multislice to a scheme for the c-downslice.

Fig. 3: We place all slices on an horizontal axis with an arrow which represents the direction of the transformation.
3. Construct an LSS for (c, n)-downslices by applying Lemma 5.6 where (j, n)upslices for every $j<n-c$ are instantiated with the LSS that were derived in the previous step. Accordingly, the new LSS for (c, n)-downslices has an exponent of

$$
\begin{equation*}
\mathbf{D}_{\ell}(c, n)[i+1]=\min _{u \leq c}\left[\max \left(\max _{j \leq u} \mathbf{U}_{\ell}(j, n)[i+1], \mathbf{M}_{\ell}^{0}(u: c, n)\right)\right]+o(1) \tag{7}
\end{equation*}
$$

where $\mathbf{M}_{\ell}^{0}(a: b, n)$ denotes the linear exponent of $(a: b, n)$-multislice access structures that is achieved in Lemma 4.5.
Now by Lemma 4.6, Corollary 5.5 and Lemma 5.6, for any parameter t, Construction 5.7 yields an LSS for (c, n)-downslices. For a given $\gamma \in[0,1]$ and constant t, we can define a function $\Phi_{t}(\gamma)$ that captures the asymptotic exponent that is achieved for $(\gamma n, n)$-downslices after running Construction 5.7 for t iterations. Formally,

$$
\Phi_{0}(\gamma):= \begin{cases}\frac{1}{2}+\frac{1}{2} \gamma & \text { if } \gamma \leq \frac{1}{2} \\ \mathrm{H}_{2}(\gamma)-\frac{1}{2}(1-\gamma) & \text { if } \gamma>\frac{1}{2}\end{cases}
$$

is set to be the exponent derived from Theorem 4.1. Then by (5), (6) and (7)

$$
\Phi_{i+1}(\gamma):=\min _{v \in[0, \gamma]}\left[\max \left(\max _{\chi \in[0, v]}\left(\mathbf{U}_{\ell}^{\prime}(\chi, \gamma), \mathbf{M}_{\ell}^{\prime}(v, \gamma)\right)\right]\right.
$$

where

$$
\mathbf{U}_{\ell}^{\prime}(\chi, \gamma):=\mathrm{H}_{2}(\chi)-\chi\left(\frac{\mathrm{H}_{2}(\gamma)-\Phi_{i}(\gamma)}{1-\gamma}\right)
$$

and

$$
\mathbf{M}_{\ell}^{\prime}(v, \gamma):= \begin{cases}\frac{1}{2}+\frac{1}{2} \gamma \mathrm{H}_{2}(v / \gamma) & \text { if } \gamma / 2<v<\gamma \\ \frac{1}{2}+\frac{1}{2} \gamma & \text { if } v<\gamma / 2\end{cases}
$$

We therefore conclude that
Lemma 5.8. For every constant $t \in \mathbb{N}$ and constant $\gamma \in[0,1]$, and for all n 's, the LSS constructed by invoking Construction 5.7 for t steps on $(\gamma n, n)$, has an exponent of $\Phi_{t}(\gamma)+\epsilon(n)$ where $\epsilon(n)$ tends to zero when n grows.

Lemma 5.8 suffices for proving Theorem 5.1 (see Section 5.4).
Remark 5.9. Assuming the duality hypothesis, the same bootstraping idea can be employed for general (non-linear) schemes. However, it does not yield better general exponents than the ones shown in the previous section for any downwslice

5.4 Proof of Theorem 5.1

A natural approach for proving Theorem 5.1 would be to run the bootstrapping scheme for each possible target $c \in[n]$, and then glue together all the (c, n) downslices. This approach fails since the exponents of some slices will still be too high. Instead we will apply Construction 5.7 for only two concrete values of c and use the cover reduction to handle downslices of higher densities. Downslices with low density will be treated by Lemma 4.5. Details follow.

By applying Construction 5.7 with $\gamma_{1}=0.5$ and $\gamma_{2}=0.535$ for $t=7$ times, we derive the following claim from Lemma 5.8.

Claim 5.10. Set $\gamma_{1}=0.5$ and $\gamma_{2}=0.535$. The family of $\left(\gamma_{1} n, n\right)$-downslices and the family of $\left(\gamma_{2} n, n\right)$-downslices can be linearly realized with exponents of $z_{1}=0.736$ and $z_{2}=0.748$.
Let f be a (d, n)-downslice. We distinguish between the following cases.

1. For $d \in[0,0.5 n]$ linearly realize f by Lemma 4.3 with a maximal exponent of 0.75 .
2. For $d \in[0.5 n, 0.535 n]$ linearly realize f by applying the cover reduction (Lemma 4.6) instantiated with the LSS for ($0.5 n, n$)-downslices of Claim 5.10. This yields an exponent of

$$
\begin{equation*}
\mathrm{H}_{2}(d / n)-(1-d / n) \frac{\mathrm{H}_{2}\left(\gamma_{1}\right)-z_{1}}{1-\gamma_{1}}<\mathrm{H}_{2}(d / n)-0.528(1-d / n) \tag{8}
\end{equation*}
$$

which is upper-bounded by 0.751 for $d \in[0.5 n, 0.535 n]$.
3. For $d \in[0.535 n, n]$ linearly realize f by applying the cover reduction (Lemma 4.6) instantiated with the LSS for ($0.535 n, n$)-downslices of Claim 5.10. This yields an exponent of

$$
\begin{equation*}
\mathrm{H}_{2}(d / n)-(1-d / n) \frac{\mathrm{H}_{2}\left(\gamma_{2}\right)-z_{2}}{1-\gamma_{2}}<\mathrm{H}_{2}(d / n)-0.534(1-d / n)+o(1) \tag{9}
\end{equation*}
$$

which is upper-bounded by 0.7576 for $d \in[0.535 n, n]$.

The proof of Theorem 5.1 follows.
Remark 5.11. A more careful analysis allows to obtain a better exponent for values of $d \leq 0.535 n$. We sketch this result in the full version of the paper.

6 Random upslices

Recall that, for a vector of non-negative integers $\mathbf{k}=\left(k_{1}, \ldots, k_{n}\right)$, the \mathbf{k}-DNF distribution is defined by selecting, for each parameter a, k_{a} clauses uniformly at random from the set of all possible $\binom{n}{a}$ monotone a-clauses. (We allow repetitions though this choice does not change the results.) When $\mathbf{k}=\left(0^{a-1} k_{a} 0^{n-a}\right)$ is supported on a single level a, we refer to this distribution as a random $\left(a, k_{a}, n\right)$ upslice. Observe that this special case is complete in the following sense.

Observation 6.1. For every $\mathbf{k}=\left(k_{1}, \ldots, k_{n}\right)$ the following holds. If, for every $a \in[n]$, a random $\left(a, k_{a}, n\right)$-upslice can be realized (resp., linearly realized) with total share size of at most S_{a} except with probability ϵ, then, a random $\mathbf{k}=$ $\left(k_{1}, \ldots, k_{n}\right)$ can be realized (resp., linearly realized) with an complexity of at most $\sum S_{a}$ except with probability $n \epsilon$.

Proof. A random k-DNF f can be written as $f=\bigvee_{a} f_{a}$ where each f_{a} is a random $\left(a, k_{a}, n\right)$-upslice. Hence, we can share f by duplicating the secret n times and sharing the a th copy according to f_{a}. The claim follows by applying union-bound.

We can therefore reduce Theorem 2.3 to the following refined statements (Theorem 6.2 and Theorem 6.3) about random (a, k_{a}, n)-upslices. Specifically, we prove the following theorem in Section 6.1.

Theorem 6.2 (random upslices). Let $a \in[n], k \leq\binom{ n}{a}$ and let f be a randomly chosen $\left(a, k_{a}, n\right)$-upslice. Then, with probability $1-2^{-\Omega(n)}$,

$$
\operatorname{SSize}(f) \leq \begin{cases}\sqrt{\binom{n}{\alpha^{*} n}} \cdot 2^{o(n)} & \text { if } a \in\left[0, \alpha^{*} n\right] \\ \sqrt{\binom{n}{a}} \cdot 2^{o(n)} & \text { if } a \in\left[\alpha^{*} n, n\right]\end{cases}
$$

where $\alpha^{*} \sim 0.157$ is the root of $0.25 \mathrm{H}_{2}(\alpha)-\alpha$. Moreover, under the duality hypothesis, with probability $1-2^{-\Omega(n)}$, the function f can be realized with an exponent of at most $\frac{1}{2} \mathrm{H}_{2}(\lambda) \sim 0.491$, where λ is the root of $\frac{1}{2} \mathrm{H}_{2}(\lambda)-(1-$入) $\mathrm{H}_{2}\left(\frac{\lambda}{1-\lambda}\right)$.

The first part of the theorem (without the duality hypothesis), shows that, for every density $\alpha \in[0,1]$, a random ($\alpha n, n$)-upslice can be realized, whp, with an exponent of 0.5 . Thus, by Observation 6.1, the non-linear part of Theorem 2.3 follows. We further mention that we did not attempt to optimize the exponent for $a \leq \alpha^{*} n$, and indeed a better exponent can be achieved in this case.

Moving on to the second ("Moreover") part of the theorem, recall that the duality hypothesis asserts that for every $f=\left\{f_{n}\right\}$, it holds that $\operatorname{SSize}(f) \leq$ $\operatorname{SSize}(\operatorname{DUAL}(f)) \cdot 2^{o(n) 8}$ and note that this part implies the gap Theorem (Theorem 2.4), based on Observation 6.1 and the outline given in Section 2.

We move on to handle the linear case.
Theorem 6.3 (LSS for random upslices). Let $a \in[n], k \leq\binom{ n}{a}$ and let f be a randomly chosen $\left(a, k_{a}, n\right)$-upslice. Then, with probability $1-2^{-\Omega(n)}$, it holds that

$$
\operatorname{LSSize}(f) \leq\binom{ n}{a}^{1 / 3} \cdot 2^{\frac{n}{3}+o(n)}
$$

Moreover, with probability $1-2^{-\Omega(n)}$, f can be realized with an exponent of at most $0.6651<2 / 3$, where $0.6651=\mathrm{H}_{2}(\lambda)-(1-\lambda) \mathrm{H}_{2}\left(\frac{\lambda}{1-\lambda}\right)$ for the λ which is the root of $\mathrm{H}_{2}(\lambda)-\frac{3}{2}(1-\lambda) \mathrm{H}_{2}\left(\frac{\lambda}{1-\lambda}\right)-\frac{1}{2}$.

Together with Observation 6.1, Theorem 6.3 implies the non-linear part of Theorem 2.3. The proof of Theorem 6.3 appears in Section 6.2.

6.1 Proof of Theorem 6.2

Given a random $\left(a, k_{a}, n\right)$-upslice f we realize f via one of the following two schemes depending on k_{a}. Let t be some threshold parameter that will be chosen later.

1. If $k_{a} \leq t$ realize f via a DNF scheme with complexity of k_{a}.
2. If $k_{a}>t$, set b to be the smallest integer solution of the inequality

$$
\begin{equation*}
t \geq\left[\binom{n}{a} /\binom{b}{a}\right] \cdot n \tag{10}
\end{equation*}
$$

If the min-terms of f downcover the slice b (that is, $f(x)=1$ for every x of weight at least b) realize f via the $(a: b, n)$-multislice of f with the general scheme for multislices promised by Lemma 4.5. Otherwise, realize f via DNF and call this event "failure".
We analyze the complexity of the construction. We set t to $\sqrt{\binom{n}{a}}$. For $k_{a} \leq t$ we rely on the first scheme and get complexity of at most $t=\sqrt{\binom{n}{a}}$, as required. We move on to the case where $k_{a} \geq t$. By Fact 3.3 , the probability of "failure" is $2^{-\Omega(n)}$ and so by Lemma 4.5, the complexity in this case is $\binom{b}{\geq a} \cdot 2^{o(n)}$. We will show that

$$
\binom{b}{\geq a} \leq \begin{cases}\sqrt{\binom{n}{\alpha^{*} n}} \cdot 2^{o(n)} & \text { if } a \in\left[0, \alpha^{*} n\right] \tag{11}\\ \sqrt{\binom{n}{a}} \cdot 2^{o(n)} & \text { if } a \in\left[\alpha^{*} n, n\right]\end{cases}
$$

[^6]Let us start with the case of $a \geq \alpha^{*} n$. We claim that

$$
\begin{equation*}
\binom{b}{\geq a} \leq\binom{ b}{a} \cdot 2^{o(n)} \leq \sqrt{\binom{n}{a}} \cdot 2^{o(n)} \tag{12}
\end{equation*}
$$

Indeed, by plugging $t=\sqrt{\binom{n}{a}}$ into (10) and rearranging the terms, we get that b is the smallest integer that satisfies $\binom{b}{a} \geq n \cdot \sqrt{\binom{n}{a}}$. Therefore, (\star) holds. To establish the first inequality, it suffices to show that $a+o(n) \geq b / 2$, or, equivalently, that $\binom{2 a}{a} \cdot 2^{o(n)} \geq\binom{ b}{a}$. By (\star) it suffices to show that $\binom{2 a}{a} \cdot 2^{o(n)} \geq$ $\sqrt{\binom{n}{a}}$. Taking logarithms from both sides, the inequality holds whenever $2 a+$ $o(n)>0.5 \mathrm{H}_{2}(a / n) n$ which is indeed the case for any $a>\alpha^{*} n$.

Next we deal with the case where $a<\alpha^{*} n$. By (10), in this regime, b grows monotonically with a and so in this case it holds that $b<2 \alpha^{*}$. Therefore

$$
\binom{b}{\geq a} \leq\binom{ 2 \alpha^{*} n}{\geq a} \leq\binom{ 2 \alpha^{*} n}{\alpha^{*} n} \cdot 2^{o(n)} \leq \sqrt{\binom{n}{\alpha^{*} n} \cdot 2^{o(n)}, ~}
$$

where the last inequality follows from the previous case. This completes the proof of the first part of Theorem 6.2 (without the "Moreover" part.)

Proving the "Moreover" part under the duality hypothesis. Now we assume the duality hypothesis and derive the last part of the proof. We will need the following lemma that is implied by the duality conjecture and the multislice lemma (Lemma 4.5).
Lemma 6.4. Assuming the duality hypothesis, if $(a: b, n)$-multislices can be realized with share size of S, then the dual $(n-b: n-a, n)$-multislices can be realized with share size of $S \cdot 2^{o(n)}$. Specifically, $(a: b, n)$-multislice can be realized with share size of $\binom{n-a}{\geq n-b} \cdot 2^{o(n)}$.
It can be verified that the above lemma outperforms the original $(a: b, n)$ multislice construction (Lemma 4.5) whenever $b>n-a$.

Getting back to the proof of Theorem 6.2 , we will now realize random (a, n) upslices with the same scheme but with different parameters and ingredients. We will analyze this scheme for $a \in\left[0, \alpha^{* *} n\right]$, where $\alpha^{* *} \sim 0.686$ is the solution of the equation

$$
\mathrm{H}_{2}(\alpha)+\left(1-\alpha^{*}\right) \mathrm{H}_{2}\left(\frac{\alpha}{1-\alpha^{*}}\right)-\frac{1}{2} \mathrm{H}_{2}\left(\alpha^{*}\right)=0
$$

and $\alpha^{*} \sim 0.157$ is defined as before to be the root of $0.25 \mathrm{H}_{2}(\alpha)-\alpha$. For a random (a, n)-upslice f, we will run the previous scheme with the following changes. In step (2) we will set b to be the smallest integer solution of the inequality

$$
\begin{equation*}
\sqrt{\binom{n}{n-b}} \geq\left[\binom{n}{a} /\binom{b}{a}\right] \cdot n=\left[\binom{n}{n-b} /\binom{n-a}{n-b}\right] \cdot n \tag{13}
\end{equation*}
$$

If in step (2) the min-terms of f downcover the slice b, we realize the $(a: b, n)$ multislice of f by the new construction (Lemma 6.4) with share size $\binom{n-a}{\geq n-b} \cdot 2^{o(n)}$. If the min-terms do not downcover the slice b, the process fails (and we use DNFbased secret sharing). In addition, we set the threshold t to $\sqrt{\binom{n}{b}}$.

Claim. Under the duality hypothesis, for any $a \in\left[0, \alpha^{* *} n\right]$ and any k, the above scheme realizes a randomly chosen (a, k, n)-upslice with total share size of $\sqrt{\binom{n}{n-b}} \cdot 2^{o(n)}$ except with probability $2^{-\Omega(n)}$.

Proof. First observe that, by Fact 3.3, the scheme fail with probability at most $2^{-\Omega(n)}$. Conditioned on not failing, the share size is $\max \left(\binom{n-a}{\geq n-b}, t\right)$ and since $t=\sqrt{\binom{n}{b}}=\sqrt{\binom{n}{n-b}}$ it suffices to prove the following inequalities

$$
\binom{n-a}{\geq n-b} \leq\binom{ n-a}{n-b} \cdot 2^{o(n)} \leq \sqrt{\binom{n}{n-b}} \cdot 2^{o(n)}
$$

Indeed, since b is the minimal integer that satisfies (13), we conclude that ($* *$) holds. The first inequality can be established by showing that $n-b+o(n) \geq$ $(n-a) / 2$, or, equivalently, that $\binom{2(n-b)}{n-b} \cdot 2^{o(n)} \geq\binom{ n-a}{n-b}$. By $(\star \star)$ it suffices to show that $\binom{2(n-b)}{n-b} \cdot 2^{o(n)} \geq \sqrt{\binom{n}{n-b}}$. Taking logarithms from both sides and dividing by n, we get that the inequality holds whenever $2(1-b / n)+o(1) \geq 0.5 \mathrm{H}_{2}(b / n)$ which holds whenever $b / n \leq 1-\alpha^{*}+o(1)$. We conclude the argument by showing that $b / n \leq 1-\alpha^{*}+o(1)$. Since b is monotonically increasing with a (by (13)) and since $a \leq \alpha^{* *} n$, we may focus on the case where $a=\alpha^{* *} n$. Let $\beta=b / n$. Taking logarithms from both sides of (13) and dividing by n, we can write $\frac{1}{2} \mathrm{H}_{2}(\beta)=$ $\mathrm{H}_{2}\left(\alpha^{* *}\right)-\beta \mathrm{H}_{2}\left(\alpha^{* *} / \beta\right)+o(1)$, which, by the definition of $\alpha^{* *}$, guarantees that $\beta \leq 1-\alpha^{*}+o(1)$, as required. This completes the proof of Section 6.1.

Combining the two schemes together. Overall we now can realize random (a, n) upslices where $a \in\left[\alpha^{*} n, \alpha^{* *} n\right]$ with share size

$$
\begin{equation*}
\min \left(\sqrt{\binom{n}{a}} \cdot 2^{o(n)}, \sqrt{\binom{n}{n-b}} \cdot 2^{o(n)}\right) \tag{14}
\end{equation*}
$$

where $b=b(a, n)$ is the minimal integer that satisfies (13). Denote by a_{0} the value for which the two expressions in (14) are equal, i.e., $b\left(a_{0}, n\right)=n-a_{0}$. We will later calculate a_{0} and show that it is about $0.421 n$. For now let us record the fact that $a_{0}<n / 2$ and that, consequently, for any $a>a_{0}$ it holds that $b(a, n)>$ $b\left(a_{0}, n\right)=n-a_{0}>n / 2$ (since $b(a, n)$ monotonically increases with a). Next, observe that, the bound (14) on the complexity for an (a, n) upslice simplifies to $\sqrt{\binom{n}{a}} \cdot 2^{o(n)}$ when $a \leq a_{0}$ and to $\sqrt{\binom{n}{n-b}} \cdot 2^{o(n)}$ when $a>a_{0}$. Furthermore, the first expression monotonically increases with a for $a<a_{0}<n / 2$, and the second expression monotonically decreases with a for $a>a_{0}$ (since $b(a, n)>n / 2$
and since $b(a, n)$ increases with $a)$. Hence, the upslice with the maximal share size in the given range will be the $\left(a_{0}, n\right)$-upslice. We move on to calculate a_{0}. Let $a=\alpha n$ and $b=\beta n$, by plugging (13) into the equation $b(a, n)=n-a$, we conclude that $\alpha_{0}=a_{0} / n$ is the solution to the equation

$$
\frac{1}{2} \mathrm{H}_{2}(1-\alpha)=\mathrm{H}_{2}(1-\alpha)-(1-\alpha) \mathrm{H}_{2}\left(\frac{\alpha}{1-\alpha}\right)
$$

and therefore $\alpha_{0} \sim 0.421$. Therefore (14) is upper-bounded by $\sqrt{\binom{n}{a_{0}}} \cdot 2^{o(n)} \leq$ $2^{0.5} \mathrm{H}_{2}\left(\alpha_{0}\right) n+o(n)$. We conclude that random (a, n)-upslices can be realized with an exponent of $0.5 \mathrm{H}_{2}\left(\alpha_{0}\right) \leq 0.491$ whenever $a \in\left[\alpha^{*} n, \alpha^{* *} n\right]$. We complete the proof by noting that all random upslices below $\alpha^{*} n$ and above $\alpha^{* *} n$ can also be realized with exponents below 0.491 due to the first scheme.

6.2 Proof of Theorem 6.3

We begin by proving the first part of Theorem 6.3 (without the moreover part). The construction is identical to the first construction presented in Section 6.1, except that the threshold t is selected differently to be $\binom{n}{a}^{1 / 3} \cdot 2^{n / 3}$. Again for $k_{a} \leq t$ we rely on the first scheme and get complexity of at most $t=\binom{n}{a}^{1 / 3} \cdot 2^{n / 3}$, as required. For $k_{a} \geq t$, by Fact 3.3 failure happens with $2^{-\Omega(n)}$ probability, and, by Lemma 4.5, conditioned on not failing, the share complexity is at most $2^{n / 2+o(n)} \cdot \sqrt{\binom{b}{\geq a}}$. To complete the first part of the proof, it suffices to show that the latter quantity is at most $\binom{n}{a}^{1 / 3} \cdot 2^{\frac{n}{3}+o(n)}$. This follows from the following claim

$$
\binom{b}{\geq a} \leq\binom{ b}{a} \cdot 2^{o(n)} \underset{\star}{\leq}\binom{n}{a}^{2 / 3} \cdot 2^{-n / 3+o(n)}
$$

Indeed, by plugging $t=\binom{n}{a}^{1 / 3} \cdot 2^{n / 3}$ into (10) and rearranging the terms, we get that b is the smallest integer that satisfies $\binom{b}{a} \geq n \cdot\binom{n}{a}^{2 / 3} \cdot 2^{-n / 3}$. Therefore, (\star) holds. To establish the first inequality, it suffices to show that $a+o(n) \geq b / 2$, or, equivalently, that $\binom{2 a}{a} \cdot 2^{o(n)} \geq\binom{ b}{a}$. By (\star) it suffices to show that $\binom{2 a}{a} \cdot 2^{o(n)} \geq$ $\binom{n}{a}^{2 / 3} \cdot 2^{-n / 3}$. Taking logarithms from both sides, the inequality holds whenever $2 a+o(n)>\left(\frac{2}{3} \mathrm{H}_{2}(a / n)-1 / 3\right) n$ which is indeed the case for every $a \in[n]$. This completes the proof of the first part of the theorem (without the moreover part).

To prove the "Moreover" part, we make use of the following lemma which is implied by the multislice construction (Lemma 4.5) and the duality closure of linear schemes (Fact 5.4):
Lemma 6.5 (LSS for multislices). Let $a, b \in[0, n]$ be integers, then the family of $(a: b, n)$-multislices can be linearly realized with share size $\sqrt{\binom{n-a}{\geq n-b}}$. $2^{n / 2+o(n)}$.

It can be verified that the above lemma outperforms the original linear $(a: b, n)$ multislice construction (Lemma 4.5) whenever $b>n-a$.

This time for a random (a, n)-upslice f, we will run the previous linear scheme with the following changes. In step (2), we will set b to be the smallest integer solution of the inequality

$$
\begin{equation*}
\binom{n}{b}^{1 / 3} \cdot 2^{n / 3} \geq\left[\binom{n}{a} /\binom{b}{a}\right] \cdot n=\left[\binom{n}{n-b} /\binom{n-a}{n-b}\right] \cdot n \tag{15}
\end{equation*}
$$

In addition, we set the threshold t to $\binom{n}{b}^{1 / 3} \cdot 2^{n / 3}$.
Claim. For any $a \in[n]$ and any k, the above scheme realizes a randomly chosen (a, k, n)-upslice with total share size of $\binom{n}{n-b}^{1 / 3} \cdot 2^{n / 3}$.

Proof. First observe that by Fact 3.3 we fail with probability at most $2^{-\Omega(n)}$. Conditioned on not failing, the share size is $\max \left(\sqrt{\binom{n-a}{\geq n-b}} \cdot 2^{n / 2+o(n)}, t\right)$ and since $t=\binom{n}{b}^{1 / 3} \cdot 2^{n / 3}=\binom{n}{n-b}^{1 / 3} \cdot 2^{n / 3}$ it suffices to show that

$$
\begin{equation*}
\sqrt{\binom{n-a}{\geq n-b}} \cdot 2^{n / 2+o(n)} \leq\binom{ n}{n-b}^{1 / 3} \cdot 2^{n / 3} \cdot 2^{o(n)} \tag{16}
\end{equation*}
$$

We prove (16) by establishing the following inequalities

$$
\binom{n-a}{\geq n-b} \leq\binom{ n-a}{n-b} \cdot 2^{o(n)} \leq\binom{ n}{n-b}^{2 / 3} \cdot 2^{-n / 3+o(n)}
$$

Indeed, since b is the minimal integer that satisfies (15), we conclude that ($(\star$) holds. The first inequality can be established by showing that $n-b+o(n) \geq$ $(n-a) / 2$, or, equivalently, that $\binom{2(n-b)}{n-b} \cdot 2^{o(n)} \geq\binom{ n-a}{n-b}$. By ($\star \star$) it suffices to show that $\binom{2(n-b)}{n-b} \cdot 2^{o(n)} \geq\binom{ n}{n-b}^{2 / 3} \cdot 2^{-n / 3}$. Taking logarithms from both sides and dividing by n, we get that the inequality holds whenever $2(1-b / n)+o(1) \geq$ $\left(\frac{2}{3} \mathrm{H}_{2}(b / n)-1 / 3\right)$ which is indeed the case for every $b \in[n]$. This completes the proof of Section 6.2.

Combining the two schemes together. Overall we now can linearly realize random (a, n) upslices with share size of

$$
\begin{equation*}
\min \left(\binom{n}{a}^{1 / 3} \cdot 2^{n / 3+o(n)},\binom{n}{n-b}^{1 / 3} \cdot 2^{n / 3+o(n)}\right) \tag{17}
\end{equation*}
$$

where $b=b(a, n)$ is the smallest integer that satisfies (15). Similarly to the analysis in the proof for the general (non-linear) case, denote by a_{0} the value for which the two expressions in (17) are equal, i.e., $b\left(a_{0}, n\right)=n-a_{0}$. We will later calculate a_{0} and show that it is about $0.4595 n$. For now let us record the fact that $a_{0}<n / 2$ and that, consequently, for any $a>a_{0}$ it holds that
$b(a, n)>b\left(a_{0}, n\right)=n-a_{0}>n / 2$ (since $b(a, n)$ monotonically increases with $a)$. Getting back to (17) observe that the complexity for an (a, n) upslice is $\binom{n}{a}^{1 / 3} \cdot 2^{n / 3+o(n)}$ when $a \leq a_{0}$ and $\binom{n}{n-b}^{1 / 3} \cdot 2^{n / 3+o(n)}$ when $a>a_{0}$. Furthermore, the first expression monotonically increases with a for $a<a_{0}<n / 2$, and the second expression monotonically decreases with a for $a>a_{0}$ (since $b(a, n)>n / 2$ and since $b(a, n)$ increases with $a)$. Hence, the upslice with the maximal share size in the given range will be the $\left(a_{0}, n\right)$-upslice. We move on to calculate a_{0}. Let $a=\alpha n$ and $b=\beta n$, by plugging (15) into the equation $b(a, n)=n-a$, we conclude that $\alpha_{0}=a_{0} / n$ is the solution to the equation

$$
\frac{1}{3}+\frac{1}{3} \mathrm{H}_{2}(1-\alpha)=\mathrm{H}_{2}(1-\alpha)-(1-\alpha) \mathrm{H}_{2}\left(\frac{\alpha}{1-\alpha}\right)
$$

and therefore $\alpha_{0} \sim 0.4595$. It follows that (17) is upper-bounded by $\binom{n}{a_{0}}^{1 / 3}$. $2^{n / 3+o(n)} \leq 2^{n \frac{\mathrm{H}_{2}\left(\alpha_{0}\right)+1}{3}+o(n)}$. We conclude that a random (a, n)-upslice can be linearly realized with an exponent of $\frac{\mathrm{H}_{2}\left(\alpha_{0}\right)+1}{3} \leq 0.6651$ for any a, and the "Moreover" part of Theorem 6.3 follows.

Acknowledgement

We thank Amos Beimel and Naty Peter for valuable discussions. Research supported by the European Union's Horizon 2020 Programme (ERC-StG-20142020) under Grant Agreement No. 639813 ERC-CLC.

References

1. Applebaum, B., Beimel, A., Farràs, O., Nir, O., Peter, N.: Secret-sharing schemes for general and uniform access structures. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2019-38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III. Lecture Notes in Computer Science, vol. 11478, pp. 441-471. Springer (2019). https://doi.org/10.1007/978-3-030-17659-4_15, https://doi.org/10.1007/978-3-030-17659-4_15
2. Applebaum, B., Beimel, A., Nir, O., Peter, N.: Better secret sharing via robust conditional disclosure of secrets. In: Makarychev, K., Makarychev, Y., Tulsiani, M., Kamath, G., Chuzhoy, J. (eds.) Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 2226, 2020. pp. 280-293. ACM (2020). https://doi.org/10.1145/3357713.3384293, https://doi.org/10.1145/3357713.3384293
3. Beaver, D., Feigenbaum, J., Kilian, J., Rogaway, P.: Security with low communication overhead. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO '90. LNCS, vol. 537, pp. 62-76. Springer-Verlag (1990)
4. Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. Ph.D. thesis, Technion (1996)
5. Beimel, A.: Secret-sharing schemes: A survey. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) Coding and Cryptology - Third International Workshop, IWCC 2011. LNCS, vol. 6639, pp. 11-46. Springer-Verlag (2011)
6. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E.: Distribution design. In: Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science. pp. 81-92. ACM (2016)
7. Beimel, A., Farràs, O.: The share size of secret-sharing schemes for almost all access structures and graphs. In: Pass, R., Pietrzak, K. (eds.) Theory of Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part III. Lecture Notes in Computer Science, vol. 12552, pp. 499-529. Springer (2020). https://doi.org/10.1007/978-3-030-643812_18, https://doi.org/10.1007/978-3-030-64381-2_18
8. Beimel, A., Farràs, O., Mintz, Y., Peter, N.: Linear secret-sharing schemes for forbidden graph access structures. In: Kalai, Y., Reyzin, L. (eds.) Theory of Cryptography - 15th International Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10678, pp. 394-423. Springer (2017). https://doi.org/10.1007/978-3-319-705033_13, https://doi.org/10.1007/978-3-319-70503-3_13
9. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryptographic fault-tolerant distributed computations. In: 20th STOC. pp. 1-10. ACM (1988)
10. Benaloh, J.C., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.) CRYPTO '88. LNCS, vol. 403, pp. 27-35. Springer-Verlag (1988). https://doi.org/10.1007/0-387-34799-2_3, https://doi.org/10.1007/0-387-34799-2_3
11. Bertilsson, M., Ingemarsson, I.: A construction of practical secret sharing schemes using linear block codes. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT '92. LNCS, vol. 718, pp. 67-79. Springer-Verlag (1992). https://doi.org/10.1007/3-540-572201_53, https://doi.org/10.1007/3-540-57220-1_53
12. Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. of the 1979 AFIPS National Computer Conference. AFIPS Conference proceedings, vol. 48, pp. 313-317. AFIPS Press (1979)
13. Blundo, C., Santis, A.D., Gargano, L., Vaccaro, U.: On the information rate of secret sharing schemes (extended abstract). In: Advances in Cryptology - CRYPTO '92, 12th Annual International Cryptology Conference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings. pp. 148-167 (1992)
14. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: 20th STOC. pp. 11-19. ACM (1988)
15. Csirmaz, L.: The size of a share must be large. J. of Cryptology 10(4), 223-231 (1997)
16. Csirmaz, L.: Secret sharing and duality. J. Math. Cryptol. 15(1), 157-173 (2020). https://doi.org/10.1515/jmc-2019-0045, https://doi.org/10.1515/jmc-2019-0045
17. Desmedt, Y., Frankel, Y.: Shared generation of authenticators and signatures. In: Feigenbaum, J. (ed.) CRYPTO '91. LNCS, vol. 576, pp. 457-469. Springer-Verlag (1991)
18. Erdos, P., Spencer, J.: Probabilistic Methods in Combinatorics. Academic Press (1974)
19. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation. In: 26th STOC. pp. 554-563. ACM (1994)
20. Gal, A.: Combinatorial methods in Boolean function complexity. Ph.D. thesis, University of Chicago (1996)
21. Göös, M., Pitassi, T., Watson, T.: Zero-information protocols and unambiguity in arthur-merlin communication. Algorithmica 76(3), 684-719 (2016)
22. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for finegrained access control of encrypted data. In: 13th CCS. pp. 89-98. ACM (2006)
23. Ishai, Y., Kushilevitz, E.: On the hardness of information-theoretic multiparty computation. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027 , pp. $439-455$. Springer-Verlag (2004)
24. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structure. In: Globecom 87. pp. 99-102. IEEE (1987), Journal version: Multiple assignment scheme for sharing secret. J. of Cryptology 6(1), 15-20, (1993).
25. Karchmer, M., Wigderson, A.: On span programs. In: 8th Structure in Complexity Theory. pp. 102-111. IEEE Computer Society (1993)
26. Liu, T., Vaikuntanathan, V.: Breaking the circuit-size barrier in secret sharing. In: Diakonikolas, I., Kempe, D., Henzinger, M. (eds.) Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018. pp. 699-708. ACM (2018). https://doi.org/10.1145/3188745.3188936, https://doi.org/10.1145/3188745.3188936
27. Liu, T., Vaikuntanathan, V., Wee, H.: Towards breaking the exponential barrier for general secret sharing. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2018-37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part I. Lecture Notes in Computer Science, vol. 10820, pp. 567-596. Springer (2018). https://doi.org/10.1007/978-3-319-78381$9 _21$, https://doi.org/10.1007/978-3-319-78381-9_21
28. Naor, M., Wool, A.: Access control and signatures via quorum secret sharing. In: 3rd CCS. pp. 157-167. ACM (1996)
29. Pitassi, T., Robere, R.: Strongly exponential lower bounds for monotone computation. In: 49th STOC. pp. 1246-1255. ACM (2017)
30. Pitassi, T., Robere, R.: Lifting nullstellensatz to monotone span programs over any field. In: 50th STOC. pp. 1207-1219. ACM (2018)
31. Robere, R., Pitassi, T., Rossman, B., Cook, S.A.: Exponential lower bounds for monotone span programs. In: 57th FOCS. pp. 406-415. IEEE Computer Society (2016)
32. Shamir, A.: How to share a secret. Communications of the ACM 22, 612-613 (1979)
33. Shankar, B., Srinathan, K., Rangan, C.P.: Alternative protocols for generalized oblivious transfer. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds.) 9th ICDCN. LNCS, vol. 4904, pp. 304-309. Springer-Verlag (2008). https://doi.org/10.1007/978-3-540-77444-0_31, https://doi.org/10.1007/978-3-540-77444-0_31
34. Sun, H., Shieh, S.: Secret sharing in graph-based prohibited structures. In: Proceedings IEEE INFOCOM '97, The Conference on Computer Communications, Sixteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Driving the Information Revolution, Kobe, Japan, April 7-12, 1997. pp. 718-724 (1997)
35. Tassa, T.: Generalized oblivious transfer by secret sharing. Designs, Codes and Cryptography 58(1), 11-21 (2011)
36. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53-70. Springer-Verlag (2011). https://doi.org/10.1007/978-3-642-19379-8_4, https://doi.org/10.1007/978-3-642-19379-8_4

A Omitted Preliminaries

We formally define four different types of "slice access structures" that will be used as key components in our general constructions. Throughout this section, we fix some complete access structure f over n parties. The following definitions were extensively used by [26]. For string $x, x^{\prime} \in\{0,1\}^{n}$, we write $x \leq x^{\prime}$ if for every $i \in[n], x_{i} \leq x_{i}^{\prime}$. We let $\mathrm{wt}(x)$ denote the Hamming weight of x.
Definition A. 1 (Slices and Multislices). For $a \leq b \in[n]$, we define the $(a: b)$-multislice of f to be the access structure $F:\{0,1\}^{n} \rightarrow\{0,1\}$ for which

$$
F(x)= \begin{cases}0 & \text { if } \operatorname{wt}(x)<a \\ f(x) & \text { if } \operatorname{wt}(x) \in[a, b] . \\ 1 & \text { if } \operatorname{wt}(x)>b\end{cases}
$$

We say that F is $(a: b, n)$-multislice access-structure (or just ($a: b, n$)-slice) if F is an $(a: b)$-multislice of some n-party access structure f. An ($a: a)$-multislice is refereed to as an a-slice.

As already mentioned, our constructions strongly exploit the following finegrained variants of slice access structures.
Definition A. 2 (Upslices). For $a \in[n]$, we define the a-upslice of f to be the access structure $F:\{0,1\}^{n} \rightarrow\{0,1\}$ for which

$$
F(x)= \begin{cases}0 & \text { if } \mathrm{wt}(x)<a \\ f(x) & \text { if } \mathrm{wt}(x)=a . \\ 1 \Longleftrightarrow \quad \exists x^{\prime}: \mathrm{wt}\left(x^{\prime}\right)=a, x^{\prime} \leq x, f\left(x^{\prime}\right)=1 & \text { if } \mathrm{wt}(x)>a\end{cases}
$$

We say that F is an (a, n)-upslice access structure (or just (a, n)-upslice) if F is an (a, n)-upslice of some n-party access structure f.

Observe that F is (a, n)-upslice if and only if all its min-terms are at level a.
Definition A. 3 (Downslices). For $b \in[n]$, we define the b-downslice of f to be the access structure $F:\{0,1\}^{n} \rightarrow\{0,1\}$ for which

$$
F(x)= \begin{cases}0 \Longleftrightarrow \exists x^{\prime}: \operatorname{wt}\left(x^{\prime}\right)=b, x \leq x^{\prime}, f\left(x^{\prime}\right)=0 & \text { if } \mathrm{wt}(x)<b \\ f(x) & \text { if } \mathrm{wt}(x)=b . \\ 1 & \text { if } \mathrm{wt}(x)>b\end{cases}
$$

We say that F is a (b, n)-downslice access structure (or just (b, n)-downslice) if F is a b-slice of some n-party access structure f.
Observe that F is a (b, n)-downslice if and only if all its max-terms are at level b.

[^0]: ${ }^{1}$ Monotonicity here means that for any $A \subset B$ it holds that $A \in F \Rightarrow B \in F$. It is not hard to see that a non-monotone access structure does not admit a secret-sharing scheme, and therefore this requirement is necessary.
 ${ }^{2}$ The bound holds for any finite field. From now on when the field is unspecified we take it, by default, to be the binary field. This only makes our positive results stronger.

[^1]: ${ }^{3}$ We use the standard partial order over strings that is induced by inclusion over the corresponding characteristic sets. That is, $x \leq y$ if for every index i it holds that $x_{i} \leq y_{i}$.

[^2]: $\overline{4}$ To see this, observe that if f is the a-slice of a monotone function g, we can write f as $f=\left(g \wedge T_{a-1}\right) \vee T_{a+1}$ where T_{k} is the k threshold function over n-bit inputs. By using standard closure properties of secret sharing, one can therefore transform a secret sharing for g into a secret sharing for f with an additive cost of $O(\log n)$.

[^3]: ${ }^{5}$ Formally, for asymptotic purposes one should think of f as a sequence of access structures $\left\{f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}\right\}_{n \in \mathbb{N}}$.

[^4]: ${ }^{6}$ This choice of v can be shown to be optimal for both for the general and linear case.

[^5]: ${ }^{7}$ More generally, whenever $\left|g(n)-g^{\prime}(n)\right|=o(n)$, the exponent of $(g(n), n)$-downslices is equal to the exponent of $\left(g^{\prime}(n), n\right)$-downslices. To see this, observe that $(g(n), n)$ downslices can be written as a sub-exponential formula over $\left(g^{\prime}(n), n\right)$-downslices.

[^6]: ${ }^{8}$ In fact, a weaker hypothesis suffices that applies duality only to the family of (a : b, n)-multislices; See Lemma 6.4.

