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Abstract. We construct the first multi-input functional encryption
(MIFE) scheme for quadratic functions from pairings. Our construction
supports polynomial number of users, where user i, for i ∈ [n], encrypts
input xi ∈ Zm to obtain ciphertext CTi, the key generator provides a key
SKc for vector c ∈ Z(mn)2 and decryption, given CT1, . . . ,CTn and SKc,
recovers 〈c,x⊗x〉 and nothing else. We achieve indistinguishability-based
(selective) security against unbounded collusions under the standard bi-
lateral matrix Diffie-Hellman assumption. All previous MIFE schemes
either support only inner products (linear functions) or rely on strong
cryptographic assumptions such as indistinguishability obfuscation or
multi-linear maps.
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1 Introduction

Functional encryption (FE) [12,29] is a novel cryptographic paradigm that moves
beyond the “all or nothing” access of traditional public key encryption and en-
ables fine grained access to encrypted data. Concretely, an FE scheme that sup-
ports a function class F allows an owner of a master secret to issue a secret key
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SKf for a function f ∈ F. Decryption of a ciphertext CTx for a message x with
SKf yields f(x) and nothing else. Functional encryption has been extensively
studied in the literature, with elegant constructions supporting various function
classes, achieving different notions of security and from diverse assumptions,
e.g., [3, 9, 13,19,20].

Multi-input functional encryption (MIFE) [22] is a natural generalization
of FE, which supports functions that take multiple inputs. In MIFE, multiple
parties can encrypt data independently – thus, n users may encrypt their data
x1, . . . , xn to produce ciphertexts CT1, . . . ,CTn, which can be decrypted using
a functional key SKf to learn f(x1, . . . , xn) and nothing else.

Research in MIFE has followed two broad directions. On one hand, it was
shown that for general function classes (all polynomial sized circuits), FE is
powerful enough to imply MIFE (albeit with exponential loss), which in turn
implies the powerful notion of indistinguishability obfuscation (iO) [8, 11]. On
the other hand, for restricted function classes such as constant degree polyno-
mials, single-input schemes do not generically imply multi-input schemes and
constructing multi-input schemes directly proved significantly more challenging.
Intuitively, this is because in the multi-input setting, inputs x1, . . . , xn encrypted
using independent sources of randomness must be combined in a secure way to
“emulate” the single input setting where encodings of x1, . . . , xn may be tied
together using common randomness. Nevertheless, for the inner product func-
tionality, several novel MIFE constructions emerged based on simple, standard
polynomial hardness assumptions [1, 2, 4, 6, 15,17,27,30].

Beyond Inner Products. While the inner product functionality is useful for
several meaningful applications (we refer the reader to [6] for a discussion), it is
evidently desirable, from the viewpoint of both theory and practice, to extend
the reach of MIFE from standard assumptions beyond inner products. In the
single input setting, there has been significant progress in this direction. For
quadratic functions, several FE schemes have been constructed from standard
assumptions on pairings [9, 21, 28]4. Indeed, from pairings, there have also been
innovative constructions for “degree 2.5” FE [7], the so-called “partially hiding
functional encryption” (PHFE) schemes. Intuitively, PHFE permits part of the
encryptor’s input to be public and supports deeper computation on the public
input as compared to the private input.

However, in the multi-input setting, constructions going beyond inner prod-
ucts have proved elusive. Note that unlike the single input setting, quadratic
MIFE cannot be trivially constructed from inner product MIFE even with large
ciphertext, since the naive idea of encrypting all quadratic monomials in advance
cannot deal with quadratic terms derived from two different users. Therefore,
there are currently no candidate constructions for MIFE supporting quadratic

4 Note that FE for quadratic functions are trivially constructible from FE for inner
products (IPFE) by linearizing and encrypting all quadratic monomials. However,
FE for quadratic functions requires that the ciphertext size be linear in input length.
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polynomials, from standard, polynomial hardness assumptions5. This is a signifi-
cant gap in our understanding of MIFE, and motivates the fundamental question:

Can we construct MIFE for quadratic functions from pairings?

1.1 Our Results

In this work, we answer the above question affirmatively and construct the
first MIFE scheme for quadratic functions from pairings. In more detail, we
construct n-input MIFE scheme for the function class Fm,n, which is defined
as follows. Each function f ∈ Fm,n is represented by a vector c ∈ Z(mn)2 .
For inputs x1, . . . ,xn ∈ Zm, f is defined as f(x1, . . . ,xn) := 〈c,x ⊗ x〉 where
x = (x1|| · · · ||xn) and ⊗ denotes the Kronecker product. In a quadratic MIFE
scheme for Fm,n, a user can encrypt xi ∈ Zm to CTi for slot i ∈ [n], a key issuer
can generate a secret key SK for c ∈ Z(mn)2 , and decryption of CT1, . . . ,CTn

with SK reveals only 〈c,x⊗ x〉 and nothing else.
To begin, we show that in the public key setting, quadratic MIFE can be

generically obtained from public-key IPFE, which can be obtained even without
pairings, in a relatively simple manner, as the case of public-key inner product
MIFE [6]. Then we provide our main construction in the much more challenging
secret-key setting6. Our construction relies on the bilateral matrix Diffie-Hellmen
assumption [18] and achieves standard indistinguishability-based (selective) se-
curity against unbounded collusions. We observe that in the symmetric key set-
ting, selective security is the same as “semi-adaptive” [14, 23] security. Recall
that in semi-adaptive security, the adversary is permitted to see the public key
before committing to the challenge. In the symmetric key setting, since the “pub-
lic key” is simply public parameters of the scheme, such as group description,
which may always be provided to the adversary in the first step of the game, the
distinction between selective and semi-adaptive is moot. Thus, our construction
achieves the same level of security as single input quadratic FE [9,21,28].

Our construction is built using two newly introduced primitives that we call
predicated IPFE and mixed-group multi-input IPFE, which we describe next.
Predicated IPFE (pIPFE) is a class of attribute-based IPFE [5], but additionally
with a function hiding property. In more detail, a ciphertext pCT and a secret
key pSK of a pIPFE scheme pFE are associated with two vectors {x1,x2} and
{y1,y2}, respectively. Decryption of pCT with pSK reveals 〈x2,y2〉 iff 〈x1,y1〉 =
0. Secret keys are required to hide y2 but not y1, This scheme is the first instan-
tiation of function-hiding attribute-based IPFE, which may be of independent
5 In an exciting recent work, iO has been constructed from sub-exponential hardness

of four well-founded assumptions [24]. However, this construction relies on a series
of intricate, lossy reductions and is primarily a feasibility result. We will focus on
the polynomial hardness of a well-founded problem in this work.

6 Recall that public-key MIFE does not imply secret-key MIFE. Roughly speaking,
a user who has CT1 for x1 and SK for f of a public-key scheme is allowed to learn
f(x1, x2, . . . , xn) for all (x2, . . . , xn), since this is inherent leakage, while it is not the
case in secret-key MIFE.
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interest. Mixed group multi input IPFE is similar to multi input IPFE but sup-
ports mixed groups, as suggested by the name. In more detail, consider a function
f : (Gm1

1 ×Gm2
2 )n → GT , specified by ([y1,1]2, [y1,2]1, . . . , [yn,1]2, [yn,2]1) where

yi,1 ∈ Zm1
p and yi,2 ∈ Zm2

p and defined as f
(
([x1,1]1, [x1,2]2), . . . , ([xn,1]1, [xn,2]2)

)
:= [〈(x1,1,x1,2, . . . ,xn,1,xn,2), (y1,1,y1,2, . . . ,yn,1,yn,2)〉]T

Mixed group multi input IPFE is also required to achieve function-hiding. We
provide constructions for these primitives by leveraging a (multi-input) function-
hiding IPFE scheme based on pairings [4,10,17]. These constructions may be of
independent interest.

1.2 Our Techniques

As discussed above, quadratic MIFE in the public-key setting is simple to achieve
due to the leakage inherent in that setting. We formalize this in the full version
of this paper. Hence, as in prior work [6], we focus on the much more challenging
secret key setting. In the following, we basically use m for the vector length of
each user and n for the number of slots.

Lin’s Single Key Quadratic FE. The starting point of our secret-key quadratic
MIFE scheme is the secret-key quadratic FE scheme from pairings by Lin [28],
which in turn builds upon the public key IPFE scheme from DDH by Abdalla et
al. [3] (ABDP). We begin by recalling the ABDP scheme. In what follows, we let
g` denote the generator of a cyclic group of order p and for matrix A = (ai,j)i,j ,
we denote (g

ai,j

` )i,j by [A]`. The ABDP scheme works as follows:

Setup(1λ): w← Zm
p , PK := [w], MSK := w.

Enc(PK,x ∈ Zm): s← Zp, CT := ([s], [x+ sw]).
KeyGen(MSK, c ∈ Zm): SK := −c>w.
Dec(CT,SK): −c>w[s] + c>[x+ sw] = [〈c,x〉].

Lin’s quadratic (secret key) FE scheme uses a clever interleaving of IPFE
schemes. To compress the size of ABDP ciphertexts for quadratic terms, she
leverages function-hiding IPFE, which is inherently secret-key [10]. Decryption
of components in this scheme yields ciphertexts under the ABDP IPFE scheme,
while secret keys of the ABDP scheme are generated using another function
hiding IPFE. Finally, decryption of ABDP IPFE allows to recover the output.

In more detail, let iFE = (iSetup, iEnc, iKeyGen, iDec) be a function-hiding
IPFE scheme based on pairings. Note that all known function-hiding IPFE
schemes based on pairings output a decryption value as an exponent of the
target-group generator [10, 16, 26, 28, 31]. A simplification of her quadratic FE
scheme (we omit the components of the scheme that are only required for the
proof of security) is as follows:

Setup(1λ): w = (w1, . . . , wm), w̃ = (w̃1, . . . , w̃m)← Zm
p , iMSK′ ← iSetup(1λ)

MSK := (iMSK′,w, w̃).
Enc(MSK,x ∈ Zm): s← Zp, iCT

′ ← iEnc(iMSK′, s), iMSK← iSetup(1λ)
iCTi ← iEnc(iMSK, (xi, wi)), iSKi ← iKeyGen(iMSK, (xi, sw̃i)).
CT := (iCT′, {iCTi, iSKi}i∈[m]).
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KeyGen(MSK, c = {ci,j}i,j∈[m] ∈ Zm2

): a
SK := iSK′ ← iKeyGen(MSK′,−c>(w ⊗ w̃)).

Dec(CT,SK): iDec(iCT′, iSK′) +
∑

i,j∈[m] ci,j iDec(iCTi, iSKj) = [〈c,x⊗ x〉]T .

To decrypt, we compute iDec(iCTi, iSKj) = [xixj + swiw̃j ]T , which can be
seen as the (i, j)-th element of the ABDP ciphertext [x ⊗ x + sw ⊗ w̃]T , and
iDec(iCT′, iSK′) = [−sc>(w⊗ w̃)]T , where −c>(w⊗ w̃) is an ABDP secret key
for c. The function-hiding property of iFE guarantees that iSK hides xi. Since
w⊗w̃ only appears on the exponent, one can argue that it is computationally in-
distinguishable from random in the security proof using the SXDH assumpetion.

IP-MIFE instead of IPFE. To generalize the above scheme to the multi-
input setting, our first attempt is to modify Lin’s scheme so that decryption of
the function hiding IPFE scheme generates ciphertexts of a multi-input IPFE
(IP-MIFE) scheme [4] (ACFGU) instead of a single input IPFE scheme (ABDP).
Intuitively, the reason for using IP-MIFE instead of IPFE is to deal with multiple
independent randomnesses derived from different users, which inherently come
in when generating the IPFE ciphertext elements for quadratic terms. Now,
we may hope that the key generator can provide a secret key matching the
ACFGU scheme so that decryption of ciphertexts of the ACFGU scheme yields
the desired result. Fortunately, the ACFGU scheme does not use pairings, so
this basic template does not seem impossible. However, this starting point idea
runs into several hurdles as we discuss below.

Let us recall the n-input ACFGU scheme:

Setup(1λ): MSK := w1, . . . ,wn,u1, . . . ,un ← Zm
p .

Enc(MSK, i,xi ∈ Zm): si ← Zp, CTi := ([si], [xi + siwi + ui]).
KeyGen(MSK, (c1, . . . , cn) ∈ Zmn): SK := (−

∑
i∈[n]〈ci,ui〉, {−c>i wi}i∈[n]).

Dec(CT1, . . . ,CTn,SK): a∑
i∈[n](−c>i wi[si] + c>i [xi + siwi + ui])− [

∑
i∈[n]〈ci,ui〉] = [

∑
i∈[n]〈ci,xi〉].

For intuition, we note that the ACFGU scheme may be thought of as running
n instances of the ABDP scheme, where each ABDP decryption outputs the ith

inner product 〈ci,xi〉. Revealing each partial inner product 〈ci,xi〉 would leak
too much information, so these partial decryptions are masked using 〈ci,ui〉 –
this creates an extra term

∑
i∈[n]〈ci,ui〉 during decryption, which, fortunately

may be computed by the key generator and is compensated for by subtraction.

A First Candidate. Armed with these ideas, we construct a first candidate
quadratic MIFE qFE = (qSetup, qEnc, qKeyGen, qDec) as follows. For ease of
exposition, we assume below that the dimension of each user’s input vector m
is set to 1.

qSetup(1λ): iMSK, iMSK′ ← iSetup(1λ), wi, w̃i, ui, ũi ← Zp

qMSK := (iMSK, iMSK′, {wi, w̃i, ui, ũi}i∈[n]).
qEnc(qMSK, i, xi ∈ Z): si, s̃i ← Zp

iCT′
i ← iEnc(iMSK′, si), iSK

′
i ← iKeyGen(iMSK′, s̃i)

iCTi ← iEnc(iMSK, (xi, siwi, ui)), iSKi ← iKeyGen(iMSK, (xi, s̃iw̃i, ũi))
qCTi := (iCT′

i, iSK
′
i, iCTi, iSKi).
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qKeyGen(MSK, c={ci,j}i,j∈[n]): qSK :=([−
∑

i,j∈[n] ci,juiũj ]T , {−ci,jwiw̃j}i,j∈[n]).

qDec(qCT1, . . . , qCTn, qSK): a
−
∑

i,j∈[n] ci,jwiw̃j iDec(iCT
′
i, iSK

′
j) +

∑
i,j∈[n] ci,j iDec(iCTi, iSKj)

−[
∑

i,j∈[n] ci,juiũj ]T = [〈c,x⊗ x〉]T

Observe that {iCTi, iSKi}i∈[n] yield {[xixj + sis̃jwiw̃j +uiũj ]T }i,j∈[n] in decryp-
tion, which can be seen as ciphertexts of the n2-input ACFGU scheme. We also
remark that we decompose the ACFGU ciphertext into ciphertexts and secret
keys of function-hiding IPFE so as to allow decryptors to generate ACFGU ci-
phertext elements for quadratic terms derived from two different users. This is
in contrast to Lin’s quadratic FE scheme, which uses function-hiding IPFE to
compress the ciphertext size.

However, this scheme is not secure and leaks unnecessary information to the
decryptor. The problem stems for the fact that the candidate scheme allows two
types of mix-and-match attacks where an adversary can simultaneously use two
different ciphertexts with the same index (slot) for decryption. In more detail, the
adversary can learn the following information using the current scheme. Below,
the superscript denotes the ciphertext index and subscript denotes the slot in a
given ciphertext – thus, qCT1

i denotes the 1st ciphertext for the ith slot (recall
there can be multiple ciphertexts in a given slot).

1. Attack 1: For iCT1
i in qCT1

i and iSK2
i in qCT2

i , we have that iDec(iCT1
i , iSK

2
i ) is

a valid ACFGU ciphertext and usable for the ACFGU decryption with qSK.
This is problematic because it permits combining components from different
ciphertexts qCT1

i and qCT2
i for the same slot i, which does not correspond to

a valid combination. Recall that in an MIFE scheme, a ciphertext in slot i
may be combined with multiple ciphertexts in slot j 6= i but not with other
ciphertexts in slot i. However, ciphertext components iCT1

i and iSK1
i from the

same ciphertext and in the same slot i are allowed to be combined. Thus, to
prevent this attack, we need to enforce that ciphertext components can be
combined only when they come either from different slots or the same qCTi.

2. Attack 2: Let i1 6= i2. For {iCT1
i1 , iSK

1
i1} in qCT1

i1 , {iCT1
i2 , iSK

1
i2} in qCT1

i2

and iSK2
i2 in qCT2

i2 , we have that iDec(iCT1
i1 , iSK

1
i1), iDec(iCT

1
i1 , iSK

2
i2) and

iDec(iCT1
i2 , iSK

1
i2) are valid ACFGU ciphertexts and usable for the decryp-

tion with qSK. This decryption leads to an inconsistency attack, where an
adversary can compute a function over multiple ciphertexts for a given slot.
As an example, let us consider the case where a decryptor has cipher-
texts for (scalar) elements x1

1, x
1
2, x

2
2 and a secret key for quadratic function

f = (c1,1, c1,2, c2,2) (w.l.o.g., we can assume c2,1 = 0). Now, the only valid
function evaluations that an adversary should learn are

c1,1x
1
1x

1
1 + c1,2x

1
1x

1
2 + c2,2x

1
2x

1
2, and c1,1x

1
1x

1
1 + c1,2x

1
1x

2
2 + c2,2x

2
2x

2
2

However, the above leakage enables the adversary to additionally learn, e.g.,

c1,1x
1
1x

1
1 + c1,2x

1
1x

2
2 + c2,2x

1
2x

1
2
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The above uses two different inputs (underlined) for the second slot for the
same function evaluation, which is invalid.

More generally, valid combinations correspond to the set of superscripts (in
red) (1, 1), (1, 1), (1, 1) and (1, 1), (1, 2), (2, 2). However, the adversary can
learn function evaluations corresponding to (1, 1), (1, r), (s, t) for any r, s, t ∈
[2] in the current candidate scheme.

Thus, both attacks leverage the decomposable structure of the quadratic cipher-
text to mix and match invalid components to obtain leakage. While both attacks
have the similarity that they combine different ciphertexts for the same slot in a
given evaluation, the technical treatment to handle them needs to differ. This is
because to address the first attack, we must prevent the attacker from combining
(1, 1), (1, r), (s, t) for s 6= t while for the second, we must prevent the same for
r 6= t. Intuitively, r and t are the indices related to the ciphertexts of iFE while
s is the index related to the secret keys of iFE, and thus prohibiting the case of
s 6= t and that of r 6= t are essentially different things, which must be handled
separately. Next, we describe how each of these attacks may be prevented.

Preventing Attack 1. Recall that Lin’s quadratic FE scheme does not allow
attack 1 since the encryption algorithm generates a new iMSK for each cipher-
text. On the other hand, our candidate uses the same iMSK for all ciphertexts so
that decryptors can generate ACFGU ciphertext elements for quadratic terms
from two different users. To prevent this attack, we need a function-hiding IPFE
scheme where iCT is decryptable with iSK if and only if they come from either
different slots or the same qCTi. Thus, we need to extend the functionality of
function-hiding IPFE to check the above condition prior to computation. Al-
though this primitive is reminiscent of “attribute-based IPFE” [5], we also need
the function-hiding property which has not been considered in prior works.

To address this need, we define and construct a function-hiding “predicated
IPFE” (pIPFE), which can be seen as a combination of inner product encryption
[25] and IPFE. Informally, a ciphertext pCT and a secret key pSK of a pIPFE
scheme pFE are associated with two vectors {x1,x2} and {y1,y2}, respectively.
Here, the secret key must hide y2 but do not y1. Decryption of pCT with pSK
reveals 〈x2,y2〉 iff 〈x1,y1〉 = 0.

To see how function-hiding predicated IPFE yields the desired functionality,
let us set x1 = (02(i−1), 1, L, 02(n−i)), y1 = (02(i−1), L,−1, 02(n−i)) where L ∈ Zp

is sampled randomly for each encryption, and i ∈ [n]. Let (i1, L1) (resp. (i2, L2))
be a pair of a slot index and random element of x1 (resp. y1). It is easy to see
that 〈x1,y1〉 = 0 iff i1 6= i2 or L1 = L2. Since L is chosen from an exponentially
large space, we have that L1 6= L2 with overwhelming probability. We construct
a function-hiding predicated IPFE scheme pFE from a function-hiding IPFE
scheme iFE in a generic way. Please see Section 3 for details.

Preventing Attack 2. Attack 2 is much more tricky to handle. A problematic
aspect of this attack is the fact that iDec(iCT1

i1 , iSK
1
i1) and iDec(iCT1

i2 , iSK
1
i2) are

necessary for decryption of ciphertexts qCT1
i1 , qCT

1
i2 respectively, and iDec(iCT2

i2 ,
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iSK1
i1) is necessary for combined decryption of the pair qCT1

i1 , qCT
2
i2 . However,

they leak inappropriate information if both of them are used in decryption si-
multaneously. Thus, we cannot solve the problem by building in some sort of
access control into iFE decryption as in the case of attack 1.

Our solution is to bind ACFGU ciphertexts generated from the iFE decryp-
tion with common random elements. That is, iCTi in qCTi is changed to encryp-
tion of (xi, siwi, ui, tivi), and iSKi is changed to a secret key of (xi, s̃iw̃i, riũi, ṽi)
where vi, ṽi are new elements in qMSK and ri, ti are the common random ele-
ments for binding ACFGU ciphertexts, which are chosen by qEnc. Then, decryp-
tion with {iCTi, iSKi}i∈[n] yields {[xixj + sis̃jwiw̃j + rjuiũj + tiviṽj ]T }i,j∈[n].

According to the change of iCT, iSK, the first element of an ACFGU secret
key should be modified as qSK1 = [−

∑
i,j∈[n] ci,j(rjuiũj+tiviṽj)]T . By this con-

struction, we cannot simultaneously use iDec(iCT1
i1 , iSK

1
i1), iDec(iCT

1
i2 , iSK

1
i2) and

iDec(iCT2
i2 , iSK

1
i1) for ACFGU decryption. Intuitively, qSK1 must involve t1i2 and

t2i2 (randomnesses used in iCT1
i2 and iCT2

i2 , respectively) to decrypt the ACFGU
ciphertexts generated from iDec(iCT1

i1 , iSK
1
i1), iDec(iCT

1
i2 , iSK

1
i2) and iDec(iCT2

i2 ,

iSK1
i1) together, but in fact qSK1 can involve only one of t1i2 and t2i2 .

How to Generate the Modified Secret Key. The last challenge is how
to generate the modified secret key. It is obvious that qKeyGen cannot generate
the modified key since it contains random elements ri, ti used in ciphertexts. We
solve the problem by employing an additional function-hiding IP-MIFE scheme,
denoted by miFE, into the candidate scheme. That is, qEnc additionally gener-
ates an IP-MIFE ciphertext miCTi for (ri, ti), and qKeyGen generates an IP-
MIFE secret key miSK for {(

∑
j∈[n] cj,iuj ũi,

∑
j∈[n] ci,jviṽj)}i∈[n]. Then, a de-

cryptor can generate the secret-key element −
∑

i,j∈[n] ci,j(rjuiũj + tiviṽj) from
miCT1, . . . ,miCTn,miSK without knowing unnecessary information. This tech-
nique is similar to Gay’s technique in [21], which uses (partially) function-hiding
IPFE to generate a “decryption key” consisting of both elements inherently
derived from a ciphertext and a secret key. Note that our actual scheme needs
mixed-group multi-input IPFE instead of IP-MIFE, which we construct in Sec.4.

Putting it all Together. Putting together the ideas discussed above, we now
present a second version of our scheme.

qSetup(1λ): iMSK′ ← iSetup(1λ), pMSK← pSetup(1λ),miMSK← miSetup(1λ)
wi, w̃i, ui, ũi, vi, ṽi ← Zp

qMSK := (iMSK′, pMSK,miMSK, {wi, w̃i, ui, ũi, vi, ṽi}i∈[n]).

qEnc(qMSK, i, xi ∈ Z): si, s̃i, ri, ti, L← Zp, `1 = (02(i−1), 1, L, 02(n−i))
`2 = (02(i−1), L,−1, 02(n−i)), iCT′

i ← iEnc(iMSK′, si), iSK
′
i ← iKeyGen(iMSK′, s̃i)

pCTi ← pEnc(pMSK, `1, (xi, siwi, riui, vi))
pSKi ← pKeyGen(pMSK, `2, (xi, s̃iw̃i, ũi, tiṽi))
miCTi ← miEnc(miMSK, (ri, ti)), qCTi := (iCT′

i, iSK
′
i, pCTi, pSKi,miCTi).

qKeyGen(MSK, c={ci,j}i,j∈[n]): a
miSK← miKeyGen(miMSK, {(

∑
j∈[n] cj,iuj ũi,

∑
j∈[n] ci,jviṽj)}i∈[n])

qSK :=(miSK, {−ci,jwiw̃j}i,j∈[n]).

8



qDec(qCT1, . . . , qCTn, qSK): a
−
∑

i,j∈[n] ci,jwiw̃j iDec(iCT
′
i, iSK

′
j) +

∑
i,j∈[n] ci,jpDec(pCTi, pSKj)

−miDec(miCT1, . . . ,miCTn,miSK) = [〈c,x⊗ x〉]T

However, while the above candidate satisfies functionality and resists the afore-
mentioned attacks, we are still far from a proof of security. For instance, one
hurdle is that we must argue that {wiw̃j}i,j∈[n] is pseudorandom, which is not
true because qSK contains these elements not as exponents of group elements
but as elements in Zp. Moreover, since we have already “used up” our pairing,
we cannot move these to the exponent as in [28]. Another hurdle is that the
underlying IPFE schemes satisfy only indistinguishability based security rather
than simulation based security. To arrive at a security proof, we must address
several such challenges, which we describe next.

Overview of Proof of Security. For ease of exposition, we outline our ideas
for the warm-up case of two input quadratic MIFE described in Sec. 5. The
general case is handled in Sec. 6.

First, we briefly recall the definition for indistinguishability based security of
secret-key MIFE. Intuitvely, security requires that all PPT adversaries cannot
guess a randomly chosen bit β with meaningful probability in the following game:
the adversary first outputs a set of challenge messages {i, xj,0

i , xj,1
i }i∈[n],j∈[qCT]

and obtains ciphertexts for {i, xj,β
i }. After that, the adversary can query a key

generation oracle on any functions f such that for all (j1, . . . , jn) ∈ [qCT]
n, it

holds that f(xj1,0
1 , . . . , xjn,0

n ) = f(xj1,1
1 , . . . , xjn,1

n ). The goal of the security proof
is to show that ciphertexts for {i, xj,0

i } and {i, xj,1
i } are indistinguishable.

The first challenge in the security proof is how to design a series of hybrids be-
tween the real games Gβ for β = 0 and β = 1. A naive strategy is to change each
ciphertext from β = 0 to β = 1 one by one, that is, in hybrid Hη

ι for ι ∈ [2], η ∈
[qCT], the adversary is given the ciphertext for xj,1

i if (i, j) ≤ (ι, η) and that for
xj,0
i otherwise, where (i, j) ≤ (ι, η)⇔ (i−1)qCT+j ≤ (ι−1)qCT+η. Then, we may

hope to prove that G0 ≈c H1
1 ≈c · · · ≈c HqCT

1 ≈c H1
2 ≈c · · · ≈c HqCT

2 ≈c G1. How-
ever, it quickly becomes evident that this strategy does not work. This is since
the queried function f does not necessarily satisfy f(x1,0

1 , xj2,0
2 ) = f(x1,1

1 , xj2,0
2 ),

and thus the adversary can trivially distinguish G0 from H1
1. Even worse, when

we change some input from β = 0 to β = 1, the change affects the quadratic
terms that contain an input from another slot such as x1,1

1 xj2,0
2 . This correlation

does not appear in IP-MIFE and makes the proof much more complex.
We address this issue as follows. Recall that our quadratic MIFE decryp-

tion first generates modified ACFGU ciphertexts {aCTi,`}i,`∈[2] and a secret key
element aSK where

aCTi,` = pDec(pCTi, pSK`) = [xix` + sis̃`wiw̃` + r`uiũ` + tiviṽ`]T

aSK = miDec(miCT1,miCT2,miSK) = [−
∑

i,`∈[2]

ci,`(r`uiũ` + tiviṽ`)]T .

9



Our first idea is to define Hη
ι so that qDec(qCTj1

1 , qCTj2
2 , qSK) in Hη

ι yields
({aCTji,j`

i,` }i,`∈[2], aSK
j1,j2) where

aCTji,j`
i,` =

{
[x1

ix
1
` + sis̃`wiw̃` + r`uiũ` + tiviṽ`]T (`, j`) ≤ (ι, η)

[x0
ix

0
` + sis̃`wiw̃` + r`uiũ` + tiviṽ`]T (`, j`) > (ι, η)

aSKj1,j2 = [−
∑

i,`∈[2]

ci,`(r`uiũ` + tiviṽ`)−
∑
i∈[2]

`∈{k∈[2]|(k,jk)≤(ι,η)}

ci,`(x
1
ix

1
` − x0

ix
0
`)]T .

Note that variables x, s, s̃, r, t are also indexed by j1, j2, but we often omit j1, j2
for conciseness if it is clear in context. Observe that, in hybrid Hη

ι ,
∑

i,`∈[2] ci,`aCT
ji,j`
i,`

+ aSKj1,j2 =
∑

i,`∈[2] ci,`[x
0
ix

0
` + sis̃`wiw̃`]T for all (ι, η, j1, j2) ∈ [2] × [qCT]

3.
Therefore, the adversary always obtains f(x0

1, x
0
2) by decryption in all hybrids

and cannot trivially distinguish them. Since the second term of aSKj1,j2 ,
∑

i,`∈[2]

ci,`(x
1
ix

1
` −x0

ix
0
`) = 0 due to the query condition, HqCT

2 almost can be seen as G1.
Thanks to the function-hiding property of pFE and miFE, information encoded
in ciphertexts and secret keys is not revealed other than aCTi,`, aSK.

Next we must define encoded vectors in ciphertexts and secret keys in pFE and
miFE in each hybrid so that they are indistinguishable in the hybrid sequence.
First, let us consider vectors encoded in pFE that yield aCTi,`. In G0, recall that
bi = (x0

i , siwi, ui, tivi) and b̃i = (x0
i , s̃iw̃i, riũi, ṽi) are encoded in pCTi and

pSKi, respectively. To make [〈bji
i , b̃

j`
` 〉]T = aCTji,j`

i,` in all hybrids, we introduce
a free space, used for only the security proof, and define bji

i , b̃
ji
i in Hη

ι as follows:

bji
i = (x0

i , x
1
i , siwi, ui, tivi), b̃ji

i =

{
(0, x1

i , s̃iw̃i, riũi, ṽi) (i, ji) ≤ (ι, η)

(x0
i , 0, s̃iw̃i, riũi, ṽi) (i, ji) > (ι, η)

.

Then, we need to prove that {bji
i , b̃

ji
i }i∈[2],ji∈[qCT] in Hη−1

ι and that in Hη
ι are

indistinguishable. Initially, it appears that we can prove it similarly to Lin’s tech-
nique [28], that is, we introduce a more free space and consider an intermediate
hybrid in which we define

bji
i = (xji,0

i , xji,1
i , siwi, ui, tivi, x

ji,0
i xη,0

ι + sis̃ιwiw̃ι + rιuiũι + tiviṽι) (1.1)

b̃ji
i =


(0, xji,1

i , s̃iw̃i, riũi, ṽi, 0) (i, ji) < (ι, η)

(0, 0, 0, 0, 0, 1) (i, ji) = (ι, η)

(xji,0
i , 0, s̃iw̃i, riũi, ṽi, 0) (i, ji) > (ι, η)

Now, we may hope to change xji,0
i xη,0

ι in the last entry of bji
i to xji,1

i xη,1
ι by the

indistinguishability-based security of the (modified) ACFGU IP-MIFE scheme.
However, we get stuck here; the relation between {xji,0

i xη,0
ι }i∈[2],ji∈[qCT] and

{xji,1
i xη,1

ι }i∈[2],ji∈[qCT] implied by the query condition f(xj1,0
1 , xj2,0

2 ) = f(xj1,1
1 , xj2,1

2 )
is unclear. This is because, in the reduction to ACFGU IP-MIFE, the simula-
tor is expected to simulate pCT for bji

i and qSK for quadratic function f using
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ACFGU ciphertexts for {xji,β
i xη,β

ι }i∈[2],ji∈[qCT] and secret keys for linear func-
tions fι, respectively, such that fι(x

j1,0
1 xη,0

ι , xj2,0
2 xη,0

ι ) = fι(x
j1,1
1 xη,1

ι , xj2,1
2 xη,1

ι ).
Note that fι comprises coefficients of f that are related to the ι-th input. Un-
fortunately, we cannot derive the above relation on fι from the query condition.
The critical observation we make here is that we have an alternative equality on
fι that are implied by the condition: for all (j1, j2, η) ∈ [qCT]

3, we have

f1(x
η,0
1 xη,0

1 − x1,0
1 x1,0

1 , xj2,0
2 xη,0

1 − xj2,0
2 x1,0

1 ) = f1(x
η,1
1 xη,1

1 − x1,1
1 x1,1

1 , xj2,1
2 xη,1

1 − xj2,1
2 x1,1

1 )
(1.2)

f2(x
j1,0
1 xη,0

2 − xj1,0
1 x1,0

2 , xη,0
2 xη,0

2 − x1,0
2 x1,0

2 ) = f2(x
j1,1
1 xη,1

2 − xj1,1
1 x1,1

2 , xη,1
2 xη,1

2 − x1,1
2 x1,1

2 ).
(1.3)

Eq. (1.2) and (1.3) can be obtained by Eq. (1.4) − Eq. (1.5) where

f(xη,0
1 , xj2,0

2 ) = f(xη,1
1 , xj2,1

2 ) f(xj1,0
1 , xη,0

2 ) = f(xj1,1
1 , xη,1

2 ) (1.4)
f(x1,0

1 , xj2,0
2 ) = f(x1,1

1 , xj2,1
2 ) f(xj1,0

1 , x1,0
2 ) = f(xj1,1

1 , x1,1
2 ). (1.5)

The last challenge is to somehow change xji,0
i xη,0

ι in the last entry of Eq.(1.1)
in to xji,1

i xη,1
ι leveraging Eq. (1.2) or Eq. (1.3). We first observe that

xji,0
i xη,0

ι + sjii s̃
jι
ι wiw̃ι + rjιι uiũι + tjii viṽι ≈c x

ji,0
i xη,0

ι + ŝjii,ιŵi,ι + ûi + v̂jii

= xji,0
i xη,0

ι − xji,0
i x1,0

ι + ŝjii,ιŵi,ι + ûi︸ ︷︷ ︸
ACFGU ciphertext

+v̈jii

where ŝjii,ι, ŵi,ι, ûi, v̂
ji
i , v̈jii are fresh random elements. The computational indis-

tinguishability is implied by the SXDH assumption, and the equality follows by
implicitly defining v̂jii = v̈jii − xji,0

i x1,0
ι . We can see that the last part of the

above equation is exactly the ACFGU ciphertext of xji,0
i xη,0

ι − xji,0
i x1,0

ι plus
v̈jii . At this point, we can use the security of the ACFGU IP-MIFE scheme to
change xji,0

i xη,0
ι − xji,0

i x1,0
ι to xji,1

i xη,1
ι − xji,1

i x1,1
ι . This is because they satisfy

Eq. (1.2) or Eq. (1.3), and thus the reduction can follow the query condition of
IP-MIFE. Perceptive readers may notice that if i = ι, then xji,0

i xη,0
ι −xji,0

i x1,0
ι =

xji,1
i xη,1

ι − xji,1
i x1,1

ι holds only when ji = η. This is not a problem since we can
deal with the terms for i = ι, ji 6= η leveraging the security of predicated IPFE.

Next we give some intuition for how to define vectors in miFE. Similarly to
bji
i , b̃

ji
i , we want to define f jii , f̃i in Hη

ι , which are encoded in miFE and yield aSK,
but this approach quickly runs into cumbersome issues. The first problem is that
the second term of aSKj1,j2 , aSKj1,j2 [2] =

∑
ci,`(x

ji,1
i xj`,1

` − xji,0
i xj`,0

` ), in the
current definition depends on both xj1

1 and xj2
2 . Thus, we must somehow encode

xj1
1 and xj2

2 in miCTj1
1 and miCTj2

2 , respectively. However, we cannot generate
the term xj1

1 xj2
2 via miFE, which can only compute linear functions! A naive idea

may be to program all quadratic terms into additional free spaces in miCT. It
immediately ends in failure; we cannot program q2CT values into O(qCT) spaces.

Our solution is to use Eq. (1.2) and Eq. (1.3) to compress the q2CT values into
qCT values. For instance, Eq. (1.2) implies

f1(x
j1,1
1 xj1,1

1 −xj1,0
1 xj1,0

1 , xj2,1
2 xj1,1

1 −xj2,0
2 xj1,0

1 ) = f1(x
1,1
1 x1,1

1 −x
1,0
1 x1,0

1 , xj2,1
2 x1,1

1 −x
j2,0
2 x1,0

1 )
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since f1 is a linear function (we change η to j1). This means that
∑

`=1 ci,`(x
ji,1
i xj`,1

` −
xji,0
i xj`,0

` ) =
∑

`=1 ci,`(x
ji,1
i x1,1

` − xji,0
i x1,0

` ) for all ji. Similarly, we can handle
the case for ` = 2. Thus, we can program aSKj1,j2 [2] in miCTj1

1 and miCTj2
2 as:

f jii =

{
(ri, ti, x

ji,1
i x1,1

1 − xji,0
i x1,0

1 , 0) ι = 1

(ri, ti, x
ji,1
i x1,1

1 − xji,0
i x1,0

1 , xji,1
i x1,1

2 − xji,0
i x1,0

2 ) ι = 2

f̃i = (
∑
`∈[2]

c`,iu`ũi,
∑
`∈[2]

ci,`viṽ`, ci,1, ci,2).

The second problem is the fact that

aSKj1,j2 [2] = 〈f jii , f̃i〉 −
∑

i,`∈[2]

ci,`(r`uiũ` + tiviṽ`) =
∑

i∈[2],`∈[ι]

ci,`(x
1
ix

1
` − x0

ix
0
`)

in the current definition of f jii , f̃i, while aSKj1,j2 [2] should be

aSKj1,j2 [2] =
∑
i∈[2]

`∈{k∈[2]|(k,jk)≤(ι,η)}

ci,`(x
1
ix

1
` − x0

ix
0
`).

We adjust them by modifying aCT as aCTji,j`
i,` = aCTji,j`

i,` +Q(x) so that
∑

i,`∈[2]

ci,`aCT
ji,j`
i,` + aSKj1,j2 =

∑
i,`∈[2] ci,`[x

0
ix

0
` + sis̃`wiw̃`]T holds, where Q is a

quadratic polynomial over variables x = {xji,β
i }i∈[2],ji∈[qCT],β∈{0,1}. The addi-

tional term Q(x) in aCTji,j`
i,` can be programed into pCT and pSK by introducing

more additional space. Please see Section 5 for a detailed argument.

2 Preliminaries

In this section, we define some notation and preliminaries that we require. For
vectors v1, . . . ,vn, (v1, . . . ,vn) denotes the vector concatenation as row vectors
regardless of whether each vi is a row or column vector. We use ⊗ for the
Kronecker product. We denote an n-dimensional unit vector (0i−1, 1, 0n−1) by
ei/n. We use standard cryptographic bilinear groups where the matrix decisional
Diffie-Hellman assumption (MDDH) holds [18].

2.1 Multi-Input Functional Encryption

Definition 2.1 (Multi-Input Functional Encryption). Let F be a function
family such that, for all f ∈ F, f : X1 × · · · × Xn → Z. An MIFE scheme for F,
MIFE, consists of four algorithms.

Setup(1λ): It takes a security parameter 1λ and outputs a public parameter PP
and a master secret key MSK. The other algorithms implicitly take PP.
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Enc(MSK, i, xi): It takes MSK, an index i ∈ [n], and xi ∈ Xi and outputs a
ciphertext CTi.

KeyGen(MSK, f): It takes MSK, and f ∈ F, and outputs a secret key SK.
Dec(CT1, . . . ,CTn,SK): It takes CT1, . . . ,CTn and SK, and outputs a decryption

value d ∈ Z or a symbol ⊥.

When n = 1, we call it just a functional encryption (FE) scheme and omit the
second argument of Enc.
Correctness. MIFE is correct if it satisfies the following condition. For all
λ ∈ N, (x1, . . . , xn) ∈ X1 × · · · × Xn, f ∈ F, we have

Pr

d = f(x1, . . . , xn)

∣∣∣∣∣∣∣∣
PP,MSK← Setup(1λ)
CTi ← Enc(MSK, i, xi)
SK← KeyGen(MSK, f)
d := Dec(CT1, . . . , ,CTn,SK)

 = 1.

Selective Security. We define two indistinguishability-based security defini-
tions for MIFE, namely, message-hiding and function-hiding. For a stateful PPT
adversary A and λ ∈ N, let

PMIFE,β
A,mh (λ) := Pr

β′ = 1

∣∣∣∣∣∣∣∣
{i, xj,0

i , xj,1
i }i∈[n],j∈[qCT,i] ← A(1λ)

PP,MSK← Setup(1λ),

CTj
i ← Enc(MSK, i, xj,β

i )

β′ ← AKeyGen(MSK,·)(PP, {CTj
i}i∈[n],j∈[qCT,i])

 .

Let qSK be a number of queries to KeyGen. We say A is admissible if, in case of
qCT,1, . . . , qCT,n, qSK ≥ 1, A’s queries satisfy f `(xj1,0

1 , . . . , xjn,0
n ) = f `(xj1,1

1 , . . . ,
xjn,1
n ) for all (j1, . . . , jn) ∈ [qCT,1]× · · · × [qCT,n] and ` ∈ [qSK]. MIFE is message-

hiding if, for all admissible PPT adversaries A, the following advantage of A is
negligible in λ: AdvMIFE

A,mh(λ) := |P
MIFE,0
A,mh (λ)− PMIFE,1

A,mh (λ)|.
Next, we define a function-hiding property. Let PMIFE,β

A,fh (λ) be defined the
same as PMIFE,β

A,mh (λ) except that A’s oracle is OSK(β, ·) instead of KeyGen, where
OSK(β, ·) takes (f0, f1) and outputs KeyGen(MSK, fβ). This time, A is admissible
if, in case of qCT,1, . . . , qCT,n, qSK ≥ 1, A’s queries satisfy f `,0(xj1,0

1 , . . . , xjn,0
n ) =

f `,1(xj1,1
1 , . . . , xjn,1

n ) for all (j1, . . . , jn) ∈ [qCT,1]×· · ·×[qCT,n] and ` ∈ [qSK]. Then,
MIFE is function-hiding if, for all admissible PPT adversaries A, the following
advantage of A is negligible in λ: AdvMIFE

A,fh (λ) := |P
MIFE,0
A,fh (λ)− PMIFE,1

A,fh (λ)|.
Remark 2.1. In this paper, we assume that qCT,i ≥ 1 for all i ∈ [n] and that
qCT,1 = · · · = qCT,n(= qCT). This is w.l.o.g as discussed in [6, 17].

We next define quadratic functions.
Definition 2.2 (Bounded-Norm Multi-Input Quadratic functions over
Z). A function family FMQF

m,n,X,C for bounded-norm multi-input quadratic func-
tions consist of functions f : (Xm)n → Z where X = {i | i ∈ Z, |i| ≤ X}. Each
f ∈ FMQF

m,n,X,C is specified by c = {cµ,ν}µ,ν∈[mn] ∈ Z(mn)2 s.t. ||c||∞ ≤ C and
cµ,ν = 0 if µ > ν. Let xµ be the µ-th element of x = (x1, . . . ,xn) ∈ (Xm)n.
Then, f specified by c is defined as f(x1, . . . ,xn) :=

∑
µ,ν∈[mn] cµ,νxµxν .
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3 Predicated Inner Product Functional Encryption

We define and construct predicated inner product functional encryption.
Definition 3.1 (Inner Products over Bilinear Groups). Let G = (p,G1,
G2, GT , g1, g2, e) be bilinear groups. A function family FIP

m,G for inner products
over bilinear groups consists of functions f : Gm

1 → GT . Each f ∈ FIP
m,G is

specified by [y]2 where y ∈ Zm
p and defined as f([x]1) := [〈x,y〉]T .

Definition 3.2 (Predicated Inner Products over Bilinear Groups).
A function family FPIP

d,m,G for predicated inner products over bilinear groups
consists of functions f : Zd

p × Gm
1 → GT ∪ {⊥}. Each f ∈ FPIP

d,m,G is spec-
ified by y1 ∈ Zd

p and [y2]2 where y2 ∈ Zm
p and defined as f(x1, [x2]1) :={

[〈x2,y2〉]T if 〈x1,y1〉 = 0

⊥ if 〈x1,y1〉 6= 0
.

We refer to FE for FIP
m,G and FPIP

d,m,G as IPFE and predicated IPFE, respec-
tively. We define partially function-hiding security of FE for FPIP

d,m,G. Partially
function-hiding security guarantees that secret keys hide y2 (but do not y1).
Partially Function-Hiding Security. Let pFE = (pSetup, pEnc, pKeyGen, pDec)
be a FE scheme for FPIP

d,m,G. For a stateful PPT adversary A and λ ∈ N, let

PpFE,β
A,pfh (λ) := Pr

β′ = 1

∣∣∣∣∣∣∣∣
{xj

1, [x
j,0
2 ]1, [x

j,1
2 ]1}j∈[qCT] ← A(1λ)

pPP, pMSK← pSetup(1λ),

pCTj ← pEnc(pMSK, (xj
1, [x

j,β
2 ]1))

β′ ← AOSK(β,·)(pPP, {pCTj}j∈[qCT])


where OSK takes (y1, [y

0
2]2, [y

1
2]2) and outputs pKeyGen(MSK, (y1, [y

β
2 ]2)). Let

qSK be a number of queries to OSK. We say A is admissible if A’s queries satisfy
〈xj,0

2 ,y`,0
2 〉 = 〈x

j,1
2 ,y`,1

2 〉 when 〈xj
1,y

`
1〉 = 0 for all j ∈ [qCT] and ` ∈ [qSK]. pFE is

partially function-hiding if, for all admissible PPT adversaries A, the following
advantage of A is negligible in λ: AdvpFEA,pfh(λ) := |P

pFE,0
A,pfh(λ)− PpFE,1

A,pfh(λ)|.

3.1 Predicated IPFE from IPFE

We construct a partially function-hiding FE scheme for FPIP
d,m,G from a function-

hiding FE scheme for FIP
kd+2m+1,G generically. Note that k is a parameter for the

MDDH assumption. A function-hiding FE scheme for FIP
m,G based on MDDH is

implied by the function-hiding IPFE scheme described in [30, Appx. A] 7. Let
iFE = (iSetup, iEnc, iKeyGen, iDec) be a function-hiding FE scheme for FIP

kd+2m+1,G.
Then, our partially function-hiding FE scheme pFE = (pSetup, pEnc, pKeyGen, pDec)
for FPIP

d,m,G is constructed as shown in Fig 1.
7 In more detail, this follows since the scheme remains correct and secure even if

input vectors for Enc and KeyGen consist of group elements, and Dec first obtains
decryption values on the exponent of a target-group generator and then computes
its discrete log.
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pSetup(1λ)→ pPP, pMSK

(pPP, pMSK) := (iPP, iMSK)← iSetup(1λ)

pEnc(MSK, (x1, [x2]1))→ pCT

z← Zk
p, x := (z⊗ x1,x2, 0

m, 0) ∈ Zkd+2m+1
p , iCT← iEnc(iMSK, [x]1), pCT := (x1, iCT)

pKeyGen(pMSK, (y1, [y2]2))→ pSK

a← Zk
p, y := (a⊗ y1,y2, 0

m, 0) ∈ Zkd+2m+1
p , iSK← iKeyGen(iMSK, [y]2), pSK := (y1, iSK)

pDec(pCTpSK)→ z

If 〈x1,y1〉 6= 0, outputs z = ⊥. Otherwise, outputs z = iDec(iCT, iSK).

Fig 1: Our predicated IPFE scheme.

Correctness. Since 〈z ⊗ x1,a ⊗ y1〉 = 〈z,a〉 · 〈x1,y1〉, iDec(iCT, iSK) outputs
[〈x,y〉]T = [〈x2,y2〉]T if 〈x1,y1〉 = 0. This follows from the correctness of iFE.

For security, we have the following theorem.

Theorem 3.1. If iFE is function-hiding, and the MDDH assumption holds in
G, then pFE is partially function-hiding. More precisely, for all PPT adversaries
A, there exist PPT adversaries B1,B2 such that

AdvpFEA,pfh(λ) ≤ qCT(3Adv
iFE
B1,fh(λ) + 2AdvDk -MDDH

B2
(λ)).

Due to space constraints, the proof is provided in the full version.

4 Mixed-Group Multi-Input IPFE

In this section, we define and construct our mixed-group multi-input inner prod-
uct functional encryption (mixed-group IP-MIFE).

Definition 4.1 (Multi-Input Inner Products over Bilinear Groups). Let
G = (p,G1, G2, GT , g1, g2, e) be bilinear groups. A function family FMIP

m,n,G for
multi-input inner products over bilinear groups consists of functions f : (Gm

1 )n →
GT . Each f ∈ FMIP

m,n,G is specified by [y1]2, . . . , [yn]2 where yi ∈ Zm
p and defined

as f([x]1, . . . , [x]n) := [
∑

i∈[n]〈xi,yi〉]T .

Definition 4.2 (Multi-Input Mixed-Group Inner Products over Bilin-
ear Groups). Let G = (p,G1, G2, GT , g1, g2, e) be bilinear groups. A func-
tion family FMGIP

m1,m2,n,G for multi-input mixed-group inner products over bilinear
groups consists of functions f : (Gm1

1 × Gm2
2 )n → GT . Each f ∈ FMGIP

m1,m2,n,G is
specified by ([y1,1]2, [y1,2]1, . . . , [yn,1]2, [yn,2]1) where yi,1 ∈ Zm1

p and yi,2 ∈ Zm2
p

and defined as f(([x1,1]1, [x1,2]2), . . . , ([xn,1]1, [xn,2]2)) := [〈x,y〉]T where x :=
(x1,1,x1,2, . . . ,xn,1,xn,2) and y := (y1,1,y1,2, . . . ,yn,1,yn,2).

We refer to MIFE for FMIP
m,n,G and FMGIP

m1,m2,n,G as IP-MIFE and mixed-group IP-
MIFE, respectively. We require mixed-group IP-MIFE to satisfy the standard
function-hiding security in Def. 2.1.
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gSetup(1λ)→ gPP, gMSK

miPP,miMSK←miSetup(1λ), (iPP1, iMSK1), . . . , (iPPn, iMSKn)←iSetup(1λ)

gPP := (miPP, iPP1, . . . , iPPn), gMSK := (miMSK, iMSK1, . . . , iMSKn)

gEnc(MSK, i, ([xi,1]1, [xi,2]2))→ gCTi

z←Zk
p, x̃i,1:=(xi,1, 0

m2 , z, 0) ∈ Zm1+m2+k+1
p , x̃i,2:=(xi,2,−z, 0) ∈ Zm2+k+1

p

miCTi ← miEnc(miMSK, i, [x̃i,1]1), iCTi ← iEnc(iMSKi, [x̃i,2]2), gCTi := (miCTi, iCTi)

gKeyGen(MSK, {[yi,1]2, [yi,2]1}i∈[n])→ gSK

a←Zk
p, ỹi,1:=(yi,1, 0

m2 ,a, 0) ∈ Zm1+m2+k+1
p , ỹi,2:=(yi,2,a, 0) ∈ Zm2+k+1

p , ỹ := (ỹ1,1, . . . , ỹn,1)

miSK← miKeyGen(miMSK, [ỹ]2), iSKi ← iKeyGen(iMSKi, [ỹi,2]1), gSK := (miSK, {iSKi}i∈[n])

gDec(gCT1, . . . , gCTn, gSK)→ z

Outputs miDec(miCT1, . . . ,miCTn,miSK)
∏

i∈[n] iDec(iCTi, iSKi)

Fig 2: Our mixed-group IP-MIFE scheme.

4.1 Construction

Let FIP′

m,G be a function class defined the same as FIP
m,G in Def. 3.1 except that

G1 and G2 are switched, that is, each f : Gm
2 → GT is specified by [y]1. We

construct a function-hiding MIFE scheme for FMGIP
m1,m2,n,G from a function-hiding

MIFE scheme for FMIP
m1+m2+k+1,n,G and function-hiding FE scheme for FIP′

m2+k+1,G
in a generic way. Note that k is a parameter for the MDDH assumption. A
function-hiding MIFE scheme for FMIP

m,n,G based on MDDH is easily obtained
from a function-hiding multi-input IPFE schemes in [4,17,30]. This is since these
schemes in the literatures work even if input vectors for Enc and KeyGen consist
of group elements, and Dec first obtains decryption values on the exponent of a
target-group generator and then computes its discrete log.

Let miFE = (miSetup,miEnc,miKeyGen,miDec) be a function-hiding MIFE
scheme for FMIP

m1+m2+k+1,n,G and iFE = (iSetup, iEnc, iKeyGen, iDec) be a function-
hiding FE scheme for FIP′

m2+k+1,G. Then, our function-hiding MIFE scheme gFE =

(gSetup, gEnc, gKeyGen, gDec) for FMGIP
m1,m2,n,G is constructed as shown in Fig 2.

Correctness. Due to the correctness of miFE and iFE, gDec outputs∑
i∈[n]

(〈x̃i,1, ỹi,1〉+ 〈x̃i,2, ỹi,2〉)


T

=

∑
i∈[n]

(〈xi,1,yi,1〉+ 〈xi,2,yi,2〉)


T

.

For security, we have the following theorem.

Theorem 4.1. If miFE and iFE are function-hiding, and the bilateral MDDH
assumption holds in G, then gFE is function-hiding. More precisely, for all PPT
adversaries A, there exist PPT adversaries B1,B2,B3 such that

AdvgFEA,fh(λ)≤(4qCT+1)AdvmiFE
B1,fh(λ)+n(4qCT+1)AdviFEB2,fh(λ)+4nqCTAdv

bi-Dk -MDDH
B3

(λ).

Due to space constraints, the proof is provided in the full version.
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qSetup(1λ)→ qPP, qMSK

G← GBG(1
λ), w1,1, w1,2, w2,1, w2,2, u1, u2, v1, v2 ← Zp

pPP, pMSK←pSetup(1λ), iPP, iMSK←iSetup(1λ), gPP, gMSK←gSetup(1λ)

qPP := (G, pPP, iPP, gPP), qMSK := ({wi,j}i,j∈[2], {ui, vi}i∈[2], pMSK, iMSK, gMSK)

qEnc(qMSK, i, xi)→ qCTi

s, s̃, r, t, L← Zp, l := ei/2 ⊗ (1, L) ∈ Z4
p, l̃ := ei/2 ⊗ (L,−1) ∈ Z4

p

b := (xi, 0, sw1,i, sw2,i, ui, t, 0, 0) ∈ Z8
p, b̃ := (xi, 0, s̃ei/2, r, vi, 0, 0) ∈ Z8

p

d := (s, 0) ∈ Z2
p, d̃ := (s̃, 0) ∈ Z2

p, f := (r, t, 0, 0) ∈ Z4
p, h := 0

pCTi ← pEnc(pMSK, (l, [b]1)), pSKi ← pKeyGen(pMSK, (̃l, [b̃]2))

iCTi ← iEnc(iMSK, [d]1), iSKi ← iKeyGen(iMSK, [d̃]2)

gCTi ← gEnc(gMSK, i, ([f ]1, [h]2)), qCTi := (pCTi, pSKi, iCTi, iSKi, gCTi)

qKeyGen(qMSK, c = {cµ,ν}µ,ν∈[2])→ qSK

f̃i :=
(∑

µ∈[2] ci,µuµ,
∑

µ∈[2] cµ,ivµ, 0, 0
)
∈ Z4

p, h̃i := 0, σi,θ := ci,θwi,θ

gSK← gKeyGen(gMSK, {[̃fi]2, [h̃i]1}i∈[2]), qSK := (c, gSK, {σi,θ}i,θ∈[2])

qDec(qCT1, qCT2, qSK)→ z

[z1]T :=
∏

µ,ν∈[2] pDec(pCTν , pSKµ)
cµ,ν , [z2]T :=

∏
i,θ∈[2] iDec(iCTθ, iSKi)

σi,θ

[z3]T := gDec(gCT1, gCT2, gSK), [z]T := [z1 − z2 − z3]T
Searches for z within the range of z ≤ |4CX2|

Fig 3: Our two-input quadratic MIFE scheme.

5 Warm-up: Two Input Quadratic MIFE

Since our general quadratic MIFE scheme (Sec. 6) is quite complex, we first
present a simpler scheme as a warm-up. This scheme is a MIFE scheme for
FMQF
1,2,X,C from the SXDH assumption, that is m = 1, n = 2. For ease of exposi-

tion, we also restrict the number of ciphertext queries to 2 per slot. The SXDH
assumption is captured as the Dk assumption where Dk consists of all matrices
with the form of (a, 1)> ∈ Z2

p.
Let pFE = (pSetup, pEnc, pKeyGen, pDec) be an FE scheme for FPIP

4,8,G (Def.3.2),
iFE = (iSetup, iEnc, iKeyGen, iDec) be an FE scheme for FIP

2,G (Def. 3.1), and
gFE = (gSetup, gEnc, gKeyGen, gDec) be an FE scheme for FMGIP

4,1,2,G (Def. 4.2).
The warm-up scheme qFE = (qSetup, qEnc, qKeyGen, qDec) is constructed from
pFE, iFE, and gFE as shown in Fig 3. Since gFE cannot be instantiated from
SXDH, the warm-up scheme needs an additional assumption such as XDLIN
(bilateral 2-Lin).
Correctness. Let si, s̃i, ri, ti, li, l̃i,bi, b̃i for i ∈ [2] be random elements used to
generate qCTi. Observe that 〈li, l̃I〉 = 0 for all i, I ∈ [2], and thus pDec(pCTi, pSKI)

= 〈bi, b̃I〉. Due to the correctness of pFE, iFE, gEF, we have

z1 =
∑

µ,ν∈[2]

cµ,ν(xµxν + sν s̃µwµ,ν + rµuν + tνvµ)
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z2 =
∑

µ,ν∈[2]

cµ,νsν s̃µwµ,ν , z3 =
∑

µ,ν∈[2]

cµ,ν(rµuν + tνvµ).

Hence, we have z =
∑

µ,ν∈[2] cµ,νxµxν .

5.1 Multi-input IPFE Scheme for Security Analysis

Before going to the security analysis of our quadratic MIFE scheme, we introduce
a message-hiding IP-MIFE scheme, i.e. an MIFE scheme for FMIP

m,n,G, denoted by
miFE = (miSetup,miEnc,miKeyGen,miDec) that we use for the security proof.
The scheme is obtained by applying the conversion of single to multi-input IPFE
by Abdalla et al. [4, Sec. 4.1], to the single-input IPFE scheme by Abdalla et
al. [3, Sec. 5]. The resulting scheme satisfies the message-hiding security under
the DDH assumption. Note that although Abdalla et al. considered the conver-
sion in the adaptive setting, it is not hard to see that the conversion works in
the selective setting. The original scheme in [3] uses a pairing-free group for the
construction, but it is easy to see that their scheme can be similarly built on
pairing groups where the SXDH assumption holds. The scheme is described in
Fig 4.

miSetup(1λ)→ miPP,miMSK

G← GBG(1
λ), w1, . . . ,wn ← Zm

p , u1, . . . ,un ← Zm
p

miPP := (G, [w1]1, . . . , [wn]1),

miMSK := (w1, . . . ,wn,u1, . . . ,un)

miEnc(miMSK, i,xi)→ miCTi

s← Zp, miCTi := [ci]1 = ([s]1, [swi + ui + xi]1)

miKeyGen(miMSK,y1, . . . ,yn)→ miSK

miSK0:=−
∑

i∈[n]〈yi,ui〉, miSKi:=(−y>
i wi,yi),

miSK:=(miSK0, {miSKi}i∈[n])

miDec(miCT1, . . . ,miCTn,miSK)→ z

[z]1 = [
∑

i∈[n]〈ci,miSKi〉+miSK0]1

Fig 4: IP-MIFE scheme by Abdalla et al.

Gβ

{i,xj,0
i ,xj,1

i }i∈[2],j∈[2] ← A(1λ)

qPP, qMSK← qSetup(1λ)

qCTj
i ← qEnc(qMSK, i,xj,β

i )

c← A(qPP, {qCTj
i}i∈[2],j∈[2])

qSK← qKeyGen(qMSK, c)

β′ ← A(qSK)

Fig 5: qFE warmup security
game.

5.2 Proof of Security

Theorem 5.1. If pFE is partially function-hiding, iFE and gFE are function-
hiding, and GBG outputs bilinear groups where the SXDH assumption holds, then
qFE is message-hiding as long as qCT = 2 and qSK = 1.

Proof. For ease of exposition, we prove security in the restricted game where
an adversary makes two ciphertext queries per slot and one secret key query.
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qCT1
1

b1
1 := (x1,β

1 , 0, s11w1,1, s
1
1w2,1, u1, t

1
1, 0, 0)

b̃1
1 := (x1,β

1 , 0, s̃11, 0, r11, v1, 0, 0)

d1
1 := (s11, 0), d̃

1
1 := (s̃11, 0)

f11 := (r11, t
1
1, 0, 0), h

1
1 := 0

qCT1
2

b1
2 := (x1,β

2 , 0, s12w1,2, s
1
2w2,2, u2, t

1
2, 0, 0)

b̃1
2 := (x1,β

2 , 0, 0, s̃12, r12, v2, 0, 0)

d1
2 := (s12, 0), d̃

1
2 := (s̃12, 0)

f12 := (r12, t
1
2, 0, 0), h

1
2 := 0

qCT2
1

b2
1 := (x2,β

1 , 0, s21w1,1, s
2
1w2,1, u1, t

2
1, 0, 0)

b̃2
1 := (x2,β

1 , 0, s̃21, 0, r21, v1, 0, 0)

d2
1 := (s21, 0), d̃

2
1 := (s̃21, 0)

f21 := (r21, t
2
1, 0, 0), h

2
1 := 0

qCT2
2

b2
2 := (x2,β

2 , 0, s22w1,2, s
2
2w2,2, u2, t

2
2, 0, 0)

b̃2
2 := (x2,β

2 , 0, 0, s̃22, r22, v2, 0, 0)

d2
2 := (s22, 0), d̃

2
2 := (s̃22, 0)

f22 := (r22, t
2
2, 0, 0), h

2
2 := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, 0, 0)

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, 0, 0)

h̃2 := 0

Fig 6: Vectors in Gβ .

qCT1
1

b := ( x1,0
1 , x1,1

1 , s11w1,1, s
1
1w2,1, u1, t11, 0, t11v1 + x1,0

1 x1,0
1 )

b̃ := ( 0 , 0, s̃11, 0, r11, 0 , 0, 1 )

d := (s11, 0), d̃ := (s̃11, 0)

f := (r11, t
1
1, t11v1 , 0), h := 0

qCT1
2

b := ( x1,0
2 , x1,1

2 , s12w1,2, s
1
2w2,2, u2, t

1
2, t12v1 , t12v1 + x1,0

1 x1,0
2 )

b̃ := ( x1,0
2 , 0, 0, s̃12, r12, v2, 0, 0 )

d := (s12, 0), d̃ := (s̃12, 0)

f := (r12, t
1
2, t12v1 , 0), h := 0

qCT2
1

b := ( x2,0
1 , x2,1

1 , s21w1,1, s
2
1w2,1, u1, t21, t21v1 , 0 )

b̃ := ( x2,0
1 , 0, s̃21, 0, r21, 0 , 1 , 0 )

d := (s21, 0), d̃ := (s̃21, 0)

f := (r21, t
2
1, t21v1 , 0), h := 0

qCT2
2

b := ( x2,0
2 , x2,1

2 , s22w1,2, s
2
2w2,2, u2, t

2
2, t22v1 , t22v1 + x1,0

1 x2,0
2 )

b̃ := ( x2,0
2 , 0, 0, s̃22, r22, v2, 0, 0 )

d := (s22, 0), d̃ := (s̃22, 0)

f := (r22, t
2
2, t22v1 , 0), h := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ, c2,1v2 , c1,1 , c2,1 )

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ, c2,2v2 , c1,2 , c2,2 )

h̃2 := 0

Fig 7: Vectors in H1.

This simplification showcases the basic strategy of the general proof, which is
provided in Sec. 6. At a high-level view, our security proof is inspired by that of
the IP-MIFE schemes by Abdalla et al. [4] in which the first queried ciphertexts
of each slot are changed from bit 0 to bit 1 by the information-theoretic property
of the one-time pad and the rest of ciphertexts are changed by the security of
an IPFE scheme. In our case, the IPFE scheme will instead correspond to the
IP-MIFE scheme in Sec. 5.1.

Intuitively, we want to prove G0 ≈c G1 where Gβ is the message-hiding se-
curity game (described in Fig 5). In Gβ , the vectors in the ciphertexts and the
secret key that the adversary obtains are defined as Fig 6. We introduce a series
of hybrid games, H1, . . . ,H15, and prove G0 ≈c H1 ≈c · · · ≈c H15 ≈c G1. In each
hybrid game, the vectors for generating the ciphertexts and the secret keys are
changed from G0, which is shown in Fig 7 to 21. We frame the parts that are
changed from the previous game by a box and sometimes denote the parts that
are not changed by —.
G0 ≈c H1. We can justify this indistinguishability by the (partially) function-
hiding property of pFE and gFE. For all i, j, I, J ∈ [2], we can see that 〈bj

i , b̃
J
I 〉
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1 )
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d := (s11, 0), d̃ := (s̃11, 0)

f := (r11, t
1
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qCT1
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d := (s22, 0), d̃ := (s̃22, 0)

f := (r22, t
2
2, v̈22 , 0), h := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ, c2,1v2, c1,1, c2,1)

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ, c2,2v2, c1,2, c2,2)

h̃2 := 0

Fig 8: Vectors in H2.
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Fig 9: Vectors in H3.

in G0 and that in H1 are equal unless i = I and j 6= J . Recall that 〈lji , l̃JI 〉 6= 0
with overwhelming probability if i = I and j 6= J , since L is chosen from the
exponentially large space, Zp. Hence, the indistinguishability of {b, b̃} between
G0 and H1 is implied by the partially function-hiding property of pFE.

Similarly, for all i, j ∈ [2], 〈f ji , f̃i〉 in G0 and that in H1 are equal, which
implies, for all j1, j2 ∈ [2],

∑
i∈[2](〈f

ji
i , f̃i〉 + hji

i h̃i) in G0 and that in H1 are
equal. Thus, the indistinguishability of {f , f̃} between G0 and H1 is implied by
the function-hiding property of gFE.

H1 ≈c H2. We can justify this indistinguishability by the SXDH assumption,
which implies (G, [t]1, [v1t]1) ≈c (G, [t]1, [v̈]1) where G← GBG(1

λ), t = {tji}i,j∈[2],

v̈ = {v̈ji }i,j∈[2] ← Z4
p, v1 ← Zp.
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qCT1
1

b := ( — , 0, t11v1 + x1,1
1 x1,1

1 )

b̃ := ( — , 0, 1 )

d := (s11, 0), d̃ := (s̃11, 0)

f := (r11, t
1
1, t11v1 + x1,1

1 x1,1
1 − x1,0

1 x1,0
1 , 0), h := 0

qCT1
2

b := ( — , t12v1 + x1,1
1 x1,1

2 − x1,0
1 x1,0

2 , t12v1 + x1,1
1 x1,1

2 )

b̃ := ( — , 0, 0 )

d := (s12, 0), d̃ := (s̃12, 0)

f := (r12, t
1
2, t12v1 + x1,1

1 x1,1
2 − x1,0

1 x1,0
2 , 0), h := 0

qCT2
1

b := ( — , t21v1 + x1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0 )

b̃ := ( — , 1, 0 )

d := (s21, 0), d̃ := (s̃21, 0)

f := (r21, t
2
1, t21v1 + x1,1

1 x1,1
1 − x1,0

1 x1,0
1 , 0), h := 0

qCT2
2

b := ( — , t22v1 + x1,1
1 x2,1

2 − x1,0
1 x2,0

2 , t22v1 + x1,1
1 x2,1

2 )

b̃ := ( — , 0, 0 )

d := (s22, 0), d̃ := (s̃22, 0)

f := (r22, t
2
2, t22v1 + x1,1

1 x2,1
2 − x1,0

1 x2,0
2 , 0), h := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ, c2,1v2, c1,1, c2,1)

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ, c2,2v2, c1,2, c2,2)

h̃2 := 0

Fig 10: Vectors in H4.

qCT1
1

b := ( x1,0
1 , x1,1

1 , s11w1,1, s
1
1w2,1, u1, t11, 0, 0 )

b̃ := ( 0, x1,1
1 , s̃11, 0, r11, v1 , 0, 0 )

d := (s11, 0), d̃ := (s̃11, 0)

f := (r11, t
1
1,��t11v1 + x1,1

1 x1,1
1 − x1,0

1 x1,0
1 , 0), h := 0

qCT1
2

b := ( — ,��t12v1 + x1,1
1 x1,1

2 − x1,0
1 x1,0

2 , 0 )

b̃ := ( — , 0, 0 )

d := (s12, 0), d̃ := (s̃12, 0)

f := (r12, t
1
2,��t12v1 + x1,1

1 x1,1
2 − x1,0

1 x1,0
2 , 0), h := 0

qCT2
1

b := ( x2,0
1 , x2,1

1 , s21w1,1, s
2
1w2,1, u1, t21, ��t21v1 + x1,1

1 x1,1
1 − x1,0

1 x1,0
1 , 0 )

b̃ := ( x2,0
1 , 0, s̃21, 0, r21, v1 , 1, 0 )

d := (s21, 0), d̃ := (s̃21, 0)

f := (r21, t
2
1,��t21v1 + x1,1

1 x1,1
1 − x1,0

1 x1,0
1 , 0), h := 0

qCT2
2

b := ( — ,��t22v1 + x1,1
1 x2,1

2 − x1,0
1 x2,0

2 , 0 )

b̃ := ( — , 0, 0 )

d := (s22, 0), d̃ := (s̃22, 0)

f := (r22, t
2
2,��t22v1 + x1,1

1 x2,1
2 − x1,0

1 x2,0
2 , 0), h := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ , c1,1, c2,1)

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ , c1,2, c2,2)

h̃2 := 0

Fig 11: Vectors in H5.

H2 = H3. These hybrid games are information-theoretically equivalent. This can

be confirmed by setting v̈ji :=

{
v̈′ji + x1,1

1 x1,1
i − x1,0

1 x1,0
i (i = 1)

v̈′ji + x1,1
1 xj,1

i − x1,0
1 xj,0

i (i = 2)
where v̈′ji ← Zp.

H3 ≈c H4. We can justify this indistinguishability by the SXDH assumption,
and the indistinguishability can be shown similarly to that between H1 and H2.

H4 ≈c H5. We can justify this indistinguishability by the (partially) function-
hiding property of pFE and gFE, similarly to the case of G0 ≈c H1.

H5 ≈c H6. We can justify this indistinguishability by the (partially) function-
hiding property of pFE, iFE, and gFE, similarly to the case of G0 ≈c H1. Note
that here we also need to consider iFE since {d, d̃} is also changed, but it is easy
to see that, for all i, j, I, J ∈ [2], 〈dj

i , d̃
J
I 〉 in H5 and that in H6 are equal.

H6 ≈c H7. We can justify this indistinguishability by the SXDH assumption,
which implies (G, [s]1, [s̃

2
1s]1) ≈c (G, [s]1, [s̈]1) and (G, [u]1, [r

2
1u]1) ≈c (G, [u]1, [ü]1)

where G← GBG(1
λ), s = {sji}i,j∈[2], s̈ = {s̈ji}i,j∈[2] ← Z4

p, s̃
2
1 ← Zp,u = {ui}i∈[2],

ü = {üi}i∈[2] ← Z2
p, r

2
1 ← Zp.
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qCT1
1

b := ( x1,0
1 , x1,1

1 , s11w1,1, s
1
1w2,1, u1, t

1
1, 0, 0 )

b̃ := ( 0, x1,1
1 , s̃11, 0, r11, v1, 0, 0 )

d := (s11, s11s̃
2
1 ), d̃ := (s̃11, 0)

f := (r11, t
1
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0), h := 0

qCT1
2

b := ( — , s12s̃
2
1w1,2 + r21u2 + x2,0

1 x1,0
2 + x1,1

1 x1,1
2 − x1,0

1 x1,0
2 , 0 )

b̃ := ( — , 0, 0 )

d := (s12, s12s̃
2
1 ), d̃ := (s̃12, 0)

f := (r12, t
1
2, x

1,1
1 x1,1

2 − x1,0
1 x1,0

2 , 0), h := 0

qCT2
1

b := ( — , s21s̃
2
1w1,1 + r21u1 + x2,0

1 x2,0
1 + x1,1

1 x1,1
1 − x1,0

1 x1,0
1 , 0 )

b̃ := ( 0 , 0, 0 , 0, 0 , v1, 1, 0 )

d := (s21, s21s̃
2
1 ), d̃ := ( 0 , 1 )

f := ( 0 , t21, x
1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0), h := 1

qCT2
2

b := ( — , s22s̃
2
1w1,2 + r21u2 + x2,0

1 x2,0
2 + x1,1

1 x2,1
2 − x1,0

1 x2,0
2 , 0 )

b̃ := ( — , 0, 0 )

d := (s22, s22s̃
2
1 ), d̃ := (s̃22, 0)

f := (r22, t
2
2, x

1,1
1 x2,1

2 − x1,0
1 x2,0

2 , 0), h := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, c1,1, c2,1)

h̃1 := r21
∑

µ∈[2] c1,µuµ

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, c1,2, c2,2)

h̃2 := 0

Fig 12: Vectors in H6.

Additional sampling for qMSK

ü1, ü2 ← Zp

qCT1
1

s̈11 ← Zp

b := ( x1,0
1 , x1,1

1 , s11w1,1, s
1
1w2,1, u1, t

1
1, 0, 0 )

b̃ := ( 0, x1,1
1 , s̃11, 0, r11, v1, 0, 0 )

d := (s11, s̈11 ), d̃ := (s̃11, 0)

f := (r11, t
1
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0), h := 0

qCT1
2

s̈12 ← Zp

b := ( — , s̈12 w1,2 + ü2 + x2,0
1 x1,0

2 + x1,1
1 x1,1

2 − x1,0
1 x1,0

2 , 0 )

b̃ := ( — , 0, 0 )

d := (s12, s̈12 ), d̃ := (s̃12, 0)

f := (r12, t
1
2, x

1,1
1 x1,1

2 − x1,0
1 x1,0

2 , 0), h := 0

qCT2
1

s̈21 ← Zp

b := ( — , s̈21 w1,1 + ü1 + x2,0
1 x2,0

1 + x1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0 )

b̃ := ( — , 1, 0 )

d := (s21, s̈21 ), d̃ := (0, 1)

f := (0, t21, x
1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0), h := 1

qCT2
2

s̈22 ← Zp

b := ( — , s̈22 w1,2 + ü2 + x2,0
1 x2,0

2 + x1,1
1 x2,1

2 − x1,0
1 x2,0

2 , 0 )

b̃ := ( — , 0, 0 )

d := (s22, s̈22 ), d̃ := (s̃22, 0)

f := (r22, t
2
2, x

1,1
1 x2,1

2 − x1,0
1 x2,0

2 , 0), h := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, c1,1, c2,1)

h̃1 :=
∑

µ∈[2] c1,µüµ

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, c1,2, c2,2)

h̃2 := 0

Fig 13: Vectors in H7.

H7 ≈c H8. We can justify this indistinguishability by the message-hiding prop-
erty of miFE. First, we prove that, for all j ∈ [2], we have

c1,1(x
2,0
1 x2,0

1 − x1,0
1 x1,0

1 ) + c1,2(x
2,0
1 xj,0

2 − x1,0
1 xj,0

2 )

=c1,1(x
2,1
1 x2,1

1 − x1,1
1 x1,1

1 ) + c1,2(x
2,1
1 xj,1

2 − x1,1
1 xj,1

2 ).
(5.1)

Due to the game condition defined in Def. 2.1, the queries by the adversary
satisfy ∑

i,θ∈[2]

ci,θx
f(i),0
i x

f(θ),0
θ =

∑
i,θ∈[2]

ci,θx
f(i),1
i x

f(θ),1
θ (5.2)

∑
i,θ∈[2]

ci,θx
g(i),0
i x

g(θ),0
θ =

∑
i,θ∈[2]

ci,θx
g(i),1
i x

g(θ),1
θ (5.3)

where f(i) =

{
2 (i = 1)

j (i = 2)
, g(i) =

{
1 (i = 1)

j (i = 2)
. Note that Eq. (5.2) represents

the restriction f(x2,0
1 , xj,0

2 ) = f(x2,1
1 , xj,1

2 ), and Eq.(5.3) represents the restriction

22



Additional sampling for qMSK

ü1, ü2 ← Zp

qCT1
1

s̈11 ← Zp

b := ( x1,0
1 , x1,1

1 , s11w1,1, s
1
1w2,1, u1, t

1
1, 0, 0 )

b̃ := ( 0, x1,1
1 , s̃11, 0, r11, v1, 0, 0 )

d := (s11, s̈
1
1), d̃ := (s̃11, 0)

f := (r11, t
1
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0), h := 0

qCT1
2

s̈12 ← Zp

b := ( — , s̈12w1,2 + ü2 + x2,1
1 x1,1

2 , 0 )

b̃ := ( — , 0, 0 )

d := (s12, s̈
1
2), d̃ := (s̃12, 0)

f := (r12, t
1
2, x

1,1
1 x1,1

2 − x1,0
1 x1,0

2 , 0), h := 0

qCT2
1

s̈21 ← Zp

b := ( — , s̈21w1,1 + ü1 + x2,1
1 x2,1

1 , 0 )

b̃ := ( — , 1, 0 )

d := (s21, s̈
2
1), d̃ := (0, 1)

f := (0, t21, x
1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0), h := 1

qCT2
2

s̈22 ← Zp

b := ( — , s̈22w1,2 + ü2 + x2,1
1 x2,1

2 , 0 )

b̃ := ( — , 0, 0 )

d := (s22, s̈
2
2), d̃ := (s̃22, 0)

f := (r22, t
2
2, x

1,1
1 x2,1

2 − x1,0
1 x2,0

2 , 0), h := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, c1,1, c2,1)

h̃1 :=
∑

µ∈[2] c1,µüµ

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, c1,2, c2,2)

h̃2 := 0

Fig 14: Vectors in H8.

f(x1,0
1 , xj,0

2 ) = f(x1,1
1 , xj,1

2 ). Eq. (5.2) − Eq. (5.3) implies Eq. (5.1) by reflecting
the fact that c2,1 = 0, which is defined in Def. 2.2.

Thanks to the message-hiding property of 2-slot miFE and Eq. (5.1), we have

{miPP,miCT1,0
1 ,miCT1,0

2 ,miCT2,0
2 ,miSK} ≈c {miPP,miCT1,1

1 ,miCT1,1
2 ,miCT2,1

2 ,miSK}

where

miPP = (G, [w1,1]1, [w1,2]1)

miCT1,β
1 = ([s̈21]1, [s̈

2
1w1,1 + ü1 + x2,β

1 x2,β
1 − x1,β

1 x1,β
1 ]1)

miCTj,β
2 = ([s̈j2]1, [s̈

j
2w1,2 + ü2 + x2,β

1 xj,β
2 − x1,β

1 xj,β
2︸ ︷︷ ︸

message vectors

]1)

miSK = (
∑
µ∈[2]

c1,µüµ,−c1,1w1,1,−c1,2w1,2, c1,1, c1,2︸ ︷︷ ︸
key vector

).

Roughly speaking, [b]1 in qCT2
1, qCT

1
2, qCT

2
2 is simulatable from miCT1,β

1 ,miCT1,β
2 ,

miCT2,β
2 , respectively, and [h̃1]1 in qSK is simulatable from miSK, and the case

of β = 0 corresponds to H7 and β = 1 corresponds to H8.
H8 ≈c H9. We can justify this indistinguishability by the SXDH assumption
similarly to the case of H6 ≈c H7.
H9 ≈c H10. We can justify this indistinguishability by the (partially) function-
hiding property of pFE, iFE, and gFE, similarly to the case of G5 ≈c H6. At this
point, all ciphertexts for slot 1 are changed from encryption of 0-side to that of
1-side.
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qCT1
1

b := ( x1,0
1 , x1,1

1 , s11w1,1, s
1
1w2,1, u1, t

1
1, 0, 0 )

b̃ := ( 0, x1,1
1 , s̃11, 0, r11, v1, 0, 0 )

d := (s11, s11s̃
2
1 ), d̃ := (s̃11, 0)

f := (r11, t
1
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0), h := 0

qCT1
2

b := ( — , s12s̃
2
1w1,2 + r21u2 + x2,1

1 x1,1
2 , 0 )

b̃ := ( — , 0, 0 )

d := (s12, s12s̃
2
1 ), d̃ := (s̃12, 0)

f := (r12, t
1
2, x

1,1
1 x1,1

2 − x1,0
1 x1,0

2 , 0), h := 0

qCT2
1

b := ( x2,0
1 , x2,1

1 , s21w1,1, s
2
1w2,1, u1, t

2
1, s21s̃

2
1w1,1 + r21u1 + x2,1

1 x2,1
1 , 0 )

b̃ := ( 0, 0, s̃21, 0, 0, v1, 1, 0 )

d := (s21, s21s̃
2
1 ), d̃ := (0, 1)

f := (0, t21, x
1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0), h := 1

qCT2
2

b := ( — , s22s̃
2
1w1,2 + r21u2 + x2,1

1 x2,1
2 , 0 )

b̃ := ( — , 0, 0 )

d := (s22, s22s̃
2
1 ), d̃ := (s̃22, 0)

f := (r22, t
2
2, x

1,1
1 x2,1

2 − x1,0
1 x2,0

2 , 0), h := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, c1,1, c2,1)

h̃1 := r21
∑

µ∈[2] c1,µuµ

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, c1,2, c2,2)

h̃2 := 0

Fig 15: Vectors in H9.

qCT1
1

b := ( x1,0
1 , x1,1

1 , s11w1,1, s
1
1w2,1, u1, t

1
1, 0, 0)

b̃ := ( 0, x1,1
1 , s̃11, 0, r11, v1, 0, 0)

d := (s11, 0 ), d̃ := (s̃11, 0)

f := (r11, t
1
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0), h := 0

qCT1
2

b := ( x1,0
2 , x1,1

2 , s12w1,2, s
1
2w2,2, u2, t

1
2, 0 , 0)

b̃ := ( x1,0
2 , 0, 0, s̃12, r12, v2, 0, 0)

d := (s12, 0 ), d̃ := (s̃12, 0)

f := (r12, t
1
2, x

1,1
1 x1,1

2 − x1,0
1 x1,0

2 , 0), h := 0

qCT2
1

b := ( x2,0
1 , x2,1

1 , s21w1,1, s
2
1w2,1, u1, t21, 0 , 0)

b̃ := ( 0, x2,1
1 , s̃21 , 0, r21 , v1, 0 , 0)

d := (s21, 0 ), d̃ := ( s̃21 , 0 )

f := (r21, t
2
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , 0), h := 0

qCT2
2

b := ( x2,0
2 , x2,1

2 , s22w1,2, s
2
2w2,2, u2, t

2
2, 0 , 0)

b̃ := ( x2,0
2 , 0, 0, s̃22, r22, v2, 0, 0)

d := (s22, 0 ), d̃ := (s̃22, 0)

f := (r22, t
2
2, x

1,1
1 x2,1

2 − x1,0
1 x2,0

2 , 0), h := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, c1,1, c2,1)

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, c1,2, c2,2)

h̃2 := 0

Fig 16: Vectors in H10.

H10 ≈c H11. As stated above, G0 to H10 are hybrid games for processing the
ciphertexts for slot 1. Next, we apply a similar procedure to slot 2. H11 in the
process for slot 2 corresponds to H7 in the process for slot 1. That is, H10 ≈c H11

can be proven similarly to G0 ≈c H7.
H11 ≈c H12. This indistinguishability can be prove similarly to the case of H7 ≈c

H8, but we need an additional tweak in this case. First, we prove that, for all
j ∈ [2], we have

c2,1(x
2,0
2 xj,0

1 − x1,0
2 xj,0

1 ) + c2,2(x
2,0
2 x2,0

2 − x1,0
2 x1,0

2 ) + c1,2(x
1,0
1 x2,0

2 − x1,0
1 x1,0

2 )

=c2,1(x
2,1
2 xj,1

1 − x1,1
2 xj,1

1 ) + c2,2(x
2,1
2 x2,1

2 − x1,1
2 x1,1

2 ) + c1,2(x
1,1
1 x2,1

2 − x1,1
1 x1,1

2 ).

(5.4)

Due to the game condition defined in Def. 2.1, the queries by the adversary
satisfy ∑

i,θ∈[2]

ci,θx
f(i),0
i x

f(θ),0
θ =

∑
i,θ∈[2]

ci,θx
f(i),1
i x

f(θ),1
θ (5.5)
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Additional sampling for qMSK

ü1, ü2 ← Zp

qCT1
1

s̈11 ← Zp

b := ( — , s̈11w2,1 + ü1 + x2,0
2 x1,0

1 + x1,1
2 x1,1

1 − x1,0
2 x1,0

1 , 0)

b̃ := ( — , 0, 0)

d := (s11, s̈11 ), d̃ := (s̃11, 0)

f := (r11, t
1
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , x1,1
2 x1,1

1 − x1,0
2 x1,0

1 ), h := 0

qCT1
2

s̈12 ← Zp

b := ( — , 0, 0)
b̃ := ( 0 , x1,1

2 , 0, s̃12, r
1
2, v2, 0, 0)

d := (s12, s̈12 ), d̃ := (s̃12, 0)

f := (r12, t
1
2, x

1,1
1 x1,1

2 − x1,0
1 x1,0

2 , x1,1
2 x1,1

2 − x1,0
2 x1,0

2 ), h := 0

qCT2
1

s̈21 ← Zp

b := ( — , s̈21w2,1 + ü1 + x2,0
2 x2,0

1 + x1,1
2 x2,1

1 − x1,0
2 x2,0

1 , 0)

b̃ := ( — , 0, 0)

d := (s21, s̈21 ), d̃ := (s̃21, 0)

f := (r21, t
2
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , x1,1
2 x2,1

1 − x1,0
2 x2,0

1 ), h := 0

qCT2
2

s̈22 ← Zp

b := ( — , s̈22w2,2 + ü2 + x2,0
2 x2,0

2 + x1,1
2 x1,1

2 − x1,0
2 x1,0

2 , 0)

b̃ := ( 0 , 0, 0, 0 , 0 , v2, 1 , 0)

d := (s22, s̈22 ), d̃ := ( 0 , 1 )

f := ( 0 , t22, x
1,1
1 x2,1

2 − x1,0
1 x2,0

2 , x1,1
2 x1,1

2 − x1,0
2 x1,0

2 ), h := 1

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, c1,1, c2,1)

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, c1,2, c2,2)

h̃2 :=
∑

µ∈[2] c1,µüµ

Fig 17: Vectors in H11.

Additional sampling for qMSK

ü1, ü2 ← Zp

qCT1
1

s̈11 ← Zp

b := ( — , s̈11w2,1 + ü1 + x2,1
2 x1,1

1 , 0)

b̃ := ( — , 0, 0)

d := (s11, s̈
1
1), d̃ := (s̃11, 0)

f := (r11, t
1
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , x1,1
2 x1,1

1 − x1,0
2 x1,0

1 )

h := 0

qCT1
2

s̈12 ← Zp

b := ( — , 0, 0)
b̃ := ( — , 0, 0)
d := (s12, s̈

1
2), d̃ := (s̃12, 0)

f := (r12, t
1
2, x

1,1
1 x1,1

2 − x1,0
1 x1,0

2 , x1,1
2 x1,1

2 − x1,0
2 x1,0

2 ), h := 0

qCT2
1

s̈21 ← Zp

b := ( — , s̈21w2,1 + ü1 + x2,1
2 x2,1

1 , 0)

b̃ := ( — , 0, 0)

d := (s21, s̈
2
1), d̃ := (s̃21, 0)

f := (r21, t
2
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , x1,1
2 x2,1

1 − x1,0
2 x2,0

1 )

h := 0

qCT2
2

s̈22 ← Zp

b := ( — , s̈22w2,2 + ü2 + x2,1
2 x2,1

2 , 0)

b̃ := ( — , 1, 0)

d := (s22, s̈
2
2), d̃ := (0, 1)

f := (0, t22, x
1,1
1 x2,1

2 − x1,0
1 x2,0

2 , x1,1
2 x1,1

2 − x1,0
2 x1,0

2 ), h := 1

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, c1,1, c2,1)

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, c1,2, c2,2)

h̃2 :=
∑

µ∈[2] c1,µüµ +c1,2(x
1,1
1 x1,1

2 − x1,0
1 x1,0

2 − (x1,1
1 x2,1

2 − x1,0
1 x2,0

2 ))

Fig 18: Vectors in H12.∑
i,θ∈[2]

ci,θx
g(i),0
i x

g(θ),0
θ =

∑
i,θ∈[2]

ci,θx
g(i),1
i x

g(θ),1
θ (5.6)

where f(i) =

{
1 (i = 1)

2 (i = 2)
, g(i) =

{
1 (i = 1)

1 (i = 2)
. Note that Eq. (5.5) represents

the restriction f(x1,0
1 , x2,0

2 ) = f(x1,1
1 , x2,1

2 ), and Eq.(5.6) represents the restriction
f(x1,0

1 , x1,0
2 ) = f(x1,1

1 , x1,1
2 ). Eq. (5.5) − Eq. (5.6) implies Eq. (5.4) by reflecting

the fact that c2,1 = 0, which is defined in Def. 2.2.
Thanks to the message-hiding property of 3-slot miFE and Eq. (5.4), we have

{miPP,miCT1,0
1 ,miCT2,0

1 ,miCT1,0
2 ,miCT1,0

3 ,miSK}
≈c{miPP,miCT1,1

1 ,miCT2,1
1 ,miCT1,1

2 ,miCT1,1
3 ,miSK}
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Additional sampling for qMSK

ü1, ü2 ← Zp

qCT1
1

s̈11 ← Zp

b := ( — , s̈11w2,1 + ü1 + x2,1
2 x1,1

1 , 0)

b̃ := ( — , 0, 0)

d := (s11, s̈
1
1), d̃ := (s̃11, 0)

f := (r11, t
1
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , x1,1
2 x1,1

1 − x1,0
2 x1,0

1 )

h := 0

qCT1
2

s̈12 ← Zp

b := ( — , 0, 0)
b̃ := ( — , 0, 0)
d := (s12, s̈

1
2), d̃ := (s̃12, 0)

f := (r12, t
1
2, x

1,1
1 x1,1

2 − x1,0
1 x1,0

2 , x1,1
2 x1,1

2 − x1,0
2 x1,0

2 ), h := 0

qCT2
1

s̈21 ← Zp

b := ( — , s̈21w2,1 + ü1 + x2,1
2 x2,1

1 , 0)

b̃ := ( — , 0, 0)

d := (s21, s̈
2
1), d̃ := (s̃21, 0)

f := (r21, t
2
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , x1,1
2 x1,1

1 − x1,0
2 x1,0

1 )

h := 0

qCT2
2

s̈22 ← Zp

b := ( — , s̈22w2,2 + ü2 + x2,1
2 x2,1

2 , 0)

b̃ := ( — , 1, 0)

d := (s22, s̈
2
2), d̃ := (0, 1)

f := (0, t22, x1,1
1 x1,1

2 − x1,0
1 x1,0

2 , x1,1
2 x1,1

2 − x1,0
2 x1,0

2 ), h := 1

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, c1,1, c2,1)

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, c1,2, c2,2)

h̃2 :=
∑

µ∈[2] c1,µüµ + c1,2((((((((
(x1,1

1 x1,1
2 − x1,0

1 x1,0
2 −((((((((

(x1,1
1 x2,1

2 − x1,0
1 x2,0

2 ))

Fig 19: Vectors in H13.

qCT1
1

b := ( x1,0
1 , x1,1

1 , s11w1,1, s
1
1w2,1, u1, t

1
1, 0 , 0)

b̃ := ( 0, x1,1
1 , s̃11, 0, r11, v1, 0, 0)

d := (s11, 0 ), d̃ := (s̃11, 0)

f := (r11, t
1
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , x1,1
2 x1,1

1 − x1,0
2 x1,0

1 ), h := 0

qCT1
2

b := ( x1,0
2 , x1,1

2 , s12w1,2, s
1
2w2,2, u2, t

1
2, 0, 0)

b̃ := ( 0, x1,1
2 , 0, s̃12, r12, v2, 0, 0)

d := (s12, 0 ), d̃ := (s̃12, 0)

f := (r12, t
1
2, x

1,1
1 x1,1

2 − x1,0
1 x1,0

2 , x1,1
2 x1,1

2 − x1,0
2 x1,0

2 ), h := 0

qCT2
1

b := ( x2,0
1 , x2,1

1 , s21w1,1, s
2
1w2,1, u1, t

2
1, 0 , 0)

b̃ := ( 0, x2,1
1 , 0, s̃21, r21, v1, 0, 0)

d := (s21, 0 ), d̃ := (s̃21, 0)

f := (r21, t
2
1, x

1,1
1 x1,1

1 − x1,0
1 x1,0

1 , x1,1
2 x1,1

1 − x1,0
2 x1,0

1 ), h := 0

qCT2
2

b := ( x2,0
2 , x2,1

2 , s22w1,2, s
2
2w2,2, u2, t22, 0 , 0)

b̃ := ( 0, x2,1
2 , s̃22 , 0, r22 , v2, 0 , 0)

d := (s22, 0 ), d̃ := ( s̃22 , 0 )

f := ( r22 , t22, x
1,1
1 x1,1

2 − x1,0
1 x1,0

2 , x1,1
2 x1,1

2 − x1,0
2 x1,0

2 ), h := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, c1,1, c2,1)

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, c1,2, c2,2)

h̃2 := 0

Fig 20: Vectors in H14.

qCT1
1

b := ( x1,0
1 , x1,1

1 , s11w1,1, s
1
1w2,1, u1, t

1
1, 0, 0)

b̃ := ( 0, x1,1
1 , s̃11, 0, r11, v1, 0, 0)

d := (s11, 0), d̃ := (s̃11, 0)

f := (r11, t
1
1, 0 , 0 ), h := 0

qCT1
2

b := ( x1,0
2 , x1,1

2 , s12w1,2, s
1
2w2,2, u2, t

1
2, 0, 0)

b̃ := ( 0, x1,1
2 , 0, s̃12, r12, v2, 0, 0)

d := (s12, 0), d̃ := (s̃12, 0)

f := (r12, t
1
2, 0 , 0 ), h := 0

qCT2
1

b := ( x2,0
1 , x2,1

1 , s21w1,1, s
2
1w2,1, u1, t

2
1, 0, 0)

b̃ := ( 0, x2,1
1 , 0, s̃21, r21, v1, 0, 0)

d := (s21, 0), d̃ := (s̃21, 0)

f := (r21, t
2
1, 0 , 0 ), h := 0

qCT2
2

b := ( x2,0
2 , x2,1

2 , s22w1,2, s
2
2w2,2, u2, t

2
2, 0, 0)

b̃ := ( 0, x2,1
2 , s̃22, 0, r22, v2, 0, 0)

d := (s22, 0), d̃ := (s̃22, 0)

f := (r22, t
2
2, 0 , 0 ), h := 0

qSK

f̃1 := (
∑

µ∈[2] c1,µuµ,
∑

µ∈[2] cµ,1vµ, 0 , 0 )

h̃1 := 0

f̃2 := (
∑

µ∈[2] c2,µuµ,
∑

µ∈[2] cµ,2vµ, 0 , 0 )

h̃2 := 0

Fig 21: Vectors in H15.
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where

miPP = (G, [w2,1]1, [w2,2]1, [w2,3]1)

miCTj,β
1 = ([s̈j1]1, [s̈

j
1w2,1 + ü1 + x2,β

2 xj,β
1 − x1,β

2 xj,β
1 ]1)

miCT1,β
2 = ([s̈22]1, [s̈

2
2w2,2 + ü2 + x2,β

2 x2,β
2 − x1,β

2 x1,β
2 ]1)

miCT1,β
3 = ([s̈13]1, [s̈

1
3w2,3 + ü3 + x1,β

1 x2,β
2 − x1,β

1 x1,β
2︸ ︷︷ ︸

message vectors

]1)

miSK = (
∑
µ∈[2]

c2,µüµ + c1,2ü3,−c2,1w2,1,−c2,2w2,2,−c1,2w2,3, c2,1, c2,2, c1,2︸ ︷︷ ︸
key vector

).

Roughly speaking, [b]1 in qCT1
1, qCT

2
1, qCT

2
2 is simulatable from miCT1,β

1 ,miCT2,β
1 ,

miCT1,β
2 , respectively, and [h̃2]1 in qSK is simulatable from miSK and miCT1,β

3 .
More precisely,

h̃2 = K1 − C1K4 − c1,2(C2 + x1,0
1 x2,0

2 − x1,0
1 x1,0

2 )

where miCT1,β
3 = ([C1]1, [C2]1) and miSK = (K1, . . . ,K7). The case of β = 0

corresponds to H11 and β = 1 corresponds to H12.
H12 ≈c H13. We can justify this indistinguishability by the function-hiding prop-
erty of gFE. For all i, j ∈ [2], 〈f ji , f̃i〉 + hj

i h̃i in H12 and that in H13 are equal
(recall that c2,1 = 0), which implies, for all j1, j2 ∈ [2],

∑
i∈[2](〈f

ji
i , f̃i〉 + hji

i h̃i)

in H12 and that in H13 are equal. Thus, the indistinguishability of {f , f̃ , h, h̃}
between H12 and H13 is implied by the function-hiding property of gFE.
H13 ≈c H14. This indistinguishability can be proven similarly to H8 ≈c H10.
H14 ≈c H15. Due to the game condition defined in Def. 2.1, the queries by
the adversary satisfy

∑
i,θ∈[2] ci,θ(x

1,1
i x1,1

θ − x1,0
i x1,0

θ ) = 0, which implies, for
all j1, j2 ∈ [2],

∑
i∈[2](〈f

ji
i , f̃i〉 + hji

i h̃i) in H14 and that in H15 are equal. Thus,
the indistinguishability of {f , f̃} between H14 and H15 is implied by the function-
hiding property of gFE.
H15 ≈c G1. It is easy to see that this indistinguishability is implied by the
partially function-hiding property of pFE, since, for all i, j, I, J ∈ [2], 〈bj

i , b̃
J
I 〉 in

H15 and that in G1 are equal.

6 Quadratic Multi-Input Functional Encryption

We present our quadratic MIFE scheme for FMQF
m,n,X,C . We define the following

functions that relate indices in [n]× [m] with those in [mn]:

– location function, lo : [n]× [m]→ [mn], defined as lo(x, y) = (x− 1)m+ y;
– location set function, ls : [n]→ 2[mn], defined as ls(x) = {lo(x, 1), . . . , lo(x,m)};
– slot function, sl : [mn]→ [n], defined as sl(x) = dx/me;
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qSetup(1λ)→ qPP, qMSK

G← GBG(1
λ),A1, . . . ,An ← Dk, {wi,j}i,j∈[mn] ← Zk+1

p , Ũ1, . . . , Ũmn ← Zk×k
p

u1, . . . ,umn ← Zk
p, V1, . . . ,Vmn ← Zk×k

p , ṽ1, . . . , ṽmn ← Zk
p

pPP, pMSK← pSetup(1λ), iPP, iMSK← iSetup(1λ), gPP, gMSK← gSetup(1λ)

qPP := (G, pPP, iPP, gPP)

qMSK := ({Ai}i∈[n], {wi,j}i,j∈[mn], {Ũi,ui,Vi, ṽi}i∈[mn], pMSK, iMSK, gMSK).

qEnc(qMSK, i, xi)→ qCTi

S← Zk×k
p , s̃, r, t← Zk

p, L← Zp, l := ei/n ⊗ (1, L) ∈ Z2n
p , l̃ := ei/n ⊗ (L,−1) ∈ Z2n

p

bκ,1 := (xi,κ, 0) ∈ Z2
p, bκ,2 := (w>

lo(i,κ)(Imn ⊗AiS),ulo(i,κ)) ∈ Z(mn+1)k
p

bκ,3 := t>Vlo(i,κ) ∈ Zk
p, bκ,4 = bκ,5 := 0 ∈ Zm

p , bκ,6 := 0 ∈ Zkm
p , bκ := (bκ,1, . . . ,bκ,6)

b̃κ,1 := (xi,κ, 0) ∈ Z2
p, b̃κ,2 := (elo(i,κ)/mn ⊗ s̃, r>Ũlo(i,κ)) ∈ Z(mn+1)k

p

b̃κ,3 := ṽ>
lo(i,κ) ∈ Zk

p, b̃κ,4 = b̃κ,5 := 0 ∈ Zm
p , b̃κ,6 := 0 ∈ Zkm

p , b̃κ := (b̃κ,1, . . . , b̃κ,6)

dτ := (a>
i,τS, 0) ∈ Zk+1

p , d̃ := (s̃, 0) ∈ Zk+1
p

f1 := (r, t) ∈ Z2k
p , f2,1 = · · · = f2,n := 0 ∈ Zm2

p , f := (f1, f2,1, . . . , f2,n), h := 0

pCTlo(i,κ) ← pEnc(pMSK, (l, [bκ]1)), pSKlo(i,κ) ← pKeyGen(pMSK, (̃l, [b̃κ]2))

iCTi,τ ← iEnc(iMSK, [dτ ]1), iSKi ← iKeyGen(iMSK, [d̃]2), gCTi ← gEnc(gMSK, i, ([f ]1, [h]2))

qCTi := ({pCTlo(i,κ), pSKlo(i,κ)}κ∈[m], {iCTi,τ}τ∈[k+1], iSKi, gCTi).

qKeyGen(qMSK, c = {cµ,ν}µ,ν∈[2])→ qSK

f̃i,1 :=

(∑
µ∈ls(i)
ν∈[mn]

cµ,νŨµuν ,
∑

µ∈[mn]
ν∈ls(i)

cµ,νVν ṽµ

)
∈ Z2k

p , f̃i,2,1 = · · · = f̃i,2,n := 0 ∈ Zm2

p

f̃i := (f̃i,1, f̃i,2,1, . . . , f̃i,2,n), h̃i := 0, σi,θ :=
∑

µ∈ls(i),
ν∈ls(θ)

cµ,νwµ,ν ∈ Zk+1
p

gSK← gKeyGen(gMSK, {[̃fi]2, [h̃i]1}i∈[n]), qSK := (c, gSK, {σi,θ}i,θ∈[n]).

qDec(qCT1, , . . . , qCTnqSK)→ z

[z1]T :=
∏

µ,ν∈[mn] pDec(pCTν , pSKµ)
cµ,ν , [z2,i,θ]T := (iDec(iCTθ,1, iSKi), . . . , iDec(iCTθ,k+1, iSKi))

[z3]T := gDec(gCT1, . . . , gCTn, gSK), [z]T := [z1 −
∑

i,θ∈[n]〈z2,i,θ,σi,θ〉 − z3]T .

Searches for z within the range of z ≤ |m2n2CX2|

Fig 22: Our n-input quadratic MIFE scheme.

– entry function, en : [mn]→ [m], defined as en(x) = x−m(sl(x)− 1).

Note that we have lo(sl(x), en(x)) = x for all x ∈ [mn]. Let Dk be a matrix
distribution. Let pFE = (pSetup, pEnc, pKeyGen, pDec) be an FE scheme for
FPIP
2n,2+(mn+2)k+(2+k)m,G (Def. 3.2), iFE = (iSetup, iEnc, iKeyGen, iDec) be an FE

scheme for FIP
k+1,G (Def.3.1), and gFE = (gSetup, gEnc, gKeyGen, gDec) be an FE

scheme for FMGIP
2k+m2n,1,n,G (Def. 4.2). We construct our quadratic MIFE scheme

qFE = (qSetup, qEnc, qKeyGen, qDec) from pFE, iFE, and gFE as shown in Fig 22.
Due to space constraints, we present the proof of correctness and security

analysis of our scheme in the full version.
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