
Impossibility of Quantum Virtual Black-Box
Obfuscation of Classical Circuits

Gorjan Alagic1,2, Zvika Brakerski3, Yfke Dulek4,6, and Christian Schaffner5,6

1 Joint Center for Quantum Information and Computer Science, University of
Maryland, College Park, MD, United States

2 National Institute of Standards and Technology, Gaithersburg, MD, United States
galagic@gmail.com

3 Weizmann Institute of Science, Rehovot, Israel
zvika.brakerski@weizmann.ac.il

4 Centrum Wiskunde & Informatica, Amsterdam, the Netherlands
dulek@cwi.nl

5 University of Amsterdam, Amsterdam, the Netherlands
c.schaffner@uva.nl

6 QuSoft, Amsterdam, the Netherlands

Abstract. Virtual black-box obfuscation is a strong cryptographic prim-
itive: it encrypts a circuit while maintaining its full input/output func-
tionality. A remarkable result by Barak et al. (Crypto 2001) shows that a
general obfuscator that obfuscates classical circuits into classical circuits
cannot exist. A promising direction that circumvents this impossibility
result is to obfuscate classical circuits into quantum states, which would
potentially be better capable of hiding information about the obfuscated
circuit. We show that, under the assumption that Learning With Errors
(LWE) is hard for quantum computers, this quantum variant of virtual
black-box obfuscation of classical circuits is generally impossible. On the
way, we show that under the presence of dependent classical auxiliary in-
put, even the small class of classical point functions cannot be quantum
virtual black-box obfuscated.

1 Introduction

The obfuscation of a circuit is an object, typically another circuit, that allows a
user to evaluate the functionality of the original circuit without learning any ad-
ditional information about the structure of the circuit. Obfuscation is useful for
publishing software without revealing the code, but it also has more fundamen-
tal applications in cryptography. For example, the strongest notion called virtual
black-box obfuscation can transform any private-key encryption scheme into a
public-key scheme, and transform public-key schemes into fully-homomorphic
schemes. Unfortunately, this notion turns out to be impossible for general cir-
cuits [BGI+01] – at least, if we require the obfuscation of a circuit to be a circuit
itself.

The impossibility result from [BGI+01] leaves open an intriguing possibility:
what if the obfuscation of a (classical) circuit is allowed to be a quantum state?
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Could a quantum state contain all the information about a functionality, allowing
a user to produce correct outputs, without revealing all that information? This
possibility seems hopeful, due to the unrevealing nature of quantum states, but
the extent to which no-cloning affects cryptography is not fully understood. The
question whether quantum obfuscation of classical circuits is possible appeared
in Aaronson’s list of semi-grand challenges in quantum computing [Aar05]. At
least one candidate construction was proposed [Chr14], but subsequently broken.
An attempt to prove impossibility [AF16] also encountered several obstacles
(discussed below). As a result, the question remained far from settled.

In this work, we answer the question by showing that virtual-black-box ob-
fuscating classical circuits into quantum states is not possible. We adopt ideas
from the classical proof [BGI+01], but while using a similar proof outline is nat-
ural, the actual execution is non-trivial: our work requires tools such as quan-
tum fully homomorphic encryption [Mah18] and compute-and-compare obfusca-
tion [WZ17,GKW17] that were only developed in recent years.

1.1 Related work

Barak et al. defined the obfuscating property of virtual black-box (vbb) obfusca-
tors as follows: any information that an adversary can learn about a circuit from
its obfuscation can also be learned by a simulator that does not have access to
the obfuscation, but only to an oracle for the circuit’s functionality [BGI+01]. In
this definition, the crucial difference between the adversary and the simulator is
that the adversary has access to a short representation of the circuit (namely, the
obfuscation), whereas the simulator only has access to an input/output interface
that implements the functionality. Some circuit classes allow the adversary to
exploit this difference by using the obfuscation as an input value to the circuit
itself. Those circuit classes are unobfuscatable in the vbb sense, rendering vbb
obfuscation impossible for the general class of circuits in P [BGI+01].

In more detail, the impossibility proof in [BGI+01] relies on point functions,
which output zero everywhere except at a single input value α, where they output
a string β. The circuits in the unobfuscatable class can, depending on the input,
do all of the following: (1) apply that point function, (2) return an encryption
of α, (3) homomorphically evaluate a gate, or (4) check whether a ciphertext
decrypts to β. An adversary holding the obfuscation is able to divide it into
single gates, and can use those to homomorphically evaluate option (1), thereby
converting a ciphertext for α into a ciphertext for β. That way, the adversary can
tell whether he is holding an obfuscation with a point function from α to β, or
one with the all-zero function. (In the second case, the homomorphic evaluation
would yield a ciphertext for zero, rather than one for β.) A simulator, only
having access to the input/output behavior, cannot perform the homomorphic
evaluation, because it cannot divide the functionality into single gates.

The above construction rules out the existence of an obfuscator that maps
classical circuits to classical circuits. It leaves open the possibility of an ob-
fuscator that maps classical circuits to quantum states: such a quantum state,
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together with a fixed public ‘interpreter map’, could be used to evaluate the ob-
fuscated circuit. The possibility of quantum obfuscation was the object of study
for Alagic and Fefferman [AF16], who attempted to port the impossibility proof
from [BGI+01] to the quantum setting. In doing so, they encountered two issues:

Homomorphic evaluation. The interpreter map, that runs the obfuscation
state on a chosen input, is a quantum map. It will likely have quantum states
as intermediate states of the computation, so in order to homomorphically
run the point function, one needs the ability to evaluate quantum gates on
quantum ciphertexts. The unobfuscatable circuit class will thus need to con-
tain quantum circuits to perform homomorphic evaluation steps.

Reusability. In the construction from [BGI+01], the obfuscated circuit needs
to be used multiple times: for example, each homomorphic gate evaluation
requires a separate call to the obfuscated circuit. If the obfuscation is a (clas-
sical or quantum) circuit, this poses no problem, but if it is a quantum state,
multiple uses are not guaranteed.

These two issues limit the extent of the impossibility results in [AF16]: they show
that it is impossible to vbb obfuscate quantum circuits into reusable obfuscated
states (e.g., quantum circuits).

After it became clear [BGI+01] that obfuscating all classical circuits is im-
possible, efforts were made to construct obfuscators for smaller, but still non-
trivial, classes of circuits. Successful constructions have been found for several
classes of evasive functions, such as point functions [Wee05,CD08] and compute-
and-compare functions [WZ17,GKW17]. Currently, no quantum obfuscators are
known for circuit classes that cannot be classically obfuscated.

1.2 Our contributions

We strengthen the impossibility of virtual-black-box obfuscation of classical
circuits by showing that classical circuits cannot be obfuscated into quantum
states. We assume the existence of classical-client quantum fully homomor-
phic encryption and classical obfuscation of compute-and-compare functions.
Both of these can be constructed from the learning-with-errors (LWE) assump-
tion [Mah18,Bra18,WZ17,GKW17]. The compute-and-compare construction re-
quires the strongest assumption in terms of the LWE parameters.

Theorem (informal). If LWE is hard for quantum algorithms, then it is im-
possible to quantum vbb obfuscate the class of polynomial-size classical circuits
(even with non-negligible correctness and security error, and even if the obfus-
cation procedure is inefficient).

Our result uses the same proof strategy as in [BGI+01] and [AF16], overcom-
ing the two main issues described above as follows:

Homomorphic evaluation. The constructions in [BGI+01] and [AF16] rely
on the obfuscator to implement the homomorphic evaluations, by obfuscating
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the functionality “decrypt, then apply a gate, then re-encrypt”. However, by
now, we know how to build quantum fully-homomorphic encryption schemes
directly [Mah18,Bra18], based on the learning-with-errors (LWE) assump-
tion. Thus, in our construction, we can remove the homomorphic gate eval-
uation from the obfuscated circuits: the adversary can do the homomorphic
evaluation of the point function herself, using a quantum fully-homomorphic
encryption scheme. With the homomorphic evaluation removed from it, the
class of circuits that we prove impossible to obfuscate can remain classical.
This solution introduces a slight complication: part of the functionality of
the circuit we construct is now to return the public evaluation key. How-
ever, unless one is willing to make an assumption on the circular security
of the homomorphic encryption, the size of this key (and therefore the size
of the circuit) scales with the size of the circuit that needs to be homomor-
phically evaluated. To get rid of this inconvenient dependence, our unobfus-
catable circuit returns the public key in small, individual blocks that can
be independently computed. We argue that any classical-key quantum fully-
homomorphic encryption scheme has public keys that can be decomposed in
this way.

Reusability. The circuits that we consider are classical and deterministic. There-
fore, if the interpreter map is run on an obfuscation state ρ for a circuit
C, plus a classical input x, then by correctness, the result is (close to) a
computational-basis state |C(x)〉. This output can be copied out to a sepa-
rate wire without disturbing the state, and the interpreter map can be re-
versed, recovering the obfuscation ρ to be used again. If the interpreter map
is not unitary, then it can be run coherently (i.e., keeping purification reg-
isters around instead of measuring wires), and this coherent version can be
reversed as long as the purification registers are not measured.
At one point in our proof, we will need to run the interpreter map homomor-
phically on (an encryption of) ρ and x. This may result in a superposition
of different ciphertexts for C(x), which cannot cleanly be copied out to a
separate wire without entangling that wire with the output. Thus, recovering
ρ is not necessarily possible after the homomorphic-evaluation step.
We circumvent this problem by making sure that the homomorphic evaluation
occurs last, so that ρ is not needed anymore afterwards. This reordering is
achieved by classically obfuscating the part of the circuit that checks whether
a ciphertext decrypts to the value β. That way, this functionality becomes
a constant output value that a user can request and store before performing
the homomorphic evaluation, and use afterwards. To obfuscate the decryption
check, we use a classical vbb obfuscator for compute-and-compare functions,
which relies on a variant of the LWE assumption [WZ17,GKW17]. These vbb
obfuscators have previously been successfully applied in a similar way, in the
context of quantum extraction [AL20a,BS20].

Our impossibility result compares to the classical impossibility result from Barak
et al. [BGI+01] as follows. First, as mentioned, we extend the realm of impossible
obfuscators to include obfuscators that produce a quantum state, rather than
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a classical circuit. Second, the impossibility result from [BGI+01] is uncondi-
tional, whereas we require the (standard) assumption that learning-with-errors
is hard for quantum adversaries. It may be possible to relax this assumption
if ρ can be recovered after the homomorphic evaluation, see Section 1.3 below.
Third, the class of classical circuits that cannot be obfuscated is slightly dif-
ferent: in our work, it does not have the homomorphic-evaluation functionality
built into it, and is therefore arguably simpler, strengthening the impossibility
result. However, we stress that in both works, the unobfuscatable circuit class
itself is somewhat contrived: the main implication is that its superclass P is
unobfuscatable.

As an intermediate result, we show that it is impossible to vbb obfuscate even
just the class of classical multi-bit-output point functions into a quantum state,
if the adversary and simulator have access to auxiliary classical information that
contains an encryption of the non-zero input value α and a vbb obfuscation of
a function depending on the secret key for that encryption.

Theorem (informal). If LWE is hard for quantum algorithms, then it is im-
possible to quantum vbb obfuscate multi-bit-output point functions and the all-
zero function under the presence of classical dependent auxiliary information
(even with non-negligible soundness and security error).

At first glance, that may seem to contradict constructions in [WZ17,GKW17],
where vbb obfuscation for point functions is constructed, even in the presence of
dependent auxiliary information. The crucial difference is that the constructions
in [WZ17,GKW17] only allow a limited dependency of the auxiliary information,
whereas in our impossibility proof, the dependence is slightly stronger. This sub-
tle difference seems to indicate that the gap between possibility and impossibility
of vbb obfuscation is closing.

Comparison with Concurrent Work. Independently of this work, Ananth and
La Placa [AL20b] have concurrently shown the general impossibility of quan-
tum copy-protection, thereby also ruling out quantum obfuscation of classical
circuits. Their techniques are very similar to ours, but their adversary allows to
completely de-obfuscate the program given non-black-box access (a property that
we did not attempt to achieve). They also present some positive results in their
work in the context of software protection. Their result requires an additional
assumption compared to ours. Specifically, in addition to LWE being quantum-
secure, they also require that the underlying homomorphic-encryption scheme is
circularly secure. We avoid circularity by introducing a notion of decomposable
public keys for homomorphic encryption. Our technique could be used to remove
the circularity assumption from the copy-protection impossibility result [AL20b]
as well.

1.3 Open questions

The strongest assumption in our work is the existence of the classical vbb ob-
fuscator for compute-and-compare functions, which relies on a variant of LWE.
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It is necessary because the QFHE evaluation may destroy the obfuscation state
when the superposition of output ciphertexts is measured. However, it is not
clear if this measurement actually destroys any information on the plaintext
level, since the plaintext value is deterministic. Thus, it may be possible to re-
cover the (plaintext) obfuscation state after the QFHE evaluation. In that case,
it is not necessary to classically obfuscate the compute-and-compare function: it
can simply be part of the quantum-obfuscated functionality.

Other open questions are about possibilities rather than impossibilities. What
circuit classes can be vbb obfuscated into quantum states? Is quantum vbb
obfuscation stronger than classical vbb obfuscation, in the sense that it can
obfuscate circuit classes that classical vbb cannot? Also, the weaker notion of
indistinguishability obfuscation (iO) (also introduced in [BGI+01]) is not affected
by our impossibility result: it may still be possible to classically or quantumly
iO obfuscate classical functionalities. Could such a construction be lifted into
the quantum realm, so that we can (quantum) iO obfuscate [BK20] quantum
functionalities?

1.4 Structure of this work

In Section 2, we give preliminary definitions of the relevant concepts for this
work: (classical and quantum) obfuscation, quantum fully homomorphic encryp-
tion, and compute-and-compare functions. We also describe how the input of
an (almost) deterministic quantum circuit can be recovered. In Section 4, we
prove impossibility of quantum obfuscation of point functions under dependent
auxiliary input. Building on the concepts in that section, Section 5 proves our
main result, impossibility of quantum obfuscation of classical circuits without
any auxiliary input.

2 Preliminaries

2.1 Notation

PPT stands for probabilistic polynomial-time algorithm, and QPT stands for
quantum polynomial-time algorithm. If a classical or quantum algorithm A has
oracle access to a classical function f , we write Af . If A has access to multiple
oracles with separate input/output interfaces, we write, e.g., Af,g. Since our ora-
cles will model or emulate evaluation of a known circuit, our quantum algorithms
will always have superposition access to a classical oracle f . This amounts to
oracle access to the unitary map |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉 where ⊕ is the bit-wise
XOR operation.

Let poly (x) denote an unspecified polynomial p(x). Similarly, let negl (x)
denote an unspecified negligible function µ(x), i.e., for all constants c ∈ N there
exists an x0 ∈ R such that for all x > x0, |µ(x)| < x−c. Let Zn : {0, 1}n → {0n}
denote the all-zero function on n input bits: Zn(x) = 0n for all x.

If D is a distribution, we write x← D to signify that x is sampled according
to D. For a finite set S, we write x←R S to signify that x is sampled uniformly at
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random from the set S. Two distribution ensembles {Dλ}λ∈N and {D′λ}λ∈N are

computationally indistinguishable, written Dλ
c
≈ D′λ, if no poly-time algorithm

can distinguish between a sample from one distribution or the other, i.e., for all
PPT A, ∣∣∣∣ Pr

x←Dλ
[A(x) = 1]− Pr

y←D′
λ

[A(y) = 1]

∣∣∣∣ ≤ negl (λ) .

We sometimes write x
c
≈ y if it is clear from which distributions x and y are

sampled. If not even a QPT algorithm can distinguish them, the distributions
are quantum-computationally indistinguishable.

A pure quantum state is written |ψ〉 or |ϕ〉, and a mixed quantum state
is usually denoted by ρ or σ. As a special case, a computational-basis state is
written |x〉 for some classical string x ∈ {0, 1}∗. We sometimes abuse notation
and give a classical input x to a quantum algorithm A, writing A(x): in that
case, the algorithm A is actually given |x〉 as input.

X and Z denote the bit-flip gate and phase-flip gate, respectively. If we write
Xa for some a ∈ {0, 1}, we mean that the gate X is applied if a = 1; otherwise,
identity is applied.

Finally, for a mixed state ρ, let ‖ ρ ‖tr := Tr
(√

ρ†ρ
)

denote the trace norm.

The trace distance 1
2 ‖ ρ− σ ‖tr is a measure for how different two mixed states

ρ and σ are.

2.2 Classical and Quantum Virtual-Black-Box Obfuscation

In this work we consider so-called circuit obfuscators: the functionalities to be
hidden are represented by circuits. A virtual-black-box circuit obfuscator hides
the functionality in such a way that the obfuscation looks like a “black box”:
the only way to get information about its functionality is to evaluate it on an
input and observe the output.

Definition 2.1 ([BGI+01, Definition 2.2]). A classical virtual black-box ob-
fuscator for the circuit class F is a probabilistic algorithm O such that

1. (polynomial slowdown) For every circuit C ∈ F, |O(C)| = poly (|C|);
2. (functional equivalence) For every circuit C ∈ F, the string O(C) describes

a circuit that computes the same function as C;
3. (virtual black-box) For any PPT adversary A, there exists a PPT simulator
S such that for all circuits C ∈ F,∣∣∣Pr [A(O(C)) = 1]− Pr

[
A(SC(1|C|)) = 1

]∣∣∣ ≤ negl (|C|) .

As a variation on the third requirement, one may assume that some auxiliary
information (which may depend on the circuit C) is present alongside the obfus-
cation O(C). In that case, a simulator with access to that auxiliary information
should still be able to simulate the adversary’s output distribution:
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Definition 2.2 ([GK05, Definition 3]). A classical virtual black-box obfus-
cator w.r.t. dependent auxiliary input for a circuit class F is a probabilistic al-
gorithm O that satisfies Definition 2.1, with the “virtual black-box” property
redefined as follows:

3. (virtual black-box) For any PPT adversary A, there exists a PPT simulator
S such that for all circuits C ∈ F and all strings aux ∈ {0, 1}poly(|C|) (which
may depend on C),∣∣∣Pr [A(O(C), aux) = 1]− Pr

[
A(SC(1|C|, aux)) = 1

]∣∣∣ ≤ negl (|C|) .

In the quantum setting, we consider quantum obfuscators for classical circuit
classes: that is, the obfuscation O(C) may be a quantum state. We adapt Defi-
nition 5 from [AF16], which defines quantum obfuscators for quantum circuits.

Definition 2.3. A quantum virtual black-box obfuscator for the classical circuit
class F is a quantum algorithm O and a QPT J such that

1. (polynomial expansion) For every circuit C ∈ F , O(C) is an m-qubit quan-
tum state with m = poly (n);

2. (functional equivalence) For every circuit C ∈ F and every input x,

1

2
‖J (O(C)⊗ |x〉〈x|)− |C(x)〉〈C(x)| ‖tr ≤ negl (|C|) ;

3. (virtual black-box) For every QPT adversary A, there exists a QPT simulator
S (with superposition access to its oracle) such that for all circuits C ∈ F,∣∣∣Pr[A(O(C)) = 1]− Pr[SC(1|C|) = 1]

∣∣∣ ≤ negl (|C|) .

There are a few differences with the classical definition. First, the obfuscation
is a quantum state, and not a (classical or quantum) circuit. Second, due to
the probabilistic nature of quantum computation, we allow a negligible error
in the functional equivalence. Third, the simulator is slightly more powerful
because of its superposition access to the functionality of C: a query performs
the unitary operation specified by |x〉 |z〉 7→ |x〉 |z ⊕ C(x)〉. Note that a quantum
adversary can always use a (classical or quantum) obfuscation to compute the
obfuscated functionality on a superposition of inputs, obtaining a superposition
of outputs. For this reason, the simulator gets superposition access to its oracle
in the quantum setting. Throughout this work, all oracles supplied to quantum
algorithms allow for superposition access.

We can again strengthen the virtual black-box property to include (classical
or quantum) dependent auxiliary information: this auxiliary string or state would
be provided to both the adversary and the simulator, in the same way as in
Definition 2.2.
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2.3 Quantum Fully Homomorphic Encryption

A fully homomorphic encryption (FHE) of a message m provides privacy by
hiding the message, but allows ciphertexts to be transformed in a meaningful
way. Given a ciphertext for m, some party that only knows the public key can
produce a ciphertext for f(m) for any efficiently computable function f . Any
information that is necessary for this transformation is contained in the public
key (in particular, we do not make a distinction between the public key and the
evaluation key).

A quantum fully homomorphic encryption (QFHE) scheme allows quan-
tum computations on encrypted quantum data. From the Learning with Er-
rors assumption, it is possible to construct secure QFHE schemes where all
client-side operations (key generation, encryption, and decryption) are classi-
cal [Mah18,Bra18].

Definition 2.4. A quantum fully homomorphic encryption scheme QFHE con-
sists of four algorithms, as follows:

– Key Generation: (pk , sk) ← QFHE.KeyGen(1λ) produces a public key pk
and a secret key sk, given a security parameter λ. This is a classical PPT
algorithm.

– Encryption: c← QFHE.Encpk (m) encrypts a single-bit message m ∈ {0, 1}.
For multi-bit messages m ∈ {0, 1}`, we write QFHE.Encpk (m) to denote the
bit-by-bit encryption

(QFHE.Encpk (m1),QFHE.Encpk (m2), . . . ,QFHE.Encpk (m`)) .

This algorithm is in general QPT but it only uses a classical random tape,
and furthermore whenever m is classical, so is the encryption algorithm.

– Decryption: m′ = QFHE.Decsk (c) decrypts a ciphertext c into a single-
bit message m′, using the secret key sk. If c is a ciphertext for a multi-bit
message, we write QFHE.Decsk (c) for the bit-by-bit decryption. Again this is
QPT in general, but can be classical if c is classical.

– Homomorphic evaluation: c′ ← QFHE.Evalpk (C, c) takes as input the
public key, a classical description of a BQP circuit C with ` input wires and
`′ output wires, and a bit-by-bit encrypted ciphertext c encrypting ` bits. It
produces a c′, a sequence of `′ output ciphertexts. This is a QPT algorithm.

We say that a (Q)FHE scheme is (perfectly) correct if the homomorphic
evaluation of any BQP circuit C on a ciphertext has the effect of applying C to
the plaintext, i.e.,

QFHE.Decsk (QFHE.Evalpk (C,QFHE.Encpk (m))) = C(m)

for all m, C, and (pk , sk)← QFHE.KeyGen(1λ). A (Q)FHE scheme is secure if its
encryption function is secure. We usually require quantum indistinguishability
under chosen plaintext attacks (q-IND-CPA) [BJ15].
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The QFHE schemes from [Mah18,Bra18] encrypt a message m using a quan-
tum one-time-pad with random keys a, b ∈ {0, 1}, attaching classical FHE ci-
phertexts of the one-time pad keys:

QFHE.Encpk(m) = XaZb |m〉 ⊗ |FHE.Encpk (a),FHE.Encpk (b)〉 .

Note that this ciphertext can be classically represented as the tuple

(m⊕ a,FHE.Encpk (a),FHE.Encpk (b)) ,

so that encryption may be seen as a classical procedure. Conversely, a classical
homomorphic encryption m̃ ← FHE.Encpk (m) can easily be turned into a valid
quantum homomorphic encryption by preparing the state |0〉⊗|m̃,FHE.Encpk (0)〉 ,
which decrypts to m. Thus, it is possible to freely switch back and forth between
quantum ciphertexts and classical ciphertexts, as long as the message is known
to be classical.

The quantum one-time pad encryption also straightforwardly extends to en-
crypting general quantum states |ψ〉, rather than only computational-basis states
|m〉: the quantum one-time pad is simply applied to the state |ψ〉, and the one-
time-pad keys encrypted into a computational-basis state as above. Of course,
encryption becomes a quantum procedure in this setting. We will use encryption
of quantum states in our work, where we supply the encryption of a quantum-
state obfuscation as the input to a homomorphic evaluation.

Leveled FHE and Bootstrappable FHE. In many cases in the literature, we wish to
consider FHE schemes which require an a priori upper bound (polynomial in the
security parameter) on the depth of circuits to be homomorphically evaluated.
In the current state of the art, such schemes (referred to as leveled FHE) can
be constructed under milder assumptions than unleveled schemes: in particular,
they do not require circular-security-type assumptions. There are a few variants
of leveled FHE defined in the literature, but for the purpose of this work we use
the following.

Definition 2.5 (Leveled FHE). A leveled (Q)FHE scheme is a scheme where
the key generation takes an additional parameter KeyGen(1λ, 1d) and outputs
(sk , pk) for a (Q)FHE scheme. Correctness holds only for evaluating circuits
of total depth at most d. Furthermore, the length of sk and the complexity of
decryption are independent of d.

We assume w.l.o.g. that the random tape used by KeyGen is always of length
λ and does not depend on d (this is w.l.o.g. since it is always possible to use a
PRG to stretch the random tape into the desired length).

One way to construct leveled FHE is via the bootstrapping technique as
suggested by Gentry [Gen09]. Gentry showed that given a base scheme with
homomorphic capacity greater than its decryption depth, it is possible to create
a leveled scheme with the following properties.
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Definition 2.6 (Leveled Bootstrapped FHE). A leveled bootstrapped (Q)FHE
is a scheme where there exists a base-scheme with a key-generation algorithm
SubKeyGen(1λ) and encryption, decryption and evaluation algorithms, such that
the key generation algorithm KeyGen(1λ, 1d) takes the following form.

1. Run SubKeyGen(1λ) with fresh randomness (d+1) times to generate sub-keys
(sk i, pk i) for i = 0, . . . , d.

2. Encrypt c∗i = Encpki(sk i−1) for all i = 1, . . . , d.

3. Output pk = (pk0, (pk1, c
∗
1), . . . , (pkd, c

∗
d)) and sk = skd.

For our purposes, we will assume that the random tape that is being used for the
SubKeyGen executions is generated using a pseudorandom function. That is, the
random tape of KeyGen is used as a seed for a PRF, and for the ith execution of
SubKeyGen we use a random tape that is derived by applying a PRF on i.

For the sake of completeness we note that the decryption algorithm of the boot-
strapped scheme is the same as that of the base scheme, and that for the sake
of encryption only pk0 is needed.

2.4 Point Functions and Compute-and-Compare Functions

The class of compute-and-compare functions, as well as its subclass of point
functions, plays an important role in this work. In this section we define these
function classes.

Definition 2.7 (Point function). Let y ∈ {0, 1}n. The point function Py is
defined by

Py(x) :=

{
1 if x = y

0 otherwise.
(1)

The value y is called the target value. Point functions are a special type of
compute-and-compare function, where the function f is the identity:

Definition 2.8 (Compute-and-compare function). Let f : {0, 1}m →
{0, 1}n and y ∈ {0, 1}n. The compute-and-compare function CCf,y is defined
by

CCf,y(x) :=

{
1 if f(x) = y

0 otherwise.
(2)

One can also consider point functions or compute-and-compare functions with
multi-bit output : in that case, the function outputs either some string z (instead
of 1), or the all-zero string (instead of 0). We denote such functions with Py,z

and CCf,y,z.
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2.5 Recovering the Input of a Quantum Circuit

We will consider (efficient) quantum operations as (polynomial-size) circuits,
consisting of the following set of basic operations: unitary gates from some fixed
constant-size gate set, measurements in the computational basis, and initializa-
tion of auxiliary wires in the |0〉 state.

While unitary gates are always reversible by applying their transpose (U†U =
I for any unitary U), measurement gates may not be, as they can possibly
collapse a state. However, we can effectively delay all measurements in a circuit
C until the very end, as follows. Define UC as the unitary that computes C
coherently : that is, for every computational-basis measurement in C on some
wire w, UC performs a CNOT operation from w onto a fresh auxiliary target
wire initialized in the state |0〉. The circuit C is now equivalent to the following
operation: initialize all auxiliary target wires in the |0〉 state7, apply the unitary
UC , and measure all auxiliary target wires in the computational basis.

In this work, we will encounter circuits C which, for specific inputs, yield a
specific state in the computational basis with very high probability. In the proof
of the following lemma, we specify how to use coherent computation in order to
learn the output value while preserving the input quantum state.

Lemma 2.9. Let C be a quantum circuit. There exists an input-recovering cir-
cuit Crec such that for all inputs ρin, the following holds: if 1

2 ‖C(ρin)− |x〉〈x| ‖tr ≤
ε for some classical string x and some ε > 0, then

1

2
‖Crec(ρin)− (ρin ⊗ |x〉〈x|) ‖tr ≤ 2

√
ε.

The specification of Crec is independent of the specific input state ρin. How-
ever, Crec cannot necessarily recover all possible inputs ρin, only those that lead
to an almost-classical output.

The input-recovering circuit consists of running C coherently, copying out
the output register, and reverting the coherent computation of C. We formally
prove Lemma 2.9 in Appendix A.

3 FHE with Decomposable Public Keys

For the purpose of our result in Section 5, we will need to obfuscate a class
of circuits that allow to (quantumly) homomorphically evaluate operations of
arbitrary polynomial depth. We nevertheless wish to rely only on leveled FHE
for the sake of minimizing our assumptions. We therefore would like to define
a class of circuits that are a priori polynomially bounded in size, but which
are capable of encapsulating public-key generation of a leveled scheme for some

7 If, apart from the targets of the aforementioned CNOTs, the circuit C contains any
other wires that are initialized in the |0〉 state inside the circuit, those wires are also
considered part of the input of the unitary UC . They should be initialized to |0〉 here
as well.
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depth d that is not fixed a priori. Note that in a leveled scheme even the length
of pk depends on d.

To this end, we define the notion of a scheme with decomposable public
key, which is defined below. Intuitively, in such a scheme, the public key can be
generated by first generating a sequence of blocks, each of some size independent
of d. These blocks can then be combined into the actual pk of the scheme.
Crucially, the generation of the blocks can be done in parallel, and the complexity
of generating each block (given the security parameter and the random tape) is
independent of d. In other words, a decomposable public key can be generated
on the fly, involving small “chunks” of computation that are independent of d.
Formally, we recall Definition 2.5 and define decomposability as follows.

Definition 3.1 (Decomposable public key). A leveled (Q)FHE scheme has
a decomposable public key if there exists a polynomial K = K(λ, d) and a
polynomial-time deterministic function BlockGen(1λ, i, r, r′) (where r, r′ ∈ {0, 1}λ)
that generates classical strings (“blocks”) ci such that the following holds:

1. Correctness: there exists a QPT Assemble such that for all λ, d, r, and r′,
letting K = K(λ, d), it holds that

Assemble(c0, c1, c2, . . . , cK) = pk ,

where (pk , sk) = KeyGen(1λ, 1d; r), and ci = BlockGen(1λ, i, r, r′) for all i.
2. Simulatability: there exists a QPT simulator S such that for all d and r,

S(1λ, pk)
c
≈ (c0, c1, c2, . . . , cK),

where (pk , sk) = KeyGen(1λ, d, r), and the distribution on (c1, c2, . . . , cK) on
the right-hand side is generated by selecting a uniformly random r′, and then
for all i, setting ci = BlockGen(1λ, i, r, r′).

We emphasize that in Definition 3.1, the randomness strings r and r′ are
the same for every run of BlockGen. The reason for this choice is twofold. First,
with our final goal in mind of obfuscating the BlockGen functionality, we want
to avoid having to specify K independent randomness strings (as that would
considerably increase the size of the circuit to obfuscate). Second, most schemes
require some form of correlation to exist between the different blocks. Thinking
of r and r′ as short random seeds for a PRF, this correlation can be realized by
running the PRF on the same inputs (see, for example Section 3.1).

3.1 Instantiation from Bootstrapped Schemes

For bootstrapped schemes (see Definition 2.6), decomposability follows immedi-
ately by definition. In this case, we do not even need the extra randomness r′ and
can simply set BlockGen(1λ, i, r, r′) to be the process that evaluates PRFr(i−1)
and PRFr(i) to generate random tapes for SubKeyGen, uses this randomness to
generate (sk i−1, pk i−1) and (sk i, pk i), generates c∗i based on these values, and
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outputs (pk i, c
∗
i ). In addition, for i = 0, it simply computes PRFr(0), and uses

the resulting randomness to generate pk0.
Existing QFHE schemes are based on bootstrapping [Mah18,Bra18]. Without

affecting security, we can assume that their randomness is sampled using a PRF
as just described.

Lemma 3.2. Bootstrapping-based leveled QFHE schemes with keys generated
from a PRF have decomposable public keys.

Proof. Define K(λ, d) := d, and c0 := pk0. For i > 0, define the blocks ci, which
are generated by BlockGen(1λ, i, r, r′), as follows:

ci := (pk i, c
∗
i = Encpki(sk i−1)), where (pk i, sk i)← SubKeyGen(1λ;PRFr(i)),

(pk i−1, sk i−1)← SubKeyGen(1λ;PRFr(i− 1)).
(3)

Note that for public keys of this form, BlockGen does not make use of the addi-
tional randomness r′.

The assembly function Assemble(c0, c1, . . . , cd) is a straightforward concate-
nation of all the blocks: Assemble(c0, c1, . . . , cd) := (c0, c1, . . . , cd).

Simulatability as in Definition 3.1 is also easily satisfied: a simulator S, for
a public key pk and index i, reads out the pair (pk i, c

∗
i ). It can thereby exactly

produce the list (c1, . . . , cd).

3.2 Instantiation from Any Leveled (Q)FHE

We now observe that we can instantiate the a (Q)FHE with decomposable pub-
lic keys from any leveled scheme, even ones that are not bootstrapped. De-
composing the public key of a general QFHE scheme is done via garbled cir-
cuits [Yao86,App17], as we will briefly outline here. A block ci corresponds to
a single garbled gate of the circuit for KeyGen. That is, BlockGen(1λ, i, r, r′) re-
turns a garbling of the ith gate8 of KeyGen(1λ, d, r), using r′ as a PRF seed
to generate sufficient randomness for the garbling. A separate block (e.g., c0)
contains the required encoding/decoding information to use the garbled circuit.
To assemble the public key, a user concatenates all garbled gates, and evaluates
the garbled circuit to obtain the output pk . Conversely, by the privacy property
of garbled circuits [BHR12], a simulator given only the security parameter λ
and the output pk of the garbled circuit, can reproduce a garbled circuit that is
indistinguishable from the actual garbled circuit. It can then return the gates of
that simulated garbled circuit as the blocks ci.

Any result relying on the decomposability of the public key of a non-boot-
strapping based QFHE scheme of course also relies on any computational as-
sumptions required for the security of the garbled-circuit construction.

8 The total number of blocks, K(λ, d), will be the number of gates in KeyGen(1λ, 1d, r).
Since the number of gates is polynomial in λ, it suffices for the length of the PRF
seed r′ to be linear in λ.
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4 Impossibility with respect to Dependent Auxiliary
Information

In this section, we show impossibility of virtual-black-box quantum obfuscation
of classical point functions under dependent auxiliary information. It sets the
stage for our main result, Theorem 5.1, where we incorporate the auxiliary in-
formation into the circuit, constructing a circuit class which is unobfuscatable
even without the presence of any auxiliary information. Although the result in
the current section is perhaps less surprising, the proof contains the most im-
portant technical details of our work.

The impossibility result requires two cryptographic primitives, both of which
can be built from the hardness of LWE [Mah18,WZ17,GKW17]: (1) quantum
fully homomorphic encryption with classical client-side operations (see Section 2.3),
and (2) classical vbb obfuscation of compute-and-compare functions. Our result
therefore holds under the assumption that LWE is hard. The least favorable LWE
parameters are required for the obfuscation of compute-and-compare function-
alities, and are discussed in Section 4.1.

In Section 4.1, we describe the classical obfuscator for compute-and-compare
functions that we use. We will apply the construction from [WZ17,GKW17] to a
specific class of compute-and-compare functions with a specific type of auxiliary
information. In Section 4.2, we use this specific application to define a class of
circuits and auxiliary-information strings that is unobfuscatable in the quantum
vbb sense. The impossibility proof follows in Section 4.3.

4.1 Classical obfuscation of compute-and-compare functions

The works of [WZ17,GKW17] showed that under the assumption that LWE
(with polynomial dimension and exponential modulus in the security parameter
λ) is hard, it is possible to classically obfuscate compute-and-compare func-
tions [WZ17,GKW17]. We will write “LWE*” to denote their specific variant
of the LWE assumption. We note that LWE is known to be at least as hard
as worst-case lattice problems [Reg05,PRS17]. In particular, the aforementioned
parameter regime LWE* translates to the worst-case hardness of the Gap Short-
est Vector Problem (GapSVP) with sub-exponential approximation factor (in
the dimension of the lattice). There is currently no known super-polynomial
quantum speedup for GapSVP, and the best known quantum (and classical)
algorithms require sub-exponential running time.

The works of [WZ17,GKW17] achieve so-called distributional virtual-black-
box obfuscation of functions CCf,y, assuming that the target value y has suf-
ficient pseudo-entropy given a description of the function f . The obfuscation
is even secure in the presence of (dependent) auxiliary information, so long as
the pseudo-entropy of the target value remains high, even conditioned on this
auxiliary information.

In our construction, we provide a classically-obfuscated compute-and-compare
function as auxiliary information to a quantum obfuscation. We will require
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that the target value of the compute-and-compare function is sufficiently ran-
dom, even given the rest of the auxiliary information (including the quantum
obfuscation).

More specifically, for any IND-secure public-key encryption scheme (KeyGen,
Enc, Dec), fixed bit string α, and a classical obfuscation procedure O(·), define

a distribution ensemble {Dα,d
λ }λ∈N that samples

(pk , α̃, osk ,β)← Dα,d
λ as (pk , sk)← KeyGen(1λ, 1d),

α̃← Encpk (α),

β ←R {0, 1}λ ,
osk ,β ← O (CCDecsk ,β) , (4)

where CCDecsk ,β is a compute-and-compare function as in Definition 2.8. For each
α and λ, the target value β is chosen independently from all other information:
its pseudo-entropy is λ, even conditioned on pk , α̃ and Decsk . Therefore, there
exists an obfuscation procedure for this class of compute-and-compare programs
that has distributional indistinguishability in the following sense:

Lemma 4.1 (Application of [WZ17, Theorem 5.2]). Under the LWE*
assumption, there exists a classical obfuscation procedure OCC(·) and a (non-
uniform) simulator S such that for all α and d,

(pk , α̃, osk ,β)
c
≈ (pk , α̃,S(1λ, params)), (5)

where (pk , α̃, osk ,β)← Dα,d
λ using OCC(·) as the obfuscation procedure O(·), and

params is some information that is independent of sk and β (e.g., it may contain
the size of the circuit and/or λ).

In the rest of this work, OCC(·) will implicitly be the obfuscation procedure

used in the distributions Dα,d
λ .

We note that the proofs in [WZ17,GKW17] showed a classical reduction from
the hardness of distinguishing the aforementioned distributions to the hard-
ness of solving LWE. We note that proofs by (either Karp or Turing) classical
polynomial-time reduction from A to B implies that any solver for A can be
translated into a solver for B with comparable complexity, in particular if the
solver for A runs in quantum polynomial time then so will the resulting solver
for B.

As a consequence of Lemma 4.1, we show that it is hard to guess the value
of α, given only a ciphertext α̃ for α, and an obfuscation of the compute-and-
compare function. Intuitively, since the information α is completely independent
of the target value β, the obfuscation effectively hides the secret key sk that
would be necessary to learn α.

Lemma 4.2. Under the LWE* assumption, there exists a negligible function
negl (·) such that for any QPT algorithm A and any d,

Pr[A(pk , α̃, osk ,β) = α] ≤ negl (λ) . (6)
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Here, the probability is over α ←R {0, 1}λ, (pk , α̃, osk ,β) ← Dα,d
λ , and the exe-

cution of A.

Proof. The result follows almost directly from Lemma 4.1, except that we want
to bound the probability thatA outputs the multi-bit string α, whereas Lemma 4.1
only deals with algorithms with a single-bit output.

To bridge the gap, define an algorithm A′α that runs A on its input, and
compares the output of A to α: if they are equal, A′α outputs 1; otherwise, it
outputs 0.

For any fixed value of α, we have

Pr[A(pk , α̃, osk ,β) = α] = Pr[A′α(pk , α̃, osk ,β) = 1] (7)

(∗)
≈ Pr[A′α(pk , α̃,S(1λ, params)) = 1] (8)

= Pr[A(pk , α̃,S(1λ, params)) = α]. (9)

The approximation (*) follows from Lemma 4.1, and holds up to a difference
of negl (λ).

To complete the proof, note that S(1λ, params) depends neither on α nor on
sk . Thus, randomizing over α again, and invoking privacy of the encryption, we
get

Pr[A(pk , α̃, osk ,β) = α] ≈ Pr[A(pk , α̃,S(1λ, params)) = α] ≤ negl (|α|) = negl (λ) .
(10)

We have thus established that, even in the presence of an obfuscated compute-
and-compare function that depends on the secret key, encryptions remain secure
(in the one-way sense). For this security to hold, it is important that the target
value β is sufficiently independent of the plaintext α.

4.2 An unobfuscatable circuit class

In this subsection, we define the class of circuits and auxiliary-information strings
that we will prove unobfuscatable. Like in [BGI+01], we will exploit the idea
that access to an object (circuit or quantum state) that allows the evaluation of
a function is more powerful than mere black-box access to the functionality: in
particular, it allows to evaluate the function homomorphically. For this argument
to work, it is important that the function is not easily learnable through black-
box access. We will use point functions, as in [BGI+01]: with black-box access
only, it is hard to tell the difference between a point function and the all-zero
function Zλ, that accepts inputs of length λ, and always returns 0λ.

Consider the class Cpointλ,d ∪ Czeroλ,d of circuits plus auxiliary information, where

Cpointλ,d := {(Pα,β ,(pk , α̃, osk ,β)) | α ∈ {0, 1}λ, (pk , α̃, osk ,β) ∈ supp(Dα,d
λ )}, (11)

Czeroλ,d := {(Zλ,(pk , α̃, osk ,β)) | α ∈ {0, 1}λ, (pk , α̃, osk ,β) ∈ supp(Dα,d
λ )}. (12)
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The class Cpointλ,d contains all λ-bit point functions, together with an encryption
of the point input α, a public key that enables evaluation of circuits up to depth
d, and a function that checks whether a ciphertext decrypts to the target value
β. Czeroλ,d contains the all-zero function Zλ (which is itself a point function), but
still with auxiliary information for the possible values of α and β.

Suppose that some quantum obfuscation (OQ(·)),J ) exists. We define a QPT
algorithm A, which expects an obfuscation ρ = OQ(Pα,β) (or OQ(Zλ)), together
with the classical auxiliary information aux = (pk , α̃, osk ,β). On general inputs ρ
and aux = (key, ctxt, obf) of this form, let A do as follows:

1. Run QFHE.Evalkey(J ,Enckey(ρ) ⊗ |ctxt〉〈ctxt|) to homomorphically evaluate
the interpreter algorithm J . If ρ = OQ(Pα,β), key = pk , and ctxt = α̃, then
this step results in an encryption of β with high probability. If ρ = OQ(Zλ),
key = pk , ctxt = α̃, and d is at least the depth of J , then it results in an
encryption of 0λ. Note that we use classical and quantum ciphertexts for the
QFHE scheme interchangeably here: see Section 2.3 for a justification.

2. Run obf on the output of the previous step. If obf = osk ,β , this will indicate
whether the previous step resulted in a ciphertext for β or not.

The above algorithm A will almost certainly output 1 when given an element
from Cpointλ,d for a sufficiently high value of d, because of the functional equivalence
of the two obfuscations and the correctness of the homomorphic evaluation.
Similarly, when given an element from Czeroλ,d − C

point
λ,d , it will almost certainly

output 0. Formally, for all α, β ∈ {0, 1}λ − {0λ}, and d at least the depth of J ,

Pr [A(OQ(Pα,β), pk , α̃, osk ,β) = 1] ≥ 1− negl (λ) , (13)

Pr [A(OQ(Zλ), pk , α̃, osk ,β) = 1] ≤ negl (λ) . (14)

The vastly different output distribution of A when given an obfuscation of a
point function versus the zero function are due the fact that A has an actual
representation, ρ, of the function to feed into the interpreter J . In the proof in
the next subsection, we will see that a simulator, with only black-box access to
these functionality, will not be able to make that distinction.

4.3 Impossibility proof

We are now ready to state and prove the impossibility theorem for quantum
obfuscation of classical circuits with dependent auxiliary input. We reiterate that
the two assumptions (quantum FHE and compute-and-compare obfuscation) can
be realized under the LWE* assumption.

Define Cpointλ :=
⋃
d∈[2λ] C

point
λ,d , and similarly Czeroλ :=

⋃
d∈[2λ] Czeroλ,d .

Theorem 4.3 (Impossibility of quantum obfuscation w.r.t. auxiliary
input). Suppose that a classical-client quantum fully homomorphic encryption
scheme QFHE exists that satisfies Definition 2.4, and a classical obfuscation
procedure OCC(·) for compute-and-compare functionalities exists that satisfies
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Lemma 4.1. Then any (not necessarily efficient) quantum obfuscator (OQ(·),J )

for the class Cpointλ ∪ Czeroλ satisfying conditions 1 (polynomial expansion) and 2
(functional equivalence) from Definition 2.3 cannot be virtual black-box under
the presence of classical dependent auxiliary input, i.e., cannot satisfy condition
3 from Definition 2.3 where both A and S get access to a classical string aux
(which may depend on C).

It may seem that the class Cpointλ ∪ Czeroλ , consisting of point functions, is
classically obfuscatable using OCC(·) from [WZ17,GKW17]. That obfuscation
is secure if α (wich is the target value if we view Pα,β as the multi-bit output
compute-and-compare function CCid,α,β) is unpredictable given the auxiliary
information aux = (pk , α̃, osk ,β). On the surface, that seems to be the case: only
an encryption of α is available in the auxiliary information. However, the secret
key sk is present as part of the compute-and-compare function CCDecsk ,β . That
function is obfuscated, but the obfuscation is not secure in the presence of (an
obfuscation of) Pα,β . Thus, the obfuscation result from [WZ17,GKW17] almost

applies to the class Cpointλ ∪ Czeroλ , but not quite. Hence we are able to prove
impossibility of obfuscating it, which we do below.

Proof. The proof structure is similar to [BGI+01], and is by contradiction: as-

sume that a quantum obfuscation (OQ(·),J ) for the class Cpointλ ∪Czeroλ does exist
that satisfies all three conditions. We will show that the output distribution
of the algorithm A defined in Section 4.2 is approximately the same for every
element of the class, contradicting Equations (13) and (14).

By the assumption of the existence of a secure quantum obfuscation (OQ(·),J ),
there exists a simulator S such that

∣∣Pr[A(OQ(Pα,β), aux) = 1]− Pr[SPα,β (1λ, aux) = 1]
∣∣ ≤ negl (λ) , and (15)∣∣Pr[A(OQ(Zλ), aux) = 1]− Pr[SZλ(1λ, aux) = 1]
∣∣ ≤ negl (λ) . (16)

The probability is taken over α←R {0, 1}λ and aux = (pk , α̃, OCC(CCDecsk ,β))←
Dα,q
λ for q the depth of the interpreter circuit J . Note that S does not depend

on α, β, sk , or pk .
In the remainder of this proof we show that for any S (independent of α, β,

sk , pk), ∣∣Pr[SPα,β (1λ, aux) = 1]− Pr[SZλ(1λ, aux) = 1]
∣∣ ≤ negl (λ) , (17)

from which it can be concluded that

|Pr[A(OQ(Pα,β), aux) = 1]− Pr[A(OQ(Zλ), aux) = 1]| ≤ negl (λ) . (18)

Since Equations (13) and (14) imply that this difference must be at least 1 −
negl (λ), Equation (18) yields a contradiction.

To show that Equation (17) holds, i.e., to bound the difference in output
probabilities of S when given an oracle for Pα,β versus an oracle for Zλ, we
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employ the one-way to hiding theorem as it is stated in [AHU19, Theorem 3]. It
says that there exists a QPT algorithm B such that∣∣Pr[SPα,β (1λ, aux) = 1]− Pr[SZλ(1λ, aux) = 1]

∣∣ ≤ 2d′ ·
√

Pr[BZλ(1λ, aux) = α],

(19)

where d′ = poly (λ) is the query depth of S. However, by Lemma 4.2, the proba-
bility that B outputs α when given the auxiliary information aux = (pk , α̃, osk ,β)
is negligible in λ. Granting B access to the zero-oracle and the additional input
1λ does not increase this probability, since the value of λ can already be deduced
from aux.

We can thus conclude that the difference in Equation (19) is negligible, and
Equation (17) holds, as desired.

We end this section with a few remarks: we describe some variants and gener-
alizations of Theorem 4.3 which almost immediately follow from the presented
proof.

Remark 4.4. The proof for Theorem 4.3 also works if we replace OCC(CCDecsk ,β)

inside the distributions Dα,d
λ with OQ(CCDecsk ,β), the quantum obfuscation we

get from the assumption. This adaptation renders a quantum obfuscator for
point functions impossible with respect to dependent auxiliary quantum input:
a slightly weaker statement, but it does not require the existence of a classical
obfuscator for compute-and-compare programs. In particular, the required LWE
parameters are better, because we only need the assumption of quantum fully
homomorphic encryption.

Remark 4.5. Even a quantum obfuscator (OQ(·),J ) for Cpointλ ∪ Czeroλ with non-
negligible errors in the functional equivalence and/or the virtual-black-box prop-
erty would lead to a contradiction in the proof of Theorem 4.3. Concretely, let
εf denote the error for functional equivalence, and εs denote the error for se-
curity in the virtual-black-box sense (they are both negl (|C|) = negl (λ) in Def-
inition 2.3). The impossibility proof works for any values of εf , εs such that
εf + εs ≤ 1

2 −
1

poly(λ) . So in particular, even a quantum obfuscator with small

constant (instead of negligible) errors in both conditions cannot exist.

5 Impossibility without Auxiliary Information

In this section, we will show that quantum virtual-black-box obfuscation of clas-
sical circuits is impossible even when no auxiliary information is present. We will
rely heavily on the class constructed in Section 4, essentially showing how the
auxiliary information can be absorbed into the obfuscated circuit. As a result,
the unobfuscatable circuit class itself becomes perhaps less natural, but still con-
sists of classical polynomial-size circuits. Thus, our theorem implies impossibility
of quantum vbb obfuscation of the class of all efficient classical circuits.
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We would like to consider circuits of the following form:

Cα,β,aux(b, x) :=

{
aux = (pk , α̃, osk ,β) if b = 0

Pα,β(x) if b = 1,
(20)

where (pk , α̃, osk ,β) is generated from Dα,d
λ , as in Section 4. The input bit b is a

choice bit: if it is set to 1, the function Pα,β (or Zλ) is evaluated on the actual
input x, whereas if it is set to 0, the auxiliary information is retrieved.

The idea would then be to retrieve the auxiliary information, followed by
a homomorphic evaluation of the branch for b = 1. There is a problem with
this approach, however: since the auxiliary information aux contains the public
evaluation key pk , the circuit C grows with d, which affects the length of pk .
But as the circuit grows, a (non-circularly-secure) QFHE scheme may require a
larger pk to perform all evaluation steps.

To get around this issue, the unobfuscatable circuit will generate the public
key step-by-step, in a construction inspired by [CLTV15]. We will assume that
the public key of the leveled QFHE scheme is decomposable in the sense of
Definition 3.1.

Given a scheme with a decomposable public key, we redefine the unobfuscat-
able circuit class as follows. Instead of returning the entire public key at once,
the circuit allows the user to request individual blocks ci, up to some depth
d. An honest user can run the circuit K + 1 = K(d, λ) + 1 times to obtain
pk = Assemble(c0, c1, . . . , cK). The depth d will not be fixed a priori, although
it will be (exponentially) upper bounded: the circuit will only be able to handle
inputs i where |i| ≤ λ. Thus, only up to 2λ blocks ci can be retrieved.

The circuit class we consider in this section consists of circuits of the following
form:

Ĉα,β,d,r,r′,α̃,osk,β
(b, x) :=


(α̃, osk ,β) if b = 0,

BlockGen(1λ, x, r, r′) if b = 1 and x ≤ K(d, λ),

⊥ if b = 1 and x > K(d, λ),

Pα,β(x) if b = 2.

(21)

or

Ĉ ′α,β,d,r,r′,α̃,osk,β
(b, x) :=


(α̃, osk ,β) if b = 0,

BlockGen(1λ, x, r, r′) if b = 1 and x ≤ K(d, λ),

⊥ if b = 1 and x > K(d, λ),

Zλ(x) if b = 2.

(22)

The first input b is now a choice trit: depending on its value, a different branch
of the circuit is executed.

We alter the distributionDα,d
λ from Equation (4), so that it does not explicitly

generate the public key anymore. That information is now generated on-the-fly
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by setting b = 1. The public and secret key are deterministically computed
using r to generate the auxiliary information (α̃, osk ,β) for b = 0. Consider the

distribution ensemble {Dα,d,r
λ }λ∈N, where

(α̃, osk ,β)← Dα,d,r
λ as (pk , sk) = KeyGen(1λ, 1d, r),

α̃← Encpk (α),

β ←R {0, 1}λ

osk ,β ← CCDecsk ,β . (23)

Note that the value of d does not influence the size of α̃ or osk ,β (and thereby

the circuit size of Ĉ and Ĉ ′).
We can then define the following parametrized circuit classes:

Ĉpointλ,d := {Ĉα,β,d,r,r′,α̃,osk,β
| α ∈ {0, 1}λ, r, r′ ∈ {0, 1}λ, (α̃, osk ,β) ∈ supp(Dα,d,r

λ )},
(24)

Ĉzeroλ,d := {Ĉ ′α,β,d,r,r′,α̃,osk,β
| α ∈ {0, 1}λ, r, r′ ∈ {0, 1}λ, (α̃, osk ,β) ∈ supp(Dα,d,r

λ )}.
(25)

Define the circuit class Ĉpointλ ∪ Ĉzeroλ , where Ĉpointλ :=
⋃
d∈[2λ] Ĉ

point
λ,d and simi-

larly Ĉzeroλ :=
⋃
d∈[2λ] Ĉzeroλ,d . Note that in all circuits in this class, the “auxiliary

information” (α̃, osk ,β) is fixed. Hence, when the obfuscation of the compute-
and-compare function is requested by setting b = 0, the circuit always returns
the same obfuscation that depends on the same secret key sk .

Similarly to the setting with auxiliary input, there exists a QPT algorithm
A′ that has significantly different output distributions when given a circuit from
Ĉpointλ,d versus a circuit from Ĉzeroλ,d . Here, we define the algorithm A′ that is able
to distinguish only if it receives a circuit for d = q, where q is the depth of the
interpreter circuit. If d < q, then A′ will not be able to retrieve a long enough
evaluation key, and will always output zero. However, for our impossibility result,
a single value of d on which A′ succeeds in distinguishing is sufficient. Note that
we cannot define our circuit class to contain only circuits with d = q, since q
depends on the specific obfuscator/interpreter pair.

On an input state ρ, we define A′ as follows:

1. Run Jrec(ρ, |b = 0〉〈b = 0|⊗
∣∣0λ〉〈0λ∣∣), where Jrec is the input-recovering ver-

sion of the interpreter circuit (see Lemma 2.9). If ρ is an obfuscation of
a circuit in Ĉpoint ∪ Ĉzero, this will result in a state (negligibly close to)
ρ⊗ |α̃〉〈α̃| ⊗ |osk ,β〉〈osk ,β |. Measure the second and third registers to obtain
α̃ and osk ,β .

2. Let q be the depth of the interpreter J . Because the interpreter is efficient,
q = poly (λ). Sequentially run Jrec(ρ, |b = 1〉〈b = 1| ⊗ |i〉〈i|) for all 0 ≤ i ≤
K = K(q, λ) to obtain (c0, c1, . . . , cK), and compute the public evaluation
key pk = Assemble(c0, c1, . . . , cK), suitable for homomorphic evaluations of
up to depth q. Note that the key pk is only revealed in its entirety if the
given circuit has parameter d = q. If d < q, A′ will notice that ⊥ is returned
for some queries, and outputs 0 at this point.
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3. Run QFHE.Evalpk (J ,Encpk (ρ)⊗|Encpk (b = 2)〉〈Encpk (b = 2)|⊗|α̃〉〈α̃|). Sim-
ilarly to Section 4.2, this will result in a ciphertext for β (if ρ was an obfus-

cation of a circuit in Ĉpointλ ) or a ciphertext for 0λ (if ρ was an obfuscation of

a circuit in Ĉzeroλ ), provided that d = q.

4. Run osk ,β on the output of the previous step. Doing so will indicate whether
the previous step resulted in a ciphertext for β or not. If yes, output 1;
otherwise output 0.

Let (OQ(·),J ) be an obfuscator. The algorithm A′, when given a random

obfuscated circuit from Ĉpointλ,q , will almost certainly output 1, where q is the depth

of J . At the same time, an element from Ĉzeroλ,q −Ĉ
point
λ,q will almost certainly result

in the output 0. More formally, for all α, r ∈ {0, 1}λ and d = q,

Pr
[
A′(OQ(Ĉα,β,d,r,r′,α̃,osk,β

)) = 1
]
≥ 1− negl (λ) , (26)

Pr
[
A′(OQ(Ĉ ′α,β,d,r,r′,α̃,osk,β

)) = 1
]
≤ negl (λ) . (27)

The probability is taken over Dα,d,r
λ , r′, and the internal randomness of A′.

Compare these inequalities to Equations (13) and (14).

We are now ready to state our main theorem.

Theorem 5.1 (Impossibility of quantum obfuscation). Suppose that a
classical-client quantum fully homomorphic encryption scheme QFHE exists that
satisfies Definitions 3.1 and 2.4, and a classical obfuscation procedure OCC(·) for
compute-and-compare functionalities exists that satisfies Lemma 4.1. Then any
(not necessarily efficient) quantum obfuscator (OQ(·),J ) for the class Ĉpointλ ∪
Ĉzeroλ satisfying conditions 1 (polynomial expansion) and 2 (functional equiva-
lence) from Definition 2.3 cannot be virtual black-box, i.e., cannot satisfy condi-
tion 3 from Definition 2.3.

Corollary 5.2. If the LWE* assumption holds, the class of classical polynomial-
size circuits cannot be quantum virtual-black-box obfuscated in the sense of Def-
inition 2.3.

Proof (Proof of Theorem 5.1). We again prove the statement by contradiction,
assuming that there does exist an obfuscator (OQ(·),J ) that securely obfuscates

Ĉpointλ ∪ Ĉzeroλ . Let q be the depth of J , so that K(q, λ) is the number of blocks
ci of the evaluation key required by A′ to successfully distinguish between an
element of Ĉpointλ and of Ĉzeroλ .
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By the assumption that (OQ(·),J ) is secure, there must exist a simulator S0
such that for all α, r ∈ {0, 1}λ (and setting d = q),∣∣∣∣Pr[A′(OQ(Ĉα,β,q,r,r′,α̃,osk,β

)) = 1]− Pr[S
Ĉα,β,q,r,r′,α̃,osk,β
0 (1λ) = 1]

∣∣∣∣ ≤ negl (λ) ,

(28)∣∣∣∣Pr[A′(OQ(Ĉ ′α,β,q,r,r′,α̃,osk,β
)) = 1]− Pr[S

Ĉ′
α,β,q,r,r′,α̃,osk,β

0 (1λ) = 1]

∣∣∣∣ ≤ negl (λ) .

(29)

The probabilities are taken over (α̃, osk ,β)← Dα,d,r
λ and r′ ←R {0, 1}λ, and the

internal randomness of A′ and S0.
The output distribution of S0 can be exactly simulated by another simulator,

S1, that has access only to an oracle for Pα,β or Zλ, and gets the auxiliary
information pk , α̃, and osk ,β as input. S1 can simply run S0, simulating each
oracle query using its own oracle, auxiliary input, or a combination thereof. If
(part of) the query of S0 is for some block ci, S1 can use the decomposability of
pk to compute the individual blocks. We formally show the existence of such an
S1 in Corollary B.2.

We can thus conclude that for all α, r ∈ {0, 1}λ,∣∣∣Pr[A′(OQ(Ĉα,β,q,r,r′,α̃,osk,β
)) = 1]− Pr[SPα,β1 (1λ, α̃, osk ,β , pk) = 1]

∣∣∣ ≤ negl (λ) ,

(30)∣∣∣Pr[A′(OQ(Ĉ ′α,β,q,r,r′,α̃,osk,β
)) = 1]− Pr[SZλ1 (1λ, α̃, osk ,β , pk) = 1]

∣∣∣ ≤ negl (λ) .

(31)

Again, the probabilities are over Dα,d,r
λ and r′, A′, and S1.

However, by Equation (17) in the proof of Theorem 4.3, the output distribu-
tion of S1 can only differ negligibly between the two different oracles. Thus, we
have∣∣∣Pr[A′(OQ(Ĉα,β,q,r,r′,α̃,osk,β

)) = 1]− Pr[A′(OQ(Ĉ ′α,β,q,r,r′,α̃,osk,β
)) = 1]

∣∣∣ ≤ negl (λ) .

(32)

This contradicts our observation in Equations (26) and (27) that on input
Ĉα,β,q,r,r′,α̃,osk,β

,A′ will almost always output 1, whereas on input Ĉ ′α,β,q,r,r′,α̃,osk,β
,

it will almost always output 0.
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A Proof of Lemma 2.9

Proof. The input-recovering circuit Crec will consist of running C coherently,
copying out the output register, and reverting the coherent computation of C.
Suppose the circuit C contains k measurement gates, ` initializations of wires in
the |0〉 state, and outputs of length n. Define Crec as:

1. Run UC on input ρA1

in ⊗
∣∣0`〉〈0`∣∣A2⊗

∣∣0k〉〈0k∣∣M , where UC is the unitary that
coherently executes C, A = (A1, A2) is a register that contains the actual
input and the auxiliary input |0〉 states for C, and M is the register that
contains the auxiliary wires for the coherent measurements.

2. Copy the wires that are supposed to contain the output C(ρin) into a reg-
ister Y , initialized to |0n〉〈0n|, using CNOTs. The source of the CNOTs is a
register O, the subregister of A containing those output wires. Write O for
the registers in A that are not in O (these wires are normally discarded after
the execution of C).

3. Run U†C to recover the original input, and discard the registers A2 and M .

The behavior of Crec can be summarized as

Crec(ρin) = TrA2M

[
U†CCNOT

⊗n
O,Y

(
UC

(
ρA1

in ⊗
∣∣0`+k〉〈0`+k∣∣A2M

)
U†C ⊗ |0〉〈0|

Y
)

(
CNOT⊗nO,Y

)†
UC

]
. (33)

To see that Crec acts as promised, let ρin, x, and ε be s.t. ‖C(ρin)− |x〉〈x| ‖tr ≤ ε.
If ε is small, the CNOT in Step 2 does not create a lot of entanglement, since
the control wires are (close to) the computational-basis state |x〉〈x|. The output
is therefore (almost) perfectly copied out.

More formally, note that C(ρin) = TrOM

[
UC(ρin ⊗

∣∣0`+k〉〈0`+k∣∣)U†C]. By

Lemma A.1 in [ABC+19], the closeness of C(ρin) and |x〉〈x| implies that there

exists a density matrix χOM such that

1

2

∥∥∥UC(ρin ⊗
∣∣0`+k〉〈0`+k∣∣)U†C − |x〉〈x| ⊗ χOM

∥∥∥
tr
≤
√
ε. (34)

Next, we use the fact that a quantum map cannot increase the trace distance
between two states to derive two inequalities from Equation (34).
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For the first inequality, we append |x〉〈x| on both sides (into a separate Y
register):

1

2

∥∥∥UC(ρin ⊗
∣∣0`+k〉〈0`+k∣∣)U†C ⊗ |x〉〈x|Y − |x〉〈x| ⊗ χOM ⊗ |x〉〈x|Y

∥∥∥
tr
≤
√
ε.

(35)

For the second inequality, we instead append |0〉〈0| into the Y register, fol-
lowed by CNOTs from O onto Y . Note that on the second term inside the trace
norm, the effect is the same as before:

1

2

∥∥∥CNOT⊗nO,Y (UC(ρin ⊗
∣∣0`+k〉〈0`+k∣∣)U†C ⊗ |0〉〈0|Y ) (CNOT⊗nO,Y )†

− |x〉〈x| ⊗ χOM ⊗ |x〉〈x|Y
∥∥∥
tr
≤
√
ε. (36)

Thus, by the triangle inequality, the left-hand terms inside the trace norms in

Equations (35) and (36) are 2
√
ε-close. Applying the map TrA2M

[
U†C(·)UC

]
to

both terms, which again does not increase the trace difference, we arrive at the
desired statement:

1

2
‖ (ρin ⊗ |x〉〈x|) − Crec(ρin) ‖tr ≤ 2

√
ε. (37)

B Auxiliary Lemmas for Theorem 5.1

Lemma B.1. Let g : {0, 1}m → {0, 1}n for m,n ∈ N, and let c ∈ {0, 1}n. Let
f : {0, 1} × {0, 1}m → {0, 1}n be defined by

f(b, x) :=

{
c if b = 0

g(x) if b = 1.
(38)

Then for every QPT A, there exists a simulator S such that for all f, g of the
form described above, and all input states ρ:

Pr[Af (ρ) = 1] = Pr[Sg(ρ, c) = 1]. (39)

Proof. Recall that since A and S are quantum algorithms, they access their
oracles in superposition: that is, A has access to the map defined by |x〉 |z〉 7→
|x〉 |z ⊕ f(x)〉, and S has access to the map defined by |x〉 |z〉 7→ |x〉 |z ⊕ g(x)〉.
The simulator S runs A on input ρ, and simulates any oracle calls to f (on inputs
registers BX and output register Z) using two oracle calls to g. It only needs to
prepare an auxiliary register in the state |0n〉, and run the following circuit:

B • X • X

X
g g

|0n〉 •

Z

|c〉 •
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To see that this circuit exactly simulates a query to f on BXZ, consider an
arbitrary query state ∑

i

αi |bi, xi〉BX |zi〉Z |ϕi〉R , (40)

where R is some purifying register. The state on BXZR (plus the two auxiliary
registers containing |0n〉 and |c〉) after the above circuit is executed, is equal to∑

i

αi |bi, xi〉XB |0
n〉 |zi ⊕ b · g(xi)⊕ (1− b) · c〉Z |c〉 |ϕi〉R (41)

=
∑
i

αi |bi, xi〉XB |0
n〉 |zi ⊕ f(xi)〉Z |c〉 |ϕi〉R , (42)

which is exactly the state that would result from a direct query to f .

Corollary B.2. Let Ĉpointλ and q be as in Section 5. Then for any QPT S0, there
exists a QPT simulator S1 such that for all α, r ∈ {0, 1}λ,∣∣∣∣Pr[S

Ĉα,β,q,r,r′,α̃,osk,β
0 (1λ) = 1]− Pr[SPα,β1 (1λ, α̃, osk ,β , pk) = 1]

∣∣∣∣ ≤ negl (λ) .

(43)

A similar statement holds for circuits from Ĉzeroλ .

Proof. The statement is proven via an intermediate simulator S2. This simulator
is constructed by repeated application of Lemma B.1, so that for all α, r,∣∣∣∣Pr[S

Ĉα,β,q,r,r′,α̃,osk,β
0 (1λ) = 1]− Pr[SPα,β2 (1λ, α̃, osk ,β , c0, c1, c2, . . . , cK ,⊥) = 1]

∣∣∣∣
(44)

is at most negl (λ), where K = K(q, λ) as in Definition 3.1. On the right-hand
side, the probability is additionally over a random choice of r′ (resulting in the
sequence (c0, c1, c2, . . . , cK)).

Next, we apply the simulatability property of Definition 3.1. It states that
there exists a simulator S3 that, given a public key, can generate the distribution
over (c0, c1, c2, . . . , cK) itself. Define

SPα,β1 (1λ, α̃, osk ,β , pk) := SPα,β2 (1λ, α̃, osk ,β ,S3(pk),⊥), (45)

and the corollary follows.
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