
Non-Malleable Codes for
Bounded Parallel-Time Tampering

Dana Dachman-Soled1?, Ilan Komargodski2, and Rafael Pass3??

1 University of Maryland
danadach@ece.umd.edu

2 Hebrew University of Jerusalem and NTT Research
ilank@cs.huji.ac.il

3 Cornell Tech
rafael@cs.cornell.edu

Abstract. Non-malleable codes allow one to encode data in such a way
that once a codeword is being tampered with, the modified codeword
is either an encoding of the original message, or a completely unrelated
one. Since the introduction of this notion by Dziembowski, Pietrzak, and
Wichs (ICS ’10 and J. ACM ’18), there has been a large body of works
realizing such coding schemes secure against various classes of tampering
functions. It is well known that there is no efficient non-malleable code
secure against all polynomial size tampering functions. Nevertheless, no
code which is non-malleable for bounded polynomial size attackers is
known and obtaining such a code has been a major open problem.

We present the first construction of a non-malleable code secure against
all polynomial size tampering functions that have bounded parallel time.
This is an even larger class than all bounded polynomial size functions.
In particular, this class includes all functions in non-uniform NC (and
much more). Our construction is in the plain model (i.e., no trusted
setup) and relies on several cryptographic assumptions such as keyless
hash functions, time-lock puzzles, as well as other standard assumptions.
Additionally, our construction has several appealing properties: the com-
plexity of encoding is independent of the class of tampering functions and
we can obtain (sub-)exponentially small error.

? Supported in part by NSF grants #CNS-1933033, #CNS-1453045 (CAREER), and
by financial assistance awards 70NANB15H328 and 70NANB19H126 from the U.S.
Department of Commerce, National Institute of Standards and Technology.

?? Supported in part by NSF Award SATC-1704788, NSF Award RI-1703846, AFOSR
Award FA9550-18-1-0267, and a JP Morgan Faculty Award. This material is based
upon work supported by DARPA under Agreement No. HR00110C0086 and Of-
fice of the Director of National Intelligence (ODNI), Intelligence Advanced Research
Projects Activity (IARPA), via 2019-19-020700006. The views and conclusions con-
tained herein are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of DARPA, ODNI,
IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for governmental purposes notwithstanding any copyright
annotation therein.

1 Introduction

A non-malleable code is a fascinating concept that (informally) allows one to
encode messages such that it is impossible to modify the underlying message
of a given codeword without decoding it first. More precisely, the operation ap-
plied to the codeword is called the tampering function, and the guarantee is
that, with “high probability”, decoding a tampered codeword results in either
the original message or an unrelated one. We refer to the probability that the at-
tacker succeeds in coming up with a tampered codeword of a related messages as
its distinguishing advantage, and we typically require this advantage to be negli-
gible (i.e., smaller than the inverse of any polynomial). Note that in contrast to
standard error-correcting (or detecting) codes, non-malleable codes can achieve
security against tampering functions that modify every part of a codeword.

Non-malleable codes have proven to be a fundamental concept, giving rise
to many beautiful connections and results, both in complexity theory (e.g., two-
source extractors [57,58,23,26] and additive combinatorics [3,2]) as well as in
cryptography (e.g., non-malleable encryption and commitments [32,31,47]).

In the paper that introduced non-malleable codes, Dziembowski, Pietrzak,
and Wichs [37,38], observed that it is impossible to construct a non-malleable
code secure against arbitrary tampering functions, since a tampering function
which first decodes the codeword and then re-encodes a related message breaks
security. By the same principle, it is impossible to construct a code with polynom-
ial-time decoding which is secure against all polynomial-time tampering func-
tions.4 Therefore, the class of tampering functions has to be limited in some
way—either in terms of computational power or in the way the functions can
access the codeword. One natural limitation is by restricting the available com-
putational complexity resources (e.g., running time, space, etc).

Already in the original work of Dziembowski et al. [38] (see also [27] for a
followup), it was shown that (with high probability) a random function is a non-
malleable code secure against all circuits of size (say) 2n/2, where n is the size
of a codeword. However, the code is clearly inefficient. Faust et al. [42] gave an
efficient version of that result, but it is still not an explicit construction: For any
polynomial bound S, there is an efficiently samplable family of codes such that
(with high probability) a random member of the family is a non-malleable code
secure against all functions computable by a circuit of size S. Stated differently,
the result can be seen as an explicit construction (i.e., a single code) assuming an
untamperable common reference string (CRS) which is longer than the running
time of the tampering function. In the random oracle model (which can be
thought of as an exponential size common random string), Faust et al. [41]
constructed non-malleable codes secure against space-bounded tampering. Ball
et al. [7] constructed a non-malleable code secure against bounded depth circuits

4 Here is the attack: the tampering function can decode the codeword and if it contains
some pre-defined message (say all 0s), then it replaces it with garbage (which might
not even correspond to a valid codeword), and otherwise it does not change the
input.

with constant fan-in (which includes NC0). Several works were able to get non-
malleable codes secure against AC0 tampering functions [25,8,5,11] (actually
even circuits of depth O(log n/ log log n)).

Arguably, the holy grail in this line of works is to construct an explicit non-
malleable code which is secure against all tampering functions from the class of
bounded polynomial-size circuits. Specifically, for a size bound S, we would like
to get an efficient code which is non-malleable for all tampering functions that
can be described by an arbitrary circuit of size S. Ideally, only decoding should
require running-time greater than S and encoding should run in some a-priori
fixed polynomial-time, independent of S.

Does there exist an explicit construction (in the plain model) of an efficient
non-malleable code which is secure against all bounded polynomial-size

attackers?

Ball et al. [8] made an important step towards this goal by using computa-
tional assumptions. Concretely, using public-key encryption and non-interactive
zero-knowledge (NIZK), they gave a generic way to construct non-malleable
codes secure against tampering classes F using sufficiently strong average-case
hardness for F . This construction, however, still requires a CRS (for the pub-
lic key of the encryption scheme and the CRS of the NIZK) albeit it is short
(polynomial in the the security parameter and independent of the class F).

In a recent follow-up work, Ball et al. [6] managed to get rid of the CRS, but
at the cost of (a) using non-standard assumptions, and (b) limiting the class of
attacks and the level of security. In more detail, they showed a construction of
an efficient non-malleable codes secure against all (uniform) tampering functions
computable in an a-priori fixed polynomial-time. But:

– Their construction relies (amongst other assumptions) on sub-exponentially
sound P-certificates5 which is a very strong and non-standard assumption.
In particular, the only known instantiation requires assuming soundness of
a non-trivial argument system (Micali’s CS proofs [67]), which is true in the
Random Oracle model.

– Their scheme is non-malleable only with respect to uniform polynomial-time
tampering as opposed to the standard model of polynomial-size tamper-
ing. In other words, the tampering attacker is restricted to being a uniform
polynomial-time algorithm, in contrast to the standard model of non-uniform
polynomial-time attackers.

– Their scheme achieves only a-priori bounded inverse polynomial-
distinguishing advantage, as opposed to achieving “full” security (i.e., neg-
ligble distinguishing advantage).

– Finally, both their encoding procedure, as well as the decoding procedure,
run longer than the allowed tampering functions (i.e., the adversary can

5 These are “succinct” one-message arguments for languages in P, with proof length
which is a fixed polynomial, independent of the time it takes to decide the lan-
guage [28].

neither encode nor decode). In contrast, as mentionned, in principle encoding
could be “efficient” in the sense that it is independent of the size/running-
time of the tampering attacker.

To summarize, despite several beautiful steps towards resolving the above
question, the answer is still largely unknown. Known partial solutions either
require a CRS or strong and non-standard cryptographic assumptions that are
only known to be instantiated in the Random Oracle model (and even then only
achieve a weaker form of non-malleability).

1.1 Our Results

We give the first full affirmative answer to the aforementioned question. Specif-
ically, we construct an efficient non-malleable code that is (computationally)
secure against tampering functions computable by any bounded polynomial-size
circuit. Our construction is in the plain model and relies on several generic
and well-studied cryptographic building blocks: a time-lock puzzle [77], a non-
interactive non-malleable commitment [52,63,20,49], and a non-interactive SPS
(super-polynomial-time simulatable) zero-knowledge protocol [14,20] (all in the
plain model). While we cannot use the aforementioned primitives in their most
general form, we identify certain additional properties from them that will be
needed in our construction; additionally, we note that particular known con-
structions of them satisfy the additional desired properties; see below and in
Section 2 for more details.

Our construction actually captures an even larger class of tampering func-
tions. Specifically, we give a non-malleable code secure against all tampering
functions that can be computed by arbitrary (unbounded) polynomial-size cir-
cuit of bounded polynomial-depth. We emphasize that while the circuit depth of
the tampering function is bounded a priori by some fixed polynomial in the se-
curity parameter, the size of the circuit is unbounded and can be any polynomial
in the security parameter.

Theorem 1 (Informal Meta Theorem). Assume the existence of a “special-
purpose” time-lock puzzle, one-message non-malleable commitment, and one-
message SPS zero-knowledge protocol. For any T ∈ poly(λ), there exists an ex-
plicit code where encoding takes time poly(λ), decoding takes time poly(T , λ), and
it is non-malleable against all tampering functions computable by a non-uniform
arbitrary polynomial-size (in λ) circuit of depth T .

Our result is the first to handle all bounded polynomial-size tampering func-
tions (and in fact much more). In particular, as a special case, we capture all
tampering functions in non-uniform NC (while previously there was no con-
struction even for NC1). We emphasize that our scheme is efficiently encod-
able, namely, encoding time depends only on the security parameter and not on
the (depth) complexity of the decoder. Furthermore, our construction readily
extends to withstand (sub-)exponential size tampering functions (of depth T)
without affecting the complexity of neither encoding nor decoding. Lastly, we

note that the distinguishing advantage of any tampering function in our scheme
can be made sub-exponentially small in λ at essentially no cost (since in any case
we need to rely on sub-exponential hardness of the underlying building blocks).

In comparison, as mentioned, prior to this work, even dealing with just
bounded polynomial-size tampering was not known. The only approach towards
polynomial-size tampering [6] captured only uniform polynomial-time tamper-
ing, but as mentioned above, even for this restricted class of tampering, their re-
sult has additional drawbacks: (1) it relies on a strong non-standard assumption
(P-certificates) that we only know how to satisfy in the random oracle model,
and (2) it only gives inverse-polynomial distinguishing advantage (as opposed to
negligible distinguishing advantage).

We instantiate the time-lock puzzle using the construction of Rivest et al. [77]
and we show how to further use results of Bitansky and Lin [20] and Lin et al. [63]
to instantiate the required non-malleable commitment and zero-knowledge pro-
tocol. Thus, assuming the repeated squaring assumption [77] (i.e., there is no
way to significantly speed-up repeated squarings in a hidden-order group), a key-
less multi-collision resistant hash function [19] (i.e., a single function for which
any PPT attacker with `(λ) bits of non-uniform advice cannot find more than
`(λ)c collisions for a constant c ∈ N),6 as well as other standard assumptions,
we obtain the following theorem.

Theorem 2 (Informal). Assume a keyless multi-collision resistant hash func-
tion, the repeated squaring assumption, an injective one-way function, and non-
interactive witness-indistinguishable proofs,7 all being sub-exponentially secure.
Then, for any T ∈ poly(λ), there exists an explicit code where encoding takes
time poly(λ), decoding takes time poly(T , λ), and it is non-malleable against all
tampering functions computable by a non-uniform arbitrary polynomial-size (in
λ) circuit of depth T .

We refer to Section 1.2 for more details about the above assumptions.

Non-malleable time-lock puzzle. Our non-malleable code construction is
secure for all bounded polynomial-depth tampering functions and additionally
it is efficiently encodable, meaning that encoding time is fixed as a function
of the security parameter, but is otherwise independent of the time it takes to
decode. We observe that the combination of these two properties actually implies
a time-lock puzzle which is additionally non-malleable.8 In other words, under

6 While keyless multi-collision resistance is a relatively new assumption, it is a natu-
ral and simple security property for keyless cryptographic hash functions, which in
particular is satisfies by a random function.

7 Non-interactive witness-indistinguishable proofs are known to exist based on various
assumptions: trapdoor permutations and a particular derandomization-type assump-
tion [13], cryptographic bilinear maps [48], or indistinguishability obfuscation and
one-way permutations [21].

8 Recall that time-lock puzzles are a cryptographic mechanism for sending messages
“to the future”, by allowing a sender to quickly generate a puzzle with an underlying
message that remains hidden until a receiver spends a moderately large amount

the same assumptions as in Theorems 1 and 2, we get a non-malleable time-lock
puzzle. We emphasize that the non-malleable time-lock puzzle that we obtain
here is in the plain model, i.e., does not require any trusted setup.

Related followup or concurrent work. We mention the following related fol-
lowup or concurrent work [50,40,15,16]. Katz et al. [50] construct non-malleable
non-interactive timed-commitments relying in the security proof on the algebraic
group model [44] and on trusted setup. Ephraim et al. [40] focus on efficiency
and applications; specifically, they give a more efficient construction than the one
given in this work (which is proven secure in the auxiliary-input random oracle
model) and further show how to use it to obtain desirable cryptographic proto-
cols such as fair multiparty coin flipping. Lastly, Baum et al. [15,16] construct
UC-secure time-lock puzzles while relying on a programmable random oracle,
which they show to be necessary. Most recently, Ball et al. [10] (see [4, Theo-
rem 32]) showed that the derandomization assumption that there is a language
that can be computed in exponential deterministic time and requires exponen-
tial size nondeterministic circuits implies explicit codes for bounded polynomial
size circuits (without any setup assumptions) with inverse polynomial security.
The construction of [10] requires an encoding procedure that runs in time larger
than the a priori polynomial upper bound on the size of the tampering circuit.

1.2 Related Work

Since the work of Dziembowski, Pietrzak, and Wichs [37,38] which introduced
non-malleable codes, there has been a quite a significant amount of works on this
subject in various different directions (for example, [1,53,3,2,23,34,22,25,59,60]
to mention only a few in addition to the ones we mentioned earlier). Notably,
various different classes of tampering functions were considered. The original
work of [37] presented a construction of non-malleable codes against bit-wise
tampering functions. Also, Liu and Lysyanskaya [65] were the first to consider
the class of split state tampering functions, where left and right halves of a
codeword may be tampered arbitrarily, but independently. There has been a
very long line of works on getting optimal constructions against such tampering
functions (see the references above).

Next, we give more information about the building blocks used in our con-
structions and mention relevant related work.

Time-lock puzzles. These are puzzles that can be solved by “brute-force”
in time T , but cannot be solved significantly faster even using parallel proces-
sors. This concept was proposed by Rivest, Shamir, and Wagner [77] (follow-
ing May’s work [66] on timed-release cryptography), and they have been used
quite extensively studied since. The most popular instantiation relies on the re-
peated squaring assumption that postulates that T repeated squarings mod N ,

of time solving it. Non-malleability guarantees that not only the puzzle hides the
underlying message, but actually it is hard to “maul” it into a puzzle with a different
“related” message.

where N = pq is a product of two secret primes, require “roughly” T parallel
time/depth. Bitansky et al. [18] gave a construction of a time-lock puzzle from
(strong) assumptions related to program obfuscation.

Our construction requires a “weak” notion of (sub-exponential) security that
guarantees that the puzzle cannot be solved by sub-exponential size attackers
that have depth T

ε
. Therefore, using the instantiation that relies on repeated

squarings, we only need to assume that there are no huge improvements in the
parallel complexity of repeated squaring algorithms even for very large attackers.
It is worth mentioning that there are known algorithms for factoring that run in

sub-exponential time. The best known algorithm has running time roughly 2n
1/3

,
where n is the input size (see [35,78]). In contrast, our assumption stipulates
that there is no algorithm with running time 2n

ε

for any ε > 0 (for concreteness,
think about ε = 0.001). This is similar to the assumption being made in any
construction that relies on sub-exponential factoring or discrete log.

Non-malleable commitments. Non-malleable commitments, introduced by
Dolev, Dwork and Naor [36], guarantee hiding (the committed value is kept secret
from the receiver), binding (“opening” can yield only a single value determined
in the commit phase), and non-malleability (guaranteeing that it is hard to
“maul” a commitment to a given value into a commitment to a related value).
Non-malleable commitments are extremely well studied with huge body of works
trying to pin down the exact round complexity and minimal assumptions needed
to obtain them [12,74,73,64,71,61,75,79,45,62,46,47,29,30,51,63,52,49].

We need a non-interactive (i.e., one-message) non-malleable commitment, of
which relatively few constructions are known. Pandey et al. [71] formulated a con-
crete property of a random oracle and showed that it suffices for non-interactive
non-malleable commitments. This is a non-standard and non-falsifiable (Naor [68])
assumption. Lin et al. [63] showed a construction that satisfies non-malleability
against uniform attackers assuming a keyless collision resistant hash function,
time-lock puzzles, non-interactive commitments, and NIWI proofs, all with sub-
exponential hardness. Bitansky and Lin [20] were able to get non-malleability
against all attackers (i.e., even non-uniform ones) by either replacing the key-
less collision resistant hash function with a keyless multi-collision resistant hash
function,9 or using a new assumption regarding sub-exponentially secure one-way
functions admitting some strong form of hardness amplification. Most recently,
Kalai and Khurana [49] gave a construction of a non-interactive non-malleable
commitment from sub-exponential hardness of factoring or discrete log, and
sub-exponential quantum hardness of Learning With Errors (LWE) or Learning
Parity with Noise (LPN).

We will use the construction of Bitansky and Lin [20] and Lin et al. [63] both
of which rely on time-lock puzzles. Various properties of their non-malleable
commitments will be crucial for our construction.

9 Actually, Bitansky and Lin [20] formulate an assumption about incompressible func-
tions which is implied by keyless multi-collision resistant hash functions.

One-message SPS zero-knowledge. This is a one-message proof system for
every language in NP in the plain model and without any setup assumptions that
satisfies a relaxed notion of zero-knowledge referred to as super-polynomial-time
simulation (SPS) zero-knowledge [72]. This concept was introduced by Barak
and Pass [14] who also gave a construction assuming a keyless collision resis-
tance hash function,10 non-interactive commitments, and NIWI proofs, all with
sub-exponential hardness. Their construction however satisfies soundness only
against uniform attackers. Bitansky and Lin [20] showed how to overcome this
limitation using keyless multi-collision resistant hash functions,11 at the cost of
obtaining a weaker soundness (allowing any attacker to output some bounded
number of convincing proofs for false statements).

Non-malleable codes vs. commitments. (Non-interactive) non-malleable
commitments and codes seem very similar. The only difference is that in the
latter decoding should be efficient, while in the former it should be hard. There
has been some evidence that the objects are not only syntactically related. For
instance, non-malleable codes were used to construct non-malleable commit-
ments [47,22]. In the reverse direction, some works used ideas from the (vast) lit-
erature on non-malleable commitments to get new non-malleable codes [24,70,6].
Our work continues the latter line of works and shows yet again that the notions
are intimately related.

Lower bounds for non-malleability. We mentioned that there cannot be a
non-malleable code secure against a class of tampering functions that includes
the decoding procedures. In a very recent work, Ball et al. [9] gave various new
lower bounds. The most related lower bound to this work is the one regarding
(in)existence of non-malleable codes for NC1 (⊆ NC) in the standard model (a
class that our construction captures). Their result introduces a notion of black-
box reductions tailored for the setting of non-malleable codes and rules out such
reductions for certain classes of tampering functions F . Importantly, their impos-
sibility results hold for constructions that rely only on the minimal assumption
that there exists a distributional problem that is hard for the tampering class
F , but easy for P. Our result bypasses the impossibility since we—in addition
to an assumption of the above type (i.e. time-lock puzzles)—rely on standard
cryptographic assumptions such as keyless multi-collision resistant hash func-
tions, injective one-way functions, and non-interactive witness-indistinguishable
proofs.

The magic of the repeated squaring assumption. In the past several years
the repeated squaring assumption has played an important role in many works.
In addition to the work about non-malleable commitments [63] that we have
already mentioned and the current work, this assumption was also used in several

10 Actually, Barak and Pass [14] formulate an assumption regarding the existence of a
language in P which is hard to sample in slightly super-polynomial-time but easy to
sample in a slightly larger super-polynomial-time. The existence of a keyless collision
resistance hash function with sub-exponential hardness implies such a language.

11 See Footnote 9.

constructions of verifiable delay functions [76,80,39]. These functions are, roughly
speaking, a publicly verifiable version of time-lock puzzles. The reason why this
assumption has been so successful is that it brings a new dimension of hardness
to the table, i.e., parallel-time, which is different from the type of hardness that
standard cryptographic assumptions give.

(Multi-)collisions resistance. Collision resistant hash functions are (a family
of) compressing functions where no efficient attacker can find a colliding pair in
a random function from the family. The existence of such a family is a standard
cryptographic assumption which is implied by many of the most classical as-
sumptions such as factoring, discrete log, and more. A keyless collision resistant
hash function is a single function where the above is hard for uniform attack-
ers. Such functions exist in the random oracle model and may be heuristically
instantiated using common constructions of cryptographic hash functions, such
as SHA-3, where collisions are simply not known.

Multi-collision resistance [55,17,19,54] is a relaxation of collision resistance
where the goal of the attacker is to find a collection of many inputs (rather than
just two) to a random function in the family that collide. The keyless version,
introduced by [19], is again a single function but now the security guarantee
can be formulated so that it holds for all efficient attackers, even non-uniform
ones. Concretely, the security guarantee is that while an attacker of size s can
find about s inputs that collide, it cannot find many more, say s5 (i.e., multi-
collisions cannot be compressed). Again, such functions exist in the random
oracle model and may be heuristically instantiated using common constructions
of cryptographic hash functions, such as SHA-3.

2 Technical Overview

At a very high level, as in several previous related works (e.g., [8,6]), we follow
the Naor-Yung [69] paradigm that achieves CCA security of encryption by con-
catenating two instances of a CPA secure public key encryption scheme, followed
by a (non-interactive) zero-knowledge proof of the equality of encrypted values.
The novelty in this work stems from the way we instantiate and prove soundness
of this approach in the context of non-malleable codes.

Concretely, the three main components in our construction are: a time-lock
puzzle, a non-malleable commitment, and a one-message SPS zero-knowledge
proof of consistency. As we will see later, these building blocks need to be instan-
tiated in a very careful way to guarantee security. The construction NMCode =
(NMCode.E,NMCode.D) for a message space {0, 1}λ and depth bound T is in-
formally described in Algorithm 1.

Let us provide some intuition and state some simple observations. Recall that
a time-lock puzzle can be solved by “brute-force” in depth T , but cannot be
solved in depth � T . However, time-lock puzzles may be malleable (in fact, the
construction based on repeated squaring [77] is easily malleable). Non-malleable
commitments are, by definition, non-malleable but as opposed to time-lock puz-
zles, cannot be “brute-force” opened in polynomial time. Intuitively, adding the

NMCode.E(m):

1. Let Z be a time-lock puzzle with hard-
ness T and underlying message m.

2. Let c be a non-malleable commitment
to m.

3. Let π be a zero-knowledge proof of
consistency between Z and c.

4. Output Ẑ := (Z, c, π).

NMCode.D(Z, c, π):

1. Verify the proof π.

2. If verifies, solve the puzzle Z and out-
put the underlying message. Other-
wise, output 0.

Algorithm 1: Our non-malleable code (Informal).

zero-knowledge proof of consistency in the above construction ties the hands
of the attacker and achieves the desired properties of each of the primitives.
The scheme inherits non-malleability from the non-malleable commitment while
preserving the ability of solving the time-lock puzzle in polynomial time, which
allows extraction of the underlying message and thereby decoding in polynomial
time.

For efficiency, time-lock puzzles have a built-in trapdoor that allows one
to generate puzzles very fast (while solving them requires many sequential re-
sources). Thus, the running time of step 3 (generation of the zero-knowledge
proof) takes fixed polynomial time (in the security parameter), independent of
the depth bound T . This is why NMCode.E has a fixed running time, polyno-
mial in the security parameter, independent of T . Negligible soundness of our
construction, at a high level, is inherited from the security of the underlying
primitives. Lastly, as we will explain shortly, we use the non-interactive non-
malleable commitments of Lin et al. [63] and Bitansky and Lin [20] both of
which are based on time-lock puzzles (and keyless collision resistant hash func-
tions or keyless multi-collision resistant hash functions, respectively) and so this
will work nicely with our usage of the time-lock puzzle in our construction.

While the intuition described above is rather solid, proving that the above
construction satisfies non-malleability turns out to be challenging. We explain
the high-level approach next.

2.1 Overview of the Proof

We will first explain the high-level approach when considering only uniform
tampering functions and later explain how to handle non-uniform ones.

Since we only handle uniform tampering functions (for now), it will suffice
to rely (in addition to time-lock puzzles) on a non-malleable commitment for
uniform tampering functions and a one-message SPS zero-knowledge proof which
satisfies uniform soundness. For the commitment scheme we will use the one of
Lin, Pass, and Soni [63] and for the zero-knowledge we will use the one of Barak
and Pass [14]. We remark again that while the scheme of Lin et al. [63] is also
based on a time-lock puzzle, it will be convenient to use it not only in terms of

assumptions, but to actually use specific properties of the scheme that will help
us carry out the proof.

The proof is, naturally, by a hybrid argument where we start with the stan-
dard non-malleability game with a message m0 and in the last hybrid we will play
the non-malleability game with a message m1. Recall that the non-malleability
game (a.k.a. Man-In-Middle game) consists of two stages. In the first stage, the
adversary gets a codeword and it tries to maul it into a code with a related mes-
sage. Then, roughly, the distribution of the underlying message in that tampered
codeword should be simulatable without knowing the message itself.

In a high level, here are the sequence of hybrids that we consider. We describe
the changes incrementally, namely, each hybrid starts with the scheme from the
previous hybrid and makes a modification.

– Hybrid 0: The original scheme.
– Hybrid 1: Instead of using the zero-knowledge prover, we use the simulator.
– Hybrid 2: Instead of committing to m, we commit to 0.
– Hybrid 3: Instead of decoding by solving the time-lock puzzle, we decode by

extracting from the commitment.
– Hybrid 4: Instead of using m as the underlying message in the time-lock

puzzle, use 0.

Showing that hybrids 0, 1, and 2 are indistinguishable is simple. Hybrids 0
and 1 are indistinguishable due to the zero-knowledge property, and hybrids 1
and 2 are indistinguishable due to the hiding of the commitment scheme. The
most challenging part is showing that hybrids 2 and 3 and hybrids 3 and 4 are
indistinguishable.

Hybrids 2 and 3. The modification in this transition is from decoding via
brute-force opening the time-lock puzzle, to decoding via extraction from the
non-malleable commitment. To prove indistinguishability, we show that the dis-
tribution of the underlying value in the right commitment does not change
throughout the hybrids when considering both methods of decoding.

A careful inspection of the schemes in each hybrid reveals that in order for
the proof to go through, we need to satisfy two conditions simultaneously:

1. The extractor of the commitment scheme (whose size is SExt) cannot break
zero-knowledge (which holds for all attackers of size at most SZK). That is,

SExt � SZK.

2. The simulator of the zero-knowledge scheme (whose size is SSim) cannot
break non-malleability of the commitment (which holds for all attackers of
size at most SNMCom). That is,

SSim � SNMCom.

It also holds that SNMCom � SExt since the commitment extractor can definitely
break non-malleability (by extracting and re-committing to a related value).

Therefore, the only way to satisfy the above two inequalities is if SSim � SZK,
namely, a one-message zero-knowledge scheme where the simulator runs faster
than the distinguisher!12 Unfortunately, no such scheme is known as in all known
schemes the simulator needs to “break” the underlying cryptographic primitives
and so it has to have more resources than the distinguishers.

Our idea to make this go through is to introduce another axis of hardness
which will allow us to satisfy both “inequalities” simultaneously—the axes of
total size and depth. Namely, we think of algorithms as parallelizable machines
and measure their complexity by counting their total size and parallel time (size
and time/depth, in short). We will set the complexities of the above procedures as
follows, where λ denotes the security parameter and where 0 < c1 < c2 < c3 < 1:

– SExt (extraction from the non-malleable commitment): in quasi-polynomial
size and depth.

– SZK (zero-knowledge security): for all 2λ
c1

size (and depth) attackers.
– SSim (ZK simulator complexity): in 2λ

c2
size but fixed polynomial depth.

– SNMCom (non-malleability): for all 2λ
c3

size attackers with arbitrary polyno-
mial depth.

With this choice of parameters, it is evident that the commitment extrac-
tor cannot break zero-knowledge and also the zero-knowledge simulator cannot
break non-malleability. It is also not too hard to instantiate the primitives with
the above properties. The zero-knowledge scheme of Barak and Pass [14] readily
satisfies the above properties if it is sub-exponentially hard. To get the required
non-malleable commitment, we need to slightly adjust the scheme of Lin et
al. [63] (as they did not consider such tampering functions), but the changes are
relatively minor.

Hybrids 3 and 4. In this hybrid, we change the time-lock puzzle’s underlying
value and we want to use its hiding property. While seemingly being a relatively
simple hybrid, it turns out that some complications arise. Specifically, to reduce
to the underlying security of the time-lock puzzle, we need to come up with
a bounded time attacker while there are two procedures that we need to run
which seem to be of arbitrary depth. Specifically, in the reduction we need to
simulate the whole experiment and use the distinguisher to break the security
of the time-lock puzzle. The two procedures that seem to require arbitrary large
depth are:

– The distinguisher itself, denoted D from now on.
– The extraction procedure of the non-malleable commitment (which we should

execute as part of decoding).

We have no control over the depth (or size) of the distinguisher D, except
that it is of arbitrary polynomial size and depth. However, we do know that its

12 This kind of zero-knowledge simulation is known as strong super-polynomial simu-
lation. Recently, Khurana and Sahai [52] managed to obtain it in two rounds, but
we need a non-interactive scheme.

input, the message underlying the tampered code, is of bounded length. So, we
modify the distinguisher and write it as a truth table which has hardcoded all
of D’s outputs on every possible input. Call this distinguisher D̃. Observe that
D̃ (1) has the same input-output functionality as that of D (and so it serves as
a good distinguisher), and (2) while D̃’s size is now exponential in the security
parameter, its depth is some fixed polynomial in the security parameter!

For the extraction procedure, we intuitively make a similar modification. We
rely on the fact that there is another brute-force extractor that requires expo-
nential size but only fixed polynomial time. Note that for this to go through, the
size of the extraction procedure has to smaller than the hardness of the time-
lock puzzle (and this can be achieved by making the time-lock puzzle sufficiently
long and using sub-exponential security). So, we switch to this alternate extrac-
tor. Now, we can simulate the whole experiment in fixed polynomial depth and
reduce to the security game of the underlying time-lock puzzle.

The non-uniform case. Extending to handle non-uniform tampering functions
is challenging in the fully non-interactive setting and in the plain model. While
it is relatively straight-forward to replace the non-malleable commitment scheme
of Lin et al. [63] (which is uniformly non-malleable) with the one of Bitansky
and Lin [20], the challenge stems from finding an appropriate non-uniform ana-
logue for the uniformly sound one-message zero-knowledge scheme of Barak and
Pass [14]. Indeed, in the plain model and allowing only one message there is
no non-uniformly sound zero-knowledge scheme (as accepting proofs for false
statements just exist).

The closest candidate is the one of Bitansky and Lin [20] who constructed
a non-uniformly weakly sound one-message zero-knowledge scheme. This notion
captures all non-uniform attackers but the soundness guarantee is weak: every
attacker can output some number of accepting proofs for false statements but
not too many of those. Unfortunately, if we use this scheme directly in our con-
struction instead of the current zero-knowledge scheme, the above proof outline
fails. Specifically, when we switch to alternate decoding (which extracts from
the commitment rather than breaks the time-lock puzzle), if the adversary uses
such a maliciously crafted proof (which verifies), it can easily distinguish the
two hybrids (as their outputs will be different). Another thing that makes the
situation even harder is that the bad set of proofs is not global but actually
attacker-dependent so we cannot just “black-list” some set of proofs in the de-
coding procedure.

To this end, we observe that in the security reduction, the attacker is fixed
and so the set of “bad” proofs is non-uniformly known. Therefore, we can modify
the alternate decoding procedure to check whether the tampered proof is one
of some (polynomial size) non-uniformly hardcoded set of bad proofs—the ones
that the given attacker can find. If it is one of these bad proofs, we output
a fixed message, the one underlying the time-lock puzzle that corresponds to
the false statement. In this way, we are guaranteed that even when switch to
alternate decoding, for those maliciously crafted proofs, the attacker will not see
any difference between the two hybrids.

3 Preliminaries

Model of computation. We consider uniform and non-uniform algorithms
and we distinguish between their size and parallel time. The amount of non-
uniformity is usually denoted by κ, the parallel time by T , and the size by
S. We think of those algorithms as (possibly probabilistic) Turing machines
with multiple heads that can operate in parallel. A non-uniform algorithm A is
described by a family of of algorithms {Aλ}λ∈N, one per security parameter λ.
Each Aλ corresponds to an algorithm that has input size n(λ) for some function
n : N → N. We say that A is T -time, denoted Time [A] = T (λ), if for every
λ ∈ N, the parallel running time of Aλ is at most T (λ). We say that A is S-size,
denoted Size [A] = S(λ), if for every λ ∈ N, the total work that the algorithm
Aλ does is at most S(λ). Lastly, the mount of non-uniformity κ is chosen such
that κ(λ) is an upper bound on the size of advice used per λ.

Additional necessary but standard preliminaries appear in the full version [33].
There, the reader can find standard notation that we use and standard defini-
tions related to non-malleable commitments (following Lin, Pass, and Soni [63]),
one-message zero-knowledge proofs (following Barak and Pass [14]), and time-
lock puzzles (following Rivest, Shamir, and Wagner [77]).

4 Definition of Non-Malleable Codes

In this section we give our definition of non-malleable codes. Our definition
follows closely the definition of [8]. One difference though is that, rather than
defining non-malleability for an abstract class of tampering functions, we define
non-malleability directly for the class of tampering functions that we consider
in this work .

Let Σ and Σ′ be sets of strings. A coding scheme consists of two algo-
rithms NMCode = (NMCode.E,NMCode.D) such that NMCode.E : Σ → Σ′ and
NMCode.D : Σ′ → Σ. In words, NMCode.E (“encoding”) maps messages to code-
words and NMCode.D (“decoding”) maps codewords to messages. The algorithm
NMCode.E can be randomized and NMCode.D is assumed to be deterministic.
For correctness, we require that for every message m ∈ Σ, it holds that

Pr
NMCode.E

[NMCode.D(NMCode.E(m)) = m] = 1.

NMCode.E may also accept as an explicit input a security parameter in unary
(in which case the syntax is NMCode.E(1λ,m)).

Non-malleability. Intuitively, this notion requires that given a codeword, as
long as one cannot decode it, it is hard to generate a codeword with a differ-
ent related underlying message. A function that takes a codeword and tries to
generate a codeword for a related message out of it is called a tampering func-
tion. As mentioned, we have to limit the possible tampering functions in some
way. Otherwise, a tampering function could decode a codeword and re-encode a
related message.

Definition 1 (Tampering experiment). For an algorithm A = {Aλ}λ∈N,
a security parameter λ ∈ N, and a string s ∈ {0, 1}λ, define the tampering
experiment:

TamperNMCode
A,s (λ) =

{
Z ← NMCode.E(1λ, s); Z̃ = Aλ(Z); s̃ = NMCode.D(Z̃)

Output: s̃

}
,

where the randomness of the above experiment comes from the randomness of
NMCode.E.

Definition 2 ((S, T, κ)-non-malleability). We say that a code NMCode is
(S, T, κ)-non-malleable if for every S-size T -time algorithm A = {Aλ}λ∈N with
κ bits of non-uniformity, there exists a (uniform) probabilistic polynomial-time
simulator Sim such that

{TamperNMCode
A,s (λ)}λ ≈ {IdealSim,s(λ)}λ,

where

IdealSim,s(λ) =

{
s̃ ∪ {same} ← SimAλ(1λ)

Output: s if output of Sim is same and otherwise s̃

}
.

Medium non-malleability. We next define a different notion of non-malleability,
referred to as medium non-malleability, which implies the one above (Defini-
tion 2) but is slightly easier to work with [6,56]. The difference between the
definitions is that the medium non-malleability experiment allows to output
same∗ only when some predicate g evaluated on an original codeword and a
tampered one is satisfied. On the other hand, plain non-malleability (as defined
above) does not impose restrictions on when the experiment is allowed to output
same∗.

Definition 3 ((S, T, κ)-medium non-malleability). We say that a code NMCode
is (S, T, κ)-medium non-malleable if there exists a function g such that for every
s0, s1 ∈ {0, 1}λ and every S-size T -time algorithm A = {Aλ}λ∈N with κ bits of
non-uniformity, it holds that

{MedTamperNMCode
A,s0 (λ)}λ∈N ≈ {MedTamperNMCode

A,s1 (λ)}λ∈N,

where the tampering experiment (whose randomness comes from the randomness
of NMCode.E) is defined as follows:

MedTamperNMCode
A,s (λ) =

{
Z ← NMCode.E(1λ, s); Z̃ = Aλ(Z); s̃ = NMCode.D(Z̃)

Output: same∗ if g(Z, Z̃) = 1, and s̃ otherwise

}
,

and where g(·, ·) is a predicate such that for every A as above, λ ∈ N, and
s ∈ {0, 1}λ,

Pr
Z←NMCode.D(1λ,s)

[g(Z,Aλ(Z)) = 1 ∧ NMCode.D(Aλ(Z)) 6= s] ≤ negl(λ).

5 The Building Blocks

5.1 Time-Lock Puzzle

Theorem 3. Assuming the sub-exponential hardness of the repeated squaring
assumption, there exists a time-lock puzzle which is (STL, ε)-hard for a fixed
ε ∈ (0, 1) and where STL = 23λ.

We need a time-lock puzzle which, when instantiated with difficulty param-
eter t, is hard for machines that have parallel time at most tε for some fixed
ε ∈ (0, 1), even if their total size is 23λ. We instantiate this primitive by relying on
the repeated squaring assumption with sub-exponential hardness. The latter says

that for some ε, ε′ ∈ (0, 1) and any large enough t the following holds: any 2λ
ε′

-

size tε-time algorithm cannot distinguish (g,N, t, g2
t

mod N) from (g,N, t, g′)
for uniform g, g′ ∈ Z∗p·q, where p and q are two random λ-bit primes. Note
that it is common to assume the above assumption even for ((1 − ε) · t)-time
algorithms—our assumption is much weaker.

To generate a puzzle Z with difficulty t and a message m, one does the fol-
lowing (we assume here for simplicity that m is short enough but it is easy to
extend this): Sample an RSA modulus N = pq to be a product of two ran-
dom poly(λ)-bit primes (with some large enough polynomial; see below), and

computes Z = (g,N, t,m + g2
t

mod N), where g is a randomly chosen element

in Z∗N . Note that using p and q it is possible to compute g2
t

mod N in fixed
polynomial time in λ (and log t which is absorbed by the poly(λ) term) by first
computing a = 2t mod φ(N) (where φ(N) = (p− 1)(q− 1)) and then computing
Z = ga mod N .

Assuming the sub-exponential hardness of the repeated squaring assumption,
we want a time-lock puzzle whose guarantee is that the underlying value is
completely hidden as long as the attacker has size less than 23λ size and tε time.
To achieve this, the bit-length of p and q needs to be large enough. That is,
we need to instantiate our primes with say λ̃ = (3λ)1/ε bits which would give
security for attackers of size 23λ and tε time.

5.2 Non-Malleable Commitment

Theorem 4. Assume that there is a keyless multi-collision resistant hash func-
tion, the repeated squaring assumption, NIWI proof for all NP, and injec-
tive one-way functions, all with sub-exponential hardness. Then, there ex-
ists a non-interactive commitment which is (SNMCom, TNMCom)-hiding, (SNMCom

Ext1
,

TNMCom
Ext1

)-extractable via NMCom.Ext1 and (SNMCom
Ext2

, TNMCom
Ext2

)-extractable via

NMCom.Ext2, and (SNMCom
NM , TNMCom

NM)-non-malleable for all polynomial functions

TNMCom and TNMCom
NM , and where SNMCom(λ) = 2λ

η′′

for an appropriate constant

η′′, SNMCom
Ext1

(λ) = TNMCom
Ext1

(λ) = 2log
2 λ, SNMCom

Ext2
(λ) = 22λ, TNMCom

Ext2
(λ) = λ3, and

SNMCom
NM = 2λ.

Theorem 5. Assume that there is a keyless collision resistant hash function,
the repeated squaring assumption, NIWI proof for all NP, and injective one-way
functions, all with sub-exponential hardness. Then, there exists a non-interactive
commitment which is (SNMCom, TNMCom)-hiding, (SNMCom

Ext1
, TNMCom

Ext1
)-extractable

via NMCom.Ext1 and (SNMCom
Ext2

, TNMCom
Ext2

)-extractable via NMCom.Ext2, and (SNMCom
NM ,

TNMCom
NM , κNMCom

NM)-non-malleable for all polynomial functions TNMCom and TNMCom
NM ,

and where SNMCom(λ) = 2λ
η′′

for an appropriate constant η′′, SNMCom
Ext1

(λ) =

TNMCom
Ext1

(λ) = 2log
2 λ, SNMCom

Ext2
(λ) = 22λ, TNMCom

Ext2
(λ) = λ3, SNMCom

NM = 2λ, and

κNMCom
NM = 0.

The difference between the two theorems are that in the former we obtain
non-malleability for non-uniform attackers but using a keyless multi-collision
resistant hash, while in the latter we obtain non-malleability only for uniform
attackers but we are using a keyless (plain) collision resistant hash.

We need a one-message non-malleable tag-based commitment scheme which
is hiding for all (non-uniform) polynomial-size distinguishers, extractable either

in size and time 2log
2 λ or in 2λ-size and λ3-time, and non-malleable for all

exponential size and polynomial time tampering functions.

The uniform scheme. To get the scheme satisfying the properties listed in
Theorem 5 we use the scheme of Lin et al. [63]. Let us review their scheme
and explain why and how it satisfies the above properties. In a high-level, they
use two types of commitment scheme, each with a different “axis” of hardness.
From sub-exponentially secure injective one-way functions, they obtain a sub-
exponentially secure commitment scheme Coms. By instantiating Coms with
different security parameters, one can obtain a family of γ commitment schemes
{Coms

i}i∈[γ] such that Coms
i+1 is harder than Coms

i for all 1 ≤ i ≤ γ − 1 in the
axis of size. Namely, using size which is sufficient to extract from Coms

i it is still
hard to break Coms

i+1. Also, the extraction procedure is essentially a brute force
algorithm that “tries all option” and so it is highly parallelizable and requires
fixed parallel time (depth).

A similar trick is performed using time-lock puzzles. They are used to obtain
a family of γ commitment schemes {Comt

i}i∈[γ] such that Comt
i+1 is harder than

Comt
i for all 1 ≤ i ≤ γ−1 in the axis of time. Namely, in time which is sufficient

to extract from Comt
i it is still hard to break Comt

i+1. The extraction procedure
is highly sequential and requires very small total size. In particular, in size which
is sufficient to extract from any Comt it is still hard to break any Coms.

To construct a non-malleable commitment scheme NMCom, their key idea is
to combine a Coms and Comt scheme with opposite strength. That is,

NMCom(1λ,m, tag) = Coms
tag(1

λ, s)‖Comt
γ−tag(1

λ, s⊕m) , where s← {0, 1}|m|.

The hiding and non-malleability proofs are the same as in [63]. Hiding is
immediate from hiding of the two underlying commitments, and we sketch the
main idea behind the proof of non-malleability next. Non-malleability holds by
considering two cases. First, if the left tag i is smaller than the right tag j,

the Comt
j commitment on the right remains hiding for attackers of size and time

enough for extracting from both Comt
i and Coms

j . Therefore the right committed
value remains hidden, while the right is extracted. Otherwise, if the left tag i
is larger than the right commitment j, then the Coms

i commitment on the left
remains hiding for attackers of size and time enough for extracting from both
Coms

j and Comt
γ−j . Thus, the left committed value remains hidden, while the

right is extracted.
Lastly, we explain how to implement the two extraction procedures that

we need. Recall that we need one extraction procedure that works in quasi-
linear size and time and another procedure that works in exponential size and
fixed polynomial time. The former is implemented by extracting from the right
commitment (by breaking the time-lock puzzles) and the latter is implemented
by breaking the left commitment (by checking in parallel all possible openings).

Of course, the above construction is not the final construction of [63] as it
supports only a small number of tags (while our goal is to support an exponential
number of tags). To get around this they present a tag-amplification technique
that is based on a tree-like structure and the way they avoid blow-up in the
commitment size is by using a (keyless) collision resistant hash function (which
causes the final construction to be non-malleable only with respect to uniform
attackers). We refer to [63] for the precise details.

The non-uniform scheme. To get the scheme satisfying the properties listed
in Theorem 4 we use the scheme of Bitansky and Lin [20] (which in turns is based
on the scheme of [63]). Here, they present a new tag-amplification technique, in-
spired by a interactive tag-amplification technique of Khurana and Sahai [52],
where they make it non-interactive using their one-message zero-knowledge pro-
tocol (which is based on keyless multi-collision resistant hash functions).

For our purposes, the details of this transformation are not very relevant—the
only thing that is important is the structure of thier final commitment. Indeed, it
consists of the same time or space hard commitments of [63] (along with various
proofs). These are extractable in the same manner, either in quasi-linear time
or in exponential size and polynomial time.

5.3 One-Message Zero-Knowledge

Theorem 6. Assume the existence of a one-way permutation, a NIWI proof
systems for all NP, a keyless multi-collision resistant hash function, all sub-
exponentially secure. Then, there exists a one-message SPS zero-knowledge argu-
ment system satisfying (SP ,K)-weak-soundness and (SD, SSim, TSim)-zero-knowledge
for all polynomials SP (λ), and where K ∈ poly(λ) is a fixed polynomial, SD(λ) =

2λ
η

and SSim(λ) = 2λ
η′

for some constants η, η′ ∈ (0, 1), and TSim(λ) = λ2.

Theorem 7. Assume the existence of a one-way permutation, a NIWI proof
systems for all NP, a collision resistant hash function secure against uniform
polynomial-time algorithms, all sub-exponentially secure. Then, there exists a
one-message SPS zero-knowledge argument system satisfying (SP , κ)-soundness

and (SD, SSim, TSim)-zero-knowledge for all polynomial SP (λ), and where κ(λ) =

0, SD(λ) = 2λ
η

and SSim(λ) = 2λ
η′

for some constants η, η′ ∈ (0, 1), and
TSim(λ) = λ2.

The difference between the two theorems are that in the former we obtain
weak-soundness for non-uniform attackers but using a keyless multi-collision
resistant hash, while in the latter we obtain (plain) soundness only for uniform
attackers but we are using a keyless (plain) collision resistant hash.

Barak and Pass [14] showed that a one-message zero-knowledge system ex-
ists assuming a collection of sub-exponentially hard primitives: a one-way per-
mutation, a NIWI for all NP, and a keyless collision resistant hash function.
Intuitively, their construction follows the Feige-Lapidot-Shamir paradigm [43]
where the protocol consists of a commitment to 0 and a WI argument for the
statement that either the prover knows a witness for the given instance, or it
used a commitment to a special (hard to guess) value. The special value which is
hard to guess is, intuitively, a collision in an appropriately chosen hash function
and this is why soundness only applies to uniform malicious provers. The simu-
lator is a parallel machine that can find such a collision by brute force using a
super-polynomial size procedure which has only fixed polynomial time (it tries
all possibilities in parallel). Their construction gives Theorem 7.

Bitansky and Lin [20] constructed a one-message zero-knowledge argument
system by replacing the uniform hash function used by Barak and Pass with
a keyless multi collision resistant hash function [19]. Their construction gives
Theorem 6.

6 The Non-Malleable Code

In this section, we present a construction of a non-malleable code that satisfies
non-malleability against all (non-uniform) polynomial size attackers that have
bounded polynomial depth. In other words, the only way to maul a codeword is
by having high depth.

Our construction relies on several building blocks on which we elaborate
next.

1. A time-lock puzzle (Theorem 3) TL = (TL.Gen,TL.Sol) which, for all large
enough difficulty parameters t, allows to generate puzzles which are hard for
any (non-uniform) machine whose parallel time/depth is at most tε, even it
has size 23λ.
More precisely, for a difficulty parameter t, it is (STL, ε)-hard for a fixed
ε ∈ (0, 1) and for STL(λ) = 23λ.

2. A one-message SPS zero-knowledge argument system (Theorem 6) ZK =
(ZK.P,ZK.V) which is weakly sound w.r.t. all (non-uniform) polynomial-size
attackers, there is a (uniform) simulator that requires sub-exponential size
and fixed polynomial time, and zero-knowledge holds w.r.t. sub-exponential
size adversaries.

More precisely, it is (SZK
P ,KZK)-sound and (SZK

D , SZK
Sim, T

ZK
Sim)-zero-knowledge

for all polynomial functions SZK
P and where KZK ∈ poly(λ) is a fixed poly-

nomial, SZK
D (λ) = 2λ

η

, SZK
Sim(λ) = 2λ

η′

, and T ZK
Sim(λ) = λ2.

3. A one-message non-malleable tag-based commitment scheme (Theorem 4)
NMCom = (NMCom.C,NMCom.O) which is hiding for all (non-uniform)

polynomial-size distinguishers, extractable either in size and time 2log
2

λ or
in 2λ size and λ3 time, and non-malleable for all exponential size and poly-
nomial time tampering functions.
More precisely, it is (SNMCom, TNMCom)-hiding, (SNMCom

Ext1
, TNMCom

Ext1
)-

extractable via NMCom.Ext1 and (SNMCom
Ext2

, TNMCom
Ext2

)-extractable via

NMCom.Ext2, and (SNMCom
NM , TNMCom

NM)-non-malleable for all polynomial func-

tions TNMCom and TNMCom
NM , and where SNMCom(λ) = 2λ

η′′

where η′′ > η′,

SNMCom
Ext1

(λ) = TNMCom
Ext1

(λ) = 2log
2 λ, SNMCom

Ext2
(λ) = 22λ, TNMCom

Ext2
(λ) = λ3, and

SNMCom
NM = 2λ.

4. Sig = (Sig.G,Sig.S,Sig.V). A one-time signature scheme, unforgeable for
polynomial-size attackers.

We show that assuming the existence of the above primitives, there is a code
which is non-malleable for all polynomial-size attackers that run in bounded
polynomial depth. We denote the latter T . Our main result is summarized in
the following theorem.

Theorem 8. Assume a time-lock puzzle TL, a one-message SPS zero knowledge
system ZK, a one-message non-malleable commitment scheme NMCom, and a
one-time signature scheme Sig, as above. Then, there exist constants α, β, γ ∈
N such that for any large enough polynomial T , there is a code NMCode =
(NMCode.E,NMCode.D) (described below in Algorithms 2, 3, and 4) with the
following properties:

1. The input of NMCode.E is a message from {0, 1}λ and it outputs a codeword
in {0, 1}λα .

2. The running time of NMCode.E is λβ and the running time of NMCode.D is
(T · λ)γ .

3. It is (S, T)-non-malleable for all polynomials S(λ).

The construction. Fix T , the upper bound on the depth of the tampering
function. The high level idea of the construction is to combine the hardness
for parallel machines that comes from a time-lock puzzle together with non-
malleability that comes from a non-malleable commitment. Specifically, the way
we combine them is so that an encoding of a message m consists of a time-lock
puzzle for m, a non-malleable commitment for m, and a zero-knowledge proof
that ties them together and asserts that they have the same underlying message.
The construction is described formally in Algorithms 2, 3, and 4

Sub-exponential security. The theorem extends to show that the resulting
non-malleable code cannot be mauled in depth better than T even if the total

Algorithm NMCode.E(1λ,m) for m ∈ {0, 1}λ:

1. (vk, sk)← Sig.G(1λ).

2. Z ← TL.Gen(1λ, T
2/ε
,m; rTL) with uniformly random rTL.

3. (c, rNMCom)← NMCom.C(1λ,m, tag = vk).
4. Compute a ZK proof π ← ZK.P(·, ·, 1λ) for the relation Ru from Algorithm 4 using

(vk, Z, c) as the instance and (rTL,m, rNMCom) as the witness.
5. σ ← Sig.S(sk, (Z, c, π)).
6. Output Ẑ = (vk, Z, c, π, σ).

Algorithm 2: The encoding procedure NMCode.E.

Algorithm NMCode.D(vk, Z, c, π, σ):

1. Verify the signature σ:

Sig.V(vk, (Z, c, π), σ)
?
= 1.

2. Verify the proof π:

ZK.V((vk, Z, c), π)
?
= 1.

3. If both accept, output TL.Sol(Z). Otherwise, output 0λ.

Algorithm 3: The decoding procedure NMCode.D.

size of the solver is exponential in λ. For that, we need to make all of our
underlying building blocks sub-exponentially secure (in particular, they have to
remain secure in the presence of an exponential size adversary). We focus on the
polynomial regime for simplicity.

Organization. The proof of Theorem 8 consists of two parts: (1) efficiency
analysis showing that the encoding and decoding procedures can be implemented
with the required complexities and (2) showing that the code is non-malleable.
Part (1) is proven in Section 6.1 and Part (2) is proven in Section 6.2.

6.1 Efficiency Analysis

Fix a security parameter λ ∈ N and a message m ∈ {0, 1}λ. The encoding
(i.e., the output of NMCode.E(1λ,m) consists of a verification key of a signa-
ture scheme, a time-lock puzzle, a non-malleable commitment scheme, a zero-
knowledge proof, and a signature. All of these are of fixed polynomial size in λ.

The procedure NMCode.E, on input (1λ, s), runs in time poly(log T , λ). In-
deed, steps 1,3, and 5 are independent of T and take poly(λ) time. Step 2, by
definition of time-lock puzzles, takes time poly(log T , λ). Finally, step 4 takes time
poly(log T , λ) due to the running time of the verification procedure of the under-

lying language. The procedure NMCode.D can be computed in time T
2/ε ·poly(λ).

Indeed, verifying the proof and the signature both take fixed polynomial time

poly(λ) and the last step takes time T
2/ε · poly(λ), by definition.

Relation Ru ((vk, Z, c), (rTL,m, rNMCom)):

– Instance: a verification key vk, a puzzle generated by TL.Gen(1λ, T
2/ε
,m), and a

commitment c.
– Witness: a string tTL ∈ {0, 1}∗, a string m ∈ {0, 1}λ, and a string rNMCom ∈ {0, 1}∗.
– Statement: TL.Gen(1λ, T

2/ε
,m; rTL) = Z and NMCom.O(c,m, rNMCom, tag = vk) =

1.

Algorithm 4: The Relation Ru.

6.2 Proof of Non-Malleability

In what follows, we prove that the coding scheme from Algorithms 2 and 3 is
medium-non-malleable for all polynomial-size S and bounded polynomial-time
T tampering functions. Let g(Z,Z ′) be the procedure defined in Algorithm 5.

g(Z,Z′):

1. Parse Z as (vk, Z, c, π, σ) and Z′ as (vk′, Z′, c′, π′, σ′).
2. If vk = vk′ and σ′ verifies (that is, Sig.V(vk′, (Z, c′, π′), σ′)=1), output 1. Otherwise

output 0.

Running time: The procedure g has fixed polynomial size (and time) in its input size.

Algorithm 5: The procedure g.

Claim 9 For every non-uniform polynomial-size tampering function A = {Aλ}λ∈N,
every difficulty parameter t, and every m ∈ {0, 1}λ, it holds that

Pr
Ẑ←NMCode.E(1λ,m)

[
g(Ẑ,Aλ(Ẑ)) = 1 ∧ NMCode.D(Aλ(Ẑ)) 6= m

]
≤ negl(λ).

Proof. Let Ẑ = (vk, Z, c, π, σ) andAλ(Ẑ) = Ẑ ′ = (vk′, Z ′, c′, π′, σ′). If g(Ẑ, Ẑ ′) =
1, then vk = vk′ and Sig.V(vk′, Z ′, c′, π′), σ′)=1. Also, recall that Z is a puz-
zle with underlying message m. Thus, if NMCode.D(Ẑ ′) 6= m, it means that
(Z, c, π) 6= (Z ′, c′, π′). Thus, Aλ can be used to create (in polynomial-time) a
valid signature σ′ w.r.t. verification key vk for a new statement which is a con-
tradiction to the security of the one-time signature.

We next show that w.r.t. the above g (Algorithm 5), for any polynomial-size
algorithm A = {Aλ}λ∈N such that Time [A] ≤ T and any m0,m1 ∈ {0, 1}λ, it
holds that

{MedTamperNMCode
A,m0

(λ)}λ∈N ≈ {MedTamperNMCode
A,m1

(λ)}λ∈N,

where

MedTamperNMCode
A,m (λ) =

{
Ẑ ← NMCode.E(1λ,m); m̃ = NMCode.D(Aλ(Ẑ))

Output: same∗ if g(Z,Aλ(Z)) = 1, and m̃ otherwise

}
.

We do so by defining a sequence of hybrid experiments where we slowly
change how NMCode.E and NMCode.D work and showing that every two
consecutive hybrids are indistinguishable. For consistency of notation with
what follows, we denote the non-malleable code from Algorithms 2 and 3
used in the original scheme by NMCode0 = (NMCode0.E,NMCode0.D), where
NMCode0.E ≡ NMCode.E and NMCode0.D ≡ NMCode.D. The first experiment
that we define corresponds to the experiment {MedTamperNMCode0

A,m0
(λ)}λ∈‘N and

the last one corresponds to an experiment where we encode m1. From that
point, one can “reverse” the sequence of experiment to reach the experiment
{MedTamperNMCode0

A,m1
(λ)}λ∈N. We omit this part to avoid repetition.

Throughout the following sequence of hybrids, we treat A and m0,m1 as
fixed. Some of the proofs are deferred to the full version [33].

Experiment H0(λ). This is the original experiment, where we encode
m0 under NMCode0 (see Algorithms 2 and 3) and execute the experiment
{MedTamperNMCode0

A,m0
(λ)}λ∈N.

Experiment H1(λ). This experiment is the same as Experiment H0(λ) ex-
cept that we use the simulator of the ZK proof to generate π. This gives
rise to the scheme NMCode1 = (NMCode1.E,NMCode0.D), where NMCode1.E
is describer in Algorithm 6. Using this scheme we execute the experiment
{MedTamperNMCode1

A,m0
(λ)}λ∈N. By the zero-knowledge property of ZK, this hybrid

is indistinguishable from H0(λ).

Algorithm NMCode1.E(m) for m ∈ {0, 1}λ:

1. (vk, sk)← Sig.G(1λ).

2. Z ← TL.Gen(1λ, T
2/ε
,m).

3. (c, r)← NMCom.C(1λ,m, tag = vk).
4. Use the simulator Sim to simulate a proof for the relation Ru using (vk, Z, c) as

the instance.
5. σ ← Sig.S(sk, (Z, c, π)).
6. Output Ẑ = (vk, Z, c, π, σ).

Algorithm 6: The encoding procedure NMCode1.E used in H1(λ).

Claim 10 It holds that

{MedTamperNMCode0
A,m0

(λ)}λ∈N ≈ {MedTamperNMCode1
A,m0

(λ)}λ∈N.

Experiment H2(λ). This experiment is the same as Experiment H1(λ) except
that instead of committing to m0 with a non-malleable commitment, we com-
mit to 0λ. This gives rise to the scheme NMCode2 = (NMCode2.E,NMCode0.D)
which is described in Algorithm 7. Using this scheme we execute the experiment
{MedTamperNMCode2

A,m0
(λ)}λ∈N. By the hiding property of NMCom, this hybrid is

indistinguishable from H1(λ).

Algorithm NMCode2.E(m) for m ∈ {0, 1}λ:

1. (vk, sk)← Sig.G(1λ).

2. Z ← TL.Gen(1λ, T
2/ε
,m).

3. (c, r)← NMCom.C(1λ, 0λ, tag = vk).
4. Use the simulator Sim to simulate a proof for the relation Ru using (vk, Z, c) as

the instance.
5. σ ← Sig.S(sk, (Z, c, π)).
6. Output Ẑ = (vk, Z, c, π, σ).

Algorithm 7: The encoding procedure NMCode2.E used in H2(λ).

Claim 11 It holds that

{MedTamperNMCode1
A,m0

(λ)}λ∈N ≈ {MedTamperNMCode2
A,m0

(λ)}λ∈N.

Experiment H3(λ). This experiment is the same as Experiment H2(λ) except
that we use an alternate decoding procedure. The alternate decoding procedure
does not solve the time-lock puzzle in order to decode the secret m, but rather
it “breaks” the commitment scheme and extracts m from it using NMCom.Ext1
unless the (tampered) proof is one of a fix set of “bad” proofs.

Concretely, recall that by weak-soundness of ZK, every algorithm (and in
particular A) can come up with some small bounded number of proofs that are
verified yet are for false statements. If the proof on the right size is one of those
proofs, we will output a hard coded value instead of trying to extract the value
from the commitment.

More precisely, the adversary A can find a set Z ′ (that depends on the
adversary and the hybrid) of size at most K , KZK(|Aλ| + O(1)) ∈ poly(λ)
of proofs that are verified yet are for false statements. We denote by Z the
augmented set of proofs (for false statements) together with the instance and
with the values underlying the time-lock puzzle in each such statements. Namely,
Z is a set that consists of tuples of the form (π, vk, Z, c, m̃), where π is a proof
from Z ′ for the instance (vk, Z, c) and m̃ is the message underlying Z.

This gives rise to the scheme NMCode3 = (NMCode2.E,NMCode1.D) which
is described in Algorithm 8. Using this scheme we execute the experiment
{MedTamperNMCode3

A,m0
(λ)}λ∈N.

Algorithm NMCode1.D(vk, Z, c, π, σ):

1. Verify the signature σ:

Sig.V(vk, (Z, c, π), σ)
?
= 1.

2. Verify the ZK proof π:

ZK.V((vk, Z, c), π)
?
= 1.

3. If either test from Steps 1 or 2 does not pass or c = ⊥, output 0λ and terminate.
4. If π is a proof which is in Z, output the corresponding message m̃ and terminate.
5. Otherwise (both tests pass, c 6= ⊥, and π /∈ Z ′), use the extractor NMCom.Ext1(c)

to get the underlying value m̃. Output m̃ (if extraction fails, m̃ = ⊥).

Algorithm 8: The decoding procedures NMCode1.D used in H3(λ).

Claim 12 It holds that

{MedTamperNMCode2
A,m (λ)}λ∈N ≈ {MedTamperNMCode3

A,m (λ)}λ∈N.

Experiment H4(λ). This experiment is the same as Experiment H3(λ) ex-
cept that we modify the alternate decoding procedure to use the extrac-
tor NMCom.Ext2 instead of NMCom.Ext1. Namely, we execute the experi-
ment {MedTamperNMCode4

A,m1
(λ)}λ∈N. This gives rise to the scheme NMCode4 =

(NMCode2.E,NMCode2.D) which is described in Algorithm 9. Using this scheme
we execute the experiment {MedTamperNMCode4

A,m0
(λ)}λ∈N.

Algorithm NMCode2.D(vk, Z, c, π, σ):

1. Verify the signature σ:

Sig.V(vk, (Z, c, π), σ)
?
= 1.

2. Verify the ZK proof π:

ZK.V((vk, Z, c), π)
?
= 1.

3. If either test from Steps 1 or 2 does not pass or c = ⊥, output 0λ and terminate.
4. If π is a proof which is in Z, output the corresponding message m̃ and terminate.
5. Otherwise (both tests pass, c 6= ⊥, and π /∈ Z ′), use the extractor NMCom.Ext2(c)

to get the underlying value m̃. Output m̃ (if extraction fails, m̃ = ⊥).

Algorithm 9: The decoding procedures NMCode2.D used in H4(λ).

Claim 13 It holds that {MedTamperNMCode3
A,m0

(λ)}λ∈N and {MedTamperNMCode4
A,m0

(λ)}λ∈N
are identically distributed.

Experiment H5(λ). This experiment is the same as Experiment H4(λ) except
that we use m1 as the underlying message for TL.Gen (rather than m0), namely,
we execute the experiment {MedTamperNMCode4

A,m1
(λ)}λ∈N.

Claim 14 It holds that

{MedTamperNMCode4
A,m0

(λ)}λ∈N ≈ {MedTamperNMCode4
A,m1

(λ)}λ∈N.

7 The Case of Uniform Tampering

In Section 6 we gave a construction of a non-malleable code secure against all
tampering functions that can be described as non-uniform polynomial size algo-
rithm with bounded polynomial depth. In this section we focus on the natural
class of tampering functions that consists of uniform polynomial size algorithm
with bounded polynomial parallel running time. This is the class that was con-
sidered in the work of Ball et al. [6].

The construction is essentially the same as the one for non-uniform tampering
functions and the main differences are in how we instantiate the building blocks
and how the security proof goes through. Let us precisely list the building blocks
with which we use the scheme from Section 6 (Algorithms 2, 3, and 4). We note
that the time-lock puzzle and the signature scheme that we use (Items 1 and 4
below) are the same as the one we used in Section 6.

1. A time-lock puzzle (Theorem 3) TL = (TL.Gen,TL.Sol) which, for all large
enough difficulty parameters t, allows to generate puzzles which are hard for
any (non-uniform) machine whose parallel time is at most tε, even it has size
23λ.
More precisely, for a difficulty parameter t, it is (STL, ε)-hard for a fixed
ε ∈ (0, 1) and for STL(λ) = 23λ.

2. A one-message zero-knowledge argument system (Theorem 7) ZK = (ZK.P,
ZK.V) which is sound w.r.t. all uniform polynomial-size attackers, there is a
(uniform) simulator that requires sub-exponential size and fixed polynomial
time, and zero-knowledge holds w.r.t. sub-exponential size adversaries.
More precisely, it is (SZK

P , κZK)-sound and (SZK
D , SZK

Sim, T
ZK
Sim)-zero-knowledge

for all polynomial functions SZK
P and where κZK = 0, SZK

D (λ) = 2λ
η

, SZK
Sim(λ) =

2λ
η′

, and T ZK
Sim(λ) = λ2.

3. A one-message non-malleable tag-based commitment scheme (Theorem 5)
NMCom = (NMCom.C,NMCom.O) which is hiding for all (non-uniform)

polynomial-size distinguishers, extractable either in size and time 2log
2

λ or
in 2λ size and λ3 time, and non-malleable for all uniform exponential size
and polynomial time tampering functions.
More precisely, it is (SNMCom, TNMCom)-hiding, (SNMCom

Ext1
, TNMCom

Ext1
)-

extractable via NMCom.Ext1 and (SNMCom
Ext2

, TNMCom
Ext2

)-extractable via

NMCom.Ext2, and (SNMCom
NM , TNMCom

NM , κNMCom
NM)-non-malleable for all poly-

nomial functions TNMCom and TNMCom
NM , and where SNMCom(λ) = 2λ

η′′

for η′′ > η′, SNMCom
Ext1

(λ) = TNMCom
Ext1

(λ) = 2log
2 λ, SNMCom

Ext2
(λ) = 22λ,

TNMCom
Ext2

(λ) = λ3, SNMCom
NM = 2λ, and κNMCom

NM = 0.
4. Sig = (Sig.G,Sig.S,Sig.V). A one-time signature scheme, unforgeable for

polynomial-size attackers.

Overview of the proof. The proof works by defining a sequence of hybrid
experiments, where in the first the Man-In-the-Middle game is played with a
message m0 and in the last with a message m1. The sequence of experiments is
analogous to the one described in Section 6 except that we do not need worry
about “weak-soundness” of the ZK scheme and so some transitions follow due
to slightly different reasons. We refer to the full version [33] for details.

References

1. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.:
Optimal computational split-state non-malleable codes. In: TCC. pp. 393–417
(2016)

2. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and
applications. In: STOC. pp. 459–468 (2015)

3. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. SIAM J. Comput. 47(2), 524–546 (2018)

4. Ball, M.: On Resilience to Computable Tampering. Ph.D. thesis, Columbia
University (2021), https://academiccommons.columbia.edu/doi/10.7916/

d8-debr-bw49

5. Ball, M., Dachman-Soled, D., Guo, S., Malkin, T., Tan, L.: Non-malleable codes
for small-depth circuits. In: FOCS. pp. 826–837 (2018)

6. Ball, M., Dachman-Soled, D., Kulkarni, M., Lin, H., Malkin, T.: Non-malleable
codes against bounded polynomial time tampering. In: Advances in Cryptology -
EUROCRYPT. pp. 501–530 (2019)

7. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for
bounded depth, bounded fan-in circuits. In: Advances in Cryptology - EURO-
CRYPT. pp. 881–908 (2016)

8. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes from
average-case hardness: AC0, decision trees, and streaming space-bounded tamper-
ing. In: Advances in Cryptology - EUROCRYPT. pp. 618–650 (2018)

9. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Limits to non-malleability.
In: ITCS. pp. 80:1–80:32 (2020)

10. Ball, M., Dachman-Soled, D., Loss, J.: Explicit non-malleable codes for polynomial
size circuit tampering, (unpublished manuscript)

11. Ball, M., Guo, S., Wichs, D.: Non-malleable codes for decision trees. In: Advances
in Cryptology - CRYPTO. pp. 413–434 (2019)

12. Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the
shared random string model. In: FOCS. pp. 345–355 (2002)

13. Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography. SIAM J.
Comput. 37(2), 380–400 (2007)

14. Barak, B., Pass, R.: On the possibility of one-message weak zero-knowledge. In:
TCC. pp. 121–132 (2004)

15. Baum, C., David, B., Dowsley, R., Nielsen, J.B., Oechsner, S.: Craft: Composable
randomness and almost fairness from time. Cryptology ePrint Archive, Report
2020/784 (2020)

16. Baum, C., David, B., Dowsley, R., Nielsen, J.B., Oechsner, S.: TARDIS: A foun-
dation of time-lock puzzles in UC. In: Advances in Cryptology - EUROCRYPT.
pp. 429–459 (2021)

https://academiccommons.columbia.edu/doi/10.7916/d8-debr-bw49
https://academiccommons.columbia.edu/doi/10.7916/d8-debr-bw49

17. Berman, I., Degwekar, A., Rothblum, R.D., Vasudevan, P.N.: Multi-collision resis-
tant hash functions and their applications. In: Advances in Cryptology - EURO-
CRYPT. pp. 133–161 (2018)

18. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters,
B.: Time-lock puzzles from randomized encodings. In: ITCS. pp. 345–356 (2016)

19. Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: a paradigm for
keyless hash functions. In: STOC. pp. 671–684 (2018)

20. Bitansky, N., Lin, H.: One-message zero knowledge and non-malleable commit-
ments. In: TCC. pp. 209–234 (2018)

21. Bitansky, N., Paneth, O.: Zaps and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: TCC. pp. 401–427 (2015)

22. Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise
non-malleable codes. In: ICALP. pp. 31:1–31:14 (2016)

23. Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with
their many tampered extensions. Electronic Colloquium on Computational Com-
plexity (ECCC) 22, 75 (2015)

24. Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with
their many tampered extensions. In: STOC. pp. 285–298 (2016)

25. Chattopadhyay, E., Li, X.: Non-malleable codes and extractors for small-depth
circuits, and affine functions. In: STOC. pp. 1171–1184 (2017)

26. Chattopadhyay, E., Zuckerman, D.: Explicit two-source extractors and resilient
functions. In: STOC. pp. 670–683 (2016)

27. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. IEEE Trans.
Information Theory 62(3), 1097–1118 (2016)

28. Chung, K., Lin, H., Pass, R.: Constant-round concurrent zero knowledge from
P-certificates. In: FOCS. pp. 50–59 (2013)

29. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Concurrent non-malleable
commitments (and more) in 3 rounds. In: Advances in Cryptology - CRYPTO. pp.
270–299 (2016)

30. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Four-round concurrent non-
malleable commitments from one-way functions. In: Advances in Cryptology -
CRYPTO. pp. 127–157 (2017)

31. Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption: Sim-
pler, shorter, stronger. In: TCC. pp. 306–335 (2016)

32. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: TCC. pp. 532–560 (2015)

33. Dachman-Soled, D., Komargodski, I., Pass, R.: Non-malleable codes for bounded
polynomial depth tampering. IACR Cryptol. ePrint Arch. 2020, 776 (2020)

34. Dachman-Soled, D., Liu, F., Shi, E., Zhou, H.: Locally decodable and updatable
non-malleable codes and their applications. In: TCC. pp. 427–450 (2015)

35. Dixon, J.D.: Asymptotically fast factorization of integers. Mathematics of compu-
tation 36(153), 255–260 (1981)

36. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: STOC. pp. 542–552 (1991)

37. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS. pp. 434–
452 (2010)

38. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. J. ACM 65(4),
20:1–20:32 (2018)

39. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous verifiable delay
functions. In: Advances in Cryptology - EUROCRYPT. pp. 125–154 (2020)

40. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Non-malleable time-lock puz-
zles and applications. IACR Cryptol. ePrint Arch. 2020, 779 (2020)

41. Faust, S., Hostáková, K., Mukherjee, P., Venturi, D.: Non-malleable codes for
space-bounded tampering. In: Advances in Cryptology - CRYPTO. pp. 95–126
(2017)

42. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and
key derivation for poly-size tampering circuits. IEEE Trans. Information Theory
62(12), 7179–7194 (2016)

43. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: FOCS. pp. 308–317 (1990)

44. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Advances in Cryptology - CRYPTO 2018. pp. 33–62 (2018)

45. Goyal, V.: Constant round non-malleable protocols using one way functions. In:
Fortnow, L., Vadhan, S.P. (eds.) STOC. pp. 695–704 (2011)

46. Goyal, V., Lee, C., Ostrovsky, R., Visconti, I.: Constructing non-malleable com-
mitments: A black-box approach. In: FOCS. pp. 51–60 (2012)

47. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:
STOC. pp. 1128–1141 (2016)

48. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Advances in Cryptology - CRYPTO. pp. 97–111 (2006)

49. Kalai, Y.T., Khurana, D.: Non-interactive non-malleability from quantum
supremacy. In: Advances in Cryptology - CRYPTO. pp. 552–582 (2019)

50. Katz, J., Loss, J., Xu, J.: On the security of time-lock puzzles and timed commit-
ments. In: TCC. pp. 390–413 (2020)

51. Khurana, D.: Round optimal concurrent non-malleability from polynomial hard-
ness. In: TCC. pp. 139–171 (2017)

52. Khurana, D., Sahai, A.: How to achieve non-malleability in one or two rounds. In:
FOCS. pp. 564–575 (2017)

53. Kiayias, A., Liu, F., Tselekounis, Y.: Practical non-malleable codes from l-more
extractable hash functions. In: CCS. pp. 1317–1328 (2016)

54. Komargodski, I., Naor, M., Yogev, E.: Collision resistant hashing for paranoids:
Dealing with multiple collisions. In: Advances in Cryptology - EUROCRYPT 2018.
pp. 162–194 (2018)

55. Komargodski, I., Naor, M., Yogev, E.: White-box vs. black-box complexity of
search problems: Ramsey and graph property testing. J. ACM 66(5), 34:1–34:28
(2019)

56. Kulkarni, M.R.: Extending the Applicability of Non-Malleable Codes. Ph.D. the-
sis, The University of Maryland (2019), https://drum.lib.umd.edu/bitstream/
handle/1903/25179/Kulkarni_umd_0117E_20306.pdf?sequence=2

57. Li, X.: Non-malleable extractors, two-source extractors and privacy amplification.
In: 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS.
pp. 688–697 (2012)

58. Li, X.: New independent source extractors with exponential improvement. In:
STOC. pp. 783–792 (2013)

59. Li, X.: Improved non-malleable extractors, non-malleable codes and independent
source extractors. In: STOC. pp. 1144–1156. ACM (2017)

60. Li, X.: Non-malleable extractors and non-malleable codes: Partially optimal con-
structions. arXiv preprint arXiv:1804.04005 (2018)

61. Lin, H., Pass, R.: Non-malleability amplification. In: STOC. pp. 189–198 (2009)
62. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way

function. In: STOC. pp. 705–714 (2011)

https://drum.lib.umd.edu/bitstream/handle/1903/25179/Kulkarni_umd_0117E_20306.pdf?sequence=2
https://drum.lib.umd.edu/bitstream/handle/1903/25179/Kulkarni_umd_0117E_20306.pdf?sequence=2

63. Lin, H., Pass, R., Soni, P.: Two-round and non-interactive concurrent non-
malleable commitments from time-lock puzzles. In: FOCS. pp. 576–587 (2017)

64. Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commit-
ments from any one-way function. In: TCC. pp. 571–588 (2008)

65. Liu, F., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Advances in Cryptology - CRYPTO. pp. 517–532 (2012)

66. May, T.: Timed-release crypto (1992)
67. Micali, S.: Computationally sound proofs. SIAM Journal on Computing 30(4),

1253–1298 (2000)
68. Naor, M.: On cryptographic assumptions and challenges. In: Advances in Cryptol-

ogy - CRYPTO. pp. 96–109 (2003)
69. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-

phertext attacks. In: STOC. pp. 427–437 (1990)
70. Ostrovsky, R., Persiano, G., Venturi, D., Visconti, I.: Continuously non-malleable

codes in the split-state model from minimal assumptions. In: Advances in Cryp-
tology - CRYPTO. pp. 608–639 (2018)

71. Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions and appli-
cations. In: Advances in Cryptology - CRYPTO. pp. 57–74 (2008)

72. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-
position. In: Advances in Cryptology - EUROCRYPT. pp. 160–176 (2003)

73. Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: FOCS. pp. 563–
572 (2005)

74. Pass, R., Rosen, A.: New and improved constructions of non-malleable crypto-
graphic protocols. In: STOC. pp. 533–542 (2005)

75. Pass, R., Wee, H.: Constant-round non-malleable commitments from sub-
exponential one-way functions. In: Advances in Cryptology - EUROCRYPT. pp.
638–655 (2010)

76. Pietrzak, K.: Simple verifiable delay functions. In: ITCS. pp. 60:1–60:15 (2019)
77. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release

crypto (1996), technical report, Massachusetts Institute of Technology, Cambridge,
MA, USA

78. Shoup, V.: A computational introduction to number theory and algebra. Cam-
bridge University Press (2006)

79. Wee, H.: Black-box, round-efficient secure computation via non-malleability am-
plification. In: FOCS. pp. 531–540 (2010)

80. Wesolowski, B.: Efficient verifiable delay functions. In: Advances in Cryptology -
EUROCRYPT. pp. 379–407 (2019)

	Non-Malleable Codes for Bounded Parallel-Time Tampering

