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Abstract. Can a sender encode a pair of messages (m0,m1) jointly,
and send their encoding over (say) a binary erasure channel, so that the
receiver can decode exactly one of the two messages and the sender does
not know which one?
Garg et al. (Crypto 2015) showed that this is information-theoretically
impossible. We show how to circumvent this impossibility by assuming
that the receiver is computationally bounded, settling for an inverse-
polynomial security error (which is provably necessary), and relying on
ideal obfuscation. Our solution creates a �computational anti-correlation�
between the events of receiving m0 and receiving m1 by exploiting the
anti-concentration of the binomial distribution.
The ideal obfuscation primitive in our construction can either be di-
rectly realized using (stateless) tamper-proof hardware, yielding an un-
conditional result, or heuristically instantiated in the plain model using
existing indistinguishability obfuscation schemes.
As a corollary, we get similar feasibility results for general secure compu-

tation of sender-receiver functionalities by leveraging the completeness
of the above �random oblivious transfer� functionality.

1 Introduction

Starting with the pioneering work of Wyner [57], who showed that the wiretap
channel can be used for secure communication, a long line of work in cryp-
tography studied the usefulness of noisy channels for general cryptographic
tasks [13, 48, 12, 22, 55, 56, 51, 35]. A major landmark in this line of work
is a full characterization of the �complete� channels on which oblivious transfer,



and hence secure two-party computation, can be based [20, 21]. In a nutshell,
almost all nontrivial noisy channels are complete in this sense.

However, most cryptographic constructions from noisy channels crucially re-
quire interaction, and while this is not always a barrier, there are applications
in which interaction is inherently unidirectional. Indeed, secure communication
in this setting was the topic of Wyner's work, and is a central theme in the
big body of work on �physical layer security� [14, 50]. Given only one-way noisy
communication, any functionality that can be securely realized can be expressed
as a randomized mapping f : A → B that takes an input a ∈ A from a sender S
and delivers an output b = f(a) to a receiver R. Note that, here the randomness
is internal to the functionality, and is neither known to nor can be in�uenced
by the sender or the receiver. We will give examples for useful functionalities of
this type in Section 1.3.

The goal is to realize such sender-receiver functionalities assuming that S and
R are given access to a channel C : X → Y. Such channels are usually simpler
than the target function f , and can be plausibly assumed to be available to the
parties. Well-known examples of �simple� channels that correspond to naturally
occurring processes are the binary erasure channel (BEC), which erases each
transmitted bit with some �xed probability 0 < p < 1, and the binary symmetric
channel (BSC) which �ips each bit with probability 0 < p < 1/2.

1.1 Complete Channels

The general study of secure computation from one-way noisy communication
was initiated by Garg et al. [25], who showed that one-way communication over
BEC or BSC su�ces for realizing any deterministic sender-receiver functionality.
This includes zero-knowledge proofs as a useful special case. For general, possibly
randomized, functionalities, they showed that the following random string-OT
functionality (ROT) described below (where a0, a1 are strings), is complete:

CROT(a0, a1) =

{
(a0,⊥) w.p. 1

2

(⊥, a1) w.p. 1
2 ,

This was recently extended to the case when a0, a1 are bits [2], albeit at the
(necessary) cost of allowing an inverse polynomial, rather than negligible, error.

Note that in ROT the receiver must learn exactly one of the two messages
but the sender should not be able to guess which one. This makes the secure
realization of ROT highly non-trivial. Indeed, ROT appears to be signi�cantly
more powerful than BEC and BSC, and it is not clear how to realize it by a
naturally occurring process. While BEC and BSC merely erase or �ip bits of
information randomly and independently, ROT induces a strong anti-correlation
between events, namely the receipt of a0 and the receipt of a1.

Can the anti-correlation inherent in ROT be generated �out of thin air� by
invoking simple channels such as BEC or BSC? This question was already ad-
dressed by Garg et al. [25], who showed that the simple noisy channels are indeed
not complete. In fact, ROT cannot be securely realized from such channels even
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if one considers semi-honest parties (who do not deviate from the protocol) and
allows a small constant security error.6

It is instructive to sketch the proof of this impossibility result. We consider
the more general case of a string erasure channel (SEC) that erases each input
string with probability p. The proof relies on a classical correlation inequality due
to Harris and Kleitman [33, 43], asserting that for any two monotone Boolean
functions f0, f1 : {0, 1}n → {0, 1} and for any product distribution R over
{0, 1}n, the events f0(R) = 1 and f1(R) = 1 are not anti-correlated. That is,

Pr [f0(R) = 1 ∧ f1(R) = 1] ≥ Pr [f0(R) = 1] · Pr [f1(R) = 1] .

Now, by the receiver's security requirement, even if we condition on a �typical�
joint encoding x of (a0, a1) that the sender transmits over the SEC channel,
the receiver's output should be distributed almost as prescribed by the ROT
functionality. In particular, if pi is the probability that the receiver can con-
�dently decode ai conditioned on x being sent, and Ei is the corresponding
conditional event, then p0 ≈ p1 ≈ 0.5. Letting n denote the number of invoca-
tions of the SEC, r ⊆ [n] represent the set of received symbols, and fi(r) indicate
whether Ei occurs on received set r, the Harris-Kleitman inequality implies that
Pr [E0 ∧ E1] ≥ p0 · p1 ≈ 0.25, contradicting the sender's security requirement.

The above impossibility result is purely information-theoretic and does not
give rise to a constructive attack. In particular, the functions fi are monotone
because information is monotone: more received symbols mean more con�dence.
While there are examples for non-monotonicity of information in a computational
setting, for instance in the context of generalized secret sharing [45], it is not clear
that this has any relevance to the current setting. In fact, Garg et al. [25] showed
an e�cient attack that rules out computationally secure protocols with negligible
security error. This leaves open the possibility of obtaining ROT from naturally-
occurring channels with a small constant, or better yet inverse-polynomial, error.

1.2 Our Results

In this work, we show that the impossibility result for ROT from SEC and other
simple channels can be circumvented, if one is willing to settle for security against
a computationally bounded receiver and to allow for inverse-polynomial error.
On the one hand, both of these relaxations are necessary in light of the above
mentioned impossibility results but, on the other hand, we still �nd the positive
result to be unexpected, even with these relaxations.

Our main result is cast in a generic model that assumes �ideal obfuscation,�
enabling the sender to give the receiver an oracle access to an obfuscated pro-
gram. In this generic model, we can unconditionally obtain information-theoretic
security by assuming that a malicious receiver is restricted to polynomially many

6 The argument in [25] implicitly relies on the technical assumption that the ROT
protocol is Las Vegas, in the sense that if the receiver does output a message ab,
then this message is correct; all existing protocols in this setting, including those
presented in this work, satisfy this requirement.
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queries to the program, but is otherwise computationally unbounded. Before dis-
cussing the question of instantiating the generic model, we state the main result.

Theorem 1 (Informal). There is a one-way secure computation (OWSC) pro-
tocol for ROT over the binary erasure channel (BEC) as well as the binary sym-
metric channel (BSC) using ideal obfuscation, with inverse-polynomial statistical
security error against a semi-honest sender and a query-bounded malicious re-
ceiver.

Building on Theorem 1, we can leverage the completeness of ROT for sender-
receiver functionalities [25] to obtain the following general completeness result:

Theorem 2 (Informal). BEC and BSC are (each) complete for OWSC us-
ing ideal obfuscation, with inverse-polynomial statistical security against a semi-
honest sender and a query-bounded malicious receiver.

Instantiating ideal obfuscation. A direct way of implementing the ideal ob-
fuscation in our construction is by sending (stateless) tamper-proof hardware to
the receiver. To obtain a plain-model instantiation, a natural approach is to use
indistinguishability obfuscation (iO)[6, 30] instead of ideal obfuscation. Following
the �rst candidate construction of Garg et al. [24], iO has been studied exten-
sively [26, 4, 1, 37, 19, 7, 46, 8, 15, 38, 27, 16, 54] and has been constructed from
well-studied assumptions in the recent breakthrough work of Jain, Lin and Sa-
hai [38]. Unfortunately, we were unable to prove that our protocols remain (com-
putationally) secure when replacing ideal obfuscation by iO, and consider this to
be a highly plausible conjecture. Since iO is �best possible� obfuscation [30], it
follows that if some instantiation of ideal obfuscation in our protocols is secure
then its instantiation with any iO scheme is secure. Concretely, we make the
following conjecture.

Conjecture 1 (Informal). Replacing ideal obfuscation by any secure iO scheme
in the protocol establishing Theorem 1 results in a OWSC protocol for ROT
over BEC or BSC that has inverse-polynomial computational security against a
semi-honest sender and a malicious receiver.

While there are strong negative results for instantiating ideal notions of ob-
fuscation [6, 28], these results require at least one of the building blocks to be
�contrived.� They are not known to apply to any combination of a natural (un-
broken) iO candidate and natural application. We believe that Conjecture 1 is
qualitatively similar to the leap of faith one makes when heuristically instanti-
ating natural protocols in generic models such as the Random Oracle Model [9]
or the Generic Group Model [53]. Arguably, the leap of faith in our case is quite
conservative because of the simple and �non-cryptographic� functions to which
we apply ideal obfuscation. This should be contrasted with typical applications
of obfuscation in cryptography, and also with heuristic iO candidates whose secu-
rity needs to hold even for contrived pairs of equivalent circuits. See Section 1.5
for further discussion.
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Assuming Conjecture 1, we can obtain a plain-model variant of Theorem 2
with security against a malicious sender by using OWSC for non-interactive zero
knowledge to e�ectively emulate an honest sender behavior.

Theorem 3 (Informal). Suppose iO exists and Conjecture 1 holds. Then, BEC
and BSC are (each) complete for OWSC, with inverse-polynomial computational
security against malicious sender and receiver.

We leave open the question of eliminating Conjecture 1 or, better yet, basing
the conclusion of Theorem 3 on a weaker or incomparable assumption to iO.

1.3 Why Base on One-Way Noisy Communication?

Several important cryptographic tasks can be captured as sender-receiver func-
tionalities. A natural example, already given in [25] is that of randomly gener-
ating �puzzles� without giving any of the parties an advantage in solving them.
For instance, the sender can transmit to a receiver a random Sudoku challenge,
or a random image of a one-way function, while the receiver is guaranteed that
the sender has no advantage in solving the puzzle. More generally, one could use
secure realizations of sender-receiver functionalities to unidirectionally generate
trusted parameters such as RSA moduli or common reference strings. Unlike the
common interactive solutions to such problems, here we consider a setting that
allows for completely non-interactive solutions.

Another example of a useful sender-receiver functionality is randomized blind
signatures, which can be captured by a randomized function that takes a mes-
sage and a signing key from the sender and delivers a signature on some random-
ized function of the message to the receiver (for instance by adding a random
serial number to a given dollar amount). Randomized blind signatures are a
fundamental building block for e-cash applications. They can also be used for
non-interactive certi�ed PKI generation, where an authority can issue to a user
signed public keys, while only the users learn the corresponding secret keys.

Non-interactive zero-knowledge (NIZK), which is constructed in the common
random string model, can also be implemented in the sender-receiver model, by
modeling it as a deterministic function that takes an NP-statement and a witness
from the sender and outputs the statement along with the output of the veri�ca-
tion predicate to the receiver. As noted by Garg et al. [25], NIZK over a one-way
noisy channel provides a truly non-interactive solution to zero knowledge proofs,
where no trusted common randomness is available to the parties. Moreover, this
solution can achieve useful properties of interactive zero-knowledge protocols
such as non-transferability and deniability, which are impossible to achieve in
the standard non-interactive setting.

While the above applications require security against a malicious sender, it is
also meaningful (and non-trivial) to implement protocols that are secure against
semi-honest senders. Such protocols can be generically compiled to be secure
against malicious senders by invoking NIZK in the sender-receiver model. Note
that NIZK by itself is not su�cient for realizing many non-trivial functionalities,
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including the ones mentioned above. For this, it is necessary (and su�cient) to
have a secure realization of semi-honest ROT.

Applications notwithstanding, understanding the cryptographic power of noisy
channels with one-way communication is a fundamental question from the the-
oretical standpoint.

1.4 Technical Overview

To present the new idea underlying our constructions, we focus on a protocol
for realizing ROT using a string erasure channel (SEC), with erasure probability
p = 0.5. This can be extended to BEC and BSC as required by Theorem 1. To
realize ROT, we want the symbols that the sender transmits over the SEC to
partition the probability space into two events E0 and E1, such that Pr [E0] ≈
Pr [E1] ≈ 0.5, and in each event Ei the receiver can learn ai but not a1−i.

The protocol begins by having the sender transmit a random n-tuple x ∈ Σn

over a large alphabet Σ that makes the probability of predicting an erased sym-
bol negligible. It sends x over the SEC. It then picks a small secret �test set�
S ⊂ [n] and sends to the receiver an obfuscated program F = FS,x,a that ex-
pects the receiver to report all of the symbols it received from the channel. (When
instantiating the ideal obfuscation, the sender needs to communicate the obfus-
cated program over a reliable channel; however, the latter can be implemented
with constant rate over any standard noisy channel.) After checking that each
unerased symbol reported by the receiver matches the corresponding symbol in
x, the program F counts how many symbols from the secret set S were reported;
if this number is bigger than |S|/2 it outputs a1, otherwise it outputs a0.

Sender input: a = (a0, a1).
Sender: Sample random x ∈ Σn and send x over SEC.
Sender: Sample random S ⊂ [n] of size

√
n and send an obfuscation of F =

FS,x,a over reliable channel.
Receiver: Output F (y), where y is the sequence of non-erased symbols.

Fig. 1: ROT from String Erasure Channel (SEC)

The erasures induced by the channel are independent of x, and so whether the
receiver outputs a0 or a1 is independent of the sender's view. Thus, the protocol
is secure even against a computationally unbounded semi-honest sender.

For security against the receiver, we consider two cases. If the channel delivers
a minority of the symbols from S, then an honest receiver can legitimately obtain
a0 from F , and even a dishonest receiver will need a super-polynomial number
of calls to F to guess even one of the missing symbols.

On the other hand, what if the channel delivers a majority of the symbols
from S, which occurs with probability ≈ 0.5? In this case, a dishonest receiver
can obtain both messages by �rst acting honestly, legitimately obtaining a1, and
then invoking F again and obtaining a0 by just �forgetting� some of the received
symbols. The latter attack seems inherently impossible to defend against. How
can we expect a receiver who obtained few symbols from S to prove its ignorance?
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It turns out, however, that there is a surprisingly simple solution: F will not
deliver a0 when the total reported number of received symbols is signi�cantly
below n/2. In other words, F does not trust a receiver who claims to be too
unlucky. Intuitively, the reason this simple approach works is that S is both
small and secret. So without knowledge of S, for every symbol in S that the
receiver tries to �forget� it needs to unwillingly forget a large number of additional
received symbols. By choosing the size of S and the �unluckiness� threshold
carefully, we can ensure that successfully mounting the above �forgetting� attack
is computationally infeasible except for a bad event that occurs with inverse-
polynomial probability.

The analysis however requires more care and crucially relies, in addition to
standard Cherno�-style concentration inequalities, on a simple anti-concentration
phenomenon: the binomial distribution with n trials is almost always Ω(n1/2)-far
from its mean. Metaphorically speaking, the events E0 and E1 that are separated
by this anti-concentration can be viewed as �computational black holes� whose
disjoint gravity zones cover almost the entire probability space.

In a bit more detail, for a transmitted x ∈ Σn and set V ⊆ [n] indicating
non-erased coordinates, let x|V denote the vector x with all coordinates outside
of V replaced by a special erasure symbol ⊥. Set the �unluckiness� threshold to
be n/2− n0.51 and the size of S to be

√
n. De�ne the function F as:

FS,x,a (y|V ) =


(⊥,⊥) if (y|V 6= x|V ) ∨

(
|V | < n/2− n0.51

)
,

(a0,⊥) otherwise if |V ∩ S| < |S|/2,
(⊥, a1) otherwise.

where y|V denotes a n-tuple of presumably received symbols.
An honest receiver, who always feeds y|V = x|V to F , gets unlucky with

negligible probability. This is because, over the random erasures of the SEC,
Pr
[
|V | ≥ n/2− n0.51

]
> 1 − negl(n), and conditioned on this event, |V ∩ S| is

symmetrically distributed around |S|/2. In particular, the output of F is almost
equally likely to be a0 as it is to be a1.

A dishonest receiver, on the other may attempt to learn both a0 and a1
by feeding y|U to F , where U 6= V does not correspond to the set of non-
erased coordinates. This is not a problem if y|U 6= x|U as in such a case F will
output (⊥,⊥), but there is always a chance that the receiver can come up with
y|U = x|U . Here we have two possible cases:

U is not contained in V . This case can be ruled out when |Σ| is super-
polynomially large, as it requires the receiver to correctly guess a randomly
sampled xi for i ∈ U \ V .

U is a strict subset of V . In this case, one cannot prevent the receiver from
feeding an input y|U = x|U , as this merely amounts to erasing symbols from
the received string x|V . Here, the only hope for the receiver to obtain both
a0 and a1 is to be able to transition from the case |V ∩ S| ≥ |S|/2 to the
case |U ∩ S| < |S|/2. Note that, by anti-concentration, in this case |V ∩ S|
is likely larger than |S|/2 by Ω(

√
|S|) and, moreover, S is secret, hence the
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receiver cannot just �nd such U by only removing few elements of V in an
exhaustive search. On the other hand, if the receiver tries to forget many
symbols from the unknown S by just forgetting many symbols from V , it
will hit the unlucky zone where F returns (⊥,⊥).

To prevent attacks as in the �rst case, it is imperative that the obfuscation of F
hide x. Avoiding attacks as in the second case, on the other hand, requires the
obfuscation to hide S. What type of obfuscation would be su�cient for hiding x
and S? Ideal obfuscation limits the receiver to black-box access to F . Intuitively,
this means that the receiver's attempts to mount the above attacks are restricted
to random guesses, as x and S are information theoretically hidden.

1.5 Discussion

The unconditional result given by Theorem 1 (and subsequent theorems that
build on it) captures the main contribution of this work. Our use of ideal obfus-
cation is technically equivalent to having a single, stateless, tamper-proof hard-
ware token shipped from the sender to the receiver. In fact, unlike current can-
didates for cryptographic obfuscation, such an approach may be e�cient enough
to be implemented. Thus, our results can be cast as part of a long line of theory-
oriented works on cryptography using tamper-proof hardware (see [40, 29, 32, 5],
along many others).

From a complexity theoretic point of view, the ideal obfuscation primitive
can be viewed as a (succinctly described) oracle generated by the sender, such
that security holds unconditionally with respect to any query-bounded receiver
that has access to this oracle. For instance, this is the model used in works
on zero-knowledge PCP [42, 36, 47]. Alternatively, it can be seen as a second,
�resettable� sender, analogously to the multi-prover proof model [10, 39, 31, 11].

An unusual aspect of our main feasibility result that separates it from almost
all nontrivial applications of obfuscation in cryptography is that it is based on
ideal obfuscation alone, without making any additional assumptions such as the
existence of one-way functions (or alternatively NP 6⊆ io-BPP [44]). In particular,
the functions we obfuscate are simple, explicit and �non-cryptographic.�

We also note the analogy with the Random Oracle Model (ROM) method-
ology: there is a long tradition in cryptography of using a construction in an
idealized �generic� model, such as the ROM [9], as a stepping stone towards
heuristic plain-model realizations. The latter are obtained by using concrete
hash functions as a substitute for the random oracle. For example, constructions
of transparent SNARGs for NP follow this approach [49]. Our proposal is analo-
gous: heuristically instantiate the ideal obfuscation by using any iO construction
from the literature. There are strong negative results for instantiating ideal no-
tions of obfuscation [6]. These are in a sense analogous to similar negative results
for instantiating the ROM [18]. However, similarly to ROM instantiations, we
do not see a reason why these negative results should apply to a combination of
a natural application and a natural iO construction that was not designed with
a counterexample in mind.
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Finally, most solutions for natural cryptographic tasks that were initially
cast in idealized models were later followed by plain-model constructions under
simple and plausible cryptographic assumptions. We expect the current work to
follow a similar path.

2 Preliminaries

Notation. We write x ← X to denote the process of freshly sampling a uni-
formly random element x from a �nite set X . We denote the i-th coordinate of
a vector x ∈ Xn by either xi or x(i). For a vector x ∈ Xn and set A ⊆ [n], the
restriction of x to A, denoted by x|A, is the length n vector in (X ∪ {⊥})n with
all the coordinates outside of A replaced by a special erasure symbol ⊥. That
is, x|A (i) = x(i) if i ∈ A and x|A (i) = ⊥ otherwise. The notation

(
[n]
k

)
denotes

the family of all subsets of [n] with size k.

2.1 Sender-Receiver Functionalities and Channels

We study secure computation tasks that are made possible by one-way commu-
nication over a noisy channel. Such tasks can be captured by sender-receiver
functionalities, that take an input from a sender S and deliver a (possibly) ran-
domized output to a receiver R. In the randomized case, the randomness is picked
by the functionality and is not revealed to the sender or the receiver. More pre-
cisely, a sender-receiver functionality is a randomized mapping f : A → B that
takes an input a ∈ A from a sender S and delivers an output b = f(a) to a
receiver R. We will sometimes refer to f simply as a function.

In order to realize f , we assume that S and R are given parallel access to
a channel C : X → Y. A channel is also a sender-receiver functionality but is
usually much simpler than the target function f . We de�ne three channels of
interest below.

� BSC. CpBSC denotes the Binary Symmetric Channel (BSC) with crossover
probability p: i.e., for input x ∈ {0, 1}, the output CpBSC(x) is 1 − x with
probability p and is x otherwise.

� SEC and BEC. CpSEC denotes the String Erasure Channel (SEC) which takes
an input string of a �xed length and outputs ⊥ with probability p and x
otherwise. When the string length is 1, CpSEC is called a Binary Erasure Channel
(BEC), and denoted by CpBEC. When p = 1

2 , we may omit it from the notation.

� ROT. The (String) Randomized Oblivious Transfer channel CROT takes as
input a pair of �xed-length strings (x0, x1) and outputs (x0,⊥) or (⊥, x1)
with probability 1

2 each.

For brevity, we shall write C(x1, . . . , xm) to denote (C(x1), . . . , C(xm)), i.e.,
the outcome of m independent invocations of a channel C.
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2.2 Secure Computation with One-Way Communication

A secure protocol for f : A → B over a channel C is formalized via the standard
de�nitional framework of reductions in secure computation. Our de�nitions are
in fact simpler because of the non-interactive setting. We start with the sim-
plest case of de�ning information-theoretic security against semi-honest parties
for a �nite function f , ignoring computational complexity. We then describe
extensions to malicious parties, computational security, and in�nite families of
functions.

OWSC protocols. A one-way secure computation protocol for f over C spec-
i�es a randomized encoder that maps the sender's input a into a sequence of
channel inputs x, and a decoder that maps the receiver's channel outputs y into
an output b. Up to an error bound parameter ε, the protocol should satisfy the
following security requirements: (i) given the sender's view, which consists of an
input a and the messages x that it fed into the channel, the receiver's output
should be distributed as f(a), and (ii) the view of the receiver, namely the mes-
sages y it received from the channel, can be simulated from f(a). Note that (i)
captures receiver security against a semi-honest sender as well as correctness,
while (ii) captures sender security against the receiver. Also note that since the
receiver does not send messages, whether it is semi-honest or malicious does not
make a di�erence. We formalize the above security requirements below, using ∆
to denote statistical distance.

De�nition 1 (One-way secure computation: semi-honest sender). Given
a randomized function f : A → B and a channel C : X → Y, a pair of random-
ized functions 〈S,R〉, where S : A → Xn and R : Yn → B, is said to be an
ε-secure OWSC protocol for f over C (with semi-honest sender) if there exists a
simulator SR : B → Yn, such that for all a ∈ A, the following hold:

∆ ((S(a), f(a)) , (S(a),R(C(S(a))))) ≤ ε (Security against semi-honest sender)

∆
(
SR(f(a)) , C(S(a))

)
≤ ε (Security against receiver)

OWSC for malicious parties. In the case of a malicious sender, our security
requirement coincides with the standard notion of universally composable (UC)
security [17], but with simpli�cations implied by the communication model. The
extra security requirement in this case is that for any strategy of the sender (for
choosing x), a simulator is able to extract a valid input. Formally, an OWSC
protocol for f over C is secure against malicious parties if, in addition to the
requirements in De�nition 1, there exists a randomized simulator SS : Xn → A
such that for every x ∈ Xn,

∆
(
f(SS(x)) , R(C(x))

)
≤ ε (Security against malicious sender)

Note that the �rst condition of De�nition 1 is retained to imply correctness when
the sender is honest, and the second condition implies security against malicious
receiver as well.
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OWSC with computational security. We can naturally relax the above def-
inition of (statistical) ε-secure OWSC to a computationally (T, ε)-secure OWSC,
for a distinguisher size bound T , by replacing each statistical distance bound
∆ (A,B) ≤ ε by the condition that for all circuits C of size T , |Pr[C(A) =
1]− Pr[C(B) = 1]| ≤ ε.
Universal Protocols and Complete channels for OWSC. So far, we
considered OWSC protocols for a concrete �nite function f and with a concrete
level of security. However, in a cryptographic context, one is often interested in a
single �universal� protocol in which the sender and the receiver are given a circuit
f̂ , representing a function f , and a security parameter 1λ as common inputs
(in addition to the sender being given an input a for f). More generally, one
may consider any computational model � i.e., a representation of the function �
instead of circuits (e.g., in the context of information-theoretic security, it will
be useful to consider weaker representation models such as branching programs).

In a polynomial time universal protocol Π = 〈S,R〉, both S and R run in
time polynomial in λ. Protocol Π is said to be a universal ε-secure (resp., (T, ε)-

secure) OWSC protocol for F over C, if for all f̂ ∈ F with |f̂ | ≤ λ, the protocol
obtained from Π by �xing the common inputs to (f̂ , 1λ) is an ε(λ)-secure (resp.,
(T (λ), ε(λ))-secure) OWSC for f over C, where f denotes the function repre-

sented by f̂ .
While F above can be a narrow class of functions (e.g., string OTs), we shall

be particularly interested in the case where it is a general computational model
like circuits or branching programs. If a channel C enables such a universal pro-
tocol, we say that C is OWSC-complete for the corresponding computational
model. We will distinguish between completeness with inverse-polynomial error
and completeness with negligible error, depending on how fast the error van-
ishes with λ. We will also distinguish between completeness with statistical vs.
computational security and between semi-honest vs. malicious senders.

De�nition 2 (OWSC-complete channel). For a computational model F ,
we say that C is OWSC-complete with inverse-polynomial statistical error if,
for every c > 0, there is a polynomial-time universal ε-secure OWSC protocol
for F over C, where ε(λ) = O( 1

λc ). We say that C is OWSC-complete with
negligible statistical error if there exists a polynomial-time universal ε-secure
OWSC protocol for F over C for some negligible function ε.

We say that C is computational OWSC-complete with inverse-polynomial
statistical error (resp., negligible statistical error) if, for every c > 0, there exists
a polynomial-time universal OWSC protocol Π such that for every polynomial
T (λ), Π is a (T, ε)-secure OWSC protocol for F over C, where ε(λ) = O( 1

λc )
(resp., ε is negligible).

Completeness as de�ned above is said to be against malicious parties if the
de�nition of secure OWSC used is against malicious parties, with the simulator
SS being polynomial time.

As discussed above, useful instantiations of F include circuits, branching pro-
grams, and string-ROT. We will assume statistical security against semi-honest
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parties by default, and will explicitly indicate when security is computational or
against malicious parties.

OWSC using ideal obfuscation. Our results, which are information-theoretic
in nature, make use of obfuscation as an ideal primitive. An OWSC protocol for
f over C using ideal obfuscation is de�ned similarly to the above except that,
in addition to its inputs x for the channel C, the sender speci�es a function F
(using, say, a circuit F̂ ), to which the receiver is only given (bounded) oracle
access. An honest receiver can make a single query q to F after observing the
outputs y of C, and then compute the output b based on y and F (q). To de�ne
security, we extend the syntax of De�nition 1 by adding a query bound parameter
Q. The de�nition of ε-security against the receiver is modi�ed to (Q, ε)-security
as follows. The simulator SR is now an interactive algorithm that interacts with
an arbitrary Q-bounded R∗. Given input b (output of f), SR �rst generates
and sends to R∗ a simulated channel output y, and then provides a simulated
response for each F -query made by R∗. We require that for every Q-bounded R∗

and sender input a ∈ A, the following holds:

∆
(
[SR(f(a))↔ R∗] , [F ↔ R∗(C(x)) | (F̂ , x)← S(a))]

)
≤ ε

(Security against a query-bounded receiver)

Here [SR(f(a))↔ R∗] is the ideal-world transcript of the interaction of SR(f(a))
with R∗, and [F ↔ R∗(C(x))] denotes the real-world transcript of R∗ interacting
with the channel C and F , on sender input a. Note that in the latter F denotes
the function corresponding to F̂ generated by S(a). The completeness notions
in De�nition 2 are adapted to the ideal obfuscation setting by requiring that for
every polynomial query bound Q(λ), there is an appropriate ε such that Π is a
universal (Q, ε)-secure OWSC protocol.

2.3 Probability Preliminaries

We state an anti-concentration bound for binomial distribution, which we cru-
cially use in the analysis of all our constructions. The statement of the lemma
is quoted verbatim from [52, Theorem 4.6].

Lemma 1 (Anti-concentration). Let 0 < p < 1, and X = X1 + . . . +
Xn, where, for each i ∈ [n], Xi is independently and identically distributed as
Bernoulli(p). There exists Θp > 0 depending only on p (where Θ 1

2
= 1), such

that, for all 0 ≤ k ≤ n, we have Pr [X = k] ≤ Θp√
n
.

Following is a standard concentration inequality required for the analysis of
our protocols.

Lemma 2 (Cherno� bound). Let 0 < p < 1, and X1, . . . , Xn be random vari-
ables such that for each i ∈ [n], Xi is independently and identically distributed as
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Bernoulli(p). Further, let X = X1+X2+ . . .+Xn. When µ denotes the expected
value of X, i.e., µ = E (X) = p · n,

(i) Pr [X ≥ (1 + δ)µ] ≤ e−
δ2

2+δµ for all δ > 0,

(ii) Pr [X ≤ (1− δ)µ] ≤ e−µ δ
2

2 for all δ ∈ (0, 1).

In particular, for all η ∈
(
1
2 , 1
)
, for su�ciently large n,

(iii) Pr [X ∈ [p(n− nη), p(n+ nη)]] ≥ 1− 2e−
1
4pn

2η−1

= 1− negl(n).

Proof: (iii) follows from applying (i) and (ii) by setting µ = p · n and δ = nη−1

p .

Note that δ ∈ (0, 1) for su�ciently large n. �

3 ROT from SEC Using Ideal Obfuscation

In this section, we prove that ROT can be realized using a string erasure channel
(with erasure probability p = 0.5), assuming ideal obfuscation, following the
sketch discussed in Section 1.4. In more detail, we prove:

Theorem 4 (ROT from SEC using ideal obfuscation). There exists an
OWSC protocol for string-ROT over SEC using ideal obfuscation, with inverse-
polynomial statistical security against a semi-honest sender and a query-bounded
receiver.

More concretely, for any constant c > 0, there exists an OWSC protocol
which, for all λ, t ∈ N, realizes t-bit string ROT with ε-security against a semi-
honest sender and a polynomial query-bounded receiver, using n invocations of
`-bit SEC and an ideal obfuscation of a circuit F̂ , when ε = O( 1

λc ), n = O(λ8c),
` = ω(log λ), and |F̂ | = O(t+ λ16c).

Proof: An OWSC protocol 〈S,R〉 for t-bit string ROT over `-bit SEC is provided
in Figure 2. The proof follows the argument sketched in the technical overview
(See Section 1.4). We will use the following lemmas to prove the theorem; they
are formally proved in the full version of this work [3] using the anti-concentration
bound (Lemma 1) and Cherno� bound (Lemma 2).

Lemma 3. Let η > 1
2 , and U, V be arbitrary subsets of [n] such that |U |, |V | ∈

[n−n
η

2 , n+n
η

2 ] and V ⊆ U . For all δ ∈ (η − 1
2 ,

1
2 ), and for su�ciently large n,

Pr
S←( [n]√

n)

[
|S ∩ V | ≤

√
n

2

∣∣∣∣|S ∩ U | ≥ √n2 + nδ
]
≤ e−n

δ

4 +6.

Lemma 4. Let k ∈ [n−n
η

2 , n+n
η

2 ] and 0 < δ < min( 14 , 1 − η). For su�ciently

large n such that
√
n
2 is an integer, for any S ⊂ [n] with |S| =

√
n,

Pr
U←([n]

k )

[
|S ∩ U | ∈

[√
n

2
− nδ,

√
n

2
+ nδ

]]
≤ 2nδ−

1
4 e3.
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Correctness. For any x = (x1, . . . , xn) such that xi ∈ {0, 1}`, the output of
CSEC on input x is CSEC(x) = x|U , where U is a uniformly random subset of
[n]. Hence, when |S| =

√
n is an odd number, by symmetry, the event |U ∩

S| ≤ |S|2 =
√
n
2 occurs with probability 1

2 . By Lemma 2, with all but negligible
probability, |U | ≥ n

2 −n
0.51. Hence, by a union bound, FS,x,a0,a1(x|U ) = (a0,⊥)

with probability 1
2 − negl(n) and FS,x,a0,a1(x|U ) = (⊥, a1) with probability

1
2 − negl(n). This proves the correctness of the protocol.

Security. Next, we argue that the protocol presented in Figure 2 achieves sender
and receiver privacy. To argue receiver privacy against (even a computationally
unbounded) semi-honest sender, we need to show that for all (a0, a1), it holds
that:

∆ ((S(a0, a1), CROT(a0, a1)) , (S(a0, a1),R(CSEC(S(a0, a1))))) ≤ negl(n)

Note that the erasures induced by the string erasure channel are independent of
the input to the channel. Hence, as we already observed, for any x sent by the
sender, the receiver R obtains x|U , where U is a uniformly random subset of [n],
independent of x (as well as single query access to FS,x,a0,a1). By de�nition of
F , the output of an honest receiver, viz. FS,x,a0,a1(x|U ), is only a function of
the size of the sets U and U ∩ S. Thus, whether the receiver outputs (a0,⊥) or
(⊥, a1) is independent of the view of the sender. Receiver privacy now follows
from the fact that the receiver is correct with negligible error.

To argue sender privacy, we need to construct a simulator SR : B → Yn
as an interactive algorithm that interacts with an arbitrary Q-bounded R∗. In
the sequel, for ease of presentation, for a0, a1 ∈ {0, 1}t, we will denote (⊥, a1)
by (1, a1) and (a0,⊥) by (0, a0) (i.e., we will use the format (index revealed,
message at the revealed index)). Given input (b, ab) for a random bit b, SR �rst
generates and sends to R∗ a simulated channel output y, and then provides a
simulated response for each F -query made by R∗.

Simulator SR(b, ab):

1. Sample S ←
( [n]√

n

)
.

2. Let x = (x1, . . . , xn), where xi ← {0, 1}` for i ∈ [n].

3. Sample U ← 2[n] conditioned on

(a) |U ∩ S| ≥
√
n
2 if b = 0,

(b) |U ∩ S| <
√
n
2 if b = 1.

4. Output x|U to R∗.

Next, the simulator answers Q queries by R∗ to FS,x,a0,a1 as follows: Upon
query y|V , if

(
|V | ≥ n

2 − n
0.51
)
∧(y|V = x|V ) it outputs (b, ab). If not, it outputs

⊥.
We will argue that the statistical distance between the simulated transcript

resulting from the interaction of SR(b, ab) with R∗ and the real view of R∗ on

sender input (a0, a1) is at most O(n−
1
8 ). The distribution on x|U received by
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R∗ is identical when it interacts with S or with the simulator SR. It remains
to argue that R∗ cannot make a query which SR(b, ab) cannot simulate (except
with probability O(n

−1
8 )).

First, we argue that,

Pr

[
|U | ∈

[n
2
− n0.51, n

2
+ n0.51

]
and |U ∩ S| /∈

[√
n

2
,

√
n

2
+ n

1
8

]]
≥ 1−O(n

−1
8 ). (1)

To see this, observe that by Lemma 2, with all but negligible probability, |U | ∈[
n
2 − n

0.51, n2 + n0.51
]
. Conditioned on this event, by Lemma 4, probability with

which |U ∩ S| ∈ [
√
n
2 − n

1
8 ,
√
n
2 + n

1
8 ] is O(n−

1
8 ).

Now we show that in the above event, the simulator answers any query by R∗

as in the real world, except with negligible probability. To see this, note that the
simulator has access to ab, and the only cases in which it cannot answer correctly
is when R∗ makes a query to F̂ whose output is (1 − b, a1−b). We argue that
this does not happen, except with negligible probability. Consider the following
cases:

Case 1: |U ∩ S| <
√
n
2 . R∗ is given x|U where FS,x,a0,a1(x|U ) = (⊥, a1). To

recover a0, R
∗ must output (y|V ) such that |V ∩ S| ≥

√
n
2 and y|V = x|V .

However, since ∀i ∈ [n], xi is uniform in {0, 1}`, the probability of guessing
even a single string xi is negligible. Thus in this case, R∗ succeeds with
probability at most 2−`, which is negligible.

Case 2: |U ∩ S| ≥
√
n
2 + n

1
8 . R∗ is given x|U s.t. FS,x,a0,a1(x|U ) = (a0,⊥). To

recover the other output a0, R
∗ must output (y|V ) such that |V ∩ S| <

√
n
2

and y|V = x|V . As before, for any i /∈ U , it can guess xi correctly only with
negligible probability. By Lemma 3, when |U | ≤ n

2 + n0.51 (this happens
with overwhelming probability by Lemma 2), for all V ⊆ U such that |U | ≥
n
2 − n

0.51, the probability that |V ∩ S| <
√
n
2 is negligible. Thus in this case

also, R∗ succeeds in coming up with a query that makes FS,x,a0,a1 output
(1− b, a1−b) with at most negligible probability.

Thus, by taking a union bound, we can conclude that the simulator can answer
the queries of a poly(λ)-bounded R∗ except with negligible probability.

Finally, we show the bound on the circuit |F̂ | in the theorem statement. Each
position of the input y is encoded using `+1 bits, with say, the �rst bit used as
a �ag denoting if it is ⊥. Then a circuit of size O(n2) on the n �ag bits su�ces
for computing the two threshold conditions on |V | and |V ∩ S| used in F , and a
circuit of size O(n`) su�ces to compute the equality condition x|V = y|V . The
output is encoded, say, as (b, ab) for b ∈ {0, 1} with an additional �ag to indicate
if it is (⊥,⊥). Each of these t+ 2 output bits can be computed as a function of
two bits from a0 and a1 and the three condition bits computed above. So overall
F̂ is of size O(t+ n2 + n`)). The theorem now follows by setting n = λ8c. This
concludes the proof. �
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ROT from String Erasure Channel

Function F

Parameters: S ⊆ [n] with |S| =
√
n, x = (x1, . . . , xn), where xi ∈ {0, 1}` for

i ∈ [n], a0, a1 ∈ {0, 1}t.
Input: y = (y1, . . . , yn), where, for all i ∈ [n], yi ∈ {0, 1}` or yi = ⊥. We write
y|V to indicate that V = {i|yi 6= ⊥}.

FS,x

(
y|V , a0, a1

)
=


(⊥, a1), if

(
|V | ≥ n

2
− n0.51

)
∧
(
y|V = x|V

)
∧ (|V ∩ S| <

√
n
2
),

(a0,⊥), if
(
|V | ≥ n

2
− n0.51

)
∧
(
y|V = x|V

)
∧ (|V ∩ S| ≥

√
n
2
),

(⊥,⊥), otherwise.
(2)

We write FS,x,a0,a1(·) to denote FS,x(·, a0, a1).

Sender S(a0, a1)

(inputs a0, a1 ∈ {0, 1}t)
1. Sample S ←

( [n]√
n

)
2. Let x = (x1, . . . , xn),

where each xi ← {0, 1}`.
3. Output (F̂ ,x) where F̂ is

a circuit for FS,x,a0,a1 .

x sent over CSEC

F̂ given as
oracle to R

Receiver R

(with 1-query access to F )

1. Receive CSEC(x) = x|U
where U ← 2[n].

2. Output F
(
x|U

)
.

Fig. 2: The OWSC protocol 〈S,R〉 for realizing ROT over the string erasure
channel assuming ideal obfuscation.

4 Completeness of BEC and BSC Using Ideal Obfuscation

In this section, we show that the binary erasure channel and the binary symmet-
ric channel are (each) complete, assuming ideal obfuscation. In Section 4.1, we
construct the string erasure channel from the binary erasure channel and from
the binary symmetric channel. We then appeal to a composition theorem 5 to
argue that BEC/BSC can be used to construct ROT. Finally, in Section 4.2 we
discuss completeness of BEC/BSC for general sender-receiver functionalities.

4.1 String Erasure Channel from BEC/BSC

In this section, we provide constructions of string erasure channel from binary
erasure channel and from binary symmetric channel using ideal obfuscation. 7

7 We remark that OWSC of SEC over BEC with inverse polynomial statistical secu-
rity exists without using ideal obfuscation. Such a protocol can be obtained following
the ideas in [2], where an OWSC protocol was constructed for string-ROT over bit-
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We �rst de�ne a quantity that will be used in the construction and analysis
of the following protocols. Let 0 < p < 1, and X1, . . . , Xn be random variables
such that for each i ∈ [n], Xi is independently and identically distributed as
Bernoulli(p). Further, let X = X1 +X2 + . . .+Xn. De�ne

Centre(p, n) = max

{
t ∈ [n] : Pr [X < t] ≤ 1

2

}
.

Claim 1. For Θp > 0 that depends only on p (as described in Lemma 1),

Pr [X ≤ Centre(p, n)] ∈
(
1

2
,
1

2
+
Θp√
n

]
.

Proof: Pr [X = Centre(p, n)] ≤ Θp√
n
by the anti-concentration bound in Lemma 1.

Claim follows from this and the de�nition of Centre(p, n). �

We now proceed to formally state and prove the �rst main result in this
section.

Lemma 5 (SEC from BEC using ideal obfuscation). There exists an
OWSC protocol for SEC over BEC using ideal obfuscation, with inverse-polynomial
statistical security against a semi-honest sender and a query-bounded receiver.

More concretely, for all p ∈ (0, 1) and c > 0, there exists an OWSC protocol
which, for all λ, ` ∈ N, realizes `-bit SEC with ε-security against a semi-honest
sender and a polynomial query-bounded receiver, using n invocations of the BEC
with erasure probability p and an ideal obfuscation of a circuit F̂ , when ε =
O( 1

λc ), n = O(λ4c), and |F̂ | = O(` · λ8c).

Proof: The OWSC protocol 〈S,R〉 for an `-bit SEC over BEC with erasure
probability p ∈ (0, 1) is provided in Figure 3. We argue correctness and security
below.

Correctness. Since CpBEC erases each bit in x with probability p independently,
the number of non-erasures |U | is distributed according to Binomial(n, 1 − p).
Hence, by Claim 1, the probability with which receiver reports an erasure is

Pr [|U | ≤ Centre(1− p, n)] ∈
(
1

2
,
1

2
+
Θ1−p√
n

)
.

Thus, the input string a is output with probability 1
2 (with inverse polynomial

bias), which proves correctness of SEC.

Security. We �rst prove the statistical security against a computationally un-
bounded semi-honest sender by arguing that for all a ∈ {0, 1}`

∆ ((S(a), CSEC(a)) , (S(a),R(C
p
BEC(S(a)))) ≤

Θ1−p√
n
.

ROT with inverse polynomial statistical security. We do not explore the possibility
of building such an OWSC protocol for SEC over BSC. Instead, we stick to con-
structions using ideal obfuscation since our next step towards realizing OWSC of
ROT over BEC/BEC, i.e. of constructing OWSC of ROT over SEC, anyway uses
ideal obfuscation.

17



String Erasure Channel from Binary Erasure Channel

Function F

� Parameters: x ∈ {0, 1}n and a ∈ {0, 1}`.
� Input: y|V such that V ⊆ [n] and yi ∈ {0, 1}n for all i ∈ V .

Fx(y|V , a) =

{
a, if (y|V = x|V ) ∧ (|V | > Centre(1− p, n)),
⊥, otherwise.

We write Fx,a(·) to denote Fx(·, a).

Sender S(a ∈ {0, 1}`)

1. x← {0, 1}n.
2. Output (F̂ ,x) where F̂ is

a circuit for Fx,a.

x sent over CpBEC

F̂ given as
oracle to R

Receiver R

(with 1-query access to F )

1. Receive x|U = CpBEC(x).
2. Output F (x|U ).

Fig. 3: Protocol 〈S,R〉 for realizing `-bit string-Erasure Channel using n invoca-
tions of a binary erasure channel with erasure probability p ∈ (0, 1).

The erasure pattern over n uses of the channel is independent of the sender's
input x. Consequently, whether the receiver outputs a or ⊥ is independent of
the view of the sender. The bound on the statistical distance now follows from
the correctness of the protocol.

To argue security against the receiver, we need to construct a simulator
SR : B → Yn as an interactive algorithm that interacts with an arbitrary
poly(n)-bounded R∗. Given input a ∈ {0, 1}`∪{⊥}, SR �rst generates and sends
to R∗ a simulated channel output y, and then provides a simulated response for
each F̂ -query made by R∗.

Simulator SR(a): Simulator constructs y as follows:

1. Sample x← {0, 1}n

2. Sample erasure pattern [n] \ U (as generated on n independent uses of CpBEC)
under the conditioning |U | > Centre(1 − p, n) if a 6= ⊥ and under the condi-
tioning |U | ≤ Centre(1− p, n) if a = ⊥.

3. Output x|U to R∗.

For Q queries by R∗ to F , the simulator replies to a query y|V follows:

� Case 1: If |U | > Centre(1− p, n), simulator outputs Fx,a(y|V ) as it has access
to x, a, and U .

� Case 2: If |U | ≤ Centre(1− p, n), simulator simply outputs ⊥.
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Since the distribution on x|U received by R∗ is identical when it interacts with S
or with the simulator SR, it is su�cient to argue that R∗ cannot make any query

which SR cannot correctly respond to, except with probability O(n
−1
4 ). In case

1, when |U | > Centre(1 − p, n), the simulator/predictor can honestly compute
Fx,a(y|V ) and the query is answered correctly. In case 2, the simulator/predictor
fails if R∗ makes a query y|V such that Fx,a(y|V ) = a. De�ne the set

Bad =
{
U : |U | ∈

[
Centre(1− p, n)− nδ,Centre(1− p, n)

)}
.

Since [n] \ U is the erasure pattern during n independent uses of CpBEC, |U | is
distributed according to the Binomial(n, 1 − p) distribution independent of x.
Hence, for all x ∈ {0, 1}n, by applying the anti-concentration bound in Lemma 1
together with a union bound,

Pr[Bad] = Pr
U

[
|U | ∈

[
Centre(1− p, n)− nδ,Centre(1− p, n)

)]
≤ Θ1−p√

n
· nδ.

We will show that, except under the event Bad (which happens with probability

at most Θ1−p ·n−
1
4 , when δ = 1

4 ), R
∗ outputs a query y|V such that Fx,a(y|V ) =

a with negligible probability. Taking a union bound over poly(n) queries, we
achieve the desired security condition.

It su�ces to show that for all a ∈ {0, 1}` and computationally unbounded
algorithms Adv that take x|U as input,

Pr
x←{0,1}n,U

[Fx(y|V , a) 6= ⊥|¬Bad, y|V = Adv(x|U ), Fx(y|V , a) = ⊥] = negl(n).

(3)

The event `¬Bad and Fx(y|V , a) = ⊥' is the same as `|U | ≤ Centre(1−p, n)−nδ'.
Hence,

Pr
x←{0,1}n,U

[Fx(y|V , a) 6= ⊥|¬Bad, y|V = Adv(x|U ), Fx(y|V , a) = ⊥]

≤ Pr
x←{0,1}n,U

[
|V \ U | ≥ nδ and y|V \U = x|V \U

∣∣∣
|U | ≤ Centre(1− p, n)− nδ, y|V = Adv(x|U )

]
≤ Pr
xi←{0,1},∀i∈[nδ]

[
yi = xi,∀i ∈ [nδ]

]
= 2−n

δ

.

The function F can be realized using ` + 1 Boolean circuits (to compute
each bit of the output encoded with one extra bit to report ⊥). When the input
is appropriately encoded, the Boolean circuits need to compute a thresholding
function on n-bit inputs (quadratic blow-up), and equality check for O(n)-bit
inputs (linear blow-up). Hence, the size of F̂ is O(` ·n2). The lemma now follows
by setting n = λ4c. This concludes the proof. �

We would like to remark that the above construction can also be used to
realize string erasure channel with erasure probability 1

2 from another string
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erasure channel (possibly of di�erent string length) with arbitrary probability of
erasure (`′-bit CpSEC for 0 < p < 1). We can then put this result together with
the result in Theorem 4 to show that ROT can be realized from general SEC
(See Section 4.2).

Using a similar construction we can realize string erasure channel from binary
symmetric channel using ideal obfuscation. Formally, we prove the following
lemma:

Lemma 6 (SEC from BSC using ideal obfuscation). For p ∈ (0, 12 ), there
exists an OWSC protocol for SEC over BSC with crossover probability p us-
ing ideal obfuscation, with inverse-polynomial statistical security against a semi-
honest sender and a query-bounded receiver.

More concretely, for all p ∈ (0, 12 ) and c > 0, there exists an OWSC protocol
which, for all λ, ` ∈ N, realizes `-bit SEC with ε-security against a semi-honest
sender and a polynomial query-bounded receiver, using n invocations of the BSC
with crossover probability p and an ideal obfuscation of a circuit F̂ , when ε =
O( 1

λc ), n = O(λ4c), and |F̂ | = O(` · λ8c).

Proof: The OWSC protocol 〈R,S〉 for SEC over BSC is provided in Figure 4.
We argue correctness and security below.

Correctness. Since CpBSC �ips each bit in x with probability p independently,
|x⊕ y| is distributed according to Binomial(n, p). Hence, by Claim 1,

Pr [|x⊕ y| ≤ Centre(p, n)] ∈
(
1

2
,
1

2
+Θp · n−

1
2

)
.

Thus, the input string a is output with probability 1
2 (with inverse polynomial

bias), which proves correctness of SEC.

Security. We �rst argue statistical security against a computationally un-
bounded semi-honest sender by showing that for all a ∈ {0, 1}`

∆ ((S(a), CSEC(a)) , (S(a),R(C
p
BSC(S(a)))) ≤ Θp · n

− 1
2 .

Observe that the noise added by the BSC is independent of the sender's input
x. Consequently, whether the receiver outputs a or ⊥ is independent of the
view of the sender. The bound on the statistical distance now follows from the
correctness of the protocol.

To argue security against the receiver, we need to construct a simulator
SR : B → Yn as an interactive algorithm that interacts with an arbitrary
poly(n)-bounded R∗. Given input a ∈ {0, 1}`∪{⊥}, SR �rst generates and sends
to R∗ a simulated channel output y, and then provides a simulated response for
each F -query made by R∗.

Simulator SR(a): Simulator constructs y as follows:

1. Sample x← {0, 1}n.
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String Erasure Channel from Binary Symmetric Channel

Function F

� Parameters: x ∈ {0, 1}n and a ∈ {0, 1}`.
� Input: y ∈ {0, 1}n.

Fx(y, a) =

{
a, if |x⊕ y| ≤ Centre(p, n),

⊥, otherwise.

We write Fx,a(·) to denote Fx(·, a).

Sender S(a ∈ {0, 1}`)

1. x← {0, 1}n.
2. Output (F̂ ,x) where F̂ is a circuit for Fx,a.

(x will be sent to R over CpBSC, and F̂ will be used as the oracle for R, below.)

Receiver R with 1 query oracle access to F

1. Receive y = CpBSC(x).
2. Output F (y).

Fig. 4: The protocol 〈S,R〉 for realizing `-bit String-Erasure Channel using n
invocations of a binary symmetric channel with crossover probability p.

2. Sample y = CpBSC(x) conditioned on |x ⊕ y| ≤ Centre(p, n) if a 6= ⊥ and
|x⊕ y| > Centre(p, n) if a = ⊥.

3. Output y to R∗.

For Q queries by R∗ to F̂ , the simulator replies to a query ŷ follows:

� Case 1: If |x ⊕ y| ≤ Centre(p, n), simulator outputs Fx,a(ŷ) as it has access
to x and a.

� Case 2: If |x⊕ y| > Centre(p, n), simulator simply outputs ⊥.

Since the distribution on x|U received by R∗ is identical when it interacts with
S or with the simulator SR, it is su�cient to argue that R∗ cannot make any query

which SR cannot correctly respond to (except with probability O(n
−1
4 )). In case

1, when |U | > Centre(1 − p, n), the simulator/predictor can honestly compute
Fx,a(y|V ) and the query is answered correctly. In case 2, the simulator/predictor
fails if R∗ makes a query y|V such that Fx,a(y|V ) = a. De�ne the set

Bad =
{
(x,y) ∈ {0, 1}2n : |x⊕ y| ∈

(
Centre(p, n),Centre(p, n) + nδ

]}
.
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In the sequel, we will denote Centre(p, n) by t. When x ← {0, 1}n and y =
CpBSC(x), |x⊕y| is the number of bits noise added by C

p
BSC. Hence, it is distributed

according to the Binomial(n, p) distribution. By applying the anti-concentration
bound in Lemma 1 together with a union bound, we get

Pr
(x←{0,1}n,y=CpBSC(x)

[Bad] = Pr
x←{0,1}n,y=CpBSC(x)

[
|x⊕ y| ∈

(
t, t+ nδ

]]
≤ Θp · nδ−

1
2 .

We will show that, except under the event Bad (which happens with probability

at most Θ1−p ·n−
1
4 , when δ = 1

4 ), R
∗ outputs a query y|V such that Fx,a(y|V ) =

a with negligible probability. Taking a union bound over poly(n) queries, we
achieve the desired security condition.

It su�ces to show that for all a ∈ {0, 1}` and computationally unbounded
algorithms Adv that take y as input,

Pr
x←{0,1}n,y=CpBSC(x)

[Fx,a(ŷ) 6= ⊥|¬Bad, Fx,a(ŷ) = ⊥, ŷ = Adv(y)] = negl(n). (4)

The event `¬Bad and Fx,a(ŷ) = ⊥' is the same as `|x⊕ y| ≥ Centre(p, n) + nδ'.
We complete the argument by appealing to the following claim.

Claim 2. For any computationally unbounded algorithm A, for su�ciently large
values of n,

Pr
x←{0,1}n,y=CpBSC(x)

[
Fx(ŷ, a) 6= ⊥

∣∣|x⊕ y| ≥ Centre(p, n) + nδ, ŷ ← A(y)
]

≤ 3e−
(1−2p)2

4 nδ .

Proof: Let t = Centre(p, n) and V = {i ∈ [n] : ŷi⊕yi = 1}. For x← {0, 1}n,y =
CpBSC(x), and ŷ ← A(y),

Pr
[
Fx,a(ŷ) 6= ⊥

∣∣|x⊕ y| ≥ t+ nδ
]

= Pr
[
|x⊕ ŷ| ≤ t

∣∣|x⊕ y| ≥ t+ nδ
]

= Pr
[
|(x⊕ y)⊕ (y ⊕ ŷ)| ≤ t

∣∣|x⊕ y| ≥ t+ nδ
]

≤ Pr

[∑
i∈V

(xi ⊕ yi)−

(
|V | −

∑
i∈V

(xi ⊕ yi)

)
≥ nδ

∣∣∣∣∣|x⊕ y| ≥ t+ nδ

]

= Pr

[∑
i∈V

(xi ⊕ yi) ≥
|V |+ nδ

2

∣∣∣∣∣|x⊕ y| ≥ t+ nδ

]
.

Since x is uniformly distributed, x ⊕ y is independent of y and, therefore,
independent of (y, ŷ, V ). Conditioned on V (and suppressing this conditioning
in the steps below), we have, for all V ⊆ [n],

Pr

[∑
i∈V

(xi ⊕ yi) ≥
|V |+ nδ

2
, |x⊕ y| ≥ t+ nδ

]
≤ Pr

[∑
i∈V

(xi ⊕ yi) ≥
|V |+ nδ

2

]
,
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where xi⊕yi, i ∈ V , are independent and identically distributed with distribution
Bernoulli(p). This probability is clearly zero if |V | < nδ. For |V | ≥ nδ, by the
Cherno� bound in Lemma 2,

Pr

[∑
i∈V

(xi ⊕ yi) ≥
|V |+ nδ

2

]
≤ Pr

[∑
i∈V

(xi ⊕ yi) ≥
|V |
2

]

= Pr

[∑
i∈V

(xi ⊕ yi) ≥
(
1 +

(
1

2p
− 1

))
p · |V |

]

≤ e
− (

1
2p
−1)

2

1
2p

+1
p·|V |

≤ e−
(1−2p)2

4 nδ .

Moreover, since |x⊕y| is Binomial(n, p), we have Pr[|x⊕y| < Centre(p, n)] <
1
2 , which along with the anti-concentration bound in Lemma 1, gives

Pr
[
|x⊕ y| ≥ t+ nδ

]
≥ 1

2
− Θp√

n
· (1 + nδ) ≥ 1

3
,

for su�ciently large n since δ < 1
2 . This proves the claim. �

The function F can be realized using ` + 1 Boolean circuits (to compute
each bit of the output encoded with one extra bit to report ⊥). When the input
is appropriately encoded, the Boolean circuits need to compute a XOR and
thresholding function on n-bit input (quadratic blow-up). Hence, the size of F̂ is
O(` · n2). The lemma now follows by setting n = λ4c. This concludes the proof.
�

4.2 Completeness of BEC/BSC Using Ideal Obfuscation

We can put together the results in Section 4.1 (that the string erasure channel
(SEC) can be constructed using the binary erasure and binary symmetric chan-
nels, using ideal obfuscation) with the result from Section 3 (that ROT can be
constructed using SEC, using ideal obfuscation), to obtain the following.

Theorem 5 (ROT from BEC or BSC using ideal obfuscation). There
exists an OWSC protocol ΠBEC

ROT (respectively, ΠBSC
ROT) for ROT over BEC (respec-

tively, BSC) using ideal obfuscation, with inverse-polynomial statistical security
against a semi-honest sender and a polynomial query-bounded receiver.

Proof: We shall compose the OWSC protocol for ROT over SEC from The-
orem 4 with the protocol from Lemma 5 (respectively, from Lemma 6). For
this, we need to argue that OWSC protocols compose. The security de�nition
of OWSC (De�nition 1) could be seen as a specialization of the UC security
notion, to the one-way communication setting, and a semi-honest sender, in a
(C,B)-hybrid model, where C is the channel, and B is a functionality that takes
a circuit from the sender and provides the receiver with black-box access to it
(for a bounded number of queries). To see this is indeed the case, note that when
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the sender is (passively) corrupt, a simulator for passive-security should merely
forward the sender's input a to the functionality, resulting in the receiver ob-
taining f(a); hence the environment's views in the ideal and real executions (in
addition to a, which is universally quanti�ed over) are simply (S(a),R(C(S(a))))
and (S(a), f(a)).

When the receiver is (possibly actively) corrupt, its view includes an output
from the channel C and its interaction with the oracle B; the security de�nition
for OWSC in this case is the same as for UC security, by treating the receiver as
the environment (the input a is part of the corrupt receiver's view in the OWSC
de�nition, due to the universal quanti�er over a).

Before we can apply composition, note that we have a mixed corruption
model with �xed roles. That is, the party playing the sender in all of the protocols
or functionalities is the same (i.e., corrupting one corrupts all), and similarly for
the receiver. Hence we have only two non-trivial corruption scenarios: all the
senders are passively corrupt, or all the receiver's are actively corrupt. In either
case, the protocol for ROT from SEC, as well as the protocol for SEC from
BEC (or BSC) satis�es the corresponding security guarantee. We note that in a
corruption scenario, if UC or passive security holds for each protocol instance,
then, it holds for the composed protocol for the same corruption scenario (this is
implicit in the proof of composition theorems for static adversaries, which �xes
a corruption scenario and derives a simulator for the composed protocol from
individual simulators for the constituent protocols).

Finally, note that in the composed secure protocol, there are several instances
of B invoked by the sender (and each one accessed a bounded number of times
by the receiver). These multiple instances, with programs, say F1, · · · , Fn can
be replaced by a single instance of B to which the sender inputs a combined
program F such that F (i, x) = Fi(x). Thus we obtain an OWSC protocol using
ideal obfuscation for ROT from either BEC or BSC. �

We are now ready to show that the binary erasure channel and the binary
symmetric channel are complete, using ideal obfuscation. To generalize the above
construction to arbitrary functionalities, we rely on a previous result by Garg et
al. [25], which showed that ROT is complete for arbitrary �nite functionalities
even for the case of malicious parties, with statistical security. Combined with
our reductions from ROT to BSC and BEC, we get a similar completeness result
for BEC/BSC with inverse-polynomial error.

In more detail, we claim that:

Theorem 6 (Completeness of BEC/BSC using ideal obfuscation: semi-
honest sender). BEC and BSC are (each) complete for OWSC using ideal
obfuscation, with inverse-polynomial statistical security against a semi-honest
sender and a polynomial query-bounded receiver.

Proof: [Proof sketch] Analogously to [2], let us �rst consider the setting of
semi-honest parties. In this case, we may combine the reduction from ROT
to BEC/BSC with Yao's garbled circuits [58] as follows. Given a randomized
sender receiver functionality F (a; r), de�ne a deterministic (two-way) function-
ality F̃ that takes (a, r1) from the sender and r2 from the receiver, and outputs
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F (a; r1 ⊕ r2) to the receiver. Using Yao's protocol to securely evaluate F̃ with
uniformly random choices of r1, r2, we get a secure reduction of F to OT where
the receiver's inputs are random. We may now replace the random choices of the
receiver by leveraging a ROT channel, and then apply the reduction from ROT
to BEC/BSC.

The above compiler makes use of Yao's garbled circuits, which assume the
existence of one way functions. In the setting of ideal obfuscation, we may obtain
an unconditional result as follows. First, note that for the case of branching
programs, we may use information theoretic garbled circuits [41, 23, 34]. For the
case of circuits, we use a result of Goyal et al. [32] which implies unconditionally
secure garbled circuits from ideal obfuscation. In more detail, [32] show how to
obtain unconditionally secure computation from hardware tokens. Our setting
requires only a degenerate �single-use� version of the construction of Goyal et
al., that replaces symmetric encryption with a one-time pad. �

5 OWSC in the Plain Model and Against Malicious

Adversaries

In this section, we address the question of implementing our protocols in the
plain model. We also show how to augment a plain model OWSC protocol to be
secure against active corruption (of the sender, as the receiver is always passive),
using a NIZK proof.

5.1 OWSC in the Plain Model

Recall that an OWSC protocol Π using ideal obfuscation uses oracle access to a
function F (speci�ed as a circuit F̂ ). We denote byΠ[O] the protocol in the plain
model that is obtained by communicating O(F̂ ) instead of providing the oracle.
Here, for the purpose of error-free communication, we use an error correcting
(or erasure correcting, resp.) code to encode O(F̂ ) before sending it over BSC
(resp., BEC).

As discussed earlier, given the statistical nature of the functions used in the
protocols ΠBEC

ROT and ΠBSC
ROT, it is conceivable that there exists an obfuscation

scheme O such that the protocols ΠBEC
ROT and ΠBSC

ROT can be converted to secure
protocols in the plain model by using this obfuscation scheme to replace the
ideal obfuscation scheme. We state this as a conjecture below.8

Conjecture 2. There exists an obfuscation scheme O such that ΠBEC
ROT[O] and

ΠBSC
ROT[O] are OWSC protocols (in the plain model) for ROT, over BEC and

BSC respectively, with inverse-polynomial security against a semi-honest sender
and a computationally bounded receiver.

8 We remark that a more general conjecture about obfuscation of a generalized notion
of �evasive� functions is plausible, and would in turn imply Conjecture 2. As such a
generalization is somewhat tangential to the focus of this work, we do not present
this formalization here.
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Interestingly, if any such scheme as conjectured above exists, then an indis-
tinguishability obfuscation (iO) scheme can be used in its place. More formally,
we have the following theorem. Its proof follows standard ideas and is deferred
to the full version.

Theorem 7. Suppose Conjecture 2 holds, with an obfuscation scheme O. Fur-
ther, suppose there is an iO scheme iO for all polynomial sized circuits. Let
pad(F̂ ) be a padded version of the circuit F̂ which is of the same size as O(F̂ ).
Then ΠBEC

ROT[iO ◦ pad] and ΠBSC
ROT[iO ◦ pad] are OWSC protocols (in the plain

model) for ROT, over BEC and BSC respectively, with inverse-polynomial secu-
rity against a semi-honest sender and a computationally bounded receiver.

5.2 Security against Malicious Sender

In this section, we argue that BEC and BSC are (each) complete even against
malicious adversaries in the plain model, assuming Conjecture 2. The key ob-
servation here is that UC-secure OWSC protocols for NIZK exist over BEC as
well as over BSC, as shown by Garg et al. [25, Lemma 3]. We show that such
a NIZK can be used to turn the ROT protocols ΠBEC

ROT[O] and ΠBSC
ROT[O] to be

secure against malicious senders. We then appeal to another result of Garg et
al. [25] which shows that for general (possibly randomized) functionalities, the
ROT channel is complete.

To obtain security against malicious senders, we need to ensure that the re-
ceiver's output is of the form (a0,⊥) with probability 1

2 and (⊥, a1) otherwise
(except for a small inverse polynomial error). The strings (a0, a1) may be prob-
abilistic, but should be extracted by a simulator. For this, we show that it is
enough for the sender to additionally provide a NIZK proof of the fact that the
program communicated is indeed an obfuscation O(F̂ ) of a valid function F̂ as
speci�ed by the protocol. Recall that in the original protocol, the receiver is
supposed to feed the message it received over the channel (BEC or BSC) to the
obfuscated program and output whatever the program outputs. In the modi�ed
ROT protocol, if the veri�cation of the NIZK proof fails, or if the program out-
puts an error, then the receiver outputs (a,⊥) or (⊥, a) (for some �xed a) with
probability 1

2 each.

We brie�y sketch why this modi�cation yields a OWSC for ROT that is secure
against a malicious sender (we defer further details to the full version [3]). If the
NIZK proof fails or if the program outputs an error, the protocol corresponds
to an ideal ROT execution in which the sender sends (a, a) as its input. We
need to analyze the behavior of the protocol when this does not happen. Note
that the program F̂ contains a string x that the sender is supposed to send over
the channel, but a malicious sender may send a di�erent string x′. If x′ di�ers
from x in a lot of positions, then with all but negligible probability the program
outputs an error, captured by the above case. On the other hand, if x′ agrees
with x in most places, then conditioned on the program not outputting an error,
it can be shown that the output continues to be of the form (a0,⊥) or (⊥, a1)
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with almost equal probabilities, as in the original analysis. A formal analysis of
this modi�cation is provided in the full version of this work [3].

It remains to argue that BEC and BSC are complete, even in the plain model,
assuming Conjecture 2. Recall that in Section 4.2, we argued that BEC and BSC
are complete for OWSC assuming ideal obfuscation, by composing OWSC proto-
cols over ROT for general sender-receiver functionalities with OWSC protocols
over BEC/BSC for ROT using ideal obfuscation. The argument for the plain
model remains the same, except that we now use the ROT protocols in the
plain model. Using standard garbled circuits based on one way functions in the
compiler described by Theorem 6, we obtain:

Theorem 8 (Completeness of BEC/BSC against malicious adversary).
Suppose Conjecture 2 holds and one-way functions exist. Then BEC and BSC are
(each) complete for OWSC with inverse-polynomial security against a malicious
sender and a computationally bounded receiver.
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