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Abstract. We introduce a novel generic ring signature construction,
called DualRing, which can be built from several canonical identifica-
tion schemes (such as Schnorr identification). DualRing differs from the
classical ring signatures by its formation of two rings: a ring of com-
mitments and a ring of challenges. It has a structural difference from
the common ring signature approaches based on accumulators or zero-
knowledge proofs of the signer index. Comparatively, DualRing has a
number of unique advantages.

Considering the DL-based setting by using Schnorr identification
scheme, our DualRing structure allows the signature size to be com-
pressed into logarithmic size via an argument of knowledge system such
as Bulletproofs. We further improve on the Bulletproofs argument system
to eliminate about half of the computation while maintaining the same
proof size. We call this Sum Argument and it can be of independent in-
terest. This DL-based construction, named DualRing-EC, using Schnorr
identification with Sum Argument has the shortest ring signature size in
the literature without using trusted setup.

Considering the lattice-based setting, we instantiate DualRing by a
canonical identification based on M-LWE and M-SIS. In practice, we
achieve the shortest lattice-based ring signature, named DualRing-LB,
when the ring size is between 4 and 2000. DualRing-LB is also 5× faster
in signing and verification than the fastest lattice-based scheme by Esgin
et al. (CRYPTO’19).

Keywords: Ring Signature · Generic Construction · Sum Argument ·

M-LWE/SIS

1 Introduction

Ring signatures [35] allow a signer to dynamically choose a set of public keys
(including his/her own) and to sign messages on behalf of the set, without reveal-
ing who the real signer is. In addition, it is impossible to check if two signatures
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are issued by the same signer. Ring signatures provide anonymity and they are
widely used in privacy-preserving protocols such as e-voting, whistleblowing and
privacy-preserving cryptocurrencies.

Classical Ring Structure. The classical ring signatures [35] for a set of n public
keys pk are constructed by computing n − 1 “pseudo-signatures” (the outputs
computed from the verification function) sequentially in a ring structure first and
then using one signer secret key to create a real signature. These n signatures
together form a ring signature on behalf of pk.

Abe et al. [2] generalized this idea in a generic construction (AOS ring signa-
ture), which can be built from two types of standard signatures: Type-H (Hash-
and-one-way type, e.g., RSA signature) and Type-T (Three-move type, e.g.,
Schnorr signature). Borromean ring signatures [33] used the ring structure in [2]
to compress multiple ring signatures. Its variant is used in privacy-preserving
cryptocurrency Monero.

From Accumulator to Zero-Knowledge Proof. The major drawback of
the above ring structure approach is the signature size of O(n). Therefore, re-
searchers used other cryptographic primitives to build ring signatures.

An accumulator allows the signer to “compress” n public keys into a constant
size value and there is a witness showing that the signer’s public key is in the
set of public keys. The advantage of the accumulator-based ring signature [17] is
the constant signature size. However, most of the existing accumulators require
a trusted setup, which is often not desirable.

Another main approach to constructing an efficient ring signature is to use
a zero-knowledge proof to prove knowledge of the secret key with respect to one
of the public keys in the ring. The state-of-the-art proof size is O(log n) by the
use of one-out-of-many proof [22].

1.1 DualRing: New Generic Construction of Ring Signature

In this paper, we revisit the classical ring structure approach and design a novel
dual ring structure to build a new generic construction of ring signatures. Let
us first recall how a Type-T signature works and how the AOS ring signature [2]
is built on top of it.

A Type-T signature involves the following three functions in its signing (we
use Schnorr signature as a running example, indicated inside [ ], with a secret
key sk, a public key pk = gsk and a message M): a commit function A, which
outputs a commitment R [A : gr → R]; a hash function H, which outputs a
challenge c [H(M,R)→ c]; and a response function Z, which outputs a response
z [Z : r − c · sk→ z]. A Type-T signature is then σ = (c, z). For the verification
algorithm, one runs a function V to reconstruct R from σ [V : gz · pkc → R′],

and then runs H to check if c is correct [H(M,R′)
?
= c].

Now, in a Type-T AOS ring signature for public keys pk = {pk1, . . . , pkn},
the signer (with index j) follows the structure in Fig. 1, where the signer is
assumed to have skj corresponding to pkj . In particular, (1) the signer picks a
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Fig. 1: Structure of the AOS ring signature from a Type-T Signature in [2].

randomness rj to generate Rj via the commit function A. (2) The signer uses the
commitment Rj to compute the (j + 1)-th challenge cj+1 by the hash function
H. (3) For i = j + 1, . . . , n, 1, . . . , j − 1 by picking a random (i+ 1)-th response
zi and the public key of the (i)-th user pki, the signer can reconstruct the (i)-th
commitment Ri using the function V as in verification and generate the (i+ 1)-
th challenge ci+1 by the hash function H. A ring is then formed sequentially.
(4) The last step is to compute zj from skj , cj , rj using the response function
Z. The final ring signature is composed of a single challenge c1 and n responses
(z1, . . . , zn).

Overview of DualRing. We now describe our novel generic construction of
ring signatures called DualRing. Let � and ⊗ be two commutative group oper-
ations (e.g., modular multiplication and modular addition). We first modify the
definition of a Type-T signature as follows:

– the verification function V (pk, z, c) within the verification algorithm can be
divided into two functions V1(z) and V2(pk, c) (pk is the public key, c is the
challenge and z is the response) such that

V (pk, z, c) = V1(z)� V2(pk, c) [Schnorr: V1 : gz, V2 : pkc].

Using this property, we construct a ring signature with a dual-ring structure
as in Fig. 2. Particularly, for a set of public keys pk = (pk1, . . . , pkn) and a
secret key skj , (1) the signer first picks some randomness rj . (2) He further picks
random challenges c1, . . . , cj−1, cj+1, . . . , cn, and (3) forms an R-ring using the
group operation � with the functions A and V2. (4) Then he computes R as:

R = A(skj ; rj)�
V2(pkj+1, cj+1)� · · · � V2(pkn, cn)� V2(pk1, c1)� · · · � V2(pkj−1, cj−1).
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Fig. 2: Structure of DualRing construction

After that, the signer forms a C-ring using the group operation ⊗, where the
“missing” challenge (5) cj is computed as:

cj = H(M,pk, R)� cj+1 � · · · � cn � c1 � · · · cj−1 (where� is the inverse of ⊗).

As a result, the following equation is satisfied

c1 ⊗ · · · ⊗ cn = H(M,pk, R) (1)

to form the link connecting the two rings for the input message M and the list of
public key pk. (6) Lastly, the response z is computed by running Z(skj , cj , rj).
The final ring signature is composed of a single response z and n challenges
(c1, . . . , cn), in contrast of the AOS signature which is composed of a single
challenge c1 and n responses (z1, . . . zn).

Advantages of DualRing over the AOS Ring Signature. The advantage
of DualRing is threefold. Firstly, the AOS ring signature is composed of a single
challenge and n responses, while DualRing is composed of n challenges and a
single response. When instantiated with cryptosystems having a small challenge
size and a large response size (e.g., lattice-based cryptosystem), it leads to a
significant saving in terms of signature size.

Secondly, we observe that the AOS ring signature includes the hash function
H in the ring structure (Fig. 1), and this makes it difficult to further shorten
the signature. On the other hand, DualRing uses two separate rings with simple
group operations, which allows the use of an argument of knowledge to efficiently
prove the relation in Eq. (1). We instantiate this in the discrete logarithm (DL)
setting with communication complexity O(log n).

Thirdly, our DualRing, when instantiated with the Schnorr identification,
has a simpler security reduction when compared to the alternative construc-
tion of the AOS ring signature in the Appendix A of [2]. They described that
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“the reduction is quite costly because we may have to have at most n successful
rewinding simulations” and hence they did not give a full proof. On the other
hand, our instantiation does not incur such security loss.

Technical Challenges. One of technical challenges we solve in this paper is
to give a security proof for DualRing, as well as the Type-T AOS ring signature
which has not been formally proven. Note that it has been an open problem
to prove the security of the generic construction of the Type-T AOS ring signa-
ture [2] (only a security proof for the instantiation using the Schnorr signature
was previously given). We solve this open problem by using canonical identifi-
cation [1] (which is a three-move identification scheme that can be transformed
to a Type-T signature by the Fiat-Shamir heuristic) in the construction and the
security proofs. While the Type-T signature restricts the input to the hash func-
tion to include the signer’s public key, the hash function H of the AOS ring
signature takes the set of public keys pk as an input. This difference hinders
the use of a forgery of the AOS ring signature to break the unforegability of the
Type-T signature. On the other hand, the canonical identification does not have
such a restriction on the generation of the challenge. The security proof of the
Type-T AOS ring signature is given in the full version of the paper.

In order to prove the security of DualRing, we further define a variant called
Type-T* canonical identification, with the following properties:

1. the verification V (pk, z, c) can be divided into two algorithms V1(z) and
V2(pk, c) such that V (pk, z, c) = V1(z)� V2(pk, c);

2. V1 is additively/multiplicatively homomorphic;

3. given the secret key sk corresponding to pk and a challenge c, there exists a
function T which outputs ẑ = T (sk, c) such that V1(ẑ) = V2(pk, c);

4. the challenge space ∆c is a group.

Property 1 of Type-T* canonical identification allows us to build the R-ring
as in Fig. 2. Looking ahead, Property 3 is needed in the proof of DualRing’s
unforgeability to calculate ẑi such that V1(ẑi) = V2(pki, ci) for i 6= j, and then
we use Property 2 to combine z with all ẑi’s to break the Type-T* canonical
identification. Property 4 is needed in the proof of DualRing’s anonymity to make
sure that the challenge cj constructed in a specific way is indistinguishable from
the others. We further define a new security model for canonical identification
called special impersonation, which is a combination of the security models of
impersonation and special soundness. Some standard identification schemes such
as Schnorr identification and GQ identification [23] are examples of Type-T*
canonical identification secure against special impersonation.

1.2 Efficient Instantiations of DualRing

DualRing-EC: Logarithmic DL-based Ring Signature by Sum Argu-
ment. Having established a secure generic construction, DualRing, we try to
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Ring # elements in signature Signature Size (Bytes)
Signatures G Zp n = 2 n = 8 n = 64 n = 2048 n = 4096

[29] 4 logn +2 5 logn + 4 480 1070 1946 3114 3406

[22] 4 logn 3 logn + 1 260 716 1400 2540 2768

[12] logn + 12 3
2

logn + 6 669 831 1074 1479 1560

[36] 2 logn+ 7 7 521 653 851 1181 1247

[27] 2 log(n+ 2) + 4 5 424 523 721 1051 1117

DualRing-EC 2 logn+ 1 3 195 327 525 855 921

Table 1: O(log n)-size DL-based ring signature schemes for n public keys, where
p is a 256-bit prime.

compress the n challenges (c1, . . . cn) via an argument of knowledge by exploit-
ing the following simple algebraic structure:

c1 ⊗ · · · ⊗ cn = H(M,pk, R).

This is theoretically a new approach to construct efficient ring signatures by
combining the classical ring structure approach with the argument of knowl-
edge5.

In the DL setting, the group operation⊗ is the modular addition. We improve
the Bulletproof’s inner product argument [11] into a new proof system called
Sum Argument, which allows a prover to convince a verifier that he/she has
the knowledge of a vector of scalars (c1, . . . , cn) such that their summation is a
public value (i.e., H(M,pk, R)). Our Sum Argument only requires about half of
the computation of Bulletproof while keeping the same proof size. We show how
to obtain it by removing one of the two vectors of the inner product argument
required in Bulletproof and to achieve a proof of size O(log n).

Based on DualRing, Schnorr identification and the sum argument above, we
design DualRing-EC, the shortest ring signature scheme in the literature without
using trusted setup, as shown in Table 1. The signature size is O(log(n)). When
implemented on an elliptic curve with a 256-bit modulus, DualRing-EC is at
least 54% (resp., 27%, 18%) shorter than [27] for a ring size of 2 (resp. 64, 4096).
Our scheme is at least 46% (resp., 64%, 67%) shorter than [29] for a ring size of
2 (resp. 64, 4096) at the same security level of 128-bit. Therefore, DualRing-EC
is highly efficient and is useful for real world applications.

DualRing-LB: Shortest Lattice-based Ring Signature for Ring Size
between 4 and 2000. We instantiate DualRing in the M-LWE/SIS setting
and obtain DualRing-LB, the shortest lattice-based ring signature for a ring
size between 4 and 2000. As mentioned above, DualRing-LB consists of a single
response and n challenges. The size of a challenge (around 256 bits) in lattice-
based identification is often much smaller than the size of a response (around
a few KB). As a result, we obtain a compact lattice-based ring signature even

5 Here, we do not require the zero-knowledge property since the anonymity of Dual-
Ring is provided by the ring structure.
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Ring Signatures
Signature Size (Bytes)

Assumption
n = 2 n = 8 n = 64 n = 1024 n = 2048 n = 4096

Raptor [30] 2532 10128 81024 1296384 2592768 6564888576 NTRU

Falafl (for 2) [10] 49000 50000 52000 54000 54500 55000 M-LWE+M-SIS

MatRiCT [21] 18000 19000 31000 48000 53000 59000 M-LWE+M-SIS

DualRing-LB
4480 4630 6020 31160 55500 106570 M-LWE+M-SIS

(Algo. 3 + 6)

Table 2: Lattice-based ring signatures for n public keys.

without requiring a lattice-based sum argument. We compare with the shortest
linear-size ring signature in [30] and shortest logarithmic-size ring signatures
in [10,21] in Table 2. DualRing-LB is shorter than [10,21] for ring size less than
about 2000 (note that our ring size can be arbitrary number). [30] is longer for
all the ring sizes larger than 4, and it is based on a stronger NTRU assumption.
The isogeny-based construction in [10] is at a much lower security level (60 bits
of quantum security), is extremely slow (in the order of minutes), and has longer
signatures than ours in the range around 5-300.

It is estimated in [19] that the running time of [19] is faster than Raptor for
medium/large-sized rings (n ≥ 1024) and also the estimated runtimes of [19] are
significantly faster than those in [10]. The construction in [21] is an optimized
version of that in [19] to reduce the signature length at the cost of computational
efficiency. Therefore, the scheme by Esgin et al. [19] is the fastest scalable ring
signature from lattices. We implement DualRing-LB together with the scheme
in [19] and find that our scheme is at least 5 times faster in terms of sign and
verify. We, therefore, expect an optimized implementation of our scheme to run
faster than Raptor [30] and Falafl [10] as well for most ring sizes.

1.3 Our Contributions

Our contributions can be summarized as follows.

– The main contribution of our paper is the introduction of the novel dual
ring structure DualRing to design generic construction of ring signatures,
which differs significantly from the mainstream zero-knowledge-based or
accumulator-based approaches.

– DualRing consists of n challenges and a single response, while the AOS
ring signature consists of a single challenge and n responses. This significant
difference allows us to produce much shorter signatures in both DL-based
and lattice-based setting.

– In the DL-based setting, the DualRing structure allows the signature size to
be compressed into O(log n) size, where n is the number of users in the ring,
by using argument of knowledge system such as Bulletproofs [11]. We fur-
ther enhance the Bulletproofs by eliminating almost half of the computation
while maintaining the same proof size and thus achieve much better effi-
ciency. We call this new argument of knowledge Sum Argument which can
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be of independent interest. Our resulting DualRing-EC deploying Schnorr
identification scheme with Sum Argument is the shortest ring signature in
the literature without using trusted setup.

– In the lattice-based setting, we instantiate DualRing by constructing a canon-
ical identification based on M-LWE and M-SIS assumptions. DualRing-LB
is the shortest lattice-based ring signature for the most practical ring sizes of
4 up to 2000.6 We also implement DualRing-LB and show that it is at least
5 times faster in signing and verification than the state-of-the-art fastest
construction (in terms of running times of signing and verification) in [19].

2 Related Work

Accumulator-Based Approach. Ring signatures can be constructed by ac-
cumulators [17]. The advantage of the accumulator approach is the constant sig-
nature size. However, the existing RSA-based and pairing-based accumulators
both require a trusted setup for generating system parameters, which is not de-
sirable for systems without a mutually trusted party. There exists a lattice-based
accumulator [28] with no trusted setup, but it is not practical (the signature size
is in the order of several MBs). Merkle-tree based accumulator does not require
trusted setup. However, the membership proof of Merkle-tree based accumulator
involves expensive zero-knowledge proof on hash function input.

Zero-Knowledge Proof Based Approach. The mainstream approach to con-
struct a ring signature is to use a zero-knowledge proof on a signer index with
the corresponding secret key. Most efficient schemes in the literature is to design
a specific zero-knowledge proof for the designated cryptosystem (e.g., DL-based,
RSA-based or lattice-based). In particular, a one-out-of-many proof [22] shows
that the prover knows an opening of one out of n commitments. The index of
such commitment can be expressed as a binary string (b1, . . . blogn). The zero-
knowledge proof demonstrates the correctness of such an index, and hence the
proof size is O(log n). Since a public key can be viewed as a commitment to
zero7, there are multiple ring signature schemes proposed using one-out-of-many
proofs, including the DL-based setting [12,22] and lattice-based setting [19–21].
These ring signatures have size of O(log n).

Logarithmic-Size Generic Construction. The logarithmic-size generic con-
struction of ring signature in [3] is secure in the standard model by using a public
key encryption, a standard signature, a somewhere perfectly binding hash func-
tion with private local opening, and a non-interactive witness-indistinguishable

6 A ring signature of n users has some inherent limitations such that it requires at
least n operations in signing and verification and storage of n public keys. These
two limitations restrict the ring size to go up a lot for many practical applications.
On the other hand, for very small ring sizes of, say, 2-5, the anonymity guarantee
is very weak. For example, there has been attacks against Monero (cf. [26,34]) that
exploit the earlier use of very small rings of size < 6. Hence, one may argue that the
most relevant range in practice falls inside 10-2000.

7 E.g., a DL-based public key gx is a Pedersen commitment to zero.
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(NIWI) proof systems. Their DL-based construction has a signature size of
2(log n)2 + 4 elements in G and 2 log n elements in Zp with an additional NIWI
proof (not instantiated in [3]), and hence it is not as efficient as the schemes in
table 1. The lattice-based construction in [3] is also not efficient.

3 Preliminaries

Notations. In this paper, we use λ as the security parameter. For the notion
a←s S, it means that we randomly pick an element a from a set S. We use bold
letters such as a to represent a vector (or matrix for lattice-based construction).

Argument of Knowledge. An argument consists of three PPT algorithms
(S,P,V), which are CRS (Common Reference String) generator S, the prover P
and the verifier V. A CRS σ̂ is produced by S on input λ and a transcript tr is
produced by P and V on inputs s and t, which is denoted by tr← 〈P(s),V(t)〉.
We write 〈P(s),V(t)〉 = b to denote that the verifier V accepts b = 1 or rejects
b = 0. We define the language:

L = {x | ∃w : (σ̂, x, w) ∈ R} ,

where w is a witness and x is a set of statements u in the relation R.
An argument of knowledge (S,P,V) should satisfy perfect completeness and

statistical witness-extended emulation [13]. Informally, completeness means that
a prover with a witness w for x ∈ L can convince the verifier of this fact. Statisti-
cal witness-extended emulation means that given an adversary that produces an
acceptable argument with probability ε, there exists an emulator that produces
a similar argument with probability ε together with a witness w.

Definition 1 (Perfect completeness). For any non-uniform polynomial time
adversary A, (S,P,V) has perfect completeness if

Pr
[

(σ̂, u, w) /∈ R or 〈P(σ̂, u, w),V(σ, u)〉 = 1
∣∣ σ̂ ← S(λ), (u,w)← A(σ̂)

]
= 1.

Definition 2 (Statistical Witness-Extended Emulation). For any deter-
ministic polynomial time prover P∗, (S,P,V) has witness-extended emulation
if there is a polynomial time emulator E such that for any pair of interactive
adversaries A1 and A2 such that

Pr

A1(tr)

= 1

∣∣∣∣∣∣∣∣∣
σ̂ ← S(λ),

(u, s)← A2(σ̂),

tr← 〈P∗(σ̂, u, s),
V(σ̂, u)〉

 ≈ Pr

A1(tr) = 1∧
(tr is accepting

⇒ (σ̂, u, w) ∈ R)

∣∣∣∣∣∣∣
σ̂ ← S(λ),

(u, s)← A2(σ̂),

(tr, w)← EO(σ̂, u)

 ,
where the oracle O = 〈P∗(σ̂, u, s),V(σ̂, u)〉 can rewind to some point and resume
with new randomness for the verifier V from this point onward.

Such an emulation above is used to define knowledge-soundness [13]. We consider
s (which is the output of the adversary A2 in the above equation) as the internal
state of P∗ with randomness, which follows that E can extract a witness whenever
P∗ generates a convincing argument in s.
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4 Security Model

We review the security model of a ring signature in [8]. A ring signature consists
of four PPT algorithms as follows:

RS


Setup(λ) →param

KeyGen(param) →(pk, sk)

Sign(param,M,pk, sk) →σ
Verify(param,M,pk, σ) →1/0

We use pk to represent a vector of public keys (pk1, . . . , pkn). For simplicity, we
omit the input of system parameters param to algorithms other than Setup in
the rest of this paper.

Unforgeability w.r.t. insider corruption. Unforgeability w.r.t. insider cor-
ruption [8] means that the adversary A cannot generate a valid signature without
a secret key, even if he can adaptively corrupt some honest participants and ob-
tain their secret keys.

Definition 3 (Unforgeability w.r.t. Insider Corruption). For any poly-
nomial time adversary A, a ring signature is unforgeable if for some integer qk
polynomial in λ:

Pr

1← Verify(M∗,pk∗, σ∗),
pk∗ ⊆ S \ C, (M∗,pk∗, ·)
was not the input of SO

∣∣∣∣∣∣
param← Setup(λ), for i ∈ [1, qk] :

(p̂ki, ŝki)← KeyGen(), S := {p̂ki}
qk
i=1,

(M∗,pk∗, σ∗)← ACO,SO(param, S)

 ≤ negl(λ),

where the oracles given to A is defined as:

– CO(i) outputs ŝki. We denote C as the set of corrupted users queried in CO.
– SO(M,pk, j): On input a message M , a vector of public keys pk and the

signer index j, the Signing Oracle outputs ⊥ if p̂kj /∈ pk. Otherwise, it

outputs a signature σ ← Sign(M,pk, ŝkj).

Anonymity against full key exposure. We use the strong anonymity model
in [8] that the adversary A is given all randomness to generate the secret keys.

Definition 4 (Anonymity against Full Key Exposure). For any polyno-
mial time adversary (A1,A2), a ring signature is anonymous if for some integer
qk polynomial in λ:∣∣∣∣∣∣∣∣∣∣∣∣

Pr


b = b′,

p̂ki0 , p̂ki1
∈ S ∩ pk∗.

∣∣∣∣∣∣∣∣∣∣∣∣

param← Setup(λ), for i ∈ [1, qk] :

(p̂ki, ŝki)← KeyGen(param;ωi),

S := {p̂ki}
qk
i=1,

(M∗,pk∗, i0, i1, St)← ASO1 (param, S),

b←s {0, 1}, σ ← Sign(M∗,pk∗, ŝkib),
b′ ← A2(σ, {ωi}qki=1, St)

−
1

2

∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

Note that the set of public keys pk∗ chosen by A1 can include adversarially
generated public keys.
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Algorithm 1: Type-T Signature

1 Procedure Setup(λ):
2 define H : {0, 1}∗ → ∆c;
3 return param; // including H .

4 Procedure Sign(M, sk):
5 r ← ∆r;
6 R = A(sk; r);
7 c = H(M,R);
8 z = Z(sk, r, c);
9 return σ = (z, c);

10 Procedure KeyGen():
11 return (pk, sk);

12 Procedure Verify(M, pk, σ):
13 parse σ = (z, c);
14 R′ = V (pk, z, c);
15 if c 6= H(M,R′) then
16 return 0;

17 return 1;

5 DualRing: Generic Ring Signature Construction

In this section, we show how to construct a generic ring signature scheme, Du-
alRing, from a special kind of canonical identification scheme.

5.1 AOS Ring Signature

The AOS ring signature [2] can be constructed from a standard signature of
Type-H or Type-T. We review the definition of Type-T in Algorithm 1.

– The Sign algorithm uses the algorithm A to generate a commitment R using
a randomness r (chosen from a randomness domain ∆r). Then, the message
and R are hashed by H to obtain the hash value c (within the range of
hash function ∆c). Finally, the algorithm uses the function Z to generate
the signature using the secret key sk, r and c.

– The Verify algorithm allows the reconstruction of R′ from the public key
pk, z and c using the function V . The signature is validated by using H on
the message and R′.

Schnorr signature, Guillou-Quisquater signature [23], Katz-Wang signature
[24] and EdDSA [9] are examples of Type-T signatures. Using Type-T signatures,
a Type-T AOS ring signature can be constructed as shown in Fig. 1. However, as
mentioned before, there is no security proof for this generic construction in [2],
but only the instantiation with Schnorr signature is proven secure in [2]. We
formally prove its security in the full version of the paper.

5.2 Canonical Identification

Canonical identification [1] is a three-move public-key authentication protocol
of a specific form. We first give canonical identification in Algorithm 2, based
on the definition of Type-T signature in [2]. We add the additional checking in
line 17 of Algorithm 2, which is useful for lattice-based construction. It is known
that after applying the Fiat-Shamir transformation to canonical identification,
we obtain a Type-T signature.
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Algorithm 2: Canonical Identification

1 Procedure Setup(λ):
2 return param;

3 Procedure KeyGen():
4 return (pk, sk);

5 Procedure Proof1(sk):
6 r ←s ∆r;
7 R = A(sk; r);
8 return (R, r);

9 Procedure Ch(R):
10 return c;

11 Procedure Proof2(sk, r, c):
12 return z = Z(sk, r, c);

13 Procedure Verify(pk, z, c):
14 R′ = V (pk, c, z);
15 if c 6= Ch(R′) then
16 return 0;

17 auxiliary checking with R′, c, z;
18 return 1;

We define a new security notion of special impersonation under key only at-
tack for canonical identification. It can be viewed as a combination of the special
soundness and the impersonation attack: the adversary wins by outputting two
valid transcripts with the same commitment.

Definition 5. A canonical identification is secure against special impersonation
under key only attack for any polynomial time adversary A:

Pr

Verify(pk, z, c)
= Verify(pk, z′, c′) = 1
∧ c 6= c′ ∧ c, c′ ∈ ∆c

∣∣∣∣∣∣
param← Setup(λ),
(pk, sk)← KeyGen(),
(z, c, z′, c′)← A(param, pk)

 ≤ negl(λ).

We use this new definition instead of special soundness together with key re-
covery under key only attack in this paper, because the standard special sound-
ness definition [25] is not satisfied by the efficient lattice-based identification
scheme used in §7. This stems from the so-called ‘knowledge gap’ in efficient
lattice-based zero-knowledge proofs. In particular, the knowledge extractor in
such schemes is not guaranteed to recover a secret key of a given public key,
but rather recovers an ‘approximate’ witness of a relaxed relation closely related
to the relation satisfied by a public-secret key pair. Therefore, to keep the gen-
erality of our results, we use the special impersonation under key only attack.
We refer the reader to earlier works such as [19,20,31,32] for further discussion
about this knowledge/soundness gap issue.

We also note that for the settings where the knowledge/soundness gap issue
do not arise (i.e., standard special soundness is satisfied) such as the DL-setting,
‘special impersonation under key only attack’ implies the standard ‘key recovery
under key only attack’ [25] since the knowledge extractor in that case recovers
a secret key sk∗ with (sk∗, pk) ∈ KeyGen() given a public key pk and two
accepting transcripts.

Type-T* Canonical Identification. Next, we define Type-T* canonical identi-
fication, which is a canonical identification with the following properties.
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1. The function V in the verify algorithm consists of two functions V1 and V2
during the reconstruction of R′, such that line 14 in Algorithm 2 becomes:

R′ = V1(z)� V2(pk, c),

where � is a commutative group operation for the domain of R′.
2. The function V1 is additively/multiplicatively homomorphic, i.e., V1(z1) �
V1(z2) = V1(z1 ⊕ z2), where ⊕ is the additive/multiplicative operation. The
homomorphic operation should be efficiently computable.

3. Given the secret key sk corresponding to pk and c, there exists a function T
that outputs ẑ = T (sk, c) such that V1(ẑ) = V2(pk, c).

4. The challenge space ∆c is a group with operation “⊗”. We denote the inverse
operation of ⊗ as �. (For example, if ⊗ is defined as “ + ”, � will be “− ”.)
If c1 and c2 are uniformly distributed in ∆c, then c1 ⊗ c2 is also uniformly
distributed in ∆c.

It is easy to see that Schnorr identification and Guillou-Quisquater identifica-
tion [23] are examples of Type-T* canonical identification. There are in fact many
more examples from the literature. For many identification schemes reviewed
in [6], the verification function V can be split into V1(z) and V2(pk, c), such as
the FFS family, FF family, and Hs family. Apart from the above schemes, the
identification scheme from Katz-Wong signature [24], Chaum-Pedersen identifi-
cation [15] and the Okamoto-Schnorr identification are some examples of Type-
T* canonical identification. Type-T* canonical identification can also be applied
to the lattice-based setting, in particular, effectively to all “Fiat-Shamir with
Aborts” [31,32]-based identification schemes (as shown in Section 7).

Schnorr identification. The Setup algorithm outputs a cyclic group G of
prime order p, with a generator g. For each KeyGen execution, the algorithm
picks a random sk ∈ Zp and computes pk = gsk. The functions A,Z, V1, V2 are
defined as:

R = A(sk; r) := gr,

z = Z(sk, r, c) := r − c · sk mod p,

R′ = V1(z)� V2(pk, c) := gz · pkc.

Note that V1 is additively homomorphic: V1(z1)�V1(z2) = gz1 ·gz2 = gz1+z2 =
V1(z1 + z2). Given the secret key sk corresponding to pk and c, it is easy to
compute ẑ = T (sk, c) := sk · c mod p such that V1(ẑ) = gsk·c = pkc = V2(pk, c).
The challenge space Zp is a group under addition modulo p. Therefore, Schnorr
identification is a Type-T* canonical identification.

Theorem 1. Schnorr identification is secure against special impersonation un-
der key only attack if the DL assumption holds.

Proof. Suppose that A is an adversary breaking the special impersonation under
key only attack. The algorithm B is given a DL problem (g, y) for a cyclic group
G of prime order p. B gives param = (G, p, g) and pk = y to A.
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A returns (c, z, c′, z′) where c 6= c′. Then we have:

gz · pkc = gz
′
· pkc

′
.

Therefore B can extract the secret key sk = z−z′
(c′−c) as the solution to the DL

problem. ut

Guillou-Quisquater (GQ) identification [23]. The Setup algorithm out-
puts a pair (N, e), where N = pq, p and q are large prime numbers, e is a prime
number less than N/4 and gcd(e, φ(N)) = 1. For each KeyGen execution, the
algorithm picks a random sk ∈ ZN and calculates pk = ske. The functions
A,Z, V1, V2 are defined as:

R = A(sk; r) := re,

z = Z(sk, r, c) := skc · r mod N,

R′ = V1(z)� V2(pk, c) := ze · pk−c mod N.

Note that V1 is multiplicatively homomorphic: V1(z1) � V1(z2) = ze1 · ze2 =
(z1z2)e = V1(z1 ·z2). Given the secret key sk corresponding to pk and c, it is easy
to compute ẑ = T (sk, c) := sk−c mod N such that V1(ẑ) = ẑe = sk−ce = pk−c =
V2(pk, c). The challenge space of GQ identification is Ze and it is a group under
addition. Therefore, GQ identification is a Type-T* canonical identification.

Theorem 2. GQ identification is secure against special impersonation under
key only attack if the RSA assumption holds.

Proof. Suppose that A is an adversary breaking the special impersonation under
key only attack. The algorithm B is given a RSA problem (N, e, y). B gives
param = (N, e) and pk = y to A.

A returns (c, z, c′, z′), where c 6= c′, we have ze · pk−c = z′
e · pk−c

′
. Then:

(z/z′)e = pk(c−c
′)

Since e is a prime and c, c′ ∈ Ze, B can compute integers A and B such that:

A · e+B · (c− c′) = gcd(e, (c− c′)) = 1,

by the Euclidean algorithm. Hence we have:

(z/z′)Be = pk1−Ae.

Therefore we can extract the secret key sk = (z/z′)BpkA as the solution to the
RSA problem. ut
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Algorithm 3: DualRing

1 Procedure Setup(λ):
2 define H : {0, 1}∗ → ∆c;
3 return param← T*.Setup(λ);

4 Procedure Sign(param,m,pk =
{pk1, . . . , pkn}, skj):

5 r ←s ∆r, ci ←s ∆c for all i 6= j;
6 R = A(skj ; r)�

⊙
i 6=j V2(pki, ci);

7 c = H(m,pk, R);
8 cj = c�

⊗
i6=j ci;

9 z = Z(skj , r, cj);
10 return σ = (c1, . . . , cn, z);

11 Procedure KeyGen(param):
12 return (pk, sk)←

T*.KeyGen(param);

13 Procedure Verify(param,m,pk =
{pk1, . . . , pkn}, σ):

14 parse σ = (c1, . . . , cn, z);
15 R = V1(z)�

⊙n
i=1 V2(pki, ci);

16 c =
⊗n

i=1 ci;
17 if c 6= H(m,pk, R) then
18 return 0;

19 auxiliary checking with (R, c, z);
20 return 1;

5.3 Our Construction: DualRing

We denote a Type-T* canonical identification scheme by T*. We use the symbol⊙
and

⊗
to represent consecutive � and ⊗ operations, respectively:

n⊙
i=1

ai := a1 � a2 � . . .� an−1 � an,
n⊗
i=1

bi := b1 ⊗ b2 ⊗ . . .⊗ bn−1 ⊗ bn.

DualRing is shown in Algorithm 3. The high level idea is that we use V2
to add the decoy public keys pki and their corresponding challenge values ci to
the commitment R first. After getting the real challenge value c, the signer with
index j computes cj = c�

⊗
i6=j ci ∈ ∆c. The signer computes z according to the

canonical identification scheme. To verify, the commitment R is reconstructed
from all public keys and their corresponding challenge values. The value

⊗
∀i ci

should be equal to the real challenge value c.

Theorem 3. DualRing is unforgeable w.r.t. insider corruption in the random
oracle model if T* is secure against special impersonation under key only attack
and |∆c| > qs(qh + qs − 1), where qs and qh are the number of queries to the
signing oracle and the H oracle respectively.

Proof. Denote A as a PPT adversary breaking the unforgeability w.r.t. insider
corruption of DualRing. We build an algorithm B to break the special imperson-
ation under key only attack of T*. Suppose the algorithm B is given a system
parameters param and a public key pk∗ from its challenger C.

Setup. B picks a random index i∗ ∈ [1, qk]. B runs (p̂ki, ŝki) ← KeyGen() for

i ∈ [1, qk], i 6= i∗. B sets p̂ki∗ = pk∗. B gives param and S := {p̂ki}
qk
i=1 to A.

Oracle Simulation. B answers the oracle queries as follows.

– H: B simulates H as a random oracle.
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– CO: On input i, B returns ŝki (If i = i∗, B declares failure and exits.).
– SO: On input a message M , a set of public key pk = (pk1, . . . , pkn) and

the signer index j, it outputs ⊥ if p̂kj /∈ pk. If j 6= i∗, then B returns σ ←
Sign(param,M,pk, ŝkj).
Otherwise, B picks random c1, . . . , cn ∈ ∆c and z from the domain of re-
sponse ∆z according to the distribution of the output of Z(·). B computes
R = V1(z)�

⊙n
i=1 V2(pki, ci). B sets H(M,pk, R) =

⊗n
i=1 ci in the random

oracle. If such value has been set in the random oracle, B declares failure
and exits. B returns σ = (c1, . . . , cn, z).

Challenge. A returns a forgery (M∗, {p̂kij}
n
j=1, σ

∗ = (c∗1, . . ., c∗n∗ , z
∗)). If pk∗ 6=

p̂kij for all j ∈ [1, n], B declares failure and exits. Otherwise, we denote j∗ as the

index such that pk∗ = p̂kij∗ . Denote pk∗ = {p̂kij}
n
j=1 and compute R∗ as in the

Verify algorithm. B rewinds to the point that (M∗,pk∗, R∗) is queried toH and
returns a different c′ instead. A returns another signature σ′ = (c′1, . . . , c

′
n, z
′).

Since both σ∗ and σ′ are valid signatures, We have:

R∗ = V1(z∗)�
n⊙
j=1

V2(p̂kij , c
∗
j ) = V1(z′)�

n⊙
j=1

V2(p̂kij , c
′
j).

Note that it is impossible to have c∗j = c′j for all j ∈ [1, n] (since
⊗n

j=1 c
∗
j 6=⊗n

j=1 c
′
j). If c∗j∗ = c′j∗ , B declares failure and exits. With probability at least

1/n, we have c∗j∗ 6= c′j∗ . Observe that:

V1(z∗)�
n⊙
j=1

V2(p̂kij , c
∗
j )

=V1(z∗ ⊕ ẑ∗1 ⊕ . . .⊕ ẑ∗j∗−1 ⊕ ẑ∗j∗+1 ⊕ . . .⊕ ẑ∗n)� V2(pk∗, c∗j∗)

=V1(z̃∗)� V2(pk∗, c∗j∗),

where ẑ∗i = T (ŝki, c
∗
i ) for i ∈ [1, n] \ j∗ and z̃∗ = z∗ ⊕ ẑ∗1 ⊕ . . .⊕ ẑ∗j∗−1 ⊕ ẑ∗j∗+1 ⊕

. . .⊕ ẑ∗n. Similarly we have V1(z′)�
⊙n

j=1 V2(p̂kij , c
′
j) = V1(z̃′)� V2(pk∗, c′j∗) for

some z̃′. Then B can return (c∗j∗ , z̃
∗, c′j∗ , z̃

′) to its challenger C.
Probability Analysis. We analyse the probability of success (i.e., not aborting)
in the above simulation. For qc queries to the CO, the probability of success
in the first query is (1 − 1

qk
). The probability of success in the second query

is at least (1 − 1
qk−1 ). The probability of success after qc queries is at least

(1 − 1
qk

)(1 − 1
qk−1 ) · · · (1 − 1

qk−qc+1 ) = qk−qc
qk

= 1 − qc
qk

. (It is implied by the

security model that qk > qc + n.)
For qs queries to the SO, the probability of success in the first query is at

least (1− qh
|∆c| ), where qh is the number queries to the H oracle. The probability

of success after qs queries to SO is at least

(1− qh
|∆c|

)(1− qh + 1

|∆c|
) · · · (1− qh + qs − 1

|∆c|
) ≥ 1− qs(qh + qs − 1)

|∆c|
.
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Here we assume that |∆c| > qs(qh + qs − 1).

The probability of pk∗ 6= p̂kij in the challenge phase is (1 − 1
qk−qc )(1 −

1
qk−qc−1 ) · · · (1 − 1

qk−qc−n+1 ) = qk−qc−n
qk−qc . If the probability of forgery by A is ε,

then the probability of B does not return failure before rewinding is

εb := ε(1− qc
qk

)(1− qs(qh + qs − 1)

|∆c|
)(1− qk − qc − n

qk − qc
)

= ε(1− qs(qh + qs − 1)

|∆c|
)(
n

qk
).

By the generalized forking lemma [4], the probability of a successful rewinding
is at least εb

8 if |∆c| > 8qh/εb (it runs in time τ · 8qn/εb · ln(8n/εb) if A runs in
time τ). Finally we have c∗j∗ 6= c′j∗ with probability at least 1/n. As a result, the
probability ε′ of B breaking the special impersonation is:

ε′ ≥ (
εn

8qk
)(1− qs(qh + qs − 1)

|∆c|
).

if |∆c| > qs(qh + qs − 1) and |∆c| > 8qh/εb
8. We can further simplify the

probability ε′ if we take |∆c| ≥ 2qs(qh + qs − 1). Then if |∆c| > 16qhqk
εn , we

have ε′ ≥ εn
16qk

. ut

Theorem 4. DualRing is anonymous in the random oracle model, if |∆c| >
qs(qh + qs − 1), where qs and qh are the number of queries to the signing oracle
and the H oracle respectively.

Proof. We show how to build an algorithm B providing perfect anonymity in
the random oracle model.

Setup. B runs param ← Setup(λ). B runs (pki, ski) ← KeyGen(param;ωi) for
i ∈ [1, qk] with randomness ωi. B gives param and S := {pki}

qk
i=1 to A1.

Oracle Simulation. B answers the oracle queries as follows.

– SO: On input a message m, a set of public key pk with the signer index j,
B returns σ ← Sign(param,m,pk, skj).

– H: B simulates H as a random oracle.

Challenge. A1 gives B a message m and a vector of public keys pk and two
indices i0, i1. B picks random c1, . . . , cn ∈ ∆c and picks z from the domain of
response ∆z according to the distribution of the output of Z(·). B computes
R = V1(z) �

⊙n
i=1 V2(pki, ci). B sets H(m,pk, R) =

⊗n
i=1 ci in the random

oracle. By Property 4, the distribution is correct. If the hash value is already set
by the H oracle, B declares failure and exits. B returns σ = (c1, . . . , cn, z) and
{ωi}qki=1 to A2. B picks a random bit b.

8 The condition |∆c| > 8qh/εb is not needed if we use the forking lemma in [7] with a
looser security bound.
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Output. Finally, A2 outputs a bit b′. Observe that b is not used in the generation
of σ. Therefore, A2 can only win with probability 1/2.

Probability Analysis. We analyse the probability of success (i.e., not aborting) in
the above simulation. For qh queries to the H oracle and qs queries to the SO,
the probability of success in the first query is at least (1− qh

|∆c| ). The probability

of success after qs queries to SO is at least

(1− qh
|∆c|

)(1− qh + 1

|∆c|
) · · · (1− qh + qs − 1

|∆c|
) ≥ 1− qs(qh + qs − 1)

|∆c|
.

Here we assume that |∆c| > qs(qh + qs − 1). If B does not abort, then no PPT
adversary can win with non-negligible probability over half. ut

Difference with AOS Ring Signature. Our ring signature is a bit differ-
ent from the AOS ring signature. The AOS ring signature allows a mixture
of different types of public keys, such as keys from the Schnorr signature and
the RSA signature. The security proof for the generic construction of the AOS
ring signature was not formally given in [2]. On the other hand, our scheme al-
lows different types of public keys from different Type-T* canonical identification
schemes, with the restriction that these canonical identification schemes should
use the same V1 function9 (Otherwise, we do not know which V1 function to use
in the Verify algorithm). The security proof for our generic construction holds
for different Type-T* canonical identification schemes satisfying the requirement
above.

The AOS ring signature is generated sequentially by forming a “ring” of ci
in a loop and calculating zi for n times. On the other hand, our signature is
generated by forming a “R-ring” in one-shot during the commit phase, forming
a “C-ring” in one-shot after getting the challenge c and calculating z for one
time only. Therefore, our scheme is more efficient than the AOS ring signature.

Finally, our dual ring technique cannot be applied to the Type-H signature
in [2]. Recall that for our Type-T* DualRing, we require the use of V2(pki, ci)
(for all non-signer indices) to generate R. For Type-H, pki is tied with z by the
one-way function F (z, pki). Hence, we cannot separate z and pki into V1 and V2
to form the R-ring similarly.

Difference with CDS OR-proofs. The C-Ring in DualRing is similar to the
use of secret sharing in CDS 1-out-of-nOR proof [16]. Our construction of R-Ring
leads to a single R and hence a single z in the signature. On the contrary, [16]
does not have the formation of R-Ring and still has n commitments Ri’s. It
results in n responses zi’s. So, the ring signature constructed by [16] consists of
(ci, zi) for i ∈ [n]. There is no trivial way to combine all zi’s, because each zi
is only related to Ri and ci, and not to other zj ’s. Hence, [16] does not (easily)
achieve an O(log n) size ring signature in the DL-based setting.

9 which implicitly implies all users should use the same set of security parameters
including the same group and generator for their sk and pk.
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6 DualRing-EC: Our Succinct DL-based Ring Signature

We give a new sum argument of knowledge which is useful to reduce the signa-
ture size of DualRing from linear to logarithmic in the DL-based setting. The
group operation ⊗ of the challenge space is modular addition. This is the first
combination of the classical ring structure with the argument of knowledge.

Notations and Assumptions. For a security parameter λ, we use G to repre-
sent a cyclic group of prime order p. We use [n] to denote the numbers 1, 2, ..., n.

We use the following notations for vectors for our DL-based construction: a[:l]

and a[l:] represent (a1, ..., al) and (al+1, ..., an). a ◦ b is the Hadamard product

(a1b1, a2b2, ..., anbn). 〈a,b〉 is the inner product
∑n
i=1 aibi. ab, a + b and ab

represent (ab1, a
b
2, ..., a

b
n), (a1 +b, a2 +b, ..., an+b) and

∏n
i=1 a

bi
i respectively.

∑
a

and
∏

a denotes
∑n
i=1 ai and

∏n
i=1 ai.

Definition 6 (Discrete Logarithm Assumption). For all PPT adversaries
A such that

Pr [y = ga|g, y ←s G, a← A(G, g, y)] ≤ negl(λ).

6.1 Sum Arguments of Knowledge

The sum argument of knowledge is a variant of inner product argument in [11].
The inner product argument is an efficient proof system for the following relation:{

(g,h ∈ Gn, P ∈ G, c ∈ Zp; a,b ∈ Znp ) : P = gahb ∧ c = 〈a,b〉
}

in which a prover P convinces a verifier V that c is the inner product of two
committed vectors a,b. Bootle et al. [13] presented an efficient zero-knowledge
proof for inner product argument, with communication complexity of 6 log2(n)
(n is the dimension of vectors). Based on their works, Bünz et al. proposed
Bulletproofs [11] to reduce the communication complexity to 2 log2(n). They
achieve O(log n) complexity by running a recursive Pf algorithm, such that
in each round two vectors a,b of size n are committed into two commitments
(L,R), and two vector of proofs a′,b′ of size n/2 are computed for challenge x,

where Lx
2

PRx
−2

is equal to the commitment of a′,b′ and 〈a′,b′〉. In the next
round, run the Pf algorithm with input vectors a′,b′ and the recursion ends
when n = 1.

From Inner Product Argument to Sum Argument. To construct our
logarithmic size ring signature, we propose a new argument of knowledge named
Sum Argument. First we give the relation:{

(g ∈ Gn, P ∈ G, c ∈ Zp; a ∈ Znp ) : P = ga ∧ c =
∑

a
}

(2)

In a sum argument, a prover convinces a verifier that he/she has the knowledge
of a vector of scalars a, such that P = ga and c =

∑
a. Our sum argument looks



20 T. H. Yuen et al.

like an inner product argument, where a vector of generators and a computation
of multi-exponentiation is used. Although an inner product argument can be
converted into a sum argument by setting the vector b to 1n, this yields a less
efficient protocol than ours.

Assume that the system parameter param includes a generator u ∈ G in
group G with order p and two hash functions HZ , H

′
Z : {0, 1}∗ → Zp. A

Non-interactive Sum Argument (NISA) consists of a Proof algorithm which
takes (param,g, P, c,a) and outputs a proof π; and a Verify algorithm which
takes(param,g, P, c, π) and outputs a bit 1/0. Our NISA is given in Algorithm 4.

Observe that for the k-th recursion in Pf, the value of b is
∏k
i=1(xi + x−1i )1

n

2k ,
where xi is the i-th output of HZ . This b is known to the verifier and hence we
do not need a vector of generators h to commit b in L,R as in [13]. As a result,
we can set h as 1n and can save almost half of the exponentiation during the
recursion. In addition, the computation of P is also not needed by the prover.

Theorem 5. Our sum argument has statistical witness-extended emulation for
non-trivial discrete logarithm relation among g, u or a valid witness a.

We defer its security proof to the full version of the paper.
Compared with [11], our protocol is simpler. In each iteration, we com-

pute (4n′ + 2) exponentiations to generate a proof, then compute a multi-
exponentiation of size (1 + n + 2 log2(n)) to verify. For an inner product ar-
gument [11], the corresponding computations are (8n′ + 8) exponentiations and
a multi-exponentiation of size (1 + 2n+ 2 log2(n)), respectively. The proof sizes
are similar; however we omit almost half of exponentiations.

6.2 Logarithmic Size DL-based Ring Signature

We give the full construction of compact DL-based ring signature, by combining
DualRing with the sum argument of knowledge and Schnorr identification. Then,
we compare the efficiency with the existing ring signature schemes.

Matching Sum Argument with Ring Signature. Notice that the sum ar-
gument proves the relation for some ai ∈ Zp, given gi, P ∈ G and c ∈ Zp:

P =

n∏
i=1

gaii ∧ c =

n∑
i=1

ai.

On the other hand, the verification of our generic ring signature includes:

R� (V1(z))−1 =

n⊙
i=1

V2(pki, ci) ∧ H(m, pk, R) =

n⊗
i=1

ci.

Interestingly, the two examples (DL- and RSA-based) of the Type-T* canonical
identification have V2(pki, ci) = pkcii . Therefore, we can use the sum argument
for the relation:

R · (V1(z))−1 =

n∏
i=1

pkcii ∧ H(m, pk, R) =

n∑
i=1

ci.
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Algorithm 4: NISA

1 Procedure NISA.Proof({param,g, P, c},a):

2 Run protocol Pf on input (g, uH′Z(P,u,c),a,1n);

3 Procedure Pf(g, û,a,b):
// L, R are initially empty, but maintain its memory throughout

the recurrsion. n is the length of vector a and b.
4 if n = 1 then
5 Output π = (L, R, a, b).

6 else
7 Compute n′ = n

2
, cL = 〈a[:n′],b[n′:]〉 ∈ Zp, cR = 〈a[n′:],b[:n′]〉 ∈ Zp;

8 L = g
a[:n′]
[n′:] û

cL ∈ G and R = g
a[n′:]
[:n′] û

cR ∈ G;

9 Add L to L and R to R and compute x = HZ(L,R);

10 Compute g′ = gx−1

[:n′] ◦ gx
[n′:] ∈ Gn′ , a′ = x · a[:n′] + x−1 · a[n′:] ∈ Zn′

p and

b′ = x−1 · b[:n′] + x · b[n′:] ∈ Zn′
p ;

11 Run protocol Pf on input (g′, û,a′,b′);

12 Procedure NISA.Verify(param,g, P, c, π = (L, R, a, b)):

13 P ′ = P · uc·H′Z(P,u,c);
14 Compute for all j = 1, ..., log2 n: xj = HZ(Lj , Rj);
15 Compute for all i = 1, ..., n:

yi =
∏

j∈[log2 n] x
f(i,j)
j , f(i, j) =

{
1 if (i− 1)’s j-th bit is 1

−1 otherwise
;

16 Set y = (y1, . . . , yn), x = (x1, . . . , xlog2 n) ;

17 if Lx2

P ′Rx−2

=ga·yuab·H′Z(P,u,c) then
18 Output 1

19 Output 0

As a result, we can give a logarithmic size ring signature from Type-T* canon-
ical identification scheme with matching non-interactive sum argument.

DualRing-EC Construction. Our DL-based construction DualRing-EC is
shown in Algorithm 5, by using DualRing and NISA for Relation 2.

Theorem 6. DualRing-EC is unforgeable w.r.t. insider corruption if Dual-
Ring is unforgeable w.r.t. insider corruption and the NISA has statistical witness-
extended emulation.

Proof. Suppose that A is an adversary breaking the unforgeability w.r.t. insider
corruption of DualRing-EC. Then, we can construct an algorithm B breaking the
unforgeability of DualRing. B is given the system parameter param′ and a set
of public keys S from the challenger of DualRing. B picks a random generator
u ∈ G and returns param = (param′, u) to A.

When A asks for a signing oracle query, B asks the signing oracle of Du-
alRing and obtains σ′ = (c1, . . . , cn, z). B computes R by running Dual-
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Algorithm 5: DualRing-EC

1 Procedure Setup(λ):
2 param′ ← DualRing.Setup(λ);
3 pick a generator u←s G;
4 return param = (param′, u);

5 Procedure Sign(param,m,pk, skj):
6 (c1, . . . , cn, z)← DualRing.Sign

(param,m,pk, skj);
// (c,R) is computed in

DualRing.Sign
7 a← (c1, . . . , cn);
8 P = R� (V1(z))−1;
9 π ← NISA.Proof({param,pk, u,

P, c},a);
10 return σ = (z,R, π);

11 Procedure KeyGen(param):
12 return (pk, sk)←

DualRing.KeyGen(param′);

13 Procedure Verify(param,m,pk, σ):
14 parse σ = (z,R, π);
15 c = HZ(m,pk, R);
16 P = R� (V1(z))−1;
17 if 0← NISA.Verify(param,pk, u,

P, c) then
18 return 0;

19 return 1;

Ring.Verify on σ′. B computes c = c1 + · · · + cn and P = R � (V1(z))−1.
B runs the NISA.Proof and obtains π. B returns (c, z, R, π).

In the challenge phase, A returns a signature σ∗ = (c∗, z∗, R∗, π∗) with
respect to a message M∗ and {pk∗i }ni=1. By the statistical witness-extended
emulation of NISA, B can run an extractor E to obtain (c∗1, . . . , c

∗
n), where

P ∗ = R∗ � (V1(z∗))−1 =
⊙n

i=1 V2(pk∗i , c
∗
i ). Then B returns the signature σ′ =

(c∗1, . . . , c
∗
n, z
∗), the message M∗ and {pk∗i }ni=1 to the challenger of DualRing.

ut

Theorem 7. DualRing-EC is anonymous if DualRing is anonymous.

Proof. Suppose that A is an adversary breaking the anonymity of DualRing-EC.
Then, we can construct an algorithm B breaking the anonymity of DualRing.
B is given param′ and the set S from its challenger. B picks a random generator
u ∈ G and gives param = (param′, u) to A.

When A asks for a signing oracle query, B simulates it as in the proof of un-
forgeability. In the challenge phase, A gives M∗,pk∗, i0, i1) to B and B forwards
it to its challenger. B receives ((c∗1, . . . , c

∗
n, z
∗), {ωi}qki=1). B computes σ∗ by line

7-9 of the Sign algorithm and returns (σ∗, {ωi}qki=1) to A.
Finally A returns a bit b′ and B sends b′ to its challenger to break the

anonymity of DualRing. ut

6.3 Efficiency Analysis

Signature Size. We compare our DL-based instantiation for n public keys with
other O(log n)-size DL-based ring signatures without trusted setup in Table 1.
Most accumulator-based O(1)-size ring signatures require trusted setup. The
lattice-based logarithmic ring signatures [19, 20, 28] are still at least 100 times
longer than DL-based construction. Our ring signature is 789/921 bytes for the
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Fig. 3: The signature size of ring signature schemes for n public keys, when
implemented on elliptic curve with λ = 128.

ring size = 1024/4096 with λ = 128. We can see that DualRing-EC (Algorithm 5
with Schnorr Identification) is the shortest ring signature without trusted setup.
Fig. 3 shows the concrete signature size when an element in Zp is represented by
32 bytes and an element in G is represented by 33 bytes. Note that the signature
size for a ring with size [log(n−1)+1, log n] is the same. Therefore, the signature
size increases for ring size 1025, 2049, 4097, etc.

Computational Efficiency. We implement our DualRing-EC in Python, using
the P256 curve in the fastecdsa library. It is tested on a computer with Intel Core
i5 2.3GHz, 8GB RAM with MacOS 10. The running time is shown in Fig. 4.

We compare the asymptotic running time of our scheme with [12,22] 10. The
running time of the signer for both [22] and [12] are both dominated by O(n log n)
exponentiations. On the other hand, the signer’s running time for DualRing-EC
is O(n) exponentiations only. Comparing with [27, 36], the major difference for
the signer’s running time is the use of the inner product argument in [27,36] and
the use of NISA in our scheme. As discussed in the section of NISA, we only
use half of the exponentiation used in the inner product argument. Verification
time for out scheme is dominated by Line 17 of Algorithm 4, which contains
n + 2 log n + 1 exponentiations for a ring size of n. [27, 36] used Bulletproof
which contains 2n + 2 log n + 1 exponentiations in verification. To conclude,
our DualRing-EC outperforms [12, 22, 27, 36] in terms of signature size and the
running time of the signer and the verifier.

10 For simplicity, we compare the schemes by assuming that a multi-exponentiation of
size ` is the same as ` exponentiation in G.
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Fig. 4: Running times of DualRing-EC

7 DualRing-LB: Our Lattice-Based Ring Signature

In this section, we give a concrete ring signature construction based on standard
(module) lattice assumptions using DualRing.

Notations and Assumptions. We define q as an odd modulus and Rq as a
ring Zq[X]/(Xd+1) of dimension d. Define In as the identity matrix with size n,
Uk as a set of polynomials in Z[X]/(Xd + 1) with infinity norm at most k ∈ Z+,
and U as the uniform distribution. The Euclidean ‖·‖ and infinity ‖ · ‖∞ norms
of a polynomial (or a vector of polynomials) are defined in the standard fashion
w.r.t. the coefficient vector of the polynomial. Define the following challenge
space:

C = { c ∈ Z[X]/(Xd + 1) : ‖c‖∞ = 1 }. (3)

Observe that |C| = 3d. That is, for d = 128, we have |C| = 3128 > 2202.

We review the hardness of Module-SIS (M-SIS) (defined in “Hermite normal
form” as in [5]) and Module-LWE (M-LWE) problems [19].

Definition 7 (M-SISn,m,q,βSIS
Assumption). For all PPT adversaries A,

Pr

[
A′ ←s U(R

n×(m−n)
q ),

A = [In||A′], z ← A(A)
:
Az = 0 ∈ Rnq ,
0 < ‖z‖ ≤ βSIS

]
≤ negl(λ).

Definition 8 (M-LWEn,m,q,χ Assumption). Let χ be a distribution over Rq
and s←s χ

n be a secret key. Define LWEq,s as the distribution obtained by sam-
pling a←s R

n
q , e←s χ and outputting (a, 〈a, s〉+e). For all PPT adversaries A,

the probability of distinguishing between m samples from LWEq,s and U(Rnq , Rq)
is negl(λ).
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Algorithm 6: Lattice-based Type-T* Canonical Identification

1 Procedure Setup(λ):
2 set M-LWE parameters k,m, d, q;
3 define a hash function

H : {0, 1}∗ → C;
4 pick G′ ← R

k×(m−k)
q ;

5 G = [ Ik ‖G′ ];
6 return param = (k,m, d, q,G,H);

7 Procedure KeyGen():
8 pick x← Um

1 ;
9 compute c = G · x;

10 return (pk, sk) = (c,x);

11 Procedure Proof1(sk):
12 pick r ← Um

md2 ;
13 R = A(sk; r) := G · r;
14 return (R, r);

15 Procedure Ch(R):
16 pick c← C;
17 return c;

18 Procedure Proof2(sk, r, c):
19 z = Z(sk, r, c) := c · sk− r;
20 if ‖z‖∞ > md2 − d then
21 restart Proof1;

22 return z;

23 Procedure Verify(pk,z, c):
24 R′ = V1(z)+V2(pk, c) := −G·z+c·pk;
25 if c 6= Ch(R′) then
26 return 0;

27 if ‖z‖∞ > md2 − d then
28 return 0;

29 return 1;

7.1 Lattice-based Canonical Identification

We give a Type-T* canonical identification from M-LWE/SIS in Algorithm 6. We
use the rejection sampling technique from [31] to make sure that no information
about the signer’s secret key is revealed in the response.

We can observe the following

1. The function V1 is additively homomorphic:

V1(z1) + V1(z2) = −G · z1 −G · z2 = −G · (z1 + z2) = V1(z1 + z2).

2. Given sk, pk and c, we can compute z̃ = −c·sk such that V1(z̃) = G·(c·sk) =
V2(pk, c).

3. The challenge space C is a group under addition mod 3.

Theorem 8. Algorithm 6 is secure against special impersonation under key only

attack if M-SISk,m+1,q,βSIS
(in HNF) for βSIS ≈ 2d2

√
m ·

(
1 +m

√
d
)

and M-

LWEm−k,k,q,U1 are hard.

Proof. Suppose that A is an adversary breaking the special impersonation under

key only attack. Suppose that B is given Ĝ =
[
Ik ‖G′ ‖ g

]
∈ R

k×(m+1)
q as

the M-SIS matrix where G′ and g are sampled uniformly at random. Denote
G =

[
Ik ‖G′

]
, which is used as the commitment key in the oracle simulations

by B. The number of public keys generated by the challenger is qk. B sets

pk = G · r + g (4)
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for r ← Um1 . Observe that ‖r′‖ ≤
√
md+ 1 for r′ =

(
r
1

)
. Also, note that

we can write G · r = r0 + G′ · r1 for r0 ∈ Uk1 and r1 ∈ Um−k1 . Therefore, by
M-LWEm−k,k,q,U1

assumption, G ·r is computationally indistinguishable from a
random element in Rkq and so is pk = G ·r+g. B gives param = (k,m, d, q,G,H)
and pk to A.
A returns (c, z, c′, z′), where c 6= c′, we have:

−G · z + c · pk = −G · z′ + c′ · pk

(c− c′) · pk = G · (z − z′) = Ĝ ·
(
z − z′

0

)
Further, multiplying Eq. (4) by (c− c′), we have

(c− c′) · pk = G · (c− c′) · r + (c− c′) · g = Ĝ · (c− c′) ·
(
r
1

)
.

Therefore, we get:

Ĝ · (c− c′) ·
(
r
1

)
= Ĝ ·

(
z − z′

0

)
.

That is, Ĝ · s = 0 over Rq for s = (c − c′) ·
(
r
1

)
−
(
z − z′

0

)
. Observe that s

cannot be the zero vector as c 6= c′ and the last coordinate of s is (c− c′). Since
‖z‖∞ , ‖z′‖∞ ≤ md2 − d, we also have

‖s‖ ≤ 2d
√
d
√
md+ 1 + 2 · (md2

√
md) ≈ 2d2

√
m ·

(
1 +m

√
d
)
.

Hence, s is a solution to M-SISk,m+1,q,βSIS
for βSIS ≈ 2d2

√
m
(

1 +m
√
d
)
. ut

Remark. It is not known how to build an efficient lattice-based ZK proof for
sum argument. There is a theoretical work on constructing a lattice analog of
Bulletproofs in [14]. However, in practice, the construction is inefficient. As the
lattice analog of the Sum Argument cannot be constructed efficiently, the signa-
ture size of our lattice-based construction remains at O(n), while [10,19] achieve
O(log n) signature size. Hence, after some point (around 1100), our construction
eventually produces longer signatures.

7.2 Efficiency Analysis of DualRing-LB

Signature Size. The practical security estimations of M-SIS and M-LWE against
known attacks are done by following the methodology detailed in [18, Section
3.2.4]. In particular, we aim for a “root Hermite factor” of around 1.0045. The
root Hermite factor is a common metric used in lattice-based cryptography to
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n k m log q Signature Size PK Size SK Size Size of (c1, . . . , cn) Size of z

2 7 15 26 4.48 2.84 0.23 0.05 4.43
4 7 15 26 4.53 2.84 0.23 0.10 4.43
8 7 15 26 4.63 2.84 0.23 0.20 4.43
16 7 15 26 4.83 2.84 0.23 0.40 4.43
32 7 15 26 5.22 2.84 0.23 0.79 4.43
64 7 15 26 6.02 2.84 0.23 1.59 4.43
128 7 15 26 7.60 2.84 0.23 3.17 4.43
256 7 15 26 10.78 2.84 0.23 6.34 4.43
512 8 16 26 17.44 3.25 0.25 12.69 4.75
1024 8 16 26 30.13 3.25 0.25 25.38 4.75
2048 8 16 26 55.50 3.25 0.25 50.75 4.75
4096 8 17 27 106.57 3.38 0.27 101.50 5.07

Table 3: The parameter setting of DualRing-LB. The root Hermite factor for
both M-SIS and M-LWE are ≤ 1.0045. d = 128 always. The sizes are in KB.

measure practical hardness. We refer to [18] for further discussion. We refer to
Table 3 for the concrete parameter setting. In general, for d = 128, the signature
length can be approximated by the following formula:

|σ| = |z|+ n · |ci| ≈ 4536 + 26n bytes. (5)

The above formula stems from the fact that |ci| = d log 3/8 bytes and |z| =
md log(2md2)/8 bytes since z ∈ Rm with ‖z‖∞ ≤ md2. Plugging in (d,m) =
(128, 15) yields (5).

Although Theorems 3 and 8 imply that DualRing-LB is secure, they do not
provide all the information required in the concrete parameter setting. Unlike
the classical DL- or factoring-based constructions, in the lattice setting, it is
important for the concrete parameter setting to know the precise (Euclidean)
norm bound βSIS of M-SIS solution that arises in the security reduction. This is
because the practical security estimations depend on the βSIS parameter of the
M-SIS problem. Therefore, we also need to investigate in more detail the M-SIS
solution length βSIS for the ring signature (not the underlying Type-T* canonical
identification as in Theorem 8) and see how it depends on the parameters. We do
this in the full version of the paper and show concretely what the length of the M-
SIS solution is for the ring signature, which gives βSIS ≈ 2d

√
md · (md+ n). The

proof follows the same blueprint in the generic unforgeability proof of DualRing
(Theorem 3), but we keep track of the norms as the proof proceeds.
Computational Efficiency. First, the modulus q is always less than 32 bits in
length for the parameters in Table 3. Therefore the values in our construction fit
into 32-bit registers, boosting the computational efficiency. Another advantage
of our construction is that no (discrete) Gaussian sampling is required, making
the implementation easier to protect against side-channel attacks.

We show the running times of DualRing-LB in Fig. 5. The code is written
in Python, using the polynomial arithmetic and NTT transform in the sympy
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Fig. 5: Lattice-based ring signatures

library. It is tested on a computer with Intel Core i5 2.3GHz, 8GB RAM with
MacOS 10. For our scheme, the expected number of iterations due to rejection
sampling in Sign is about 2.72 and our experiment matches this prediction. The
running time for a single run of sign and verify algorithms are about the same.
However, the expected number of iterations for sign is 2.72. Therefore, we have
the running time for sign as in Fig. 5.

The construction in [19] is at least 5 times slower than DualRing-LB for both
sign and verify. Some of the possible reasons include: (1) their expected number
of iterations due to rejection sampling in Sign is about 4.757, (2) they use a
polynomial of degree d = 256. Their scheme does not exhibit a linear increase in
running time since [19] changes the system parameters (e.g., matrix dimension,
degree of polynomial) for different ring size to optimize their signature size.

8 Conclusion

In this paper, we propose a generic construction of ring signature scheme using
a dual ring structure. When we instantiate in the DL-setting, it is the shortest
ring signature scheme without using trusted setup. When instantiated in M-
LWE/SIS, we have the shortest ring signature for ring size between 4 and 2000.
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