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Abstract. Many of the recent advanced lattice-based Σ-/public-coin
honest verifier (HVZK) interactive protocols based on the techniques
developed by Lyubashevsky (Asiacrypt’09, Eurocrypt’12) can be trans-
formed into a non-interactive zero-knowledge (NIZK) proof in the random
oracle model (ROM) using the Fiat-Shamir transform. Unfortunately,
although they are known to be secure in the classical ROM, existing
proof techniques are incapable of proving them secure in the quantum
ROM (QROM). Alternatively, while we could instead rely on the Unruh
transform (Eurocrypt’15), the resulting QROM secure NIZK will incur a
large overhead compared to the underlying interactive protocol.
In this paper, we present a new simple semi-generic transform that
compiles many existing lattice-based Σ-/public-coin HVZK interactive
protocols into QROM secure NIZKs. Our transform builds on a new
primitive called extractable linear homomorphic commitment protocol.
The resulting NIZK has several appealing features: it is not only a proof of
knowledge but also straight-line extractable; the proof overhead is smaller
compared to the Unruh transform; it enjoys a relatively small reduction
loss; and it requires minimal background on quantum computation. To
illustrate the generality of our technique, we show how to transform
the recent Bootle et al.’s 5-round protocol with an exact sound proof
(Crypto’19) into a QROM secure NIZK by increasing the proof size by
a factor of 2.6. This compares favorably to the Unruh transform that
requires a factor of more than 50.

1 Introduction

The Fiat-Shamir transform [24] is one of the most popular methods to construct
non-interactive zero-knowledge (NIZK) proofs1 in the random oracle model (ROM)
based on a Σ-protocol (or more generally a public-coin honest-verifier zero-
knowledge (HVZK) interactive protocol). Due to the ever-growing risk of quantum
computers, understanding the quantum security of NIZKs in the quantum ROM [8]
based on the Fiat-Shamir transform (or related transforms) have been considered
to be an important research topic both in theory and practice. However, although
many techniques in the QROM have accumulated in the last decade, including
1 We may simply refer to NIZK proofs or NIZK proofs of knowledge as NIZKs when
the distinction is not relevant.



but not limited to [8,50,45,9,46,47,31,51,18,35,17], our understanding of NIZKs
in the QROM is still not as clear as those in the classical ROM. Notably, many
of the recent lattice-based Σ-/public-coin HVZK interactive protocols, such as
[3,2,10,48,21,1], based on the techniques developed by Lyubashevsky [37,38] fall
into the following situations:

- they are not known to be (in)secure when applied the Fiat-Shamir transform
in the QROM, and/or

- they can be transformed into a QROM secure NIZK using the Unruh transform
[46] but incurs a large overhead, say at least ×50, compared to the underlying
interactive protocol.

Considering that we can securely apply the Fiat-Shamir transform to these
protocols in the classical ROM to obtain efficient NIZKs, the current state-of-the-
affair is unsatisfactory. Below, we briefly recall NIZKs in the QROM.
QROM secure NIZKs. Broadly speaking, there are two breeds of transformation
to obtain QROM secure NIZKs (that are a proof of knowledge) from a Σ-/public-
coin HVZK interactive protocol. One is the Fiat-Shamir transform [24] and the
other is the Unruh transform [46].

Recently, Don et al. [18] and Liu and Zhandry [35] showed how to argue
security of the Fiat-Shamir transform in the QROM in two steps: they first
showed that the Fiat-Shamir transform converts a standard Σ-protocol that is
additionally a quantum proof of knowledge into an NIZK secure in the QROM,
and then additionally showed how to construct a Σ-protocol that is a quantum
proof of knowledge. Let us call such a Σ-protocol as a quantum secure Σ-protocol.
It was shown in [35] (and partially in [18]) that Lyubashevsky’s Σ-protocol for
proving possession of a short vector e such that Ae = u is quantum secure for
appropriate parameters. Concretely, by increasing the parameters compared to
those required by the classically secure protocol, they showed that Lyubashevsky’s
Σ-protocol has a “collapsing” property. However, such techniques for proving
that a Σ-protocol is quantum secure are still limited and it seems non-trivial to
generalize them to work for the recent more advanced lattice-based protocols.
Moreover, these techniques that require rewinding quantum adversaries so far
incur a large reduction loss of at least a factor Q4t−2, where Q is the number
of adversarial random oracle queries and t is the number of valid transcripts
required to invoke special soundness of the underlying Σ-protocol. Since setting
the parameters without taking these huge reduction losses into consideration
sometimes lead to concrete attacks [32,30], having a tighter reduction is desirable.

On the other hand, Unruh [46] showed an elegant transform that converts
any standard Σ-protocol into a QROM secure NIZK. The benefit of the Unruh
transform is that it works for any Σ-protocol, the reduction loss is tight, and it
is also straight-line extractable.2 The last strong property guarantees that the
witness from a proof can be extracted without rewinding the adversary and is
especially suitable for applications requiring multiple concurrent executions of
NIZKs such as group signatures [5] and anonymous attestations [11]. On the other
2 This notion is also called online extractable in the literature.
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hand, one of the main downsides is that it may incur a noticeable overhead in
the proof size compared to the Fiat-Shamir transform since the transformation
crucially relies on the challenge set being small. While the overhead can be
reasonable when the underlying Σ-protocol already has a small challenge set, e.g.,
[13], it becomes prohibitively large as the challenge set grows. Recently, Chen
et al. [14] extended the Unruh transform to work against a 5-round public-coin
HVZK interactive protocol when restricting the second challenge to be binary.
Coming back to lattice-based ZK proofs. There are two main approaches
in the current literature to construct lattice-based NIZKs. One builds on the
Fiat-Shamir with abort paradigm developed by Lyubashevsky [37,38] and the
other builds on Stern’s protocol [44,29]. While the QROM security of the latter
approach is well understood since it has a simple combinatorial “commit-and-
open” structure [18,17], the QROM security of the former approach remains
elusive. Notably, for the recent lattice-based protocols such as [3,2,10,48,21,1], we
either still do not know how to apply the Fiat-Shamir transform and/or require
to pay a huge overhead when adopting the Unruh transform to argue QROM
security. Therefore, a natural question is:

Can we generically and more efficiently transform lattice-based Σ-
/public-coin HVZK interactive protocols based on the Fiat-Shamir with
abort paradigm into QROM secure NIZKs?

Ultimately, we would like the transform to achieve the best of the two known
transforms: to maintain similar proof size and soundness error of the underlying
Σ-protocol like the Fiat-Shamir transform [24], while also providing a tight
reduction along with a straight-line extractor like the Unruh transform [46].

1.1 Our Contribution

In this work, we provide partial affirmative answers to the above problem. We
present a new simple semi-generic transform that compiles many existing lattice-
based Σ-/public-coin HVZK interactive protocols such as [3,10,48,21,1] into a
QROM secure NIZK that is also straight-line (simulation) extractable [23]. The
proof overhead is smaller compared to the Unruh transform and enjoys a relatively
small reduction loss. In many cases, the reduction loss only scales linearly with
t (i.e., number of valid transcripts to invoke special soundness), rather than
exponentially (e.g., Q4t−2) required by the Fiat-Shamir transform explained
above. This is quite desirable since t can get quite large in recent advanced
protocols; for instance [1] requires t = 32 in one of their settings, making the
reduction loss as large as 2638 for a modest Q = 220.

As a concrete example, we show how to transform the recent Bootle et al.’s
5-round protocol with an exact sound proof [10] into a QROM secure NIZK by
only increasing the proof size by a factor of 2.6.3 This is in contrast to using
3 As a point of reference, the signature scheme Dilithium, a finalist to the NIST post-
quantum standardization process based on the simple Lyubashevsky’s Σ-protocol,
requires to increase the sum of public key and signature size by a factor 3.2 to achieve
QROM security [31].
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the recent extended Unruh transform [14]4, which increases the proof size by a
larger factor of 51.8. Note that we are not aware of any method to securely apply
the Fiat-Shamir transform to Bootle et al.’s protocol in the QROM. Finally, we
highlight that not only our transform is very simple but the security proofs are
also quite simple and involves a minimal amount of discussion regarding quantum
computation.

Our contribution can be divided into the following steps. We only provide a
high-level explanation of each step below and refer to Sec. 1.2 for a more detailed
overview.

1. We first propose a new 3-round public-coin interactive protocol called ex-
tractable linear-homomorphic commitment (LinHC) protocol. (See Sec. 3)

2. We then show how to bootstrap a broad class of Σ-protocols into a Σ-protocol
that is also a quantum straight-line proof of knowledge by using an extractable
LinHC protocol. Here, we consider the class of Σ-protocols where the response
(i.e., the prover’s third message) is of the form z = β · e + r, where e ∈ Zmq
is the witness, β is the challenge sampled by the verifier, and r ∈ Zmq is the
masking term committed in the prover’s first message.5 (See Sec. 4.1)

3. We further show that we can apply the Fiat-Shamir transform to Σ-protocols
with a quantum straight-line proof of knowledge to construct a QROM secure
NIZK that is also straight-line extractable. (See Sec. 4.2)

4. We provide two simple constructions of lattice-based extractable LinHC
protocols: one based on the module learning with errors (MLWE) problem,
and the other based on the MLWE and the decisional small matrix ratio
(DSMR) problem, where the latter is more efficient. Here the DSMR problem
is a generalization of the decisional small polynomial ratio problem [36,43]
defined over a module NTRU lattice [15]. (See Sec. 3.4)

5. Finally, we discuss how to apply extractable LinHC protocols to more advanced
lattice-based public-coin HVZK interactive protocols. As a concrete example,
we provide the details on how to make Bootle et al.’s 5-round protocol with an
exact sound proof [10] into a QROM secure NIZK with concrete parameters.
We chose this protocol since it is one of the more complex protocols that
have appeared in the literature while still being relatively simple enough to
fit in our framework. We show how the ideas can be used to obtain similar
results for other protocols such as [3,48,21,1]. (See Sec. 5)

One notable difference between our transform and prior transforms that
achieve straight-line extractable NIZKs either in the classical or post-quantum
setting (i.e., Fischlin [25] and Unruh [46]) is that ours do not put any restriction
on the size of the challenge set of the underlying Σ-protocol. Therefore, if
the underlying Σ-protocol has an exponentially large challenge set, we can
4 Since Bootle et al’s protocol requires slightly more transcripts for special soundness
compared to those considered in [14], the security proof of [14] may need to be
modified to apply the transform to Bootle et al’s protocol.

5 Although we consider a slightly broader type of Σ-protocols in the main body, we
keep the presentation simple here as the main idea generalizes easily.
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use it directly to obtain an NIZK, thus circumventing an inefficient soundness
amplification required by prior transforms. We note that our result does not
contradict the impossibility result of Fischlin [25] who (roughly) showed that an
NIZK in the ROM with a straight-line extractor that cannot program the random
oracle requires a prover to query the random oracle on at least ω(log κ) points
to produce a proof, where κ is the security parameter. The main reason is that
our NIZK requires the extractor to program the (Q)RO similar to the proof in
the Fiat-Shamir transform. The difference between the Fiat-Shamir transform is
that our extractor reprograms the (Q)RO in a way that it does not require to
rewind the adversary to extract the witness.

Related works on Σ-protocols, NIZKs, and lattice-based ZK proofs and QROM
secure signatures are provided in the full version.

1.2 Technical Overview

We provide an overview of each step explained in the above contribution.
Items 1 and 2: Extractable LinHC protocols and integrating it to Σ-
protocols. We use Lyubashevsky’s Σ-protocol [37,38], which we denote by
ΣLyu-protocol, as a leading example. It forms the basis of lattice-based zero-
knowledge proofs based on the Fiat-Shamir with abort paradigm and the ideas
presented below extend naturally to more advanced protocols.

Let A ∈ Rn×mq and u ∈ Rnq be public, where R and Rq denote the rings
Z[X]/(Xd + 1) and Zq[X]/(Xd + 1). Then, the ΣLyu-protocol allows one to prove
knowledge of a short vector e ∈ Rm satisfying Ae = u.6 The prover first sends
w = Ar to the verifier where r ∈ Rm is a random short vector sampled from
some specific distribution. The verifier returns a randomly sampled challenge
β ← {0, 1}d, where β is viewed as an element over R by the standard coefficient
embedding. Finally, the prover sends z = β · e + r to the verifier. Here, it is
standard to perform a rejection sampling step to make z statistically independent
from e. However, we ignore this subtle issue in the overview. Finally, the verifier
accepts if z is short and Az = β ·u + w holds. It is known that the ΣLyu-protocol
satisfies relaxed (rather than exact) special soundness: Given two valid transcripts
of the form (w, β, z) and (w, β′, z′) with β 6= β′, an extractor Extractss outputs a
witness z∗ = z− z′ such that Az∗ = (β − β′) · u. Here, although z∗ does not lie
in the original relation, such proof of knowledge for a relaxed relation has proven
to suffice in many applications.
Modifying the ΣLyu-protocol. Our idea to turn the ΣLyu-protocol to be a straight-
line proof of knowledge is simple. Here, recall that to show a Σ-protocol is
straight-line proof of knowledge, informally we need to construct an extractor
SL-Extract that on input a single valid transcript (and some private information),
outputs a witness z∗. As a first step, we let the prover commit to its witness e
and randomness r by a linear homomorphic commitment scheme. The prover
outputs w = Ar as in the original protocol along with two commitments come =
Compk(e)[δe] and comr = Compk(r)[δr], where pk is a commitment key, and δe

6 All operations with elements over Rq are understood to be performed over mod q.

5



and δr are commitment randomness.7 Then, given a random challenge β from
the verifier, the prover returns z = β · e + r and the commitment randomness
δz := β·δe+δr as the third message. The verifier accepts if z is short; Az = β·u+w
holds; and Compk(z)[δz] = β · come + comr holds. Here, for correctness to hold,
we require the commitment scheme to satisfy linear homomorphism also over
the randomness, i.e., β · come + comr = Compk(β · e + r)[β · δe + δr] for any
β ∈ {0, 1}d ⊂ R.

We first check our modified ΣLyu-protocol remains secure in the standard
sense. Special soundness follows since two valid transcripts of the modified ΣLyu-
protocol include two valid transcripts of the original ΣLyu-protocol. Next, assume
δz does not leak any information on the original commitment randomness δe
and δr. Then, (roughly) we can invoke the hiding property of the commitment
scheme to argue that δz, come, and comr leak no information on e and r expect
that they satisfy z = β · e + r. Therefore, since the ΣLyu-protocol is HVZK, so is
our modified ΣLyu-protocol.
How to extract a witness. To show that it is a straight-line proof of knowledge, we
enhance the linearly homomorphic commitment scheme to be extractable. Namely,
we assume there exists an alternative key generation algorithm SimKeyGen that
outputs a simulated commitment key pk∗ with an associated trapdoor τ with
the following properties: pk∗ is indistinguishable from pk output by the hon-
est key generation algorithm KeyGen, and there exists a commitment extrac-
tor ExtractCom such that on input the trapdoor τ and an honestly generated
commitment comx = Compk∗(x)[δx], outputs x. Intuitively, it seems such an
extractor ExtractCom immediately implies a straight-line extractor SL-Extract.
On input a valid transcript ((w, come, comr), β, (z, δz)), SL-Extract just runs
e ← ExtractCom(τ, come) to extract the witness e. However, this intuition is
clearly wrong since an adversary might have constructed a malformed commit-
ment come and comr that satisfies Compk∗(z)[δz] = β · come + comr. Notably, the
only commitment SL-Extract sees that is guaranteed to be valid is β ·come +comr
due to correctness. However, since SL-Extract already knows that this opens to z,
there seems to be no point using the trapdoor τ .

The main observation here is that since the adversary must prepare come
and comr before seeing the challenge β, there should be several other β’s in
{0, 1}d that it would have been able to produce valid openings to. To make
the discussion simple, we first assume the case where the challenge space of
the ΣLyu-protocol is only of polynomial size and the existence of another valid
commitment β′ · come + comr with β′ 6= β is guaranteed. Then, SL-Extract runs
through all β ∈ {0, 1}d and executes ExtractCom(τ, β · come + comr) in polynomial
time. Since β′ · come + comr is guaranteed to be a valid commitment, ExtractCom
outputs the corresponding message z′ committed to β′ · come + comr. After
finding such z′, SL-Extract can invoke the special soundness extractor Extractss
on input (w, β, β′, z, z′) to obtain a witness z∗ for the (relaxed) relation. We
can turn this rough idea into a formal proof by performing parallel repetition of

7 For any probabilistic algorithm A, A(x)[ρ] denotes running A on input x with
randomness ρ.
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the ΣLyu-protocol to amplify the soundness error to be negligible while noticing
that SL-Extract still only needs to invoke ExtractCom a polynomial time. However,
recall the goal was to extract without having to restrict the challenge space of
the ΣLyu-protocol to be polynomial size as required by the Fischlin and Unruh
transforms [25,46].8

Making the challenge set exponentially large. By slightly refining the above ar-
gument, we can make sure the above idea works even when the challenge set is
exponentially large. Assume an adversary has a non-negligible probability ε in
completing the ΣLyu-protocol with an honest verifier. Then conditioning on the
adversary succeeding, a standard statistical argument shows that with probability
at least 1/2, the adversary must have been able to output a valid response for at
least ε-fraction of the challenges. That is, there exists 2d · ε other β’s in {0, 1}d
that the adversary was able to output a valid third message (z, δz). Therefore,
we define the SL-Extract to execute ExtractCom(τ, β · come + comr) on roughly
(κ/ε)-randomly chosen β’s. Then, with probability at least 1− 2−κ, SL-Extract
finds the desired z′ and the rest follows the same argument made above.

Since the above argument is purely statistical and agnostic to whether the
adversary is classical or quantum, the resulting modified ΣLyu-protocol is by
default a quantum straight-line proof of knowledge. In Sec. 3, we formalize the
properties required by the underling commitment scheme and define it as a
new interactive protocol called the extractable linear homomorphic commitment
(LinHC) protocol. We note that the extractable LinHC protocol can be naturally
plugged into multi-round public-coin HVZK interactive protocols with similar
structures. Finally, an acute reader may have noticed that our resulting Σ-
protocol is in the common reference string (CRS) model since it requires a
commitment key pk. Although this is true in general, for our specific extractable
LinHC protocol, the pk can be the output of the (Q)RO on any input of the
prover’s choice so the resulting Σ-protocol will not require any CRS.

Item 3: Applying the Fiat-Shamir transform in the QROM. A quantum
straight-line extractable Σ-protocol is particularly quantum secure so we can
appeal to recent techniques [18,35] to transform it into a QROM secure NIZK or
a QROM secure signature. However, we can take advantage of the straight-line
extractability of the Σ-protocol to provide simpler and tighter proofs. Recall one
of the main reasons that made the proof of Fiat-Shamir transform in the QROM
difficult when basing on standard Σ-protocols was that there was no easy way to
extract a witness from a forged proof output by the adversary. Therefore, by using
the straight-line extractor SL-Extract to extract from the forged proof, it seems we
can overcome one of the most difficult obstacles. We outline the proof and explain
some of the pitfalls. As commonly done in the literature, below we consider the

8 To be precise, [25] can use any Σ-protocol with an exponential challenge set size.
Nevertheless, it still needs to rely on parallel repetition to amplify soundness since it
can only use polynomially of the challenges in a meaningful way.
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proof for the deterministic signature scheme based on the Fiat-Shamir transform
(which captures the essence of a simulation sound/extractable NIZK).9
Proof overview. The proof consists of two parts: first show that if the signature
scheme is unforgeable against no-message attack (UF-NMA) secure, then it is
secure in the standard sense, i.e., unforgeable against chosen message attack
(UF-CMA) secure; next, show that if the relation used by the Σ-protocol is hard,
then the signature scheme is UF-NMA secure. Here, recall UF-NMA considers the
setting where an adversary is not allowed to make any signing queries.
Part 1: UF-NMA to UF-CMA. The first part of the proof follows closely to those
given by Kiltz et al. [31] (which themselves follow [46,47]) who showed quantum
security of a Fiat-Shamir transformed signature scheme basing on a special type
of Σ-protocol (or more specifically a lossy identification protocol). The main
observation is that by using the HVZK simulator of the Σ-protocol, we can make
the proof history-free [8]. In particular, for each message M, we deterministically
generate a transcript (wM, βM, zM) of the Σ-protocol using the HVZK simulator
run on message-dependent randomness. Since the simulated transcript is deter-
mined uniquely by the message, we can program the random oracle H at the
beginning of the game before invoking the adversary so that H(w‖M) outputs
βM if and only if w = wM. Then, to answer a signature query, the simulator can
output the already programmed simulated proof as the signature.

This high-level approach works for Kiltz et al. [31] without complications,
however, we encountered a slight issue in our setting. The main difference is
that while the Σ-protocol of Kiltz et al. satisfied statistical HVZK, ours is only
computational HVZK. Concretely, for our specific instantiation of the extractable
LinHC protocol based on the MLWE assumption, we informally need to argue that
a superposition of the MLWE samples of the form

∑
sM,s′M

|B〉 |B · sM + s′M〉, where
sM, s′M are random MLWE secrets, is indistinguishable from

∑
sM,s′M

|B〉 |bsM,s′M〉,
where bsM,s′M is a random vector. Unfortunately, we were not able to reduce the
standard MLWE assumption to such an assumption. Here, roughly, B corresponds
to the commitment key of the extractable LinHC protocol and each B · sM + s′M
corresponds to the commitment.

To resolve this issue, we tweak the extractable LinHC protocol to use fresh
commitment keys BM for each message M and provide a slightly more general
definition than what we laid out above. In particular, the extractable LinHC
protocol we require to construct a QROM secure NIZK/signature needs to have
a more general structure compared to those required to construct a Σ-protocol
with a quantum proof of knowledge. In Sec. 3, the latter is referred to as the
“simplified” definition. Here, if we only care about the classical setting, then this
issue does not appear so we can always rely on the simplified definition for both
cases.
Part 2: Straight-line extractable Σ-protocol to UF-NMA. The remaining piece is
to show that we can extract a witness from the forgery output by the adversary.
The reduction is the same as before: provided a forgery, the extractor probes
9 Note that considering deterministic signature schemes is w.l.o.g since we can always
derandomize the signing algorithm using pseudorandom functions.
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many challenges β randomly until ExtractCom(τ, β · come + comr) outputs a valid
z, where come and comr are the commitments of the extractable LinHC protocol
included in the adversary’s forgery. The main difference is in the analysis of the
success probability of such a procedure. Since β is generated as H(· · · ‖come‖comr)
when applying the Fiat-Shamir transform, the adversary has some control over
the β it uses. To make matters worse, it can make quantum queries to H to
obtain a superposition of challenges

∑
β αβ |β〉. Therefore, we can no longer rely

on the simple statistical argument that relied on β being uniformly random. We
will show how to upper bound the number of random sampling the extractor
must perform before finding a “good” challenge β by using bounds on the generic
quantum search problem [49,28,31].
Item 4: Constructing extractable LinHC protocols. It remains to show how
to construct an extractable LinHC protocol based on lattices. The construction
is a simple variant of the (dual) Regev public-key encryption scheme [41,26]
that is known to be linearly homomorphic. The commitment key is two random
matrices pk = (A,B) ∈ Rm×nq × Rm×nq and commitments to the short vectors
(e, r) ∈ Rmq ×Rmq are defined as follows for X ∈ {e, r}:

comX :=
(
p · (AsX,1 + sX,2), p · (BsX,1 + sX,3) +X

)
,

where p is some odd integer coprime to q and the s’s are commitment randomness
sampled from an appropriate domain. Then, for any challenge β ∈ {0, 1}d ⊂ R, we
can construct a commitment to z = β ·e+r by computing comz = β ·come +comr,
which is again of the form comz =

(
p · (Asz,1 + sz,2), p · (Bsz,1 + sz,3) + z

)
,

where sz,i = β · se,i + sr,i for i ∈ [3]. However, we cannot simply output the tuple
(sz,i)i∈[3] as the opening of comz to the message z since sz,i may leak information
of se,i and sr,i. Instead, we use the rejection sampling technique [37,38] and
sample each sr,i for i ∈ [3] from a slightly wider distribution compared to those
of the se,i’s and only output the tuple (sz,i)i∈[3] with some fixed probability.10

Effectively, the opening (sz,i)i∈[3] are independent of the se,i’s. At this point,
we can argue come is indistinguishable from random by invoking the MLWE
assumption. Moreover, since comr = comz − β · come, we conclude that we can
simulate comr, come, and (sz,i)i∈[3] only using z = β ·e+r. Finally, extractability
follows by switching the commitment key pk to be the real public-key of the
encryption scheme. We set pk∗ = (A,B), where B = D1A + D2 for two matrices
D1 and D2 with small entries. Then, for an appropriate set of parameters, given
comz = (t1, t2), we can decrypt it by (t2 −D1t1) mod p = z.
Item 5: A concrete example. Finally, we provide a more interesting use-case
for our extractable LinHC protocol other than the Lyubashevsky’s Σ-protocol
explained above. We consider the 5-round public-coin HVZK interactive protocol
by Bootle et al. [10] that achieves exact special soundness. So far, we do not
know how to apply the Fiat-Shamir transform securely in the QROM to this
protocol since unlike the Lyubashevsky’s Σ-protocol, there is no natural notion of
10 We ignore in the overview the fact that our extractable LinHC protocol has non-

negligible correctness error as it is standard in lattice-based Σ-protocols.
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“collapsingness” [35,18]. We can instead try applying the recent Unruh transform
extended to 5-round protocols by Chen et al. [14] by limiting the second challenge
used by the verifier to be binary. For completeness, we show in the full version
that assuming the extended Unruh transform applies to Bootle et al’s protocol, we
incur a factor 51.8 blowup in the proof size. In Sec. 5, we show that our extractable
LinHC works simply as a wrapper and bootstraps the original protocol of Bootle et
al. to be quantum secure with an overhead of only a factor 2.6. We also discuss how
the same ideas are applicable to other lattice-based protocols such as [3,48,21,1].
As the main focus of this study is to introduce new theoretical tools and ideas
to transform Σ-protocols into QROM secure NIZKs, we leave optimization and
assessment of the concrete security of other lattice-based protocols as future
work. Finally, we note that applying our extractable LinHC on Lyubashevsky’s
Σ-protocol does not result in a more efficient QROM secure signature scheme
compared to the QROM secure Dilithium proposed in [31]. Roughly, this is
because when viewed as an NIZK, ours achieve a stronger property: while [31]
only achieves soundness, we also achieve (straight-line) proof of knowledge.

2 Preliminary

The notations we use in this paper and a minimal set of tools on quantum
computation in provided in the full version.

2.1 Σ-Protocol

We use the standard notion of Σ-protocol in the common reference string model.11

We note that it is standard in lattice-based protocols to consider non-abort honest-
verifier zero-knowledge (naHVZK), where the ZK simulator is only required to
simulate non-aborting transcripts. Due to page limitation, we refer the basic
definitions to the full version and only provide the definition of straight-line proof
of knowledge below.

Definition 2.1 (Straight-line proof of knowledge). A Σ-protocol has a
(quantum) εIndO-straight-line proof of knowledge (SL-PoK) if there exists a PPT
simulator SimSetup and a PPT straight-line extractor SL-Extract with the follow-
ing properties:

– For any QPT A, the advantage AdvIndCRS(A) defined below is less than
εIndCRS: AdvIndCRS(A) := |Pr[crs← Setup(1κ) : A(1κ, crs)→ 1]−Pr[(c̃rs, τ)←
SimSetup(1κ) : A(1κ, c̃rs)→ 1]|.

– For any QPT A and any X ∈ L satisfying

Pr
[

crs← Setup(1κ), (α, st)← A(crs,X)
β ← ChSet, γ ← A(crs,X, α, β, st) : Verify(crs,X, (α, β, γ)) = >

]
≥ ε,

11 We define Σ-protocols in the CRS model for generality but emphasize that our
concrete resulting Σ-protocols do not require them.
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we have

Pr

 (c̃rs, τ)← SimSetup(1κ)
(α, st)← A(c̃rs,X),

β ← ChSet
γ ← A(c̃rs,X, α, β, st)

:
Verify(c̃rs,X, (α, β, γ)) = >

W← SL-Extract(τ, (α, β, γ))
(X,W) ∈ R′

 ≥ ε− ν1

p1
,

for some polynomial p1 and negligible function ν1. Moreover, the runtime of
SL-Extract is upper bounded by p2 ·

(
ε−ν2
p3
− 1
|ChSet|

)−1 for some polynomials
p2, p3 and negligible function ν2.12 Concretely, if ε is non-negligible and
|ChSet| is super-polynomially large, then SL-Extract runs in polynomial time.

2.2 Lattices

Basic notations and well known tools for lattices are provided in the full version.
We let Sη denote the set of all elements in a ∈ Rq such that ‖w‖∞ ≤ η. As with
all Σ-protocols that rely on the Fiat-Shamir with abort technique, we use the
rejection sampling technique [37,38]. We denote the rejection sampling algorithm
as Rej. To construct extractable LinHC protocols, we rely on a variant of the
standard module learning with errors MLWE assumption, where the adversary is
allowed to obtain a superposition of independent MLWE samples (which remains
as hard as the standard MLWE assumption). We also consider the quantum
accessible decisional small matrix ratio (DSMR) assumption, which is essentially
the underlying hardness assumption of (module) NTRU.

3 Extractable Linear Homomorphic Commitment
Protocol

In this section, we introduce a new interactive protocol called the extractable
linear homomorphic commitment (LinHC) protocol. We first provide the definition
of an extractable LinHC protocol and then give two instantiations: one from the
MLWE assumption and the other from the MLWE and the DSMR assumption.
Below whenever we say Σ-protocols, the readers may safely replace them by
public-coin HVZK non-interactive protocols.

We first define extractable LinHC protocol in its most general form and provide
a simplified variant in the subsequent section. As explained in the introduction,
the general definition, which is defined in the QROM, is useful when directly
constructing (straight-line simulation extractable) NIZKs13 in the QROM from a
possibly non-quantum secure Σ-protocol (see Sec. 4.2). In contrast, the simplified
definition, which is defined in the standard model, is useful when constructing a
quantum straight-line proof of knowledge Σ-protocol from a non-quantum secure
Σ-protocol (see Sec. 4.1).
12 In case the term inside (·)−1 is a non-positive, it is understood that SL-Extract simply

outputs ⊥ on invocation.
13 Roughly, this is type of NIZK that, even after seeing many simulated proofs, whenever

an adversary outputs a valid proof, we can straight-line extract a witness from the
proof [23].
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3.1 Definition

An illustration of the extractable LinHC protocol is provided in Figure 1. Looking
ahead, in the context of Σ-protocols, the ei’s and r correspond to the witness
and commitment randomness (or masking term), respectively.

Prover:
(

Kcom, (ei)i∈[N ], r
)

Verifier: Kcom

(com, st)← Com(Kcom, (ei)i∈[N ], r) com
−−−−−−−−−−−→
β = (βi)i∈[N ]
←−−−−−−−−−−−

β ← ChSet

z =
∑N

i=1 βi · ei + r
op← Open(Kcom, (com,β, z), st)) (z, op)

−−−−−−−−−−−→
Verify(Kcom, (com,β, (z, op))) ?= >

Fig. 1. An extractable linear homomorphic commitment protocol. Kcom is a commitment
key generated by KeyGenH(1κ), where H is modeled as a random oracle.

Definition 3.1 (Extractable linear homomorphic commitment proto-
col in QROM). An extractable linear homomorphic commitment (LinHC) proto-
col is a three-round public-coin interactive protocol run between two parties (prover
and verifier), and is defined by a tuple of PPT algorithms ΠLinHC = (KeyGen,Com,
Open,Verify) and a challenge set ChSet ⊆ (Rq)N . The protocol procedure is as
follows:

1. A random oracle H is chosen and the key generation algorithm is executed
Kcom ← KeyGenH(1κ). Here, let {0, 1}ν be the randomness space used by
KeyGen;

2. The prover on input vectors ((ei)i∈[N ], r) ∈ (Rmq )N × Rmq , runs the com-
mitment algorithm (com, st) ← Com(Kcom, (ei)i∈[N ], r), and sends the first
message com to the verifier;

3. The verifier samples a random challenge β ← ChSet and sends the second
message β to the prover;

4. The prover computes z ←
∑N
i=1 βi · ei + r14, runs the opening algorithm

op← Open(Kcom, (com,β, z), st), and sends the third message (z, op) to the
verifier. We allow op = ⊥ for a special symbol ⊥ to indicate failure;

5. The verifier returns the output of the deterministic verification algorithm
Verify(Kcom, (com,β, (z, op))), where > indicates accept and ⊥ indicates reject.
We call (com,β, (z, op)) the transcript and call (com,β, op) a valid opening
for z if the verifier accepts.

We require the following properties to hold.
14 Although it suffices to consider z = β · e + r in many cases, there are recent protocols

that require this extra level of generality, e.g., [21].
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Definition 3.2 (Correctness). An extractable linear homomorphic commit-
ment protocol ΠLinHC has correctness error (δ0, δ1) if for any choice of random
oracle H, Kcom ∈ KeyGenH(1κ), and ((ei)i∈[N ], r) ∈ (Rmq )N × Rmq the following
holds:

– We have Pr[Verify(Kcom, (com,β, (z, op))) = >] ≥ 1−δ1, where the probability
is taken over the randomness to sample (com, st)← Com(Kcom, (ei)i∈[N ], r),
β ← ChSet, and op← Open(Kcom, (com,β,

∑N
i=1 βi · ei + r), st) conditioned

on op 6= ⊥.
– The probability that an honestly generated transcript (com,β, (z, op)) contains

op = ⊥ is bounded by δ1. In particular, Pr[op = ⊥] ≤ δ1 where the probability
is taken over the random coins of the prover and verifier.

Zero-knowledge. At a high level, zero-knowledge for an extractable LinHC protocol
stipulates that the transcript should leak no information of the vectors (ei)i∈[N ]
and r other than the fact that it adds up to z. Below, we provide a definition
of zero-knowledge where an adversary can obtain superpositions of simulated
proofs. Since (ei)i∈[N ] corresponds to the witness of the underlying Σ-protocol, it
will be reused many times. On the other hand, r is the commitment randomness
that is freshly sampled for each trasncript. This is reflected in the following
definition by fixing (ei)i∈[N ] and sampling fresh r (and challenge β) using the
distribution Dβ,r. Also, one can think of each ρ in the definition as a specific tag
to distinguish each transcripts. Below, we say it is “semi”-honest-verifier since β
does not necessarily need to be uniformly distributed over ChSet.

Definition 3.3 (Quantum accessible no-abort (semi-)honest-verifier zero-
knowledge). Let Dβ,r be any distribution over ChSet×Rmq . For an oracle H
and algorithm ZKSim, define the following algorithms:

– D 6⊥trans(ρ, (ei)i∈[N ]) : On input ρ ∈ {0, 1}ν and (ei)i∈[N ] ∈ (Rmq )N , generate
Kcom ← KeyGenH(1κ)[ρ] and sample (β, r) ← Dβ,r. Then run an honest
protocol with prover input (Kcom, ((ei)i∈[N ], r)) conditioned on the verifier
message being β and op 6= ⊥ (i.e., a non-aborting protocol). Finally, output
r along with the valid transcript (r, trans = (com,β, (z, op))).

– Dsim(ρ, (ei)i∈[N ]) : On input ρ ∈ {0, 1}ν and (ei)i∈[N ] ∈ (Rmq )N , generate
Kcom ← KeyGenH(1κ)[ρ], sample (β, r)← Dβ,r, and compute z←

∑N
i=1 βi ·

ei + r. Then, run (com, op) ← ZKSim(Kcom,β, z) and output (r, trans =
(com,β, (z, op))).

In above, we assume D 6⊥trans and Dsim run on a uniform and independent random-
ness for each input ρ ∈ {0, 1}ν and reuse the same randomness when run again
on the same ρ.

Then, we say an extractable linear homomorphic commitment protocol ΠLinHC
has εzk-quantum accessible no-abort (semi-)honest-verifier zero-knowledge, if there
exists a PPT algorithm ZKSim such that for any (ei)i∈[N ] ∈ (Rmq )N , distribution
Dβ,r, and QPT A, the advantage AdvQAnaHVZK(A) defined below is less than εzk:∣∣∣Pr

[
A|H〉,|D

6⊥
trans(·,(ei)i∈[N])〉(1κ)→ 1

]
− Pr

[
A|H〉,|Dsim(·,(ei)i∈[N])〉(1κ)→ 1

] ∣∣∣,
13



where the probability is also taken over the random choice of the random oracle H.

Extractability. When considering extractable LinHC protocol as a tool to be
integrated into a preexisting Σ-protocol, the third message z corresponds to
the third message (usually referred to as the “response”) of the Σ-protocol. See
Figure 4 for an illustrative example. In particular, the verifier will always perform
an additional check f(β, z) ?= >, where f is some function defined by the verifier
algorithm of the underlying Σ-protocol. Therefore, for an extractable LinHC to
be useful in the context of Σ protocols, we want it to be able to extract valid
tuples {(βi, zi)}i∈[k] such that f(βi, zi) = > without rewinding the adversary
only given an accepting transcript. After such k tuples are collected, we can
invoke the k-special soundness extractor of the underlying Σ-protocol to extract
a witness. More formally, we require the following.

Definition 3.4 (F-Almost straight-line extractable). Let X and Y be
the input and output space required by the random oracle H. An extractable
linear homomorphic commitment protocol ΠLinHC is εIndO-F-almost straight-line
extractable for a function family F if there exists PPT algorithms SimOracle and
LinCExtract with the following properties:

1. For any QPT A, the advantage AdvIndO(A) defined below is less than εIndO:∣∣∣Pr[H← Func(X ,Y) : A|H〉(1κ)→ 1]− Pr[(H̃, τ)← SimOracle(1κ) : A|̃H〉(1κ)→ 1]
∣∣∣.

2. For any (H̃, τ) ∈ SimOracle(1κ), randomness ρ ∈ {0, 1}ν , first message com,
and any efficiently computable function f ∈ F with binary output {>,⊥},
define the set Sf (ρ, com) as

{β | ∃(z, op) s.t. Verify(Kcom, (com,β, (z, op))) = > ∧ f(β, z) = >},

where Kcom = KeyGenH̃(1κ)[ρ]. Let δ, k be any positive integers such that k <
|Sf (ρ, com)|, and denote T ∗ = k·δ·|ChSet|

|Sf (ρ,com)|−k . Then, on input a valid transcript
trans = (com,β, (z, op)), the linear commitment extractor LinCExtract(τ, ρ, trans)
outputs either a set L = {(βj , zj)}j∈[k] or ⊥ in time T ∗ ·poly(κ) for some fixed
polynomial poly(κ), where all the βj ’s in L are pairwise distinct and satisfies
f(βj , zj) = >. Moreover, the probability that it outputs L is at least 1−k ·2−δ.
Concretely, when k is a constant, δ = κ, and |Sf (ρ, com)| = |ChSet| · ε for a
non-negligible ε, then LinCExtract outputs L in polynomial time with over-
whelming probability.

In general we cannot efficiently check if the extracted βj satisfies βj ∈
Sf (ρ, com) since we cannot extract opj corresponding to (βj , zj), hence the term
“almost” straight-line extractable. This implies that the set L may include an
invalid (βj , zj) for which there does not exist a valid opj . However, this will not
be an issue for most of our application where f defines the entire verification
algorithm of the underlying Σ-protocol. In these cases, we only need f(βj , zj) = >
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for k-tuples to hold to invoke the k-special soundness extractor. We also point
out that in many cases we are not able to efficiently compute the cardinality
of the set Sf (ρ, com) so we do not know if LinCExtract runs in polynomial time.
However, in typical applications, we can deduce that Sf (ρ, com) must be of size
|ChSet| ·ε for a non-negligible ε unless the adversary breaks some other intractable
problem.
Optional. Finally, we consider two optional properties for F-almost straight-line
extractability that help simplify the proofs in some cases. The first property is
useful when the underlying public-coin HVZK interactive protocol already uses a
small (i.e., poly-large) challenge set. These shows up in multi-round protocols
where the verifier may sample randomness from different challenge sets in each
round. (See Sec. 5 for an example.) The second property allows to argue that
for each challenge β ∈ ChSet, there exist at most one response z that passes the
verification. Due to page limitation, we omit the details to the full version.

3.2 Simplified Definition of Extractable LinHC

In case the goal is to construct quantum secure Σ-protocols (and not a QROM
secure simulation extractable NIZK or a signature), we can use a simplified
definition of extractable LinHC protocols in the standard model. One of the
main simplification comes from the fact that since all of the security notions are
decoupled from the QRO, the proofs follow much like the classical counterparts.
For example, zero-knowledge of a simplified extractable LinHC protocol is defined
similarly to standard naHVZK of a Σ-protocol. We omit the details to the full
version.

3.3 Interlude: Extractable LinHC Specialized for Lattices

In most, if not all, lattice-based Σ-protocols, the witness being proven is a “short”
vector. Therefore, throughout this work, we assume such shortness condition
holds by default and integrate it into the definition of the extractable LinHC
protocol. Effectively, we are able to construct a more efficient extractable LinHC
protocol by taking advantage of these bounds.
Norm bound on (ei)i∈[N ] and r. In the following, we assume the size of the
vectors (ei)i∈[N ] and r in Rmq have an upper bound. That is, for all i ∈ [N ],
there exist positive integers B∞,e, B2,e, B∞,r, and B2,r such that ‖ei‖∞ ≤ B∞,ei ,
‖ei‖2 ≤ B2,ei , ‖r‖∞ ≤ B∞,r and ‖r‖2 ≤ B2,r. In particular, we only guarantee
correctness and naHVZK for such ei’s and r.
Restricting the function class F to check norm bound. As explained in
the previous section, the function class F of F -almost straight-line extractability
(Definition 3.4) corresponds to the the check performed by the verifier of the
underlying Σ-protocol, which we are trying to make secure in the (Q)ROM via
extractable LinHC. Namely, the verifier of the Σ-protocol receives z from the
prover and then checks whether some condition f ∈ F holds with respect to the
challenge β it sampled, i.e., f(β, z) ?= >. In any lattice-based Σ-protocol, one
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of the conditions that is always checked by the verifier is whether z is “small”
(see Sec. 4.1 for a concrete example). We therefore restrict the function class
F to be a family of functions FB such that for any f ∈ FB, f includes the
check ‖z‖2 ≤ B.15 In many lattice-based Σ-protocols, we have B ≈ B∞,r or B2,r,
where recall r is the “masking” term to hide (ei)i∈[N ].

3.4 Construction of Extractable LinHC

We propose two constructions of extractable LinHC protocols: one based only on
MLWE and the other based on MLWE and DSMR. Since the two constructions
are almost identical, we explain the former and refer the details on the latter
to the full version. The latter has proof size half of the former while relying on
the extra DSMR assumption. The construction of our first extractable LinHC
protocol based on MLWE is provided in Figure 2.

KeyGenH(1κ)
1: ρ← {0, 1}ν
2: (A,B)← H(ρ)
3: return Kcom := (A,B) ∈ Rm×nq ×
Rm×nq

Com(Kcom, (ei)i∈[N ], r)
1: for i ∈ [N ] do
2: (si,1, si,2, si,3)← Snη × Smη × Smη
3: ti,1 ← p · (Asi,1 + si,2)
4: ti,2 ← p · (Bsi,1 + si,3) + ei
5: (y1,y2,y3)← Dn

φ·T ×Dm
φ·T ×Dm

φ·T
6: w1 ← p · (Ay1 + y2)
7: w2 ← p · (By1 + y3) + r
8: com :=

(
(ti,1, ti,2)i∈[N ],w1,w2

)
9: st :=

(
(si,1.si,2, si,3)i∈[N ],y1,y2,y3

)
10: return (com, st)

Open(Kcom, (com,β, z), st))
1: (β1, · · · , βN )← β
2: for ` ∈ {1, 2, 3} do
3: s̄` ←

∑N

i=1 βi · si,`
4: z` ← s̄` + y`
5: b← Rej([z1‖z2‖z3], [s̄1‖s̄2‖s̄3], φ, T, err)
6: if b = ⊥ then return op := ⊥
7: else return op := [z1‖z2‖z3]

Verify(Kcom, (com,β, (z, op 6= ⊥)))
1: (β1, · · · , βN )← β
2:
(
zr, (ti,1.ti,2)i∈[N ],w1,w2

)
← com

3: [z1‖z2‖z3]← op
4: for ` ∈ {1, 2, 3} do
5: if ‖z`‖2 >

√
2nd · φ · T then re-

turn ⊥
6: zA ←

∑N

i=1 βi·ti,1+w1−p·(Az1+z2)
7: zB ←

∑N

i=1 βi·ti,2+w2−p·(Bz1+z3)
8: if zA 6= 0 ∨ z 6= zB then return ⊥
9: else return >

Fig. 2. An extractable LinHC protocol based on MLWE.

15 The choice of the Euclidean norm is arbitral and we can also chose the infinity norm
(or include both norms).
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Parameters and asymptotic size. Let the dimension d of the ring Rq be larger
than 256 and n,m be positive integers such that n ≤ m,16 p < q be coprime
odd integers, η a positive real, and H be a random oracle with domain {0, 1}ν
and range Rm×nq ×Rm×nq . The concrete value of ν is specific to the underlying
Σ-protocol being used. Let T, φ, and err be parameters required by the rejection
sampling algorithm, where we set T = η ·

∑N
i=1 ‖βi‖∞ ·

√
(n+ 2m)d.

The size of the first message com is 2md(N + 1) log q and the third message
op is (n + 2m)d · log(10φT ). Looking ahead, when we make the protocol non-
interactive via the Fiat-Shamir transform, we can send the challenge β instead
of (w1,w2) since the latter can be recovered from the other components and β.
Then, the total size becomes 2mdN log q + (n+ 2m)d · log(10φT ) + |ChSet|.
Properties. Due to page limitation, we omit the details of the proof of correctness
and the quantum accessible non-abort HVZK (QAnaHVZK) to the full version. We
note that for QAnaHVZK, we rely on the quantum accessible MLWE assumption.

H̃(ρ)
1: (ρ1, ρ2, ρ3)← PRF(K, ρ)
2: A← Rm×nq [ρ1]
3: (D1,D2) ← Sm×mη [ρ2] ×
Sm×nη [ρ3]

4: B← D1A + D2
5: return (A,B)

SimOracle(1κ)
1: K← K . Sample PRF key
2: return (H̃, τ := K)

LinCExtract(τ = K, ρ, trans = (com,β, (z, op)))
1: (ρ1, ρ2, ρ3)← PRF(K, ρ)
2: D1 ← Sm×mη [ρ2]
3:
(
(ti,1.ti,2)i∈[N ],w1,w2

)
← com

4: (β1, · · · , βN )← β
5: (c, L)← (0, (β, z))
6: while |L| ≤ k ∨ c ≤ T ∗ do
7: β̃ = (β̃1, · · · , β̃N )← ChSet\Lβ

8: z̃←
(∑N

i=1 β̃i · ti,2 + w2
)

9: −D1
(∑N

i=1 β̃i · ti,1 + w1
)

mod p

10: if f(β̃, z̃) = > then L← L ∪ {(β̃, z̃)}
11: c← c+ 1
12: if |L| < k then return ⊥
13: else return L

Fig. 3. Description of SimOracle, H̃, and LinCExtract for the extractable LinHC protocol
in Figure 2. Here the PRF key K is assumed to be hardwired to H̃ and denote Lβ as
the set {β | (β, z) ∈ L}.

Lemma 3.1 (FB-Almost straight-line extractable). Assume B ≥
√

2nd ·
φ ·T , 2

√
2p(ndη+

√
nmdη+

√
nd)φT + 2B < q/2, and B ≤ (p− 1)/4. Define the

oracle simulator SimOracle and linear commitment extractor LinCExtract as in
Figure 3, where T ∗ in Line 6 of algorithm LinCExtract is T ∗ = k·δ·|ChSet|

|Sf (ρ,com)|−k . Then,

16 d could be set arbitrary as long as the underling hardness assumptions (MLWE and
DSMR) hold. We consider a lower bound of 256 to make it easier to provide concrete
bounds on the properties of extractable LinHC.
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the extractable LinHC protocol in Figure 2 is FB-almost straight-line extractable.
Moreover, for any QPT adversary A that distinguishes between a random H and
H̃ output by SimOracle making at most Q queries, there exists a QPT adversary
B1 against the quantum accessible MLWEm,n,2ν ,Q,η problem and a QPT adversary
B2 against the quantum accessible PRF such that

AdvIndO(A) ≤ m · AdvqaMLWEm,n,2ν,Q,η (B1) + AdvqaPRF(B2),

where Time(A) = Time(B1) ≈ Time(B2).

Proof. We only prove Item 2 below and refer the others to the full version.
Item 2. Fix any (H̃, τ = K), randomness ρ ∈ {0, 1}ν , first message com =(
(ti,1, ti,2)i∈[N ],w1,w2

)
, and any function f ∈ FB. Moreover, let trans =

(com,β, (z, op)) be a valid transcript. We first show that conditioned on β̃ ∈
Sf (ρ, com)\{β} ⊂ ChSet being sampled in Line 7, LinCExtract(τ, ρ, trans) always
succeeds in outputting a valid z̃ such that f(β̃, z̃) = >. By definition of the
set Sf (ρ, com), existence of (z̃, õp) such that Verify(Kcom, (com, β̃, (z̃, õp))) = >
and f(β̃, z̃) = > is guaranteed. Therefore, denoting õp = [z̃1‖z̃2‖z̃3], we have
‖z̃`‖2 ≤

√
2nd · φ · T for all ` ∈ {1, 2, 3}, and p · (Az̃1 + z̃2) =

∑N
i=1 β̃i · ti,1 +

w1, p · (Bz̃1 + z̃3) + z̃ =
∑N
i=1 β̃i · ti,2 + w2, where A and B = D1A + D2

are uniquely defined by H̃(ρ) and τ = K as in Figure 3. Therefore, since
v := (

∑N
i=1 β̃i · ti,2 + w2)−D1(

∑N
i=1 β̃i · ti,1 + w1) = p · (D2z̃1−D1z̃2 + z̃3) + z̃,

we have

‖v‖∞ ≤p ·
(√

nd‖D2‖∞ · ‖z̃1‖2 +
√
md‖D1‖∞ · ‖z̃2‖2 + ‖z̃3‖∞

)
+ ‖z̃‖∞

≤
√

2p(ndη +
√
nmdη +

√
nd)φT + 2B < q/2,

where we have ‖z̃‖2 ≤ B by definition of FB (see Sec. 3.3), ‖D1‖∞, ‖D2‖∞ ≤ η,
and the last equation holds from the assumption in the statement. Moreover, we
use the fact that for two vectors a,b ∈ Zn, we have ‖a>b‖∞ ≤

√
n‖a‖∞‖b‖2.

This implies that the equality holds over R, and in particular, when ‖z̃‖∞ ≤ B ≤
(p− 1)/2,

(∑N
i=1 β̃i · ti,2 + w2

)
−D1

(∑N
i=1 β̃i · ti,1 + w1

)
mod p is identical to

z̃. Hence, we are able to extract z̃ such that f(β̃, z̃) = >.
Next, we check that LinCExtract succeeds in outputting a set L = {(β̃j , z̃j)}j∈[k]

such that f(β̃j , z̃j) = > for all j ∈ [k], where by construction all the β̃j ’s are
pairwise distinct. Since β̃ is sampled uniformly random from ChSet\Lβ, the
probability of sampling β̃ ∈ Sf (ρ, com)\Lβ in one loop is at least |Sf (ρ,com)|−k

|ChSet| .
Therefore, given any L, if we sample β̃ δ·|ChSet|

|Sf (ρ,com)|−k -times from the set ChSet\Lβ,
then the probability of sampling β̃ ∈ Sf (ρ, com)\Lβ is at least 1 − 2−δ. Since
each loop is independent from each other, after T ∗ = k·δ·|ChSet|

|Sf (ρ,com)|−k -loops, we
obtain the desired set L with probability at least 1− k · 2−δ, where the bound
follows from the union bound. Finally, since each loop takes a fixed polynomial
time, the running time of LinCExtract is T ∗ · poly(κ) as desired. We note that
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there could exist β̃ 6∈ Sf (ρ, com) for which LinCExtract succeeds in extracting z̃
such that f(β̃, z̃) = >. However, this will not be a problem since such β̃ can only
increase the success probability and lower the running time of LinCExtract.

This completes the proof of Item 2.

We note that we can get an asymptotically more efficient extractor by allowing
algorithm LinCExtract to be QPT and perform Grover’s search. Finally, we also
discuss how to “downgrade” the above extractable LinHC protocol to only satisfy
the properties of a simplified/classical extractable LinHC protocol. The benefit of
doing this is that it provides tighter reductions since we no longer need to work
with QROs. The details are provide in the full version.

4 How to Use Extractable LinHC

In this section, we provide a basic example of bootstrapping the ROM secure
Lyubashevsky’s Σ-protocol [37,38] to be QROM secure using an extractable
LinHC protocol. The aim of this section is to provide a guide on how to prove
QROM security using an extractable LinHC protocol. In Sec. 5, we see how these
ideas can be used to prove QROM security of more complex protocols.

As explained in the beginning of Sec. 3, we can either construct a (1) quantum
straight-line extractable Σ-protocol using the simplified extractable LinHC proto-
col (see Sec. 3.2) or a (2) quantum secure simulation straight-line extractable
NIZK (or a signature scheme) using the standard extractable LinHC protocol. We
explain both items. The former is easier to prove and makes it simpler to under-
stand the essence of the extractable LinHC protocol, while the latter provides a
stronger and more useful result.

4.1 Lyubashevsky’s Σ-Protocol ⇒ Quantum Secure Σ-Protocol via
Simplified Extractable LinHC

We show how to make the classical lattice-based Σ-protocol of Lyubashevsky
into a Σ-protocol that is quantum straight-line proof of knowledge in the CRS
model by integrating it with a simplified extractable LinHC in the standard model.
Below, we denote Lyubashevsky’s Σ-protocol as ΣLyu-protocol.
Preparation. Let ChSet ⊂ {0, 1}κ be a set such that all β ∈ ChSet satisfies
‖β‖1 ≤ `. Here, ` is chosen in such a way to guarantee

(
n
`

)
≥ 2256. Let φ and err

be parameters specified by the rejection sampling algorithm. Let Be, Br, and Bz
be positive reals such that Br ≥

√
2md · ` · Be and Bz ≥

√
2nd · φ · Br. Define

the MSIS relation as RMSIS = {(X := (A,u),W := e) | Ae = u ∧ ‖e‖2 ≤ Be},
where A ∈ Rn×mq , u ∈ Rnq , and e ∈ Rmq . We also define the “relaxed” relation
R′MSIS where the only difference between RMSIS is that e now only satisfies
Ae = (β− β̃) ·u for some β, β̃ ∈ ChSet and ‖e‖2 ≤ B′e for a slightly larger bound
B′e > Be. It is known that the ΣLyu-protocol is naHVZK and satisfies relaxed
2-special soundness.
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Quantum secure Σ-protocol. The construction is depicted in Figure 4. Setup
of the Σ protocol runs KeyGen of the extractable LinHC protocol. Below, we show
correctness, naHVZK, and SL-PoK of our Σ-protocol in Figure 4. Since the first
two properties follows almost immediately from the underlying ΣLyu-protocol
and the simplified extractable LinHC protocol, we omit them to the full version.

Prover: X = (A,u) ∈ Rn×mq ×Rnq
W = e ∈ Rmq

crs = Kcom Verifier: X = (A,u)

r← Dm
φ·Br

w← Ar
(com, st)← Com(Kcom, (e, r))

w, com
−−−−−−−−→

β
←−−−−−−−−

β ← ChSet

z← β · e + r
op← Open(Kcom, (com, β, z), st))
If op = ⊥, abort
If Rej(z, β · e, φ, Br, err) = ⊥, abort

z, op
−−−−−−−−→

Verify(Kcom, (com, β, (z, op))) ?= >

‖z‖2

?
≤ Bz

Az ?= β · u + w

Fig. 4. Quantum secure Σ-protocol in the CRS model for the lattice relation Ae = u,
where crs is Kcom ← KeyGen(1κ). The witness e satisfies ‖e‖2 ≤ Be. The gray indicates
the components that are used in the ΣLyu-protocol.

SimSetup(1κ)

1: (K̃com, τ)← SimKeyGen(1κ)
2: return (c̃rs := K̃com, τ)

SL-Extract
(
τ, ((w, com), β, (z, op))

)
1: Run L← LinCExtract

(
τ, (com, β, (z, op))

)
and return ⊥ if it does not terminate in
time T ∗ · poly(κ).

2: if L = ⊥ then return ⊥
3: {(β, z), (β̃, z̃)} ← L

4: z∗ ← Extractss(w, (β, z), (β̃, z̃))
5: return W := z∗

Fig. 5. Description of SimSetup and SL-Extract for the Σ-protocol in Figure 4.

Lemma 4.1 (SL-PoK). Let the ΣLyu-protocol for the relations (RMSIS,R′MSIS) be
relax 2-special sound with extractor Extractss. Let the simplified extractable LinHC
protocol be εIndCom-FBz-almost straight-line extractable with simulator SimKeyGen
and linear commitment extractor LinCExtract, where FBz is the family of functions
of the form fA,u,w(β, z) = > if and only if ‖z‖2 ≤ Bz and Az = β ·u+w. Finally,
let T ∗ = ((ε− ν2)/2− 1/ |ChSet|)−1 where ε is the advantage of the adversary A
and ν2 is a negligible function as in the statement of Definition 2.1, and poly(κ)
is some fixed polynomial independent of A.

20



Then our Σ-protocol in the CRS model for the relations (RMSIS,R′MSIS) in
Figure 4 is a straight-line PoK with simulator SimSetup and straight-line extractor
SL-Extract described in Figure 5.

Proof. Fix any X = (A,u). Let A be a QPT algorithm that outputs a valid
transcript with probability ε as in the statement of Definition 2.1. Then, we have

Pr

 (c̃rs = K̃com, τ)← SimSetup(1κ)
(α, st)← A(c̃rs,X)

β ← ChSet
γ ← A(c̃rs,X, α, β, st)

: Verify(c̃rs,X, (α, β, γ)) = >

 ≥ ε− εIndCom, (1)

where α = (w, com) and γ = (z, op). Let Γ = |ChSet| · ε−εIndCom
2 which we assume

to be a positive integer larger than 2 without loss of generality. Omitting the
randomness for better readability, we can rewrite the l.h.s of Equation (1) as

Pr
[

Verify(c̃rs,X, (α, β, γ)) = > ∧ |Sf (K̃com, com)| ≥ Γ
]

+ Pr
[

Verify(c̃rs,X, (α, β, γ)) = > ∧ |Sf (K̃com, com)| < Γ
]
. (2)

Here, f ∈ FBz is the function that on input (β, z), outputs > if and only if
‖z‖2 ≤ Bz and Az = β · u + w, where w is the vector included in α output by
A. Since β is sampled uniformly random from ChSet and independently of com
output by A, and Sf (K̃com, com) is the set of β’s that permit a valid (z, op) we
have Pr[Verify(c̃rs,X, (α, β, γ)) = > ∧ |Sf (K̃com, com)| < Γ ] < Γ

|ChSet| = ε−εIndCom
2 .

Combining this with Equations (1) and (2), we have Pr[Verify(c̃rs,X, (α, β, γ)) =
> ∧ |Sf (K̃com, com)| ≥ Γ ] ≥ ε−εIndCom

2 . Specifically, with probability at least
ε−εIndCom

2 , we have |Sf (K̃com, com)| ≥ Γ . Conditioning on such an event, we have
that LinCExtract(τ, (com, β, (z, op))) outputs a tuple L = {(β, z), (β̃, z̃)} such
that β 6= β̃ and f(β̃, z̃) = > in time at most

(
|ChSet|
Γ−1

)
· polyLinHC(κ) with prob-

ability at least 1 − 2−κ, where we set δ = κ. By setting T ∗ = |ChSet|
Γ−1 and

poly(κ) = polyLinHC(κ) in Figure 5, with probability at least ε−εIndCom
2 · (1− 2−κ),

SL-Extract moves on to Line 3. By definition of f ∈ FBz , (w, β, z) and (w, β̃, z̃)
are two valid transcripts for the underlying classical Σ-protocol. Hence, we obtain
z∗ ← Extractss(w, (β, z), (β̃, z̃)) such that (X,W = z∗) ∈ R′MSIS as desired. This
completes the proof.

4.2 Lyubashevsky’s Σ-Protocol ⇒ QROM Secure Signature via
Extractable LinHC and Fiat-Shamir

We show how to directly compile theΣLyu-protocol into an eu-cma secure signature
scheme using the Fiat-Shamir transform The main technicality of this section is
to show that even if an adversary gets to observe polynomially many simulated
proofs (i.e., signatures), we are still able to extract a witness from a valid proof
(i.e., extract the secret key from a signature forgery) output by the adversary
without rewinding.
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QROM secure signature scheme. The construction of our (deterministic)
signature scheme in the QROM is provided in Figure 6.17 The algorithms are
provided oracle access to the random oracle H, and we use appropriate domain
separation to simulate two independent random oracles with different domains
and ranges: HLHC for the extractable LinHC protocol and HFS for applying the Fiat-
Shamir transform The output space of HFS is ChSet := {β ∈ {0, 1}κ | ‖β‖1 ≤ `}.
Let all the parameters be defined identically to those of the Σ-protocol. We
assume that each first message (w = Ar) of the underlying ΣLyu-protocol has
ζ-min-entropy and further assume with overwhelming probability that there
exists at least two short vectors e, e′ ∈ SmBe

such that Ae = Ae′ = u. Both of
these assumptions are standard in prior works.

S.KeyGenH(1κ)
1: (A, e)← Rn×mq × SmBe
2: u = Ae
3: K← K
4: vk := (A,u)
5: sk := (e,K)
6: return (vk, sk)

S.VerifyH(vk, σ,M)
1: (β, z, com, op)← σ
2: Kcom ← KeyGenHLHC (1κ)[M]
3: b← Verify(Kcom, (com, β, (z, op)))
4: if b = ⊥ then return ⊥
5: w← Az− β · u
6: if ‖z‖2 > Bz or β 6=

HFS(w‖com‖M) then return ⊥
7: else return >

S.SignH(vk, sk,M)
1: Kcom ← KeyGenHLHC (1κ)[M]
2: (b, op, c)← (⊥,⊥, 0)
3: while b = ⊥ ∨ op = ⊥ do
4: ρr‖ρRej‖ρCom‖ρOpen ← PRF(K,M‖c)
5: r← Dm

φ·Br [ρr]
6: w← Ar
7: (com, st)← Com(Kcom, (e, r))[ρCom]
8: β ← HFS(w‖com‖M)
9: z← β · e + r
10: b← Rej(z, β · e, φ, Br, err)[ρRej]
11: op← Open(Kcom, (com, β, z), st)[ρOpen]
12: c← c+ 1
13: return σ := (β, z, com, op)

Fig. 6. QROM secure signature scheme by applying the Fiat-Shamir transform to our
Σ-protocol in Figure 4. Oracles HLHC and HFS are implemented using H.

Properties. Due to page limitation, we provide the proof of eu-cma security in
the full version. For an overview of the proof, we refer the readers to the technical
overview in Sec. 1.2. The main technicality of the proof is showing that with high
probability, there must have been another challenge the adversary was able to
forge on even though it had some control over which challenge it used through
quantumly accessing the random oracle HFS.
17 Strictly speaking, we require an upper bound on the number of loops we perform

in the while clause to make the signature algorithm terminate in strict polynomial
time. However, since our main focus is to showcase how to use the extractable LinHC
protocol and this issue can be handled in a straightforward manner (see [31] for
example), we ignore this unrelated subtlety for better readability.
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5 Application: Quantum Secure 5-Round Public-Coin
Exact Sound Proof and NIZK

In this section, to showcase the generality of the extractable LinHC protocol,
we show how to integrate it to the recent 5-round public-coin HVZK interactive
exact sound proof of Bootle et al [10]. The main motivation for choosing [10]
as the case study is because the ideas presented in this section can be directly
applied to other recent works [3,21,48,1]. We can convert the protocol of [10]
into either (1) a quantum secure straight-line extractable interactive proof using
the simplified extractable LinHC protocol (as in Sec. 4.1) or (2) into a quantum
secure simulation straight-line extractable NIZK (or a signature scheme) using
the extractable LinHC protocol (as in Sec. 4.2).

5.1 Quantum Secure Exact Sound Interactive Proof via Simplified
Extractable LinHC

We first show how to apply the simplified extractable LinHC protocol to Bootle
et al’s protocol [10] to obtain a 5-round public-coin interactive proof that is
quantum secure, straight-line extractable, and exact sound. In brief, Bootle et
al. constructs an interactive protocol that allows the prover to prove knowledge
of a vector s ∈ {0, 1, 2}d satisfying As = u, where the main difference between
Lyubashevsky’s protocol is that it it exact sound. That is, a knowledge extractor
extracts a witness that satisfies the original relation used by the prover (and not a
“relaxed” relation). While zero-knowledge of our protocol is a direct consequence
of that of Bootle et al’s protocol, soundness needs slightly more work.
Parameters. Following Bootle et al., we chose the dimension d and modulus
q so that Rq completely splits into d linear factors modulo q, e.g., d is a power
of 2 and q ≡ 1 mod 2d. For a ring element s ∈ Rq, we denote ŝ ∈ Zdq as the
NTT representation of s. Then, for a matrix-vector pair (A,u) ∈ Zm×dq ×Zmq , we
consider the relation RES = {s ∈ Rq | Aŝ = u ∧ ŝ ∈ {0, 1, 2}d}. Let C denote
the set {0, Xi | 0 ≤ i < 2d} ⊂ Rq, and φ and err be parameters specified by the
rejection sampling algorithm. Let Be, Br, and Bz be positive reals such that
Br ≥

√
6d ·Be and Bz ≥

√
12d ·φ ·Br, where the size of Be dictates the hardness

of the MLWE assumption.
Quantum secure exact sound protocol. The protocol is depicted in Figure 7.
It can be seen that the way we apply the extractable LinHC protocol is very
similar to what was done for Lyubashevsky’s protocol (see Figure 4). Correctness
and naHVZK are straightforward to prove and we omit them to the full version.

The high level idea of the proof for straight-line proof of knowledge is similar
to those provided by Bootle et al. [10, Theorem 3.1]. The main difference is
how we extract a witness from partial valid transcripts. Recall Bootle et al. first
rewinds the adversary to obtain six valid transcripts with a specific form and
then shows how to extract a witness from such transcripts. In our proof, we are
only able to extract a small portion of the six valid transcripts so we need to rely
on a different argument compared to Bootle et al.
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Prover: X = (A,u) ∈ Zm×dq × Zmq
W = s ∈ Rq

crs = (B,Kcom) Verifier: X = (A,u)

y ← Rq
e← S6

Be

t←


b>1
b>2
b>3
b>4
b>5

 e+


0
y
s

y(2s− 3)
y2(s− 3)

 ∈ R5
q

w← Aŷ ∈ Zmq
r← D6

φ·Br
(com, st)← Com(Kcom, (e, r))

(t,w, com)
−−−−−−−−−−−→

c
←−−−−−−−−−−−

c← Zq

z0 ← c · s+ y

x0 ← b>1 r
x1 ← (b>2 + c · b>3 )r
x2 ← ((z0 − c)(z0 − 2c) · b>3

−z0 · b>4 + b>5 )r

(z0, x0, x1, x2)
−−−−−−−−−−−→

β
←−−−−−−−−−−−

β ← C

z← β · e + r
op← Open(Kcom, (com, β, z), st)
If op = ⊥, abort
If Rej(z, β · e, φ, Br, err) = ⊥, abort

(z, op)
−−−−−−−−−−−→

Verify(Kcom, (com, β, (z, op))) ?= >

‖z‖2

?
≤ Bz

Aẑ0
?= c · u + w

b>1 z ?= β · t1 + x0
(b>2 + c · b>3 )z + β · z0

?= β · (c · t3 + t2) + x1
((z0 − c)(z0 − 2c) · b>3
−z0 · b>4 + b>5 )z

?= β · ((z0 − c)(z0 − 2c) · t3
−z0 · t4 + t5) + x2

Fig. 7. Quantum secure exact sound public-coin interactive protocol in the CRS model
for the relation RES. B ∈ R5×6

q is the public parameter of the (implicit) commit-
ment scheme ΠCom ΠCom, and b>i denotes its i-th row vector. The gray indicates the
components that are used in the protocol of Bootle et al. [10].
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Lemma 5.1 (SL-PoK). Let the simplified extractable LinHC protocol be εIndCom-
FBz-almost straight-line extractable with simulator SimKeyGen and linear com-
mitment extractor LinCExtract, where FBz is the singleton set {f} for a f such
that f(β, z) = > if and only if ‖z‖2 ≤ Bz.

Then, there exists a PPT simulator SimSetup and a straight-line extractor
SL-Extract with the following property: Let A be an adversary that outputs a
valid transcript with probability ε > 3/q+ 2/d18 Then, on input a valid transcript
output by A executed on a simulated crs output by SimSetup, SL-Extract outputs
either a witness s ∈ Rq in the relation RES or a MSISn,6n,8Bz solution for b>1
with probability (ε− ν)/3 for a negligible function ν. Moreover, the runtime of
SL-Extract is independent of the runtime of A and depends only polynomially on
d and log q.

Proof. Assume A successfully fools the honest verifier with advantage ε > 3/q +
2/d and the resulting transcript is trans∗ =

(
(t,w, com), c(1), (z(1)

0 , x
(1)
0 , x

(1)
1 , x

(1)
2 ),

β(1,1), (z(1,1), op(1,1))
)
. Firstly, since A has advantage greater than 3/q + 2/d,

using the same statistical argument made in the proof of Lemma 4.1, with
probability at least 1/3, the transcript trans∗ output by A satisfies the following
property: there exists at least three distinct first challenges c(1), c(2), c(3) ∈ Zq and
two distinct second challenges β(k,1), β(k,2) ∈ C for each k ∈ [3] such that there
exists some third message (z(k)

0 , x
(k)
0 , x

(k)
1 , x

(k)
2 ) and fifth message (z(k,j), op(k,j))

where trans(k,j) =
(
(t,w, com), c(k), (z(k)

0 , x
(k)
0 , x

(k)
1 , x

(k)
2 ), β(k,j), (z(k,j), op(k,j))

)
is a valid transcript for all (k, j) ∈ [3]× [2]. Below, we first show how SL-Extract
obtains a list that contains all ((β(k,j), z(k,j)))(k,j)∈[3]×[2] using the straight-line
extractability of the simplified extractable LinHC protocol.

We define SimSetup to run (K̃com, τ) ← SimKeyGen(1κ) and output crs =
(B, K̃com). Due to the simplified εIndCom-FBz-almost straight-line extractability,
A still has advantage (ε − εIndCom)/3 in outputting a valid transcript trans∗
with the above property run on this modified crs. Next, SL-Extract can use the
extractor of the simplified extractable LinHC protocol LinCExtract(τ, trans∗) to
obtain a set L = ((βj , zj))j∈[d] in time polynomial in |C| = d19, where we are
guaranteed to extract all β ∈ C that has a corresponding (z′, op′) such that
Verify(Kcom, (com, β, (z′, op′))) = > and ‖z′‖2 ≤ Bz. That is, all the extracted
β satisfies β ∈ Sf (Kcom, com). Moreover, once com is fixed, there exists at most
one z′ satisfying Verify(Kcom, (com, β, (z′, op′))) = > for each β ∈ C and any
op′ regardless of the choice of the second and third messages (i.e., c ∈ Zq and
(z, w, x1, x2)).20 Therefore, the extracted z must be the unique z′. Combining
the argument so far, we have established ((β(k,j), z(k,j)))(k,j)∈[3]×[2] ⊆ L. Here,

18 Bootle et al. [10, Theorem 3.1] only requires ε > 2/q + 2/d. However, this slight
modification makes our proof slightly easier to state and has minimal impact on the
concrete efficiency of the scheme.

19 Since d is the dimension of the lattice, we can assume that it is polynomial in the
security parameter κ.

20 This argument relies on a natural yet extra property of the LinHC. The detail is
provided in the full version.
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note β(k,j) and β(k′,j′) may be the same when k 6= k′. In the following, we show
how SL-Extract determines which two tuples (β, z) and (β′, z′) ∈ L correspond
to the tuples (β(k,1), z(k,1)) and (β(k,2), z(k,2)).

Assume we knew which elements in the set L corresponded to (β(k,1), z(k,1))
and (β(k,2), z(k,2)) for each k ∈ [3]. Then, since (trans(k,j))(k,j)∈[3]×[2] are valid
transcripts, we have b>1 z(k) = β(k,j) ·t1+x(k)

0 for an unknown x(k)
0 . By subtracting

j = 1, 2 for each k ∈ [3], we can remove x(k)
0 to obtain b>1 z(k) − β(k,1) · t1 =

b>1 z(k)−β(k,2) · t1. Notice that we can check this equality with only knowledge of
B in the crs and t in the first message, which is shared among all the transcripts.
With this observation in mind, SL-Extract performs the following:

1. Prepare an empty list S and counter t = 1.
2. For each pair (β, z), (β′, z′) ∈ L, check if b>1 z − β · t1 = b>1 z′ − β′ · t1. If

not move on to the next pair. Otherwise, add (t, (β.z), (β′, z′)) to the list S,
update t = t+ 1, and move on to the next pair.

For each (t, (β, z), (β′, z′)) ∈ S, denote βt = β − β′ and zt = z − z′. Then,
we have b>1 zt = βt · t1, which is an approximate solution to the first equation
of the commitment t. Therefore, we can compute openings Mt,2, Mt,3 and Mt,4

and Mt,5 of t by setting Mt,` = t` − β
−1
t · (b>` zt) ∈ Rq for each ` ∈ {2, 3, 4, 5}.

Here, note that these openings are valid relaxed openings for the commitment
scheme with ‖zt‖2 ≤ 2Bz. Hence, unless A breaks the binding property of the
commitment, we are guaranteed that Mt,2, Mt,3, Mt,4, and Mt,5 are the same
value for all t ∈ |S|. Conditioning on A not breaking the MSISn,6n,8Bz problem,
SL-Extract outputs s∗ := M1,3 = · · · = M|S|,3 as the witness. Here, observe that
the runtime of SL-Extract is only polynomially related to |C| = d: it takes time
d · poly(κ) to prepare the list L and takes time at most d2 · poly(κ) to prepare the
list S. Therefore, it remains to show that s∗ ∈ Rq output by SL-Extract indeed
satisfies Aŝ∗ = u and ŝ∗ ∈ {0, 1, 2}, where ŝ∗ ∈ Zdq is the NTT representation
of s∗. In the following, since all the messages are the same unless A breaks the
MSISn,6n,8Bz problem, we drop the subscript t from the messages M and further
denote y∗ = M2.

Although we do not know (c(k), (z(k)
0 , x

(k)
0 , x

(k)
1 , x

(k)
2 ))k∈[3], we have L that is

guaranteed to contain (β(k,j), z(k,j))(k,j)∈[3]×[2] included in (trans(k,j))(k,j)∈[3]×[2].
For each (k, j) ∈ [3]× [2] consider the following verification equation

(b>2 + c(k) · b>3 )z(k,j) + β(k,j) · z(k)
0 = β(k,j) · (c(k) · t3 + t2) + x

(k)
1 ,

where recall that z(k)
0 and x(k)

1 are unknown but guaranteed to exist. Subtracting
the equations for the same k and j = 1, 2, we obtain (b>2 + c(k) · b>3 )z(k) + β

(k) ·
z

(k)
0 = β

(k) · (c(k) · t3 + t2), where β(k) = β(k,1) − β(k,2) and z(k) = z(k,1) − z(k,2).
Further substituting the commitment openings for t2 and t3 to the above equation
and making routine calculation shows z(k)

0 = y∗+c(k) ·s∗. By performing the same
argument on the final verification equation and substituting the commitment
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openings for t4 and t5, we obtain

((y∗)2s∗−y∗M4+M5)+((y∗(2s∗−3)−M4)s∗)·c(k)+(s∗(s∗−1)(s∗−2))·(c(k))2 = 0.

Since this equation holds for all k ∈ [3] and c(1) 6= c(2) 6= c(3) ∈ Zq, we must have
s∗(s∗−1)(s∗−2) = 0 over Rq. Applying the NTT transform, this equation implies
that ŝ∗ ∈ {0, 1, 2}d. Finally, by subtracting the second verification equation from
one another, we get A(ẑ(1)

0 − ẑ(2)
0 ) = (c(1) − c(2)) · u. Since c(1) 6= c(2) and we

established z(k)
0 = y∗ + c(k) · s∗ for each k ∈ [3], this implies Aŝ∗ = u as desired.

To summarize, with probability 1/3, L contains ((β(k,j), z(k,j)))(k,j)∈[3]×[2].
Conditioned on this fact, SL-Extract outputs a valid witness s∗ ∈ RES unless it
finds a solution to the MSISn,6n,8Bz problem. Note that SL-Extract performs all
the steps without explicitly knowing (c(k), (z(k)

0 , x
(k)
0 , x

(k)
1 , x

(k)
2 ))k∈[3].

5.2 QROM Secure Exact Sound NIZK via Extractable LinHC and
Fiat-Shamir

Bootle et al. [10] transformed their interactive protocol into a classical NIZK
in the ROM using the Fiat-Shamir transform. Noticing that the two challenge
sets Zq and C have different size, they provided a more optimized soundness
amplification technique. We explain in detail how we can incorporate such
optimization technique when we instantiate the extractable LinHC protocol with
the two constructions provided in Sec. 3.4. Since most of the argument is identical
to those of the previous section, we refer the details to the full version.

5.3 Comparison

We compare Bootle et al’s ROM secure NIZK and our QROM secure NIZK.
We consider the application of proving knowledge of the ternary secret in LWE
samples over Zq, which is commonly used in the literature to provide a basic
benchmark, e.g., [10,7]. Such relation captures the setting of FHE schemes and
group signatures. Aiming at the 128-bit quantum security level, our provably
quantum secure NIZK has a proof size of 2071 KB while Bootle et al’s (heuristically
quantum secure) NIZK has proof size of 812 KB.21 The overhead is around a
factor of 2.6. The full detail on how we arrive at these values is provided in the
full version. In contrast, if assume we were able to make Bootle et al’s NIZK
secure in the QROM using the extended Unruh transform [14] (see Footnote 4),
the proof size becomes 44.9MB, where the overhead is a larger factor of 51.8.
For completeness, we provide the details in the full version. Finally, note that
it is unclear whether the Fiat-Shamir transform in the QROM can be securely
applied to Bootle et al’s NIZK.
21 Bootle et al. [10] provides a proof size of 384 KB. Ours is around two times larger

since we require t = 8, unlike t = 4, to achieve a minimal level of post-quantum
security. Moreover, we do not reuse the commitment t3,i for all i ∈ [t] as in [10] since
it would harm zero-knowledge.
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5.4 Further Applications of Extractable LinHC

We show that other recent Σ-/public-coin HVZK interactive protocols are com-
patible with our extractable LinHC protocol. Due to page limitation, below we
only remark on one of the recent lattice-based protocols. We provide further
discussion in the full version for the rest of the protocols: proof of opening of
commitments [3], one-out-of-many proofs [21], exact sound proofs for quadratic
relations [48], and product proofs for commitments [1].
[21]: Range proofs. Range proof allows one to prove that a committed value
resides in a specific range and is used in applications such as confidential transac-
tions in cryptocurrencies. Recently, Esgin et al. [21] provided an efficient range
proof by using new ideas on CRT-packing supporting “inter-slot” operations
and NTT-friendly tools that permit the use of fully-splitting rings. It can be
checked that the Σ-protocol for the range relation provided in [21, Theorem 1] is
compatible with extractable LinHC protocols. Although it was not necessary for
their scheme, we can modify the verifier in [21, Protocol 2] (without affecting any
parameters) to further check the bound on fcrt to perfectly fit the description of
the extractable LinHC protocol. Concretely, we can view (aij)(i,j)∈[ψ,ki−1], ra, rd,
and re in their Protocol 2 as r, and (bij)(i,j)∈[ψ,ki−1], rb, rc, and r in their Protocol
2 as e of the extractable LinHC protocol in our Figure 1.

Finally, we elucidate an inconvenient feature of some of the recent advanced
lattice-based protocols. While conventional protocols only require 2 to 3 valid
transcripts for special soundness, as much as 32 valid transcripts is required in
the recent protocols [1]. Therefore, even if the protocols came with a compatible
lossy function as in the definition of [35], the Fiat-Shamir transform incurs an
extremely large reduction loss. Combining [18, Lemma 29] and [35, Theorem
1], a knowledge extractor (for the underlying protocol) given black-box access
to a quantum adversary outputting a valid NIZK proof with probability ε after
making Q hash queries, is only guaranteed in extracting a witness with probability
(ε/Q2)2×32−1 = ε63/Q126. In such cases, extractable LinHC protocols may provide
a much tighter proof and a smaller set of provably secure parameters.
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