
Traceable Secret Sharing and Applications

Vipul Goyal1,2, Yifan Song1, and Akshayaram Srinivasan3

1 Carnegie Mellon University, Pittsburgh, USA
goyal@cs.cmu.edu, yifans2@andrew.cmu.edu

2 NTT Research, Sunnyvale, USA
3 Tata Institute of Fundamental Research, Mumbai, India

akshayaram.srinivasan@tifr.res.in

Abstract. Consider a scenario where Alice stores some secret data s on
n servers using a t-out-of-n secret sharing scheme. Trudy (the collector)
is interested in the secret data of Alice and is willing to pay for it. Trudy
publishes an advertisement on the internet which describes an elaborate
cryptographic scheme to collect the shares from the n servers. Each server
who decides to submit its share is paid a hefty monetary reward and is
guaranteed “immunity” from being caught or prosecuted in a court for
violating its service agreement with Alice. Bob is one of the servers and
sees this advertisement. On examining the collection scheme closely, Bob
concludes that there is no way for Alice to prove anything in a court
that he submitted his share. Indeed, if Bob is rational, he might use the
cryptographic scheme in the advertisement and submit his share since
there are no penalties and no fear of being caught and prosecuted. Can
we design a secret sharing scheme which Alice can use to avoid such a
scenario?
We introduce a new primitive called as Traceable Secret Sharing to tackle
this problem. In particular, a traceable secret sharing scheme guarantees
that a cheating server always runs the risk of getting traced and prose-
cuted by providing a valid evidence (which can be examined in a court
of law) implicating its dishonest behavior. We explore various defini-
tional aspects and show how they are highly non-trivial to construct
(even ignoring efficiency aspects). We then give an efficient construction
of traceable secret sharing assuming the existence of a secure two-party
computation protocol. We also show an application of this primitive in
constructing traceable protocols for multi-server delegation of computa-
tion.

1 Introduction

Secret sharing [Sha79, Bla79] allows a client to store a secret on n servers such
that an authorized subset of the servers can recover the secret, while any unau-
thorized set learns no information about the secret. Now, consider a scenario
where the client Alice stores her secret s (some proprietary dataset) across n dif-
ferent servers (or cloud providers) using secret sharing to enhance privacy. Alice
divides her secret into n shares using (say) a t-out-of-n secret sharing scheme
and stores one share on each server. Let us call these shares share1, . . . , sharen.

Trudy (the collector) is highly interested in learning Alice’s secret and is
willing to pay for it. Therefore, Trudy publishes an advertisement on the inter-
net. The advertisement has an elaborate cryptographic scheme to collect shares
from the servers. Each server who decides to submit its share is paid $100.
The collection scheme guarantees “cryptographic immunity” from being caught
or prosecuted in a court (e.g., for violating its service agreement with Alice).
The elaborate collection scheme has the following components: (1) a description
of functions f1, . . . , fn (called as the collector’s functions), and (2) description
of a pirate reconstruction box Rec?. The i-th server Pi is supposed to submit
fi(sharei) to the collector (in exchange for $100).4 If enough such fi(sharei) are
collected, the reconstruction box Rec? would output the secret s (or some in-
formation about s). The functions {fi}i∈[n] and pirate reconstruction box Rec?

are constructed very carefully to guarantee that even if Alice gets her hands on
them (and even on fi(sharei) for all i), it would not be possible for Alice to prove
anything in a court and seek damages from any of the servers.

Bob is one of the servers and sees this advertisement. Competition from bigger
cloud providers is tough, and, at this point, $100 could really help Bob keep the
service afloat and pay the staff salaries. Bob is worried however that if he gives
out fi(sharei) and somehow it reaches Alice, she will be able to trace him and
sue him in a court for damages. This would surely mean bankruptcy given Bob’s
service agreement with Alice. However, upon examining the collection scheme
and the reconstruction box closely, Bob concludes that there is no way for Alice
to prove anything in a court even if he submitted fi(sharei) (and it falls into
Alice’s hands). After all, Alice could have computed fi(sharei) even on her own.

What if sharei was generated using a secure 2-party computation between
Alice and Bob s.t. Alice doesn’t know sharei? sharei could potentially even have
identifying information about Bob. However we note that the function fi may
have been cleverly designed to remove this identifying information and only leave
the “essence” of the share intact. In general, the function fi might even encrypt
sharei with a public key (s.t. only the reconstruction box has the corresponding
secret key). The reconstruction box code may even be “obfuscated” in some way.
Indeed if Bob is rational, he might submit fi(sharei) to the collector to get $100
since there are no penalties and no fear of being caught and prosecuted. After
all, if he was the only one submitting the share, the collector anyway can get no
information about Alice’s secret. On the other hand, if a large number of servers
are participating in the collection, Bob’s does not want to be the one missing
out on $100.

The main goal of our paper is to try to design a secret sharing scheme in which
the servers are held accountable for cheating. In particular, any server which
cheats should run the risk of giving out a “proof of cheating” to the outside world.
Given any collection scheme consisting of f1, . . . , fn, the reconstruction box Rec?,
and the collected shares {fi(sharei)}i∈M where M is the set of malicious servers,

4 To ensure that the server cannot claim a false reward by submitting fi evaluated
on some dummy value, the collector can presumably check the correctness of all the
submitted values by, e.g., checking that they lie on a single polynomial.

2

Alice should be able to prove in front of a Judge that, for some i, Pi leaked its
share. In other words, there does not exist a collection scheme which guarantees
immunity to the cheating servers. We call such a secret sharing scheme a traceable
secret sharing. The notion of traceable secret sharing seems to be relevant in
natural scenarios such as secure multi-party computation in the client server
model [IK00], and, in threshold cryptosystems [DF90,Fra90,DDFY94].

1.1 Our Results

We initiate the study of traceable secret sharing (TSS) and explore various defi-
nitional aspects. TSS schemes turn out to be highly non-trivial to construct even
ignoring efficiency aspects. We first start with the high-level description of this
primitive.

Definition. In a traditional threshold secret sharing scheme, there is a sharing
phase where the dealer generates a set of n shares of his secret and distributes
it to the servers. The reconstruction algorithm allows any set of t servers to
come together to get back the secret. In a traceable secret sharing scheme, there
are two additional algorithms, namely, Trace and Judge. At a high-level, the
Trace algorithm uses the set of n collector functions f1, . . . , fn, the collected
shares fi(sharei) (for all i), the pirate reconstruction box and the view of the
dealer during the sharing phase. It outputs the identity of a traitor along with an
evidence that this is indeed a traitor. This evidence is later analyzed by the Judge
algorithm which pronounces whether the server is guilty or not. We assume that
the honest servers never submit their shares and the malicious servers submit
fi(sharei). A way to model this (which we follow in this work) is to consider the
collector’s function corresponding to an honest server to be a constant function.

In addition to correctness and statistical privacy properties of a threshold
secret sharing, we require a traceable secret sharing scheme to satisfy two ad-
ditional properties. The first property is traceability which roughly states that
if the pirate reconstruction box is able to distinguish between the shares of two
different secrets with non-negligible advantage (where the probability is over the
random coins of the sharing phase, random coins of the collectors functions and
the internal coins of the reconstruction box), then the Trace algorithm, with
non-negligible probability, outputs the identity of a traitor along with a valid
evidence that is accepted by the Judge algorithm. The second property, called as
non-imputability , protects an honest server against a cheating dealer. Roughly,
this property requires that a cheating dealer, even if it colludes with every other
party, cannot produce a valid evidence that implicates an honest server.

On the Model. We now make a couple of comments on the model.
– We require the Trace algorithm to take the description of the collector func-

tions, the reconstruction box Rec∗ as well as {fi(sharei)}i∈M submitted by
the malicious servers as input. These components might be available to Al-
ice if Trudy was Alice’s agent, or if Trudy later sells them anonymously to
Alice, or if Trudy gets caught by the law enforcement authorities and these

3

are submitted as evidence in the court of law. We note that if, for instance,
{fi(sharei)}i∈M is not available to the trace algorithm, then there is no hope
of identifying a traitor. Indeed, the reconstruction box does not have any
secrets, and it is useless unless it is run on {fi(sharei)}i∈[M]. This is, in fact,
a key difference between traitor tracing (where the trace algorithm only
requires access to the decryption box) and our notion of traceable secret
sharing. We elaborate more on the differences between these two notions in
Section 2.

– In this work, we consider a model where the collector specifies a set of func-
tions (f1, . . . , fn) and asks the servers to submit fi(sharei). However, it is
possible to consider more general cases where the collector may ask the
servers to run a distributed protocol and get the output of the protocol.
Specifically, the collector and the servers might run a general MPC protocol
that computes the reconstruction function and gives the output to the collec-
tor. We leave the study of such stronger models for future work. We note that
in general, any tracing system (including broadcast encryption with traitor
tracing) has its limitations and serves more as a deterrence rather than pro-
viding “foolproof security”. In broadcast encryption with traitor tracing, the
traitor might decrypt the broadcast and stream on an anonymous channel
and then there is no hope of tracing the traitor. In spite of these limitations,
traitor tracing has been widely deployed in practice (see, Fiat and Naor’s
ACM Paris Kanellakis Theory and Practice Award citation [ACM17]) and
we take the first direction towards defining and constructing a similar prim-
itive for the case of secret sharing.

Construction. In this work, we provide an efficient construction of traceable
secret sharing scheme under standard cryptographic assumptions. Specifically,
we show the following theorem:

Informal Theorem 1 Assuming the existence of a secure two-party computa-
tion protocol, there exists an explicit construction of t-out-of-n threshold traceable
secret sharing scheme for t ≥ 4 in the PKI model.5 In particular, for secrets of
length λ,
– The construction satisfies statistical privacy.
– If there exists a set of n collector functions and a pirate reconstruction box

that can distinguish between shares of two different secrets with advantage at
least ε, then there exists a tracing algorithm that makes poly(λ, 1/ε) oracle
calls to the pirate reconstruction box and outputs the identity of a traitor

along with a valid evidence with probability Ω(nε/(n−t+1)
1+(n−1)ε/(n−t+1)).

– With all but negligible probability, a (polynomially bounded) cheating dealer
cannot provide a valid evidence against an honest party even if it colludes
with every other party.

Extensions. We also consider a couple of extensions to our setting of traceable
secret sharing. The first extension is the collusion-resistant setting. Here, we

5 See Remark 2 on why PKI is necessary for traceable secret sharing.

4

consider a scenario where a group of upto t− 1 servers could come together and
pool in their shares, apply a collector’s function on their pooled shares and then
submit the output. (Note that if we allow more than t servers to come together,
then the servers could just reconstruct the secret without any collection, and TSS
becomes meaningless.) We show that a simple modification to the construction
from the above theorem actually satisfies this stronger definition. The second
extension is that the tracing algorithm is now required to output the identities
of multiple traitors along with a valid evidence implicating each of them. We
note that in this case, it not possible to output the identities of more than t
traitors as the reconstruction box can simply ignore the collected shares from
some of the parties if more than t parties submit their shares. We are able to
design a tracing algorithm that outputs the identities of at least t − 1 traitors
(which is nearly optimal) along with a valid evidence against each one of them.

Going Beyond Storage: Delegating Computation. We show an application of our
traceable secret sharing in constructing offline-online multi-server delegation of
computation on private data. In this setting, there is a single client who wants to
delegate an expensive computation on a private input to a set of n servers. We are
specifically interested in constructing offline-online secure computation protocols
for this task. In the offline phase, the client learns the circuit that it wants to
evaluate and engages in a protocol with the n servers. In the online phase, the
client learns its private input and runs the online phase of the protocol. At the
end of the online phase, the client can reconstruct the output of the computation.
We require the online computation cost of the client to only grow with the input
and output length of the computation and is otherwise independent of the size
of the circuit.

Now, consider a scenario as before where there is a collector who is interested
in learning the secret data of the client and publishes an advertisement describing
a set of collector functions f1, . . . , fn and a reconstruction box Rec∗. The servers
can submit the output of the collector functions applied on their entire view (as
opposed to just the shares) during the protocol execution and the reconstruction
box outputs some information about the client’s input. We would like to design
a protocol such that any server who submits this information always runs a
risk of getting traced and prosecuted. This means that there are two additional
algorithms (Trace, Judge) (that have the same semantics as in the traceable secret
sharing scheme) that are respectively able to trace and verify the identities of the
cheating servers. Specifically, given a set of n collector functions f1, . . . , fn, the
collected views of the servers f1(view1), . . . , fn(viewn) and a pirate reconstruction
box Rec∗ that is able to distinguish two different client inputs x0, x1 (that may
not even lead to the same output), we require the Trace algorithm to output
a valid evidence (that is accepted by the Judge algorithm) against a cheating
server. We show the following theorem.

Informal Theorem 2 Assuming the existence of a secure two-party computa-
tion protocol, there exists an explicit construction of n servers offline-online,

5

delegation of computation protocol tolerating t passive server corruptions in the
PKI model. In particular,
– For any two client inputs x0, x1, the views of any set of t − 1 servers when

the client’s input is x0 is statistically close to their views when the client’s
input is x1.

– For any two client inputs x0, x1, if there exists a set of n collector func-
tions and a pirate reconstruction box that can distinguish the views where
the client’s inputs are x0 and x1 with advantage at least ε, then there ex-
ists a tracing algorithm that makes poly(|C|, λ, 1/ε) (where C is the cir-
cuit to be evaluated) oracle calls to the pirate reconstruction box and out-
puts the identity of a traitor along with a valid evidence with probability

Ω(nε/(n−t+1)
|C|+(n−1)ε/(n−t+1)).

– With all but negligible probability, a (polynomially bounded) cheating client
cannot provide a valid evidence against an honest server even if it colludes
with every other server.

We note that this theorem statement does not follow as a direct consequence
of traceable secret sharing (more on this in the next section) and in fact, the
main challenge is to ensure that the shares of the intermediate wire values are
also traceable. Indeed, if the starting shares of the inputs are traceable while the
shares that the servers receive of the intermediate wire values are non-traceable,
the servers can safely submit these intermediate shares to a collector (which still
leaks non-trivial information).

1.2 Related Work

To the best of our knowledge, the notion of traceable secret sharing has never
been studied directly. We discuss a few related notions that have appeared before
in the literature. In the next subsection, we argue why techniques developed in
the context of these problems fail in the TSS setting.

Traitor Tracing in Broadcast Encryption. A closely related notion to traceable
secret sharing is that of traitor tracing [CFN94]. In the setting of traitor trac-
ing [CFN94], there is a central party (also called as the broadcaster) who samples
a set of public parameters along with n secret keys and distributes the secret
keys to a set of parties (also called as subscribers). The broadcaster can use
the public parameters to encrypt some message to a set of authorized parties
and the authorized parties can use their secret key to decrypt this ciphertext.
Now, when a group of subscribers come together to create a pirate decryption
box that allows even an unauthorized party to decrypt the broadcast, a trac-
ing algorithm can trace a party which was involved in creating this decryption
box. There has been a long line of work focusing on obtaining efficient con-
structions of traitor tracing [BS95,KD98,NP98,BF99,FT99,NP01,SW00,KY01,
NNL01,KY02,DF03,CPP05,BSW06,BW06,BN08,BZ14,NWZ16,GKW18] and
several works which considered the setting where the broadcaster could be ma-
licious [Pfi96, PS96, PW97]. Broadcast encryption with traitor tracing has been
widely used in practice to protect digital content.

6

Fingerprinting Codes. Fingerprinting codes, introduced by Boneh and Shaw [BS95]
are information theoretic objects used in the construction of traitor tracing
schemes. It consists of a code generator that outputs a set of codewords along
with a tracing key. We assign each codeword in the set to a different party. If a
group of parties collude and create a new word (using some restricted operations)
then the trace algorithm takes the tracing key and this new word and outputs
a subset of the parties that were used in constructing this word. Subsequent to
their introduction, more efficient constructions of fingerprinting codes have been
proposed in [KD98,SSW01,Tar03]. The main difference between this notion and
that of traceable secret sharing is that it doesn’t allow to share a secret and
additionally, the operations that are allowed to create a new word are somewhat
restricted.

Accountable Authority IBE. An Accountable-Authority Identity based Encryp-
tion [Goy07] was introduced by Goyal to reduce the trust on the private key
generator (PKG) in a IBE scheme. Specifically, if the PKG was behaving dis-
honestly and was leaking information of individual party’s secret key, then there
is an algorithm that can produce a proof that is accepted by a judge implicating
the dishonest behavior of the PKG. There have been some extensions to this
notion like Black-Box Accountable Authority IBE [GLSW08].

2 Technical Overview

In this section, we will give a high-level overview of our construction of traceable
secret sharing and also give details of the proof. We will also give an overview of
our traceable delegation protocol. Before describing our construction of traceable
secret sharing, we will first explain why existing secret sharing schemes are not
traceable.

Limitations of Existing Secret Sharing Schemes. Existing secret sharing schemes
(such as Shamir secret sharing) do not satisfy non-imputability property. In
these constructions, the dealer knows the entire share that is given to a party
and hence, a malicious dealer will be able to easily implicate an honest party by
coming up with his own collector functions, collected shares and a reconstruction
box which serve as valid evidence against this party. To prevent this attack, we
may try to run a secure multiparty computation protocol between the dealer
and the parties where the dealer provides his secret and the parties receive
the shares at the end. This prevents the dealer from learning the shares that
the parties receive. It turns out if the underlying secret sharing scheme has
some additional properties such as each share having sufficient min-entropy even
conditioned on the other shares6, then this modification can be proved to satisfy
non-imputability. However, in this case it is not clear if the traceability holds.

6 The constructions of leakage-resilient secret sharing schemes given in [SV19,
ADN+19] satisfies this property.

7

Comparison with Related Notions. A major difference between related notions
such as traitor tracing and a traceable secret sharing is in the restrictions placed
on the tracing algorithm. In a traceable secret sharing, we are not trying to
extract some secret from the pirate box but rather, we are trying to extract
some information from (possibly obfuscated/encrypted) input given to the pirate
box. This means we are only given a single sample and we must work with this
sample. Indeed, we can produce fresh samples on our own and try to run the
reconstruction box on these samples but in this case, the secret we are trying
to extract is lost. Hence, its not even clear apriori how invoking the pirate box
multiple times can help. One way to get around this issue would be to use the
given input sample to produce multiple (correlated) samples s.t. the target secret
is somehow present in all of them. However, this makes the construction and the
analysis more subtle. We also note that a simple construction for broadcast
encryption with traitor tracing exists based on any public key encryption. The
problem becomes interesting only while considering the efficiency aspects. On
the other hand, for traceable secret sharing, even getting a feasibility result is
an interesting problem because of the above mentioned reason.

In the next subsection, we give details of our construction of traceable secret
sharing scheme.

2.1 Our First Construction

The main idea behind our first construction is to partition the share of each party
into two parts. The first part is a secret that is known only to this party and is
unknown to the dealer and the second part is a share of a secret such that the
secret is known only to the dealer (unknown to any individual party). Intuitively,
the first part which is unknown to the dealer prevents a cheating dealer from
implicating an honest party and the secret in the second part enables a dealer
to trace a traitor. With this insight, let us now give details of our construction.

– To share a secret s, the dealer uses Shamir sharing to split s into n shares,
namely, ssh1, . . . , sshn ∈ {0, 1}λ. The threshold t used here is the same as
the required threshold for TSS.

– For every j ∈ [λ], the dealer chooses a random mask Rj uniformly from
{0, 1}λ and splits Rj into n Shamir shares R1,j , . . . , Rn,j (again using thresh-
old t).

– Now, the party Pi and the dealer engage in a secure two-party computation
protocol that computes the following function. The function takes the i-
th Shamir share sshi, the shares {Ri,j}j∈[λ], and all masks {Rj}j∈[λ] from
the dealer. It then samples Li,j for each j ∈ [λ] randomly such that 〈Li,j ,
Rj〉 = sshi,j where sshi,j refers to the j-th bit of sshi and 〈·, ·〉 denotes the
inner product. It finally provides owf(Li,j) as output to the dealer and {Li,j ,
Ri,j}j∈[λ] to Pi. Here, owf is an one-way function.

8

– The share of Pi (denoted by sharei) consists of {Li,j , Ri,j}j∈[λ]. The view
of the dealer at the end of the sharing phase includes the Shamir shares
ssh1, . . . , sshn, the shares {Ri,j}i∈[n],j∈[λ] and {owf(Li,j)}i∈[n],j∈[λ].7

– In order to implicate the party Pi, the tracing algorithm is required to output
any Li,j that is a valid pre-image.
Notice that the dealer’s secrets {Rj}j∈[λ] are in fact secret shared among the

parties. This means that even if you fix sharei for a party Pi, the value of Rj can
still be freely decided by sampling {sharek}k 6=i appropriately. This observation
would be very useful when we design the tracing algorithm.

Non-Imputability. It can be easily shown that the above construction protects
an honest party from a cheating dealer. In particular, it follows from the security
of two-party computation that the dealer learns no information about a party’s
Li,j except learning that the inner-product of Li,j and Rj is sshi,j . Thus, one
can argue from the one-wayness property of owf (which hold even if there is
a single bit of leakage) that the probability that a malicious dealer provides a
valid pre-image is negligible and hence the probability that an honest party is
implicated by a malicious dealer is negligible.

Tracing Algorithm Overview. Recall that the tracing algorithm receives the col-
lector’s functions f1, . . . , fn, the collected shares f1(share1), . . . , fn(sharen), the
view of the dealer, and a pirate reconstruction box that is guaranteed to distin-
guish between the secret shares of s0 and s1 with noticeable advantage. The goal
of the tracing algorithm is to extract one of Li,j that serves as a valid evidence
against party Pi. However, to extract this evidence, the tracing algorithm must
overcome the following challenges.

Challenge-1: Extraction from Single-Bit of Information. The first challenge is
that the reconstruction box only gives a single bit of information about the
evidence against Pi. However, recall that a valid evidence against Pi is one of
{Li,j}j∈[λ] where each Li,j is λ bits long. Furthermore, the reconstruction box is
guaranteed to distinguish between the shares of s0 and s1 only with noticeable
advantage and this means that the answer that the reconstruction box gives
could sometimes be erroneous. So, the tracing algorithm must somehow use this
single bit of information (which could further be erroneous) to extract a λ-bit
long string.

To overcome this challenge, we rely on Goldreich-Levin decoding [GL89].
Indeed, our construction is designed to be able to use Goldreich-Levin decoding
from the start. Before we go into the details of our solution, we first recall the
setting of Goldreich-Levin decoding. Suppose there exists an oracle Ora that
has a secret input x ∈ {0, 1}λ hard-wired in its description. The oracle accepts

7 We note that our construction satisfies statistical privacy even though we rely on
secure two party computation protocol. This is because the dealer’s inputs to any
set of t−1 of these secure two-party computation corresponds to t−1 Shamir shares
and it follows from the perfect privacy of Shamir secret sharing that these shares do
not reveal anything about the secret that was shared.

9

queries y ∈ {0, 1}λ and produces an output z ∈ {0, 1}. If for a uniformly chosen
query y, the probability that the oracle’s output z is equal to 〈x, y〉 is noticeably
more than 1/2, Goldreich-Levin decoding algorithm gives a way of obtaining
x hardwired in the oracle’s descirption with overwhelming probability. Coming
back to our setting, we will treat Li,j as the secret input x and use the pirate
reconstruction box to simulate the working of the oracle Ora. The trace algorithm
will then run the Goldreich-Levin decoder to extract out the secret Li,j . However,
for this task to be possible, we need the ability to set the query y to be equal
to Rj so that we can use the reconstruction box to predict 〈Li,j , y〉 = 〈Li,j ,
Rj〉. But the tracing algorithm only gets f1(share1), . . . , fn(sharen) which could
contain “encrypted” versions of Li,j and the shares of Rj and it is not clear
upfront on how to set the Rj to be equal to the query y. This is where we use
an earlier observation about our construction where we showed that is possible
to fix sharei (that contains Li,j) and resample the other shares in such a way
that Rj is fixed to the oracle query y. We will then run the pirate reconstruction
box on the fixed fi(sharei) along with outputs of the other collector functions
applied on the freshly sampled shares and use the output of the reconstruction
box to predict 〈Li,j , y〉.

A subtle but an important point that was ignored in the above paragraph
is how does the tracing algorithm determine which Li,j to extract. The above
description assumed that the tracing algorithm already knows which party is the
traitor and then tries to extract the Li,j from this party. This brings us to the
second challenge.

Challenge-2: A Careful Hybrid Argument. To determine the identity of a cheat-
ing party, the tracing algorithm will define a sequence of distributions or hybrids
starting from the distribution where the shares correspond to the secret s0 and
ending with a distribution where the shares correspond to the secret s1. Specif-
ically, for every i ∈ [n] and j ∈ [λ + 1], the tracing algorithm defines Hybi,j as
the distribution where {sshi′}i′<i are valid Shamir shares of s1 and {sshi′}i′>i
are valid Shamir shares of s0. Further, the first j − 1 bits of the i-th share are
changed from a share of s0 to a share of s1. Now, via a standard averaging ar-
gument, it follows that if the pirate reconstruction box can distinguish between
shares of s0 and s1 with advantage ε, then there exists an i ∈ [n], j ∈ [λ + 1]
such that the reconstruction box can distinguish between Hybi,j and Hybi,j+1

with advantage ε/O(nλ). This means that party Pi is a traitor (as otherwise,
Hybi,j ≡ Hybi,j+1) and the tracing algorithm tries to extract an incriminating
evidence against Pi. However, in order to determine if the reconstruction box can
distinguish between Hybi,j and Hybi,j+1 with noticeable advantage, we need the
tracing algorithm to generate samples from both these distributions. To generate
a sample from Hybi,j or Hybi,j+1, we need to change the inner product of Li,j
with Rj . However, we do not know {Li,j}j∈[λ] that is available in sharei (recall
that it only gets fi(sharei)) and hence, there does not seem to be a way for it to
sample Rj such that the inner product of Li,j with Rj is a particular value.

To solve this issue, we slightly change the sequence of hybrids by introducing a
“fine-grained structure”. Specifically, instead of defining λ hybrids for changing

10

the i-th Shamir share, we define 2λ + 1 small hybrids Hybi,j indexed by j ∈
{0, . . . , 2λ}. These hybrids first change sshi from a valid Shamir sharing of s0
(associated with sshi+1, . . . , sshn) to a random string one bit at a time, then
change the random string to a valid Shamir sharing of s1 (associated with ssh1,
. . . , sshi−1) again one bit at a time. Now, via a similar averaging argument we can
show that there exists a i ∈ [n], j ∈ [0, 2λ−1] such that the pirate reconstruction
box can distinguish between Hybi,j and Hybi,j+1 with advantage ε/O(nλ). For
simplicity, assume that such a j ∈ [0, λ − 1]. The key advantage of this fine-
grained hybrid structure is that it additionally allows the tracing algorithm to
sample from Hybi,j or Hybi,j+1. We now give the details below.

In a thought experiment, the tracing algorithm first fixes sharei. This means
that all {Li,j}j∈[λ] are fixed but these values are unknown to the tracing algo-
rithm. For every k > j, it fixes Rk as in the sharing phase. This means that the
inner product of Li,k with Rk remains the same as the k-th bit of the i-th share
of s0. For every k < j, we sample an independent R′k and this is possible due to
an earlier observation that conditioned on fixing any share, the dealer’s secrets
are uniformly distributed. This means that for every k < j, the inner product of
Li,k with the new R′k is an uniformly chosen random bit. Now, if we fix Rj as in
the sharing phase, we get an sample from Hybi,j ; else, if we sample R′j uniformly
at random, we get a sample from Hybi,j+1.

Completing the tracing. The tracing algorithm will go over every i, j and deter-
mine if the pirate reconstruction box can distinguish between Hybi,j and Hybi,j+1

with noticeable advantage. Eventually, it will reach Hybi,j and Hybi,j+1 such
that the pirate reconstruction box can distinguish between these two hybrids
with probability at least ε/O(nλ). It will now use Goldreich-Levin decoder to
extract Li,j . For completeness, we provide the details below.

– The tracing algorithm starts running the Goldreich-Levin decoder and sim-
ulates the access to the oracle Ora.

– When the decoder queries the oracle on a uniform y, the tracing algorithm
does the following:
• It fixes the collected share of party Pi, i.e., fi(sharei). In addition to this,

it also fixes the random masks {Rk}k>j which are available from the view
of the dealer. By fixing these random masks, the tracing algorithm has
fixed the inner product of Li,k and Rk for k > j to be the same as the
bits of the initial Shamir share sshi that was used in the sharing phase.

• It then randomly samples ssh′i+1, . . . , ssh
′
n such that these correspond to

the last n− i shares of a Shamir sharing of the secret s0. It also samples
ssh′1, . . . , ssh

′
i−1 such that (ssh′1, . . . , ssh

′
i−1) correspond to the first (i−1)

shares of a Shamir sharing of s1.
• It sets R′j = y (where y is the query) and samples R′1,j , . . . , R

′
i−1,j , R

′
i+1,j ,

. . . , R′n,j such that these values together with Ri,j corresponds to a valid
Shamir sharing of R′j .

• For k < j, it samples Rk uniformly from {0, 1}λ. Then the shares of
{Rk}k 6=j are randomly sampled such that they are consistent with the

11

fixed sharei and it samples share′1, . . . , share
′
i−1, share

′
i+1, . . . , share

′
n that

are consistent with the above sampled values.
• The tracing algorithm then runs the pirate reconstruction box on f1(share′1),
. . . , fi−1(share′i−1), fi(sharei), fi−1(share′i−1), . . . , fn(share′n)). We show that
using the output of the reconstruction box, one can predict the value of
the inner-product between Li,j and y with probability noticeably better
than half.

A minor subtlety that arises because of fixing (sharei, {Rk}k>j) is that for the
Goldreich-Levin decoding to work, we require that conditioned on fixing these
values, the reconstruction box still distinguishes between Hybi,j and Hybi,j+1

with non-negligible advantage. We note that we can rely on Markov’s inequality
to show that for ε

O(nλ) fraction of values of (sharei, {Rk}k>j), the reconstruction

box still distinguishes between Hybi,j+1 and Hybi,j with probability at least
ε

O(nλ) conditioned on fixing these values. This allows the tracing algorithm to

use the pirate reconstruction box to simulate the oracle and thus, enabling the
Goldreich-Levin decoder to extract Li,j .

2.2 Boosting Tracing Probability

The analysis explained before shows us how to trace a traitor with overwhelming
probability conditioned on sharei, {Rk}k>j belonging to a “good” set. Also, we
argued via Markov’s inequality that the probability that this value is “good” is
at least ε

O(λn) . Thus, the probability of tracing a traitor is roughly, ε
O(λn) . We

now show how to increase the success probability of the tracing algorithm in
a sequence of steps. The first step will show how to increase it to O(ε/n), the
second step will increase the tracing probability to O(ε) and the final step will

show how to increase it to O(nε/(n−t+1)
1+(n−1)ε/(n−t+1)). In this informal overview, we

will focus only on the first two steps and leave the third step to the main body.

First Step: O(ε/n). We note that to implicate Pi, it is sufficient to extract one of
{Li,j}j∈[λ] as the evidence. The above analysis tried to extract one specific Lij
and hence, suffered from a bad success probability. In the first boosting step, we
analyze the success probability of the tracing algorithm in extracting any one of
the {Lij}j∈[λ]. Since the tracing algorithm has more “slots” to extract a valid
evidence, this increases the success probability by a proportional factor.

Towards this goal, we define (sharei, {Rk}k∈[λ]) output in the initial sharing
phase to be traceable if there exists j ∈ [λ] (or j ∈ {λ + 1 . . . , 2λ}) such that
(sharei, {Rk}k>j) (or (sharei, {Rk}k>2λ−j+1)) is “good”. In this case, we note
that we can use the strategy mentioned above to extract Li,j (or Li,2λ−j+1).

The main technical lemma that we show in this step is the following. Let
us consider two large hybrids Hybi and Hybi+1, and if εi is the advantage of
the pirate reconstruction box in distinguishing between Hybi and Hybi+1, then
with probability O(εi− ε/(Cn)), (sharei, {Rk}k∈[λ]) output in the initial sharing
phase is traceable (where C is a some large enough constant). By observing that
there exists an i ∈ [n] such that, εi ≥ ε/n (via an averaging argument), we show

12

that probability of tracing is O(ε/n). We now give an overview of this lemma
by assuming without loss of generality that that the distinguishing advantage
between Hybi,0 and Hybi,λ is at least εi/2.

The main idea in the proof of the lemma is the following (informal) duality
condition. We show that for every j ∈ [λ], we can either use (sharei, {Rk}k>j)
to extract Li,j or the distinguishing advantage between Hybi,j−1 and Hybi,j is
“small”. Since we know that that the distinguishing advantage between Hybi,0
and Hybi,λ is at least εi/2, we get a lower bound on the probability that there
exists a j ∈ [λ], such that (sharei, {Rk}k>j) can be used to extract Li,j . The
actual proof is involved and uses a delicate partitioning argument. We refer the
reader to the main body for the full details.

Second Step: O(ε) : We note that the previous analysis showed that the prob-
ability that (sharei, {Rk}k∈[λ]) is traceable is at least O(εi − ε/(Cn)). This in
particular means that Pi can be traced with probability at least O(εi− ε/(Cn)).
The key trick in this step is that if any two parties can be traced independently,
then we may take advantage of the pairwise independence and boost the success
probability. However, to trace a party, we need (sharei, {Rk}k∈[λ]) to be trace-
able, which means the event that one party can be traced is correlated with the
event that another party can be traced.

To break the above mentioned correlation, we modify our construction as
follows. In the sharing phase, instead of sampling Rj and using Shamir secret
sharing to split it, the dealer samples a polynomial pj(·) of degree at most t− 1
and sets Ri,j to be pj(αi) (for some fixed element αi). Furthermore, instead
of sampling Li,j such that sshi,j = 〈Li,j , Rj〉, the sharing protocol samples
Li,j such that sshi,j = 〈Li,j , pj(βi)〉 (for some fixed element βi). In this new
construction, to trace a party Pi, we need (sharei, {pk(βi)}k∈[λ]) to be trace-
able. We observe that if t ≥ 4, the random variables (sharei, {pk(βi)}k∈[λ]) and
(sharei′ , {pk(βi′)}k∈[λ]) for any i 6= i′ are pairwise independent. We rely on this
observation and make use of standard inequalities like Cauchy-Schwartz to get
a lower bound on the probability that at least for one i ∈ {1, . . . , n}, (sharei,
{pk(βi)}k∈[λ]) is traceable. This allows us to get an improved analysis and thus
improving the success probability to O(ε).

2.3 Traceable Delegation

In this subsection, we show an application of traceable secret sharing to con-
structing traceable multi-server delegation of computation in the offline-online
setting.

The Setting. In our model, there is a single client and n servers. The client
wants to delegate the computation of a circuit C on some private input x to
the n servers. We consider the offline-online setting where the client gets the
circuit to be computed in the offline phase but learns the private input in the
online phase. The offline computational cost of the client can grow with the
size of the circuit C but we require the online computation of the client to be

13

extremely fast. In particular, it should only grow proportional to the input length
x and the output length of C and is otherwise, independent of the size of C. We
require the standard correctness and the privacy properties from the protocol,
meaning that the client always reconstructs the correct output and the views of
t servers provide no information about the client’s private input x. Additionally,
we require the protocol to be traceable, meaning that given any set of collector
functions f1, . . . , fn and a pirate reconstruction box that can distinguish between
the cases where the client’s input was x0 and x1 with noticeable advantage, then
we require a tracing algorithm to output a valid evidence (accepted by a judge)
against one of the cheating servers.

Why natural approaches fail? A natural approach to construct such a traceable
MPC protocol is for the client to use our traceable secret sharing scheme to secret
share its private input x among the n servers. Then, the servers can run standard
MPC protocols like BGW [BOGW88] or GMW [GMW87] to compute a secret
share of the output which can finally be reconstructed by the client. However,
this approach fails in our setting because these protocols crucially rely on the
secret sharing scheme to be linear whereas our traceable secret sharing scheme is
non-linear. To get around this problem of non-linearity, one might think that for
every gate, we might run a mini MPC protocol that takes the traceable shares of
the inputs, reconstructs the input values, computes the output of the gate and
then reshares it using a traceable secret sharing scheme. However, this requires
the mini MPC protocol itself to be traceable and we are back to square one. In
conclusion, the main difficulty we face is in making the shares of the intermediate
wire values to be traceable.

Our protocol. The main idea behind our protocol is to “secret share” the circuit
rather than secret sharing the input. Towards building the main intuition behind
the protocol, let us start with a trivial case where the circuit is just a single gate
g that takes in two input values and has a single output value. In the offline phase
of our computation, the client “garbles the truth table” of this gate. Specifically,
for every input wire and the output wire, the client chooses a random masking
bit. Let us call these masking bits to be r1, r2 corresponding to the input wires
and r3 corresponding to the output wire. Further, the client generates a table
with 4 entries where the (a, b)-th entry of the table for a ∈ {0, 1} and b ∈ {0, 1}
is given by g(a⊕ r1, b⊕ r2)⊕ r3. After generating all the entries of the “garbled
table”, the client uses our traceable secret sharing to secret share each entry of
the garbled truth table to the n servers. This completes the offline phase of the
protocol and at the end of the offline phase, each of the servers hold a secret share
for every entry of the garbled truth table. In the online phase, the client learns
its input (x1, x2) ∈ {0, 1} × {0, 1} and it sends to each of the servers (x1 ⊕ r1,
x2⊕r2). Now, each of the servers hold the masked values of the input wires, and
they just choose the share corresponding to the entry given by (x1⊕r1, x2⊕r2) in
the truth table, and reconstruct this particular value by broadcasting the chosen
shares. It is easy to see that the reconstructed value will be the actual output

14

of the gate masked with r3. Now, this value will be sent back to the client who
can unmask this value and learn the output of the computation.

To give the main idea behind tracing, notice that in the online evaluation
phase executed by the servers, there are three secret shares that are left un-
touched. Further, the entry of the gate table that is reconstructed does not give
any information about the client’s input due to the one-time pad security. This
means that if we change any one of the untouched shares to a secret sharing of
the revealed value and if the reconstruction box is able to detect this change,
then we are back to the standard setting of traceable secret sharing. With this
intuition in mind, let us now give the details about tracing. Towards this, let us
first assume that we have a set of n collector functions f1, . . . , fn and a pirate
reconstruction box that can distinguish between the cases where the input of
the client was (x1, x2) from the case the input was (x′1, x

′
2) with noticeable ad-

vantage. The tracing algorithm defines a sequence of 6 hybrids starting from the
case where the input was (x1, x2) and ending with the case where the input was
(x′1, x

′
2). The first three hybrids change each entry of the garbled truth table to

be g(x1⊕ r1, x2⊕ r2)⊕ r3. That is, at the end of these changes, all the 4 secrets
that were shared during the offline phase are equal to g(x1 ⊕ r1, x2 ⊕ r2) ⊕ r3.
Notice that once we have done this change, we can rely on the one-time pad
security to make the views of all the servers to be independent of the input. In
particular, we can change the masked inputs which were sent during the online
phase to be (x′1⊕r1, x′2⊕r2) and the entries of the garbled table to be g(x′1⊕r1,
x′2 ⊕ r2) ⊕ r3 . The next sequence of 3 hybrids will just reverse these changes
ending with the actual view of the servers when the client’s input was (x′1, x

′
2).

If the reconstruction box distinguishes between the cases where the client’s in-
puts were (x1, x2) from (x′1, x

′
2) with advantage ε, then via a standard averaging

argument, it follows that there exists two intermediate hybrids Hyb and Hyb′

in this sequence such that the reconstruction box is able to distinguish between
these two hybrids with advantage ε/6. Notice that the only difference between
any two subsequent hybrids is the secret that was shared in a particular gate
entry. Thus, fixing all other gate entries and their corresponding shares, we can
now directly rely on our tracing algorithm to catch a specific traitor.

An astute reader might have noticed the similarities between our approach
and the point-and-permute trick in garbled circuits [BMR90]. Indeed, we can
extend the toy example in a straightforward way to computing an arbitrary
circuit C composed of many gates via the point-and-permute trick. Specifically,
we ask the client to choose an independent random masking bit for each wire of
the circuit (including the output wires) and generate the garbled truth table for
each gate as explained above. In the offline phase, the client secret shares each
entry of each garbled table using our traceable secret sharing scheme and sends
it over to the servers. In the online phase, the client sends the masked values
of its input. Then, the servers compute the masked output of each gate in the
topological order, starting from the input gates and ending in the output gates
exactly as explained above. Once the servers have the masked value of the output,

15

then can simply send this to the client who unmasks this and reconstructs the
actual output.

A subtlety. A minor subtlety that arises with the above approach is in proving
the non-imputability property. Let us once again consider the toy example above
where there is a single gate. In the online phase, when the servers broadcast the
shares corresponding to the (x1 ⊕ r1, x2 ⊕ r2)-th entry of the garbled truth
table, they also need to broadcast the {Li,j}j∈[λ] corresponding to these shares.
However, broadcasting these values allow a cheating client that colluded with one
other server to easily implicate an honest server. To prevent this attack, we make
use of the specific structure of our shares. Recall that the share corresponding
to the i-th server comprises of {Li,j , Ri,j}j∈[λ]. Instead of asking the servers to
naively broadcast this share in its entirety, we first ask the servers to broadcast
{Ri,j}j∈[λ]. This allows the servers to first reconstruct {Rj}j∈[λ]. Once this is
done, the servers can take the inner produce of each Li,j with Rj to reconstruct
the i-th Shamir share sshi. The servers then broadcast this value and this allows
them to reconstruct the actual secret without revealing {Li,j}j∈[λ] to any party.

2.4 Extensions

Trace t-1 Parties. In this extension, we are interested in tracing many traitors.
By using the construction in the previous step, we note that (share1, {p1,k(0)}k∈[λ]),
. . . , (sharen, {pn,k(0)}k∈[λ]) are (t− 1)-wise independent. We use the trick of ex-
plained before to identify t− 1 “special” parties such that each of them can be
traced with probability O(ε/(n − t + 1)). Therefore, we can trace t − 1 parties
with probability O((ε/(n− t+ 1))t−1).

Disjoint Collusion Setting. We also consider the setting where up to t−1 parties
can collude. We focus on the disjoint collusion setting where each party can be
in at most one collusion. We model the collusion by allowing the collector to
specify functions fi1,...,ik for collusion of k ≤ t − 1 parties, where fi1,...,ik takes
sharei1 , . . . , shareik as input.

The main idea of the tracing algorithm would be the same as before. However,
to generate a valid random sample which is either in Hybi,j or Hybi,j−1, in addi-
tion to fixing (sharei, {pk(βi)}k>j), we also need to fix {sharei′ , {pk(βi′)}k∈[λ]}i′∈Ci ,
where Ci denotes the set of parties which collude with Pi. Because we need to
use the collected share sent by Pi, which requires that the shares of Pi and all
parties who collude with Pi should be the same as that generated in the initial
phase. Furthermore, since the tracing algorithm does not know {Li′,k}i′∈Ci,k∈[λ],
we need to also reuse {pk(βi′)}i′∈Ci,k∈[λ] so that the inner product between Li′,j
and pk(βi′) is known to the tracing algorithm. However, for pj(·), we need to fix
2t − 3 values, which has already determined pj(·). It disables us to change the
value of pj(βi).

To solve this issue, we modify the construction as follows. In the sharing
phase, for j ∈ [λ] instead of only using one polynomial pj(·), the dealer samples
n polynomials p1,j(·), . . . , pn,j(·) of degree at most t−1. Every party will receive

16

R1
i,j = p1,j(αi), . . . , R

n
i,j = pn,j(αi). Instead of sampling Li,j such that sshi,j =

〈Li,j , pj(βi)〉, the sharing protocol samples Li,j such that sshi,j = 〈Li,j , pi,j(0)〉.
In this way, we only fix t− 1 values of pi,j(·) and therefore can still change the
value of pi,j(0). The first step of boosting success probability still works in the
new construction. Therefore, we can trace a party with probability O(ε/(n− t+
1)) in the collusion setting.

3 Preliminaries

Let λ denote the security parameter. A function µ(·) : N → R+ is said to be
negligible if for any polynomial poly(·) there exists λ0 such that for all λ > λ0
we have µ(λ) < 1

poly(λ) . We will use negl(·) to denote an unspecified negligible

function and poly(·) to denote an unspecified polynomial function.
We assume reader’s familiarity with the digital signature schemes.

3.1 Goldreich-Levin Lemma

Lemma 1. Suppose owf is a one-way function. If there is an oracle Ora(X, ?)
with X hard-coded where X ∈ {0, 1}λ such that

Pr
Y∼{0,1}λ

[Ora(X,Y) = 〈X,Y 〉] ≥ 1/2 + η(λ),

then there exists a probabilistic algorithm Inv, which takes owf and owf(X) as in-
put, has the access to Ora(X, ?), runs in poly(1/η(λ), λ) and makes poly(1/η(λ),
λ) oracle queries, such that

Pr[X ′ ← InvOra(X,?)(owf(·), owf(X)) : owf(X ′) = owf(X)] ≥ 1− negl(λ).

We use InvOra(X,?)(owf(X)) for simplicity and ignore the input of the descrip-
tion of owf when it is evident from the context.

4 Traceable Secret Sharing

In Section 4.1, we give the definition of a traceable secret sharing. In Section 4.2,
we give our construction. We refer the readers to the full version of this paper
for the proof of security.

4.1 Definition

A traceable secret sharing scheme consists of four algorithms (Share,Rec,Trace,
Judge). The (Share,Rec) have the same syntax as that of a normal secret sharing
scheme. The algorithm Trace takes in a set of n collector functions f1, . . . , fn,
the set of collected shares, a pirate reconstruction box, the view of the dealer
during the sharing phase and outputs the identity of a traitor party i? who has
submitted its share to the collector along with a proof πi? . The Judge algorithm
takes in this proof and pronounces whether i? is guilty or not. We give the formal
definition below.

17

Definition 1. A Traceable Secret Sharing (TSS) is a tuple of four algorithms
(Share,Rec,Trace, Judge) with the following syntax:
– Share(1λ, s, t, n) : On input the security parameter 1λ, a secret s, the thresh-

old t and the number of players n, the dealer D runs the Share protocol
with n players P1, . . . , Pn. At the end of the protocol, the player Pi outputs
its share sharei and the dealer outputs its view viewD. We will ignore the
security parameter when it is evident from the context.

– Rec(sharei1 , . . . , shareit) : This is a deterministic algorithm such that given
any set of t shares, denoted by sharei1 , . . . , shareit , outputs a secret s.

– TraceRec
?

(f1, . . . , fn, f1(share1), . . . , fn(sharen), viewD, s0, s1) : The collector
publishes the description of the functions f1, . . . , fn along with a pirate re-
construction box Rec?. The collector receives shares from a set of parties
after applying the collector functions. If a party Pi is honest and has not
submitted its share, we will replace fi with a constant function. Formally,
if H is the set of honest parties, then fi is a constant function for i ∈ H.
The Trace algorithm takes the n collector functions f1, . . . , fn, the collected
shares f1(share1), . . . , fn(sharen), the view of D, two secrets s0, s1, and with
oracle access to a pirate reconstruction box Rec? outputs an index i? ∈ [n]
and a proof πi? .

– Judge(i?, πi? , viewD) : This is a deterministic algorithm that takes the alleged
traitor identity i? ∈ [n], the proof πi? and the view viewD of the dealer and
outputs guilty or not− guilty.

We say a scheme is a t-out-of-n δ-traceable secret sharing if it satisfies the
following properties.
– Correctness. For any secret s and any T = {i1, . . . , it} where each ij ∈ [n],

we require that

Pr
Share(s,t,n)

[Rec(sharei1 , . . . , shareit) = s] = 1

– Statistical Privacy. For any two secrets s0, s1 and any T ⊆ [n] with |T | ≤
t− 1, we require that

{(share1, . . . , sharen)← Share(s0, t, n) : shareT } ≈s
{(share1, . . . , sharen)← Share(s1, t, n) : shareT }

– Traceability. If there exists a set of n collector functions f1, . . . , fn (where
fi is a constant function if Pi is honest) and a pirate reconstruction box Rec?

such that for two secrets s0, s1,

| Pr
Share(s0,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0]−

Pr
Share(s1,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0]| ≥ ε

then,

Pr[(share1, . . . , sharen, viewD)← Share(s0, t, n);

(i?, πi?)← TraceRec
?

(f1, . . . , fn, f1(share1), . . . , fn(sharen), viewD, s0, s1) :

Judge(i?, πi? , viewD) = guilty] ≥ δ(ε)

18

Furthermore, the number of queries that Trace makes to the pirate recon-
struction box Rec? is poly(λ, 1/ε).

– Non-imputability. For any secret s, honest player Pi? and any computa-
tionally bounded algorithm D̃,

Pr
share(1λ,s,t,n)

[(view′D, i
?, πi?)← D̃(viewD, share[n]\{i?}) : Judge(i?, πi? , view

′
D) = guilty] ≤ negl(λ)

Remark 1. We can consider a stronger definition wherein the parties apply the
collector’s functions on not only the shares received but also on its entire view
during the execution of the sharing protocol. In fact, our construction satisfies
this stronger definition.

Tracing More Traitors. In the previous definition, it was sufficient for the Trace
algorithm to output the identity of one of the traitors i? along with a proof
πi? . It is natural to consider a stronger formulation where Trace is required to
output the identities of all the traitors along with a valid proofs against each
one of them. We note that it is generally impossible to output the identities of
more than t traitors as the reconstruction box could simply ignore some of the
collected shares. So, the best we could hope for from a tracing algorithm is to
output the identities along with valid evidence of at most t traitors.

Collusion-Resistant Setting. In the previous formulation, we considered the set-
ting where the individual parties submit their shares without colluding. Here,
we consider a stronger formulation where the collector publishes the description
of the functions which can take a set of shares as input. To be more precise, we
consider the disjoint collusion setting (though stronger formulations are indeed
possible) where each party can appear in at most one collusion. We model this
collusion by allowing the collector to specify functions f{i1,...,ik} for collusion of
k ≤ t − 1 players, where f{i1,...,ik} takes sharei1 , . . . , shareik as input. The trace
algorithm takes in the description of these collector’s functions, collected shares
and the view of the dealer and outputs the identity of a traitor along with a
proof by making oracle access to the reconstruction box. We note that if t or
more parties collude together they can then recover the secret and submit some
information about the secret to the collector. Thus, we restrict the size of the
collusions to be at most t− 1.

4.2 Construction

Setting. Let n denote the number of players and λ denote the security parameter.
We further set the length of the secret to be λ. In the full version of this paper,
we will show that our construction is traceable under parallel composition so
that larger length secrets can be chopped into blocks of length λ bits each. We
use Pi to represent the i-th player. Let F = GF(2λ). Let owf be an one-way
function. Let α1, . . . , αn, β1, . . . , βn ∈ F \ {0} be 2n distinct fixed elements. The
pair of elements (αi, βi) is assigned to Pi. Each Pi also has a pair of keys (ski, vki)
generated by Gen of a digital signature scheme and we assume that vki is public

19

and is known to every other party including the judge algorithm (similar to the
PKI infrastructure). Alternatively, we may assume that at the end of the sharing
protocol, the dealer and the server come together and sign on the transcript of
the sharing protocol. In this way, the transcript available with the dealer’s view
can be verified by the judge.

Remark 2. We note that the PKI assumption seems a necessary condition for
a traceable secret sharing scheme. Intuitively, if without the PKI assumption, a
corrupted server can simply deny the messages and the corresponding signatures
sent to the client when this sever is caught by the tracing algorithm. Essentially,
there would be no way for the judge to check whether the messages are sent by
the server or not.

For k ∈ [n] and k ≥ t, we say a vector (or a set) of pairs of values ((αi1 , vi1),
. . . , (αik , vik)) are valid t-Shamir shares of secret s, if there exists a polynomial
f(·) ∈ F[X] of degree at most t − 1, such that f(αij) = vij for all j ∈ [k] and
f(0) = s.

Theorem 3. Assume the existence of one-way functions, the PKI infrastructure
and secure two-party computation protocols. For t ≥ 4, n ≥ t and any C =
poly(λ), there exists an explicit t-out-of-n δ-traceable secret sharing scheme with
the size of each share O(λ2) where δ(ε) = p(ε)/(n−1n p(ε) + 1)− negl(λ), and

p(ε) =
nε

2(n− t+ 1)
− (

t− 1

2
+ nλ)

ε

Cnλ
.

Without loss of generality, for t ≥ 4, n ≥ t, a set of n collector functions
f1, . . . , fn and a pirate reconstruction box Rec? such that for two secrets s0, s1,

| Pr
Share(s0,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0]−

Pr
Share(s1,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0]| ≥ ε,

we assume

Pr
Share(s0,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0]−

Pr
Share(s1,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0] ≥ ε.

To handle the case

Pr
Share(s0,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0]−

Pr
Share(s1,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0] ≤ −ε,

one can first design a new R̃ec
?

which always outputs the opposite bit of Rec?

and then run Trace with access to R̃ec
?
.

Our construction works as below.

20

– Share(1λ, s, t, n) : The dealer D first randomly generates ((α1, ssh1), . . . , (αn,
sshn)) which are valid t-Shamir shares of secret s. For each j ∈ [λ], D repeat-
edly samples a random polynomial pj(·) ∈ F[X] of degree at most t− 1 until
pj(·) satisfies that pj(βi) 6= 0 for all i ∈ [n].8 Here, pj(βi) is used as “Rj”
for Pi. See more discussion in the second step of Section 2.2. We require
pj(βi) 6= 0 to ensure that the inner-product 〈Li,j , pj(βi)〉 in Figure 1 is not
a constant 0.
For every player Pi, let sshi = (sshi,1, . . . , sshi,λ) where sshi,j ∈ {0, 1}. The
dealer D and Pi query Fshare which is described in Figure 1.
Let viewD = ({vki}i∈[n], {(owf(Li,j),Sign(owf(Li,j), ski))}i∈[n],j∈[λ], {(αi, sshi)}i∈[n],
{pj(·)}j∈[λ], {βi}i∈[n]).

– Rec(sharei1 , . . . , shareit) : For k ∈ [t], parse shareik as (αik , βik , (Lik,1, Rik,1),
. . . , (Lik,λ, Rik,λ)). For j ∈ [λ], compute the polynomial pj(·) ∈ F[X] of
degree at most t− 1 such that pj(αik) = Rik,j for all k ∈ [t]. For k ∈ [t] and
j ∈ [λ], let sshik,j = 〈Lik,j , pj(βik)〉 and sshik = (sshik,1, . . . , sshik,λ). Then
reconstruct the secret s by using the reconstruction of the Shamir secret
sharing scheme on (αi1 , sshi1), . . . , (αit , sshit).

1. Fshare receives sshi, {pj(·)}j∈[λ] from D and (ski, vki) from Pi.
2. For every j ∈ [λ], Fshare samples a random Li,j such that sshi,j = 〈Li,j , pj(βi)〉.

• Let Ri,j = pj(αi). Fshare sets sharei = (αi, βi, (Li,1, Ri,1), . . . , (Li,λ, Ri,λ))
and sends sharei to Pi.

• For every j ∈ [λ], Fshare sends (owf(Li,j), Sign(owf(Li,j), ski)) to D.

Fig. 1. Description of Fshare

– TraceRec
?

(f1, . . . , fn, f1(share1), . . . , fn(sharen), viewD, s0, s1) : Recall that:

Pr
Share(s0,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0]−

Pr
Share(s1,t,n)

[Rec?(f1(share1), . . . , fn(sharen)) = 0] ≥ ε.

For i ∈ {t, . . . , n} and j ∈ {0, . . . , 2λ}, we define the distribution Hybi,j as
follows:9

• If j ≤ λ, ((α1, ssh
′
1), . . . , (αi−1, ssh

′
i−1), (αi, ssh

′′
i), (αi+1, ssh

′
i+1), . . . , (αn,

ssh′n)) are sampled randomly such that ((α1, ssh
′
1), . . . , (αi−1, ssh

′
i−1)) are

valid t-Shamir shares of s1 and ((α1, ssh
′
1), . . . , (αt−1, ssh

′
t−1), (αi, ssh

′′
i),

(αi+1, ssh
′
i+1), . . . , (αn, ssh

′
n)) are valid t-Shamir shares of s0. Then the

8 We note that Share(1λ, s, t, n) is an expected probabilistic polynomial time algo-
rithm. However, it can be made strict polynomial time with negligible error proba-
bility.

9 We intentionally choose the index i starting from t since the first t− 1 shares in the
Shamir sharing of s0 and s1 are identical and uniformly distributed.

21

first j bits of ssh′′i are replaced by random bits. Let ssh′i be ssh′′i after
replacement. p′1, . . . , p

′
λ are then sampled in the same way as that in

Share(1λ, s, t, n). (share′1, . . . , share
′
n) are generated in the same way as

that in Fshare.
• If j > λ, ((α1, ssh

′
1), . . . , (αi−1, ssh

′
i−1), (αi, ssh

′′
i), (αi+1, ssh

′
i+1), . . . , (αn,

ssh′n)) are sampled randomly such that ((α1, ssh
′
1), . . . , (αi−1, ssh

′
i−1),

(αi, ssh
′′
i)) are valid t-Shamir shares of s1 and ((α1, ssh

′
1), . . . , (αt−1, ssh

′
t−1),

(αi+1, ssh
′
i+1), . . . , (αn, ssh

′
n)) are valid t-Shamir shares of s0. Then the

first 2λ − j bits of ssh′′i are replaced by random bits. Let ssh′i be ssh′′i
after replacement. p′1, . . . , p

′
λ are then sampled in the same way as that

in Share(1λ, s, t, n). (share′1, . . . , share
′
n) are generated in the same way as

that in Fshare.

Let η(ε) = ε
Cnλ where C = poly(λ). Let InvOra(X,?) be the algorithm in

the Goldreich-Levin Lemma, where Ora(X, ?) is an oracle with X hard-
coded and X is an element in F, such that Pr[Y ∼ F : Ora(X,Y) = 〈X,
Y 〉] ≥ 1/2 + η(ε)/2.

For every i ∈ {t, . . . , n} and j ∈ {1, . . . , λ}, Trace starts running InvOra(Li,j ,?)(owf(Li,j))
by simulating the access to Ora(Li,j , ?) as below:

• On receiving a query Y , if Y = 0, Trace outputs 0. Otherwise, Trace
randomly generates (share′1, . . . , share

′
i−1, share

′
i+1, . . . , share

′
n) such that,

after combining with sharei (which is unknown to Trace), it is a sample
in Hybi,j and p′j(βi) = Y , p′k(βi) = pk(βi) for k > j.

To this end, Trace randomly samples ssh′′i such that ssh′′i,k = sshi,k for k >

j. Then randomly sample (ssh′1, . . . , ssh
′
t−1, ssh

′
i+1, . . . , ssh

′
n) such that

((α1, ssh
′
1), . . . , (αt−1, ssh

′
t−1), (αi, ssh

′′
i), (αi+1, ssh

′
i+1), . . . , (αn, ssh

′
n)) are

valid t-Shamir shares of s0, and after that, generate (ssh′t, . . . , ssh
′
i−1)

such that ((α1, ssh
′
1), . . . , (αi−1, ssh

′
i−1)) are valid t-Shamir shares of s1.

For k < j, it repeatedly samples a random polynomial p′k(·) ∈ F[X] of
degree at most t−1 such that p′k(αi) = pk(αi) (recall that Ri,k = pk(αi)
is a component in sharei) until p′k(·) satisfies that p′k(β1), . . . p′k(βn) are
non-zero.
For k = j, it repeatedly samples a random polynomial p′k(·) ∈ F[X] of
degree at most t− 1 such that p′k(αi) = pk(αi) and p′k(βi) = Y 6= 0 until
p′k(·) satisfies that p′k(β1), . . . p′k(βn) are non-zero.
For k > j, it repeatedly samples a random polynomial p′k(·) ∈ F[X] of
degree at most t− 1 such that p′k(αi) = pk(αi) and p′k(βi) = pk(βi) 6= 0
until p′k(·) satisfies that p′k(β1), . . . p′k(βn) are non-zero.
Then, share′1, . . . , share

′
i−1, share

′
i+1, . . . , share

′
n are generated in the same

way as that in Fshare.
• Let share′i = sharei. Note that fi(share

′
i) = fi(sharei) is known to Trace.

Let b = Rec?(f1(share′1), . . . , fn(share′n)). Intuitively, b indicates whether
the sharing is in Hybi,j−1 or Hybi,j . See the formal analysis in the full

version of this paper. Output b ⊕ ssh′′i,j , where ssh′′i,j is the j-th bit of

ssh′′i which was generated in the last step.

22

Then Trace receives the output of L′i,j = InvOra(Li,j ,?)(owf(Li,j)) and checks
that whether owf(Li,j) = owf(L′i,j). If they are the same, Trace adds (i, (j,
L′i,j)) into the output list.
For every i ∈ {t, . . . , n} and j ∈ {λ, . . . , 2λ − 1}, Trace starts running

InvOra(Li,2λ−j ,?)(owf(Li,2λ−j)) by simulating the access to Ora(Li,2λ−j , ?) as
below:
• On receiving a query Y , if Y = 0, Trace outputs 0. Otherwise, Trace

randomly generates (share′1, . . . , share
′
i−1, share

′
i+1, . . . , share

′
n) such that,

after combining with sharei (which is unknown to Trace), it is a sample
in Hybi,j and p′2λ−j(βi) = Y , p′k(βi) = pk(βi) for k > 2λ− j.
To this end, Trace randomly samples ssh′′i such that ssh′′i,k = sshi,k for

k > 2λ − j. Then randomly sample (ssh′1, . . . , ssh
′
i−1) such that ((α1,

ssh′1), . . . , (αi−1, ssh
′
i−1), (αi, ssh

′′
i)) are valid t-Shamir shares of s1, and

after that, generate (ssh′i+1, . . . , ssh
′
n) such that ((α1, ssh

′
1), . . . , (αt−1,

ssh′t−1), (αi+1, ssh
′
i+1), . . . , (αn, ssh

′
n)) are valid t-Shamir shares of s0.

For k < 2λ − j, repeated sample a random polynomial p′k(·) ∈ F[X] of
degree at most t−1 such that p′k(αi) = pk(αi) (recall that Ri,k = pk(αi)
is a component in sharei) until p′k(·) satisfies that p′k(β1), . . . p′k(βn) are
non-zero.
For k = 2λ − j, repeated sample a random polynomial p′k(·) ∈ F[X] of
degree at most t− 1 such that p′k(αi) = pk(αi) and p′k(βi) = Y 6= 0 until
p′k(·) satisfies that p′k(β1), . . . p′k(βn) are non-zero.
For k > 2λ − j, repeated sample a random polynomial p′k(·) ∈ F[X] of
degree at most t− 1 such that p′k(αi) = pk(αi) and p′k(βi) = pk(βi) 6= 0
until p′k(·) satisfies that p′k(β1), . . . p′k(βn) are non-zero.
Then, share′1, . . . , share

′
i−1, share

′
i+1, . . . , share

′
n are generated in the same

way as that in Fshare.
• Let share′i = sharei. Note that fi(share

′
i) = fi(sharei) is known to Trace.

Let b = Rec?(f1(share′1), . . . , fn(share′n)). Intuitively, b indicates whether
the sharing is in Hybi,j or Hybi,j+1. See the formal analysis in the full

version of this paper. Output b̄⊕ssh′′i,2λ−j , where ssh′′i,2λ−j is the (2λ−j)-
th bit of ssh′′i which was generated in the last step.

Then Trace receives the output of L′i,2λ−j = InvOra(Li,2λ−j ,?)(owf(Li,2λ−j))
and checks that whether owf(Li,2λ−j) = owf(L′i,2λ−j). If they are the same,
Trace adds (i, (2λ− j, L′i,2λ−j)) into the output list.
In the end, if the output list is empty, Trace outputs ⊥. Otherwise, Trace
outputs the first pair (i, (j, L′i,j)) in the output list.

– Judge(i?, πi? , viewD) : Judge first parses πi? as (j, L′i?,j). Then output Verify(owf(L′i?,j),
σi?,j , vki?) where σi?,j is the signature available from viewD.

Proof and Extensions. In the full version of this paper, (1) we give the formal
proof of our construction, (2) we show how to improve the tracing probability of
our construction, (3) we extend our construction to the collision-resistant setting
and tracing more than one servers, and (4) we show the parallel composition of

23

our construction. We refer the readers to the full version of this paper for more
details.

5 Traceable Multi-server Delegation of Computation

In this section, we define and construct a traceable multi-server delegation of
computation from our traceable secret sharing. A traceable multi-server delega-
tion of computation is an offline-online protocol between a client and n servers
denoted by P1, . . . , Pn. In the offline phase, the client’s input is a circuit C and
it engages in a protocol with the severs. In the online phase, the client learns the
input x and sends a single message to each of the servers. The servers engage in a
protocol and at the end of the protocol, each server sends a single message back
to the client. The client reconstructs C(x) from these messages. We require the
online computational cost of the client to only grow with the input and output
length and is otherwise, independent of the size of the circuit. Let us denote the
view of the i-th server with viewi(C, x) and the view of the client as viewD(C, x).
When it is clear from the context, we use viewi to denote viewi(C, x). We say
(Π,Trace, Judge) (where Trace and Judge have the same semantics of the secret
sharing scheme) to be a traceable delegation of computation if it satisfies the
following properties.

Definition 2. An offline-online multi-server delegation of computation proto-
col (Π,Trace, Judge) with threshold t is said to be δ-traceable if it satisfies the
following properties.
– Correctness. The correctness requirement states that for every circuit C

and every input x, the client reconstructs C(x) with probability 1.
– Security. For every circuit and any two inputs x0, x1 and for any subset T

of the servers of size at most t− 1, we require that

viewT (C, x0) ≈s viewT (C, x1)

– Traceability. If there exists a set of n collector functions f1, . . . , fn (where
fi is a constant function if Pi is honest) and a pirate reconstruction box Rec?

such that for two inputs x0, x1,

| Pr
Π(C,x0)

[Rec?(f1(view1), . . . , fn(viewn)) = 0]− Pr
Π(C,x1)

[Rec?(f1(view1), . . . , fn(viewn)) = 0]| ≥ ε

then,

Pr[(view1, . . . , viewn, viewD)← Π(C, x0);

(i?, πi?)← TraceRec
?

(f1, . . . , fn, f1(view1), . . . , fn(viewn), viewD, x0, x1) :

Judge(i?, πi? , viewD) = guilty] ≥ δ(ε)

Furthermore, the number of queries that Trace makes to the pirate recon-
struction box Rec? is poly(|C|, λ, 1/ε).

– Non-imputability. For any circuit C and input x, an honest server Pi?

and any computationally bounded client D̃,

Pr
Π(C,x)

[(view′D, i
?, πi?)← D̃(viewD, view[n]\{i?}) : Judge(i?, πi? , view

′
D) = guilty] ≤ negl(λ)

24

5.1 The Protocol

In this subsection, we give the details of our traceable delegation of computation.
– Offline Phase. In the offline phase, the client receives the circuit C and

does the following.
1. For every wire w of the circuit C, the client chooses a random mask
rw ← {0, 1}. We assume the input wires are labeled from 1 to `.

2. For every gate g of the circuit with input wires i and j and the output
wire k, the client generates a table with 4 entries where each entry is
labeled with (a, b) ∈ {0, 1} × {0, 1}. The (a, b)-th entry of the gate table
is given by g(a⊕ ri, b⊕ rj)⊕ rk.

3. For every gate g and every entry of the gate table, the client and the
servers run the sharing protocol of a t-out-of-n traceable secret sharing.
Let shareg,a,bi be the i-th share corresponding to the (a, b)-th entry of the
gate g.

– Online Phase. In the online phase, the client receives its input x and sends
x ⊕ r[`] to each of the servers. The servers now starting running the online
protocol. For every gate g (in the topological order),
1. The servers hold yi ⊕ rj and yj ⊕ rj where yi, yj are the values carried

by the i and j-th wires when the circuit C is evaluated on input x.
2. Now, the i-th server parses share

g,yi⊕ri,yj⊕rj
i as (αi, βi, (Li,1, Ri,1), . . . ,

(Li,λ, Ri,λ)). The servers first exchange Ri,1, . . . , Ri,λ to each other. For
j ∈ [λ], the servers compute the polynomial pj(·) ∈ F[X] of degree at
most t − 1 such that pj(αi) = Ri,j for all i ∈ [n]. For every j ∈ [λ], the
i-th server computes sshi,j = 〈Li,j , pj(βi)〉 and sshi = (sshi,1, . . . , sshi,λ).
The servers then broadcast the values of sshi and use the reconstruction
of the Shamir secret sharing scheme to obtain g(yi, yj)⊕ rk = yk ⊕ rk.

The servers finally send the masked values of the output to the client, who
removes the output masks to learn C(x).

– Tracing algorithm. Given f1, . . . , fn, f1(view1), . . . , fn(viewn), the view of
the client viewC , two inputs x0, x1 and oracle access to a reconstruction box
Rec∗, the tracing algorithm does the following.
1. It defines a sequence of hybrid distributions Hybg,a,b (starting from Π(C,
x0)) for every gate g and (a, b) ∈ {0, 1} × {0, 1} such that every g′ < g
(with input wires i′, j′ and output wire k′), we change all the gate entries
to g(yi′ ⊕ ri′ , yj′ ⊕ rj′) ⊕ rk′ . Further, for all entries that are less than
(a, b) in the gate table of g (w.r.t. to some ordering), we change those
entries to g(yi ⊕ ri, yj ⊕ rj) ⊕ rk. Notice that Hyb|C|,1,1 is independent

of x0 and hence, symmetrically, it defines Hyb′g,a,b from Π(C, x1) where

Hyb|C|,1,1 ≡ Hyb′|C|,1,1.
2. Notice that for any two intermediate hybrids in this sequence, the only

difference is in the value that was secret shared in a particular gate
entry. Thus, the tracing algorithm fixes the secret shares of all other
gate entries and runs the corresponding tracing algorithm for the secret
sharing scheme where the two secrets are the two different values in the
subsequent hybrids corresponding to this gate table entry. It repeats this

25

process for every subsequent hybrid in the sequence. If in some iteration
it succeeds in extracting a valid evidence from a party, it stops and
outputs the evidence.

– Judge algorithm. The judge algorithm for the MPC runs the correspond-
ing judge algorithm of the secret sharing scheme and outputs whatever it
outputs.

Theorem 4. If the protocol described above is instantiated with a δ-traceable
secret sharing scheme, then it is an offline-online δ(ε/8|C|)-traceable n server
delegation protocol with threshold t for a circuit C.

Proof. The correctness of the protocol is easy to observe and we now show
security, traceability and non-imputability.

Security. To show security, we need to show that for any two inputs x0, x1 and
for any subset T ⊆ [n] of size at most t− 1, we have

viewT (C, x0) ≈s viewT (C, x1).

We show security through a hybrid argument.
– Hyb0 : This corresponds to viewT (C, x0).
– Hyb1 : In this hybrid, we generate the sharings of the gate entries differently.

For every gate g with input wires i, j and output wire k, we generate the
(a, b)-th entry for every (a, b) 6= (yi ⊕ ri, yj ⊕ rj) as a secret sharing of 0.
We output the view of the T servers. We note that Hyb0 ≈s Hyb1 from the
privacy of traceable secret sharing scheme.

– Hyb2 : In this hybrid, for every wire i, we set yi ⊕ ri as an independently
chosen random value. Hyb2 is identically distributed to Hyb1. Notice Hyb2 is
independent of the input x0.

Via an identical argument, we can show that viewT (C, x1) is computationally
close to Hyb2. This proves security.

Traceability. Let us fix the collector functions f1, . . . , fn and a pirate reconstruc-
tion box Rec∗ such that for two inputs x0, x1,

| Pr
Π(C,x0)

[Rec?(f1(view1), . . . , fn(viewn)) = 0]− Pr
Π(C,x1)

[Rec?(f1(view1), . . . , fn(viewn)) = 0]| ≥ ε.

We now define a sequence of 4|C| hybrids starting from Π(C, x0). Specifically, for
every gate g (with input wires i, j and output wire k) and (a, b) ∈ {0, 1}×{0, 1},
we define Hybg,a,b where as a distribution where for every g′ < g (with input
wires i′, j′ and output wire k′), we change all the gate entries to g(yi′ ⊕ ri′ ,
yj′ ⊕ rj′)⊕ r′k′ . Further, for all entries that are less than (a, b) in the gate table
of g (w.r.t. to some ordering), we change those entries to g(yi⊕ ri, yj ⊕ rj)⊕ rk.
Note that once we make this change for every gate entry, the final hybrid is
independent of x0 and hence, we can reverse these hybrids one by one to get
Π(C, x1). Without loss of generality, let us assume that

26

| Pr
Π(C,x0)

[Rec?(f1(view1), . . . , fn(viewn)) = 0]− Pr
Hyb|C|,1,1

[Rec?(f1(view1), . . . , fn(viewn)) = 0]| ≥ ε/2

By an averaging argument, we infer that there exists two intermediate hybrids,
Hyb and Hyb′ in the sequence such that

| Pr
Hyb

[Rec?(f1(view1), . . . , fn(viewn)) = 0]− Pr
Hyb′

[Rec?(f1(view1), . . . , fn(viewn)) = 0]| ≥ ε/(8|C|)

Notice that the only difference between Hyb and Hyb′ is the value that was secret
shared in a particular gate entry. Thus, it follows from the traceability of the
underlying secret sharing scheme, that the MPC tracing algorithm outputs a
valid evidence against a party with probability at least δ(ε/(8|C|)).

Non-imputability. Note that the offline view of the servers consists of the views
of 4|C| different sharings of our traceable secret sharing scheme. Further, ob-
serve that the messages sent during step 2 of the online phase can be simulated
using viewD. The non-imputability property follows directly from the underlying
traceable secret sharing, as we can correctly guess the particular secret for which
an adversarial dealer gives the correct evidence with 1/(4|C|λ) probability and
hardcode the one-way function challenge in this position.

Acknowledgments.

V. Goyal, Y. Song—Supported in part by the NSF award 1916939, DARPA
SIEVE program, a gift from Ripple, a DoE NETL award, a JP Morgan Faculty
Fellowship, a PNC center for financial services innovation award, and a Cylab
seed funding award.
A. Srinivasan—Work partially done while at UC Berkeley and visiting CMU.
Supported in part by AFOSR Award FA9550-19-1-0200, AFOSR YIP Award,
NSF CNS Award 1936826, DARPA/ARL SAFEWARE Award W911NF15C0210,
a Hellman Award and research grants by the Sloan Foundation, Okawa Founda-
tion, Visa Inc., and Center for Long-Term Cybersecurity (CLTC, UC Berkeley).
The views expressed are those of the authors and do not reflect the official policy
or position of the funding agencies.

References

ACM17. ACM. ACM Paris Kanellakis Theory and Practice Award. Press Re-
lease, May 2017. https://awards.acm.org/binaries/content/assets/

press-releases/2017/may/technical-awards-2016a.pdf.
ADN+19. Divesh Aggarwal, Ivan Damgard, Jesper Buus Nielsen, Maciej Obremski,

Erick Purwanto, Joao Ribeiro, and Mark Simkin. Stronger leakage-resilient
and non-malleable secret-sharing schemes for general access structures.
CRYPTO, 2019. https://eprint.iacr.org/2018/1147.

27

https://awards.acm.org/binaries/content/assets/press-releases/2017/may/technical-awards-2016a.pdf
https://awards.acm.org/binaries/content/assets/press-releases/2017/may/technical-awards-2016a.pdf
https://eprint.iacr.org/2018/1147

BF99. Dan Boneh and Matthew K. Franklin. An efficient public key traitor
tracing scheme. In Michael J. Wiener, editor, Advances in Cryptology –
CRYPTO’99, volume 1666 of Lecture Notes in Computer Science, pages
338–353. Springer, Heidelberg, August 1999.

Bla79. GR Blakley. Safeguarding cryptographic keys. In Proc. AFIPS 1979 Na-
tional Computer Conf., volume 48, pages 313–317, 1979.

BMR90. Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity
of secure protocols (extended abstract). In 22nd Annual ACM Symposium
on Theory of Computing, pages 503–513. ACM Press, May 1990.

BN08. Dan Boneh and Moni Naor. Traitor tracing with constant size ciphertext.
In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM CCS 08:
15th Conference on Computer and Communications Security, pages 501–
510. ACM Press, October 2008.

BOGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In 20th Annual ACM Symposium on Theory of Comput-
ing, pages 1–10. ACM Press, May 1988.

BS95. Dan Boneh and James Shaw. Collusion-secure fingerprinting for digital
data (extended abstract). In Don Coppersmith, editor, Advances in Cryp-
tology – CRYPTO’95, volume 963 of Lecture Notes in Computer Science,
pages 452–465. Springer, Heidelberg, August 1995.

BSW06. Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant
traitor tracing with short ciphertexts and private keys. In Serge Vaude-
nay, editor, Advances in Cryptology – EUROCRYPT 2006, volume 4004 of
Lecture Notes in Computer Science, pages 573–592. Springer, Heidelberg,
May / June 2006.

BW06. Dan Boneh and Brent Waters. A fully collusion resistant broadcast, trace,
and revoke system. In Ari Juels, Rebecca N. Wright, and Sabrina De Capi-
tani di Vimercati, editors, ACM CCS 06: 13th Conference on Computer and
Communications Security, pages 211–220. ACM Press, October / Novem-
ber 2006.

BZ14. Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor
tracing, and more from indistinguishability obfuscation. In Juan A. Garay
and Rosario Gennaro, editors, Advances in Cryptology – CRYPTO 2014,
Part I, volume 8616 of Lecture Notes in Computer Science, pages 480–499.
Springer, Heidelberg, August 2014.

CFN94. Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In Yvo Desmedt,
editor, Advances in Cryptology – CRYPTO’94, volume 839 of Lecture Notes
in Computer Science, pages 257–270. Springer, Heidelberg, August 1994.

CPP05. Hervé Chabanne, Duong Hieu Phan, and David Pointcheval. Public trace-
ability in traitor tracing schemes. In Ronald Cramer, editor, Advances in
Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in Com-
puter Science, pages 542–558. Springer, Heidelberg, May 2005.

DDFY94. Alfredo De Santis, Yvo Desmedt, Yair Frankel, and Moti Yung. How to
share a function securely. In 26th Annual ACM Symposium on Theory of
Computing, pages 522–533. ACM Press, May 1994.

DF90. Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Bras-
sard, editor, Advances in Cryptology – CRYPTO’89, volume 435 of Lecture
Notes in Computer Science, pages 307–315. Springer, Heidelberg, August
1990.

28

DF03. Yevgeniy Dodis and Nelly Fazio. Public key trace and revoke scheme se-
cure against adaptive chosen ciphertext attack. In Yvo Desmedt, editor,
PKC 2003: 6th International Workshop on Theory and Practice in Pub-
lic Key Cryptography, volume 2567 of Lecture Notes in Computer Science,
pages 100–115. Springer, Heidelberg, January 2003.

Fra90. Yair Frankel. A practical protocol for large group oriented networks. In
Jean-Jacques Quisquater and Joos Vandewalle, editors, Advances in Cryp-
tology – EUROCRYPT’89, volume 434 of Lecture Notes in Computer Sci-
ence, pages 56–61. Springer, Heidelberg, April 1990.

FT99. Amos Fiat and Tamir Tassa. Dynamic traitor training. In Michael J.
Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666 of
Lecture Notes in Computer Science, pages 354–371. Springer, Heidelberg,
August 1999.

GKW18. Rishab Goyal, Venkata Koppula, and Brent Waters. Collusion resistant
traitor tracing from learning with errors. In Ilias Diakonikolas, David
Kempe, and Monika Henzinger, editors, 50th Annual ACM Symposium on
Theory of Computing, pages 660–670. ACM Press, June 2018.

GL89. Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-
way functions. In 21st Annual ACM Symposium on Theory of Computing,
pages 25–32. ACM Press, May 1989.

GLSW08. Vipul Goyal, Steve Lu, Amit Sahai, and Brent Waters. Black-box account-
able authority identity-based encryption. In Peng Ning, Paul F. Syverson,
and Somesh Jha, editors, ACM CCS 08: 15th Conference on Computer and
Communications Security, pages 427–436. ACM Press, October 2008.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred Aho, editor, 19th Annual ACM Symposium on Theory of Computing,
pages 218–229. ACM Press, May 1987.

Goy07. Vipul Goyal. Reducing trust in the PKG in identity based cryptosystems.
In Alfred Menezes, editor, Advances in Cryptology – CRYPTO 2007, vol-
ume 4622 of Lecture Notes in Computer Science, pages 430–447. Springer,
Heidelberg, August 2007.

IK00. Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new repre-
sentation with applications to round-efficient secure computation. In 41st
Annual Symposium on Foundations of Computer Science, pages 294–304.
IEEE Computer Society Press, November 2000.

KD98. Kaoru Kurosawa and Yvo Desmedt. Optimum traitor tracing and asym-
metric schemes. In Kaisa Nyberg, editor, Advances in Cryptology – EU-
ROCRYPT’98, volume 1403 of Lecture Notes in Computer Science, pages
145–157. Springer, Heidelberg, May / June 1998.

KY01. Aggelos Kiayias and Moti Yung. Self protecting pirates and black-
box traitor tracing. In Joe Kilian, editor, Advances in Cryptology –
CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages
63–79. Springer, Heidelberg, August 2001.

KY02. Aggelos Kiayias and Moti Yung. Traitor tracing with constant transmis-
sion rate. In Lars R. Knudsen, editor, Advances in Cryptology – EURO-
CRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages
450–465. Springer, Heidelberg, April / May 2002.

NNL01. Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing
schemes for stateless receivers. In Joe Kilian, editor, Advances in Cryptology

29

– CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages
41–62. Springer, Heidelberg, August 2001.

NP98. Moni Naor and Benny Pinkas. Threshold traitor tracing. In Hugo
Krawczyk, editor, Advances in Cryptology – CRYPTO’98, volume 1462 of
Lecture Notes in Computer Science, pages 502–517. Springer, Heidelberg,
August 1998.

NP01. Moni Naor and Benny Pinkas. Efficient trace and revoke schemes. In
Yair Frankel, editor, FC 2000: 4th International Conference on Financial
Cryptography, volume 1962 of Lecture Notes in Computer Science, pages
1–20. Springer, Heidelberg, February 2001.

NWZ16. Ryo Nishimaki, Daniel Wichs, and Mark Zhandry. Anonymous traitor
tracing: How to embed arbitrary information in a key. In Marc Fis-
chlin and Jean-Sébastien Coron, editors, Advances in Cryptology – EURO-
CRYPT 2016, Part II, volume 9666 of Lecture Notes in Computer Science,
pages 388–419. Springer, Heidelberg, May 2016.

Pfi96. Birgit Pfitzmann. Trials of traced traitors. In Information Hiding, First
International Workshop, Cambridge, UK, May 30 - June 1, 1996, Proceed-
ings, pages 49–64, 1996.

PS96. Birgit Pfitzmann and Matthias Schunter. Asymmetric fingerprinting (ex-
tended abstract). In Ueli M. Maurer, editor, Advances in Cryptology – EU-
ROCRYPT’96, volume 1070 of Lecture Notes in Computer Science, pages
84–95. Springer, Heidelberg, May 1996.

PW97. Birgit Pfitzmann and Michael Waidner. Asymmetric fingerprinting for
larger collusions. In ACM CCS 97: 4th Conference on Computer and Com-
munications Security, pages 151–160. ACM Press, April 1997.

Sha79. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
SSW01. Alice Silverberg, Jessica Staddon, and Judy L. Walker. Efficient traitor

tracing algorithms using list decoding. In Colin Boyd, editor, Advances in
Cryptology – ASIACRYPT 2001, volume 2248 of Lecture Notes in Com-
puter Science, pages 175–192. Springer, Heidelberg, December 2001.

SV19. Akshayaram Srinivasan and Prashant Nalini Vasudevan. Leakage resilient
secret sharing and applications. CRYPTO, 2019. https://eprint.iacr.

org/2018/1154.
SW00. Reihaneh Safavi-Naini and Yejing Wang. Sequential traitor tracing. In Mi-

hir Bellare, editor, Advances in Cryptology – CRYPTO 2000, volume 1880
of Lecture Notes in Computer Science, pages 316–332. Springer, Heidelberg,
August 2000.

Tar03. Gábor Tardos. Optimal probabilistic fingerprint codes. In 35th Annual
ACM Symposium on Theory of Computing, pages 116–125. ACM Press,
June 2003.

30

https://eprint.iacr.org/2018/1154
https://eprint.iacr.org/2018/1154

	Traceable Secret Sharing and Applications

