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Abstract. We give constructions of three-round secure multiparty com-
putation (MPC) protocols for general functions that make black-box use
of a two-round oblivious transfer (OT). For the case of semi-honest adver-
saries, we make use of a two-round, semi-honest secure OT in the plain
model. This resolves the round-complexity of black-box (semi-honest)
MPC protocols from minimal assumptions and answers an open question
of Applebaum et al. (ITCS 2020). For the case of malicious adversaries,
we make use of a two-round maliciously-secure OT in the common ran-
dom/reference string model that satisfies a (mild) variant of adaptive
security for the receiver.

1 Introduction

Secure Multiparty Computation (MPC) is a fundamental cryptographic primi-
tive that allows a set of mutually distrusting parties to compute a joint function
of their private inputs. The security guarantee provided here is that any ad-
versary corrupting an arbitrary subset of the participating parties cannot learn
anything about the inputs of the honest parties except what is leaked from the
output of the function. The seminal feasibility results of Yao [36] and Goldre-
ich, Micali, and Wigderson [20] showed that any multiparty functionality can be
securely computed.

An important line of research in this area aims to construct efficient MPC
protocols that minimizes the number of rounds of communication. The work
of Beaver, Micali, and Rogaway [5] initiated this research direction and gave
a construction of a constant-round protocol for computing general functions.
On the lower bounds side, it is known that a single-round of communication is
insufficient for securely computing most functionalities and hence, the minimum
number of rounds needed to securely compute general functions is two.

A recent line of work has led to constructions of round-optimal (i.e., two-
round) secure multiparty computation protocols under various cryptographic
assumptions. The work of Garg et al. [14] gave a construction of such a protocol
based on indistinguishability obfuscation [4, 15] and subsequent work of Gordon
et al. [21] improved the assumption to a witness encryption scheme [16]. Later,
Mukherjee and Wichs [31] (and the subsequent works [9, 33]) gave a protocol
based on the Learning with Errors assumption [35], Garg and Srinivasan [18] gave



a construction from Bilinear maps and Boyle et al. [7, 8] gave a construction
from the Decisional Diffie-Hellman (DDH) assumption. Finally, the works of
Benhamouda and Lin [6] and Garg and Srinivasan [19] gave constructions of
two-round MPC protocols based on the minimal assumption that two-round
oblivious transfer (OT) exists.

Black-Box Round Complexity. A cryptographic protocol P is said to make
black-box use of an underlying primitive Q if P only makes input/output calls
to Q and is agnostic to how Q is implemented. Apart from being a fundamental
theoretical question, black-box protocols tend to be more efficient than their non-
black-box counterparts and are usually viewed as the first step towards practi-
cality. Unfortunately, the constructions of two-round MPC protocols from [6, 19]
made non-black-box use of a two-round OT. On the other hand, a recent work
of Applebaum et al. [3] showed that such non-black-box use is inherent by pro-
viding a black-box separation between these two primitives. As far as positive
results are concerned, we do know of 4-round MPC protocols making black-box
use of a two-round OT from [2, 17, 30]. These works left open the following
intriguing question (which was explicitly mentioned in [3]):

Can we construct a three-round secure multiparty computation protocol for
general functions making black-box use of a two-round OT?

1.1 Our Results

In this work, we give a near complete answer to the above question. For the case
of semi-honest adversaries, we fully resolve the problem and show that two-round
OT is black-box complete for three-round MPC. Specifically,

Informal Theorem 1 Let f be an arbitrary multiparty functionality. There ex-
ists a three-round protocol that securely computes f against semi-honest adver-
saries corrupting an arbitrary subset of the parties. The protocol makes black-box
use of a two-round, semi-honest secure OT and is in the plain model. The com-
putational cost of the protocol grows polynomially with the circuit size of f and
the security parameter.

For the case of malicious adversaries, we give a three-round MPC protocol
that makes black-box use of two-round, malicious-secure OT that additionally
satisfies an equivocality property for the receiver’s message. Specifically, we re-
quire the existence of a special algorithm that can equivocate the first round
receiver OT message to both bits 0 and 1. Such equivocality property is im-
plied by a two-round OT that is secure against a malicious adversary that can
adaptively corrupt the receiver or, it can be obtained from black-box use of a
dual-mode public-key encryption scheme [34]. The main theorem we show for
malicious adversaries is the following:

Informal Theorem 2 Let f be an arbitrary multiparty functionality. There ex-
ists a three-round protocol that UC-realizes f (with unanimous abort) against
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malicious adversaries corrupting an arbitrary subset of the parties. The protocol
makes black-box use of a two-round, UC-secure OT against malicious adversaries
with equivocal receiver security and is in the common random/reference string
model. The computational cost of the protocol grows polynomially with the circuit
size of f and the security parameter.

We note that the work of Garg and Srinivasan [19] gave a generic transforma-
tion from any two-round, malicious-secure OT to one that additionally satisfies
the equivocal receiver property. Unfortunately, this transformation makes non-
black-box use of a PRG (but makes black-box use of OT). We leave open the
interesting problem of obtaining a black-box transformation, or showing that
such non-black-box use is inherent.

2 Technical Overview

In this section, we give a high-level overview of the main techniques used in the
construction our MPC protocols in the semi-honest and the malicious setting.

Starting Point. Our work builds on the recent results of [6, 19] which gave con-
structions of a two-round MPC protocol from two-round OT. The key technical
contribution in these works is the design of a round-collapsing compiler that
takes a larger round protocol for securely computing the required functionality
and squishes the number of rounds to two. Specifically, instead of the parties
interacting with each other as in the larger round protocol, the round-collapsing
compiler gave a mechanism wherein the garbled circuits generated by each party
performs this interaction. The interaction between garbled circuits is enabled by
making use of a two-round OT. Unfortunately, these constructions [6, 19] require
non-black-box use of cryptographic primitives.

If we look closely into these constructions, we observe that there is only
one place where non-black-box use of cryptography is needed. Specifically, the
garbled circuits which perform the interaction on behalf of the parties use the
code of the underlying larger round protocol. Thus, if the larger round protocol
makes use of cryptographic primitives such as an OT, then the squished protocol
makes non-black-box use of these primitives. On the other hand, if the larger
round protocol only made use of information-theoretic operations, then the re-
sultant two-round protocol makes black-box use of cryptography. Unfortunately,
the negative results in [29] rules out information-theoretic secure computation
protocols for most functions in the dishonest majority setting. Furthermore, the
work of Applebaum et al. [3] showed that such non-black-box use of OT is inher-
ent if we want to construct a two-round MPC protocol. However, their work left
open the problem of constructing a black-box three-round MPC protocol based
on two-round OT.

The work of Garg, Ishai, and Srinivasan [17] observed that if the parties
apriori shared random OT correlations, then one can use the results of [28,
26] to construct an information-theoretic MPC protocol in the OT correlations
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model. Now, squishing the number of rounds of such a protocol using the round-
collapsing compiler of [6, 19] gives rise to an MPC protocol that makes black-
box use of cryptography. Garg et al. [17] also gave a method of generating such
correlations in a single round using a primitive called non-interactive OT. This
gives rise to the following three-round protocol that makes black-box use of
cryptographic operations: use the first round to generate random OT correlations
relying on non-interactive OT, and use the next two rounds to implement the
round-collapsing compiler of [6, 19]. However, a non-interactive OT is a very
strong primitive and it is not known whether this can be constructed generically
from a two-round OT.

Double Selection Functionality. If we abstract out the other details from [17],
then the main ingredient needed to instantiate the black-box version of the
round-collapsing compiler is a three-round protocol for a special multiparty func-
tionality that we call as the double selection. In this functionality, only three of
the n parties, say, P1, P2 and P3 have private inputs. The input of P1 is given
by two bits (α, r), the input of P2 is given by two bits (x0, x1) and the input of
P3 is given by two strings (y0, y1). The functionality first computes xα ⊕ r and
then computes yxα⊕r and delivers (xα⊕r, yxα⊕r) to every party (and not just to
P1, P2, and P3.). In other words, the functionality first selects xα from (x0, x1),
XORs xα with r and then again selects yxα⊕r from (y0, y1) and hence, the name
double selection. The work of Garg et al. [17] can be viewed as giving a three-
round protocol for the double selection functionality based on non-interactive
OT. The goal of this work is to give such a protocol based only on black-box use
of a two-round OT.

We first note that if we relax the requirement to say that, only one of
{P1, P2, P3} gets the output at the end of the third round, then based on prior
work, it is possible to design a black-box three-round protocol for this relaxed
functionality. Indeed, one can express the double selection functionality as a
degree-3 polynomial (over F2) and use the protocol from [2] to securely evaluate
a degree-3 polynomial. Additionally, it is not too hard to see that if we invoke
such a protocol thrice, then we can enable each one of {P1, P2, P3} to get the
output of the double selection functionality at the end of the third round. How-
ever, the main technical challenge here is to enable each of the n parties and not
just {P1, P2, P3}, to reconstruct the output at the end of the third round. This
requirement is equivalent to constructing a three-party protocol with a special
property called as publicly-decodable transcript [3]. Roughly speaking, this prop-
erty requires the existence of an efficient algorithm that takes the transcript of
the three-party protocol and gives the output of the double selection functional-
ity. For the sake of simplicity, let us restrict ourselves to protocols where the last
round (i.e., the third round) message contains the output in the clear. We now
explain how to construct such a protocol making black-box use of two-round
OT.

Key Idea: “Cascading OT.” Since the last round message of the protocol
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contains the output of the functionality in the clear, this implies that there
exists some party that can compute this output at the end of the second round
and then broadcast this value to all the parties in the third round. This seems
particularly challenging if we restrict ourselves to making black-box use of a
two-round OT. Indeed, this implies that we need a mechanism to compute the
output of a degree-3 function in two rounds using a two-round OT that only
enables degree-2 computation. This apparent mismatch in the degree is the key
challenge that we need to tackle.

This is where our idea of “cascading OT” comes into the picture. Specifically,
in our protocol, one of the parties, say P3, computes a sender OT message with
respect to a receiver OT message generated by P1 (that encodes P1’s input).
The sender inputs used by P3 to generate this message are in fact, two other
sender OT messages computed by P3, each with respect to a receiver OT message
generated by P2 (that encodes P2’s input). Thus, the “inner" sender OT message
encodes a degree two computation of P2 and P3’s inputs and the “outer" sender
OT message encodes a degree-3 computation of P1, P2 and P3’s inputs. This
idea of cascading two sender OT messages by P3 allows P1 to compute a degree-
3 function in two rounds and thus, enabling us to solve the degree mismatch
problem. Let us first see how to implement this “cascading OT" idea in the
semi-honest setting and later explain the additional challenges that arise in the
malicious setting.

2.1 Semi-Honest Setting

In the first round, P1 computes two receiver OT messages: otr that encodes α as
the choice bit and otr′ that encodes r as the choice bit. In parallel, P2 computes
two receiver OT messages otr0 that encodes its input x0 and otr1 that encodes
x1. P1 broadcasts (otr, otr′) and P2 broadcasts (otr0, otr1) in the first round. In
the second round, P3 chooses a random bit mask and computes two sender OT
messages: ots0 with respect to otr0 using (y0 ⊕ mask, y1 ⊕ mask) as its sender
inputs and ots1 with respect to otr1 using again (y0 ⊕ mask, y1 ⊕ mask) as its
inputs. It then computes the “cascading" sender OT message ots with respect to
otr using (ots0, ots1) as its two sender messages. Additionally, it computes ots′

with respect to otr′ with (mask, y1 ⊕ y0 ⊕mask) as its sender messages. It then
sends (ots, ots′) to P1 in the second round.

Now, the randomness used in generating otr enables P1 to recover otsα from
ots. However, recall that otsα is generated with respect to otrα and the ran-
domness used for generating this message is available with P2. Thus, to enable
P1 to decrypt otsα, in the second round, P2 computes a sender OT message
with respect to otr with the input and randomness used for computing otr0 and
otr1 as the two sender inputs. Thus, P1 can first recover xα and the random-
ness used for generating otrα from P2’s second round message and then obtain
yxα⊕mask := xα(y1⊕y0)⊕y0⊕mask from otsα. P1 also computes r(y1⊕y0)⊕mask
from ots′ using the randomness used in generating otr′. It adds these two values
to get yxα⊕r. In the last round, P1 broadcasts (xα⊕r, yxα⊕r). This protocol satis-
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fies correctness and we can show that this protocol is secure against semi-honest
adversaries by relying on the semi-honest security of the two-round OT.

From Double Selection to General Functions. To give a protocol for gen-
eral functions, we can use the reduction from general functions to double selection
implicit in the work of [17]. Alternatively, we can use the above idea of cascading
OT to give a three-round secure protocol for a related degree-3 function called
as 3MULTPlus. We can then rely on completeness results from [8, 17, 3] who
showed a round-preserving black-box reduction from a semi-honest protocol for
computing general functions to a secure protocol for 3MULTPlus functionality.
In the main body, we construct a protocol for securely computing 3MULTPlus
and directly rely on the above completeness theorem to give a self-contained
version of our semi-honest MPC result.

2.2 Malicious Setting

In the malicious setting, many other challenges arise and we now explain our
ideas to solve them.

Challenge-1: Attack by a malicious P3. Let us start with the bare-bones
version of the malicious protocol which is just the semi-honest protocol but with
all the OT invocations replaced with a malicious secure version. On inspection,
we see that a corrupt P3 can completely break the security of this protocol.
Specifically, P3 can compute ots0 and ots1 on two different pairs of inputs, say
using (mask,mask) and (1 ⊕ mask, 1 ⊕ mask) respectively and compute ots′ on
inputs (mask,mask). Depending on the message received from P1 in the last
round, corrupt P3 learns the value α. In order to prevent such an attack, we
need a mechanism to ensure that P3 uses consistent inputs to compute both ots0
and ots1.

One way to ensure consistency of P3’s inputs is to ask P3 to give a zero-
knowledge proof that the inputs used in both these computations are consistent.
However, a naïve way of implementing such a zero-knowledge proof makes non-
black-box use of cryptographic primitives which we want to avoid. To give a
“black-box” zero-knowledge proof, we make use of “MPC-in-the-head” approach
of Ishai et al. [25].

Solution: “MPC-in-the-head” Approach. To convey the main idea, we first
explain a simple solution that blows-up the number of rounds and later show
how to squish the number of rounds. P3 imagines m-servers in its head (for some
appropriately chosen parameter m). It then shares y0, y1,mask among these m
servers using a threshold linear secret sharing scheme with a threshold parameter
t. For each i ∈ [m], P3 computes {otsi0, otsi1, otsi, ots′

i} using the shares given to
the i-th server. Specifically, the values (y0, y1,mask) in the original computation
are replaced with the shares (yi0, y

i
1,maski) given to the i-th server. P3 sends

{otsi, ots′i}i∈[m] to P1 in the second round. P1 now chooses a random subset T
of [m] of size t and asks P3 to reveal the shares and the randomness used in the
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computation of (otsi, ots′
i
) for every i ∈ T . P1 now checks if these computations

are correct. If they are all correct, then for each i ∈ [m], P1 recovers the share
of the output and reconstructs the output. Here, we are crucially relying on the
fact xα(y1 ⊕ y0)⊕ y0 ⊕mask and r(y1 ⊕ y0)⊕mask recovered by P1 in the bare-
bones protocol are linear functions of y0, y1,mask and the secret sharing scheme
used by P3 supports linear operations on the shares. This ensures that P1 can
recover the correct output from the shares. However, this idea seems to blow-up
the number of rounds to 4. To squish the number of rounds to 2, we make use of
a trick from [27], wherein P1, in the first round, uses a t-out-of-m OT to commit
to its set T and P3 in the second round uses the m sets of inputs, randomness
as its sender inputs.

We can now show that if a malicious P3 is using inconsistent inputs in “many"
server executions then it gets caught with overwhelming probability. On the other
hand, if P3 is using inconsistent inputs in a “small" number of server executions,
then we can rely on the error correcting properties of the secret sharing scheme
to recover the correct output.3

Need for Equivocal Receiver Security. Here, another technical issue arises
and to solve this, we need the OT to satisfy the equivocality property on the
receiver’s message. To see why this additional property is required, consider the
case where P2 is honest but P1 is corrupted. Since the adversary is rushing, the
honest P2 sends both otr0, otr1 before receiving otr, otr′. Recall that in the second
round, P2 generates a sender OT message with respect to otr with the input and
the randomness used in otr0 and otr1 as its OT inputs. Unfortunately, this leads
to the following issue during simulation. We cannot know the value of xα unless
we receive otr from the corrupt P1. This value is obtained only after we send
both otr0, otr1. However, since xα and the randomness used in generating otrα
are needed to compute the sender OT message from P2, we need to generate
otrα in a way that it correctly encodes xα. To solve this issue, we rely on the
equivocality property of the receiver’s message. Specifically, since the first round
OT message of the receiver can be equivocated to both bits 0 and 1, we use the
equivocal simulator to generate randomness that is consistent with the encoding
of xα. We then use this randomness to generate the second round OT message.
As mentioned earlier, this property is satisfied by any two-round OT that is
secure against adversaries that can adaptively corrupt the receiver, or it can be
obtained from a dual-mode public-key encryption scheme [34].

Challenge-2: Attack by Malicious P2. In the previous step, we prevented
a malicious P3 from breaking the security of the protocol. However, we observe
that a malicious P2 can still break the security of the protocol by mounting an
input dependent abort. Specifically, a corrupt P2 can generate the second round

3 Here, we need to additionally ensure that malicious P3 is generating the shares
correctly. Hence, we make use of a pairwise verifiable secret sharing based on bivariate
polynomials and do additional checks on the shares to ensure that the sharing is done
correctly.
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OT message with respect to otr such that only one of its two sender inputs
contains the correct randomness used in generating (otr0, otr1). It sets the other
sender input to be some junk value. If the input α of P1 corresponds to the
position that contains the junk value, then P1 aborts at the end of the second
round. This enables P2 to learn the value α. The first natural idea to prevent
this attack is to use a zero-knowledge proof to show that P2 is using the correct
inputs in generating the sender OT message. However, unlike the previous step,
the relation that we want to prove (or equivalently, the functionality computed
by the MPC) involves a cryptographic statement and in those cases, the “MPC-
in-the-head” approach leads to non-black-box use of cryptographic primitives.
Thus, we need a new approach to deal with this issue.

Solution: Using an OT-Combiner. We first observe that if the input α of
P1 was uniformly random, then the probability that a corrupt P2 can guess α
to force P1 to abort is 1/2. For κ = Ω(λ) (where λ is the security parameter),
consider invoking the above protocol κ times on independently chosen random
P1 inputs (α1, . . . , ακ). Then, the probability that corrupt P2 can guess more
than λ of these inputs is negligible. Given this observation, consider the following
two-party functionality:

1. The input of P1 is given by two bits (α, r) and the input of P2 is given by
two other bits (x0, x1).

2. P1 and P2 also share κ = Ω(λ) random OT correlations with P1 acting as the
receiver and P2 acting as the sender. Additionally, a corrupt P2 might learn
λ of these receiver correlations. We call these as “leaky" OT correlations.

3. At the end of the protocol, we want both P1 and P2 to learn (xα ⊕ r).

A statistically secure protocol for the above functionality is obtained by first
implementing the information-theoretic OT combiner protocol from [12] to ex-
tract “pure" OT correlations from the above “leaky" OT correlations and then
use the information-theoretic two-party protocols [28, 26, 24] in the OT cor-
relations model to securely compute xα ⊕ r. Unfortunately, this protocol does
not run in two rounds. To squish the number of rounds, we apply the round
collapsing compiler of [6, 19] to this larger round protocol and use the protocol
from the first step (the one that suffers from input dependent abort) to set up
the leaky OT correlations. Since the above protocol is statistical, the squished
protocol only makes black-box use of cryptographic operations. Additionally, to
enable the party P3 to output yxα⊕r, we use the following observation about the
compiler given in [19]: even if a party is not participating in the protocol, the
garbled circuit generated by the party can listen to the protocol transcript and
thus, learn the output. This observation allows the garbled circuit generated by
P3 to listen to the protocol between P1 and P2 and obtain xα ⊕ r. This garbled
circuit can then output yxα⊕r. This allows us to obtain a three-round black-box
protocol for the double selection functionality that does not suffer from input
dependent abort.

From Double Selection to General Functions. To give a protocol for gen-
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eral functions, we use the techniques in [17] to show that double selection is
black-box complete for designing three-round secure protocols against malicious
adversaries. Specifically, we apply the round-collapsing compiler to statistically
secure protocols in the OT correlations model [28, 26] and use the above protocol
to implement the double selection functionality. This gives rise to a three-round
MPC protocol that makes black-box use of a two-round, malicious-secure OT
with equivocal receiver security.

3 Preliminaries

We recall some standard cryptographic definitions in this section. Let λ denote
the security parameter. We give the standard definition for negligible functions,
computational indistinguishability and the UC framework [11] in the full version.

3.1 Oblivious Transfer

In this paper, we consider a 1-out-of-2 OT, similar to [10, 32, 1, 13, 34, 22] where
one party, the sender, has input composed of two strings (s0, s1) and the input
of the second party, the receiver, is a bit β. The receiver should learn sβ and
nothing regarding s1−β , while the sender should gain no information about β.

Semi-Honest Secure Two-Round OT. A two-round semi-honest OT proto-
col 〈S,R〉 is defined by three probabilistic algorithms (OT1,OT2,OT3) as follows.
The receiver runs the algorithm OT1 with the security parameter 1λ, and a bit
β ∈ {0, 1} as input and the random tape set to ω and obtains otr. The receiver
then sends otr to the sender, who obtains ots by evaluating OT2(otr, (s0, s1))
(with a uniform random tape), where s0, s1 ∈ {0, 1}λ are the sender’s input
messages. The sender then sends ots to the receiver who obtains sβ by evaluat-
ing OT3(ots, (β, ω)).

- Correctness. For every choice bit β ∈ {0, 1} and the random tape ω of the
receiver, and any input messages s0 and s1 of the sender we require that,
if otr := OT1(1λ, β;ω), ots ← OT2(otr, (s0, s1)), then OT3(ots, (β, ω)) = sβ
with probability 1.

- Receiver’s security. We require that, {otr : ω ← {0, 1}∗, otr :=

OT1(1λ, 0;ω)}
c
≈ {otr : ω ← {0, 1}∗, otr := OT1(1λ, 1;ω)}.

- Sender’s security. We require that for any choice of β ∈ {0, 1} and any
strings K0,K1, L0, L1 ∈ {0, 1}λ with L0 = L1 = Kβ , we have that, {β, ω ←
{0, 1}∗,OT2(1λ, otr,K0,K1)}

c
≈ {β, ω ← {0, 1}∗,OT2(1λ, otr, L0, L1)} where

otr := OT1(1λ, β;ω).

Remark 1. We note that we can relax the correctness requirement to have a
negligible probability of error. For the sake of simplicity of exposition, we stick
to protocols having perfect correctness.

9



Maliciously Secure Two-Round OT with Equivocal Receiver Security.
We consider the stronger notion of oblivious transfer with security against ma-
licious adversaries in the common random/reference string model. In addition
to the standard security against malicious receivers, we need this protocol to
satisfy a special property called equivocal receiver security introduced in [19].
Informally, this property says that the first round message of the receiver can
be equivocated to both choice bits 0 and 1. In terms of syntax, we supplement
the syntax of semi-honest OT with an algorithm KOT that takes the security
parameter 1λ as input and outputs the common random/reference string crs.
Also, the three algorithms OT1,OT2 and OT3 additionally take crs as input.
Furthermore, instead of using the entire random tape of OT1 algorithm as input
to OT3, we let the OT1 algorithm to output some secret information which is
then used by OT3.

- Correctness. For every β ∈ {0, 1} and any input messages s0 and s1 of
the sender, we require that, if crs← KOT(1λ), (otr, µ)← OT1(crs, β), ots←
OT2(crs, otr, (s0, s1)), then OT3(crs, ots, (β, µ)) = sβ with probability 1.

- Equivocal Receiver’s security. We require the existence of a PPT simu-
lator SimR = (Sim1

R,Sim
2
R) such that for any sequence of (β1, . . . , βn) where

each βi ∈ {0, 1} and n = poly(λ), we have:{
(crs, {(otri, µiβi)}i∈[n]) : (crs, td)← Sim1

R(1λ), {(otri, µi0, µi1)←

Sim2
R(crs, td)}i∈[n]

}
c
≈
{

(crs, {OT1(crs, βi)}i∈[n]) : crs← KOT(1λ)
}
.

- Checking Validity of Receiver’s Key. There is a deterministic polyno-
mial time algorithm CheckValid that takes as input crs, otr, β, µ and out-
puts 1 if and only if there exists some ω ∈ {0, 1}∗ such that (otr, µ) :=
OT1(crs, β;ω).

- Sender’s security. We require the existence of PPT algorithm SimS =
(Sim1

S ,Sim
2
S) such that for any choice of Ki

0,K
i
1 ∈ {0, 1}λ for i ∈ [n] where

n = poly(λ), PPT adversary A and any PPT distinguisher D, we have:∣∣∣Pr[Expt1 = 1]− Pr[Expt2 = 1]
∣∣∣ ≤ negl(λ).

Expt1:
crs← KOT(1λ)
{otri}i∈[n] ← A(crs)

{
otsi ← OT2(crs, otri, (Ki

0,K
i
1))
}
i∈[n]

Output D(crs, {otsi}i∈[n])

Expt2:
(crs, td)← Sim1

S(1λ)
{otri}i∈[n] ← A(crs)
βi := Sim2

S(crs, td, otri) ∀i ∈ [n]
Li0 := Ki

βi
and Li1 := Ki

βi{
otsi ← OT2(crs, otr, (Li0, L

i
1))
}
i∈[n]

Output D(crs, {otsi}i∈[n])
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Remark 2. We note that a two-round malicious secure OT with equivocal re-
ceiver security implies a standard two-round malicious OT that implements the
ideal OT functionality.

We recall the definitions of garbled circuits, non-interactive secure computa-
tion and some properties of symmetric bivariate polynomial in Appendix ??.

4 3-Round Semi-Honest MPC

In this section, we give a three-round, semi-honest secure protocol for computing
arbitrary multiparty functionalities making black-box use of a two-round, semi-
honest secure OT in the plain model. We do this in two steps. In the first step, we
give a three round protocol for securely computing the F3MULTPlus functionality
(described below) against semi-honest adversaries. In the second step, we extend
it for the case of general functions by relying on the results from [8, 17, 3].

4.1 First Step: Protocol for F3MULTPlus

Let us first recall the F3MULTPlus functionality. It is a n-party functionality that
takes input from 3 parties and delivers output to every party. Specifically, let us
denote the parties that provide inputs to this functionality by P1, P2, and P3.
The input of Pi for i ∈ {1, 2, 3} is given by (xi, yi) ∈ {0, 1} × {0, 1}. The output
of the functionality is given by x1 · x2 · x3 + y1 + y2 + y3 (where + and · are over
F2). The main theorem that we show in this subsection is:

Theorem 3. There is an efficient three-round protocol Π3MULTPlus (Figure 1)
that makes black-box use of a two-round, semi-honest OT and securely computes
the F3MULTPlus functionality against semi-honest adversaries corrupting an arbi-
trary subset of the parties. The protocol is in the plain model.

Building Π3MULTPlus. In Figure 1, we describe a three-round protocol for securely
computing F3MULTPlus against semi-honest adversaries making black-box access
to a 2-round semi-honest OT. We give an informal description below.

At a high-level, the degree-3 computation is achieved by cascading OT mes-
sages i.e., generating a sender OT message where the inputs are themselves two
other sender OT messages. Since OT enables degree-2 computation, cascading
OT enables us to compute the result of a degree-3 computation. The main nov-
elty lies in being able to do this in 2 rounds for OTs that are run in parallel. The
last round is spent on a single broadcast of a value by each party and subse-
quent local accumulation of these broadcasted values to obtain the final result.
We elaborate on this idea below.

In the first round, P1, acting as a receiver, publishes an OT receiver message
otr that encodes its input x1. In parallel, P2, first splits x2 into two additive
shares (x2,0, x2,1) and then publishes two OT receiver messages, otr0, otr1 where
otrb encodes x2,b. In the second round, P3 splits its input x3 into two additive
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shares, x3,0, x3,1. It then prepares two OT sender messages with respect to the
receiver messages otr0, otr1 where the sender inputs used in both these messages
are given by (x3,0, x3,1). Let these OT messages be denoted by ots0, ots1. The
crux of our construction is then to use ots0, ots1 as the sender inputs in response
to P1’s receiver message otr. With this sender message, P1 can retrieve otsx1

,
but in order to decode otsx1

, it needs the receiver’s input and randomness used
for otsx1

, which are held by P2. Responding to P1’s receiver message otr, P2

computes a sender OT message with input ((x2,0, ω2,0), (x2,1, ω2,1)). Using this
message, P1 can retrieve x2,x1 and the corresponding randomness while x2,1−x1

and the matching randomness are hidden. Deducing from the OT correctness,
we conclude that P1 at the end of the second round can compute x3,x2,x1

which
can be written as x2,x1

(x3,0 + x3,1) + x3,0 = (x1 · x2 + x2,0) · x3 + x3,0, since
x2,x1

= x1(x2,0 +x2,1)+x2,0. To cancel out the extra multiplicative term x2,0 ·x3

in the expression, another OT instance is needed between P2, P3, where P3 enacts
a receiver with input x3 and P2 enacts a sender with input x2,0,0, x2,0,1 which
are an additive secret sharing of x2,0. Once all the OTs conclude in the first two
rounds, each of P1, P2 and P3 accumulates their appropriate local data (which
includes their other input yi) and this can be shown to be an additive secret
sharing of the output. In the final round, each party broadcasts this value and
this enables every party to compute the final result via plain addition. Lastly,
each of these three parties distributes shares of 0 amongst P1, P2, P3 to be added
to their local sum before broadcast. This step is required for simulation in the
case where there exists more than one honest party in the set P1, P2, P3.

Inputs: Pi for i ∈ [3] inputs (xi, yi).
Output: For each i ∈ [n], Pi outputs x1x2x3 + y1 + y2 + y3.
Primitive: A two-round semi-honest secure OT protocol (OT1,OT2,OT3).

Round-1: In the first round,
– P1 chooses a random string ω ← {0, 1}∗ and computes otr := OT1(1λ, x1;ω).
– P2 chooses two random strings ω0, ω1 ← {0, 1}∗. It chooses random bits
x2,0, x2,1 ← {0, 1} subject to x2 = x2,1 + x2,0. It computes otr0 :=
OT1(1λ, x2,0;ω0) and otr1 := OT1(1λ, x2,1;ω1).

– P3 chooses a random string ω′ ← {0, 1}∗ and computes otr3 :=
OT1(1λ, x3;ω′).

– P1 broadcasts otr, P2 broadcasts (otr0, otr1) and P3 broadcasts otr3.
– For every i ∈ [3], Pi chooses a random additive secret sharing of 0 given

by (δi1, δ
i
2, δ

i
3) and sends the share δij to party Pj for j ∈ [3] \ {i} via private

channels.a

Round-2: In the second round,
– P2 computes ots ← OT2(otr, (x2,0, ω0), (x2,1, ω1)). It then chooses random

bits x2,0,0, x2,0,1 ← {0, 1} subject to x2,0 = x2,0,0+x2,0,1. It computes ots3 ←
OT2(otr3, x2,0,0, x2,0,1).

Protocol Π3MULTPlus
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– P3 chooses random bits x3,0, x3,1 ← {0, 1} subject to x3 = x3,0+x3,1. For each
b ∈ {0, 1}, it first computes otsb ← OT2(otrb, x3,0, x3,1). It then computes
ots← OT2(otr, ots0, ots1).

– P2 broadcasts (ots, ots3) and P3 broadcasts ots.
Round-3: In the last round,

– For each i ∈ [3], Pi computes δi = δ1i + δ2i + δ3i .
– P2 sets z2 := x2,0,0 + y2 + δ2.
– P3 computes x2,0,x3 := OT3(ots3, (x3, ω

′)) and sets z3 = x2,0,x3+x3,0+y3+δ3.
– P1 computes (x2,x1 , ωx1) := OT3(ots, (x1, ω)) and otsx1 := OT3(ots, (x1, ω)).

It then computes x3,x2,x1 := OT3(otsx1 , (x2,x1 , ωx1)). It then sets z1 :=
x3,x2,x1 + y1 + δ1.

– P1 broadcasts z1, P2 broadcasts z2 and P3 broadcasts z3.
Output: Every party outputs z1 + z2 + z3.

a We can simulate a single round of private channel messages in two rounds over
public channels by making use of a two-round OT.

Figure 1: Protocol Π3MULTPlus

We show the correctness and security in Lemma 1-2.

Lemma 1 (Correctness). Protocol Π3MULTPlus correctly computes F3MULTPlus.

Proof. We first observe that x2,0,x3 computed by P3 in Round-3 is equal to
x3(x2,0,0 + x2,0,1) + x2,0,0 = x3 · x2,0 + x2,0,0. Therefore, z3 = x3 · x2,0 + x2,0,0 +
x3,0 + y3 + δ3. We then observe that x2,x1

and otsx1
computed by P1 are equal

to x1 · x2 + x2,0 and OT2(OT1(1λ, x2,x1
;ωx1

), x3,0, x3,1) respectively. Therefore,
x3,x2,x1

computed by P1 is equal to x2,x1
(x3,0 + x3,1) + x3,0 = (x1 · x2 + x2,0) ·

x3 + x3,0. This implies that z1 = (x1 · x2 + x2,0) · x3 + x3,0 + y1 + δ1. Finally, we
observe that (δ1, δ2, δ3) form an additive secret sharing of 0. Hence,

z1 + z2 + z3 = ((x1 · x2 + x2,0) · x3 + x3,0 + y1 + δ1)

+ (x2,0,0 + y2 + δ2) + (x3 · x2,0 + x2,0,0 + x3,0 + y3 + δ3)

= x1 · x2 · x3 + y1 + y2 + y3

This completes the proof of correctness.

Lemma 2 (Security). Protocol Π3MULTPlus securely computes F3MULTPlus

against a semi-honest adversary corrupting an arbitrary subset of parties.

We defer the proof to the full version.

4.2 Second Step: Protocol for Arbitrary Functions

We recall the theorem about completeness of F3MULTPlus from [3, Theorem 6.4].

Theorem 4 ([8, 17, 3]). Let f be an n-party functionality. There exists a pro-
tocol Πf for securely computing f against a semi-honest adversary (corrupting
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an arbitrary subset of parties), where Πf makes parallel calls to the F3MULTPlus

functionality and uses no further interaction. The protocol Πf can either be: (1)
computationally secure using a black-box PRG, where the complexity of the par-
ties is polynomial in n, the security parameter λ and the circuit size of f , or
alternatively (2) perfectly secure, where the complexity of the parties is polyno-
mial in n and the branching program size of f .

From Theorem 3 and the UC composition theorem [11], we get the following.

Corollary 1. Let f be an n-party functionality. There is a three-round protocol
that makes black-box use of a two-round, semi-honest secure OT and securely
computes f against a semi-honest adversary corrupting an arbitrary subset of
parties. The complexity of the parties is polynomial in n, the security parameter
λ and the circuit size of f .

5 3-round Malicious MPC

In this section, we give a construction of a 3-round protocol that computes any
multiparty functionality with UC-security against malicious adversaries. The
protocol makes black-box use of a two-round, malicious-secure OT with equiv-
ocal receiver security. We do this in three steps. In the first step, we define a
special n-party functionality called double selection and give a two-round, black-
box protocol that securely computes this functionality. However, this protocol
satisfies only a weaker notion of security which is security with input dependent
abort. In the second step, we use the protocol from the first step and give a
three-round protocol that securely computes this double selection functionality
with standard security. In the final step, we show how to bootstrap the protocol
from the second step to a black-box, three-round protocol for general functions.

5.1 First Step: Special Functionality with Input Dependent Abort

In this subsection, we define a special n-party functionality F†dSelPri in Figure 2
and give a black-box, two-round protocol that computes F†dSelPri. This function-
ality captures input-dependent abort attack that can be launched by a corrupt
P2 against P1, causing loss of input privacy of P1.

F†dSelPri is parameterized by an n-party function dSelPri whose description follows.
dSelPri receives (α, r) ∈ {0, 1}×{0, 1} from P1, (y0, y1) ∈ {0, 1}×{0, 1} from P2 and
for every 3 ≤ i ≤ n, it receives (zi0, z

i
1) ∈ {0, 1}λ × {0, 1}λ from Pi. dSelPri delivers

(yα, {ziyα⊕r}3≤i≤n) to P1 and the other parties do not get any outputs. Let xi be
the input of party Pi to dSelPri (note that xi for different parties maybe of different
lengths) and let S be the adversary. The functionality F†dSelPri proceeds as follows:

Functionality F†dSelPri
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1. Each party Pi (and S on behalf of Pi if Pi is corrupted) sends (input, sid, Pi, xi)
to the functionality.

2. If P2 is corrupted then S may send (predicate, sid,EQβ) where EQβ is the equality
predicate that takes the first component of P1’s input α and outputs 1 iff β = α.

3. Upon receiving the inputs from all parties, evaluate out := dSelPri(x1, . . . , xn). If
P1 is corrupted, the functionality delivers out to S.

4. If P1 is not corrupted, then on receiving (generateOutput, sid) from S, the ideal
functionality computes pred = EQβ(α) (if (predicate, sid,EQβ) is received; if such a
message is not received, it sets pred = 0). If pred = 0, it gives (output, sid, P1, out)
to P1. Else, if pred = 1, it sends (output, sid, P1, abort). (And ignores the message
if inputs from all parties in {P1, . . . , Pn} have not been received.) On the other
hand, if (abort, sid) is received then, it sends (output, sid, P1, abort) to P1.

Figure 2: Functionality F†dSelPri

We show the following theorem, which implies the subsequent corollary via
the results from [26, 24]

Theorem 5. There exists a two-round protocol Π†dSelPri (Figure 4) that UC-
realizes F†dSelPri in the F(m,p)-RaOT (Figure 3) hybrid model making black-box
access to a two-round, malicious-secure OT with equivocal receiver security.

Corollary 2. There exists a two-round protocol Π†dSelPri that UC-realizes the
functionality F†dSelPri making black-box access to a two-round, malicious-secure
OT with equivocal receiver security.

Let S be an adversary.

– A party Pi (and S on behalf of Pi if Pi is corrupted) sends (receiver, sid, Pi).
– Another party Pj (and S on behalf of Pj if Pj is corrupted) sends

(sender, sid, Pj , (s1, . . . , sm)) to the functionality where sj ∈ {0, 1}∗ for each
j ∈ [m].

– On receiving both these messages, for each j ∈ [m], the functionality indepen-
dently sets s′j = sj with probability p and sets s′j = ⊥ with probability 1− p.

– On receiving (generateOutput, sid) from S (if Pj is corrupted), the functionality
delivers (output, sid, (s′1, . . . , s′m)) to Pi.

Functionality F(m,p)-RaOT

Figure 3: Functionality F(m,p)-RaOT

Building Π†dSelPri. We begin with the description of a protocol that computes a
simplified version of the function dSelPri in the face of a semi-honest adversary,
assuming P3 as the lone provider of a pair z0, z1. This version, in fact, is identical
to the first two rounds of the construction for "double-selection" functionality
implementing "cascaded OT" described in Section 2.1.
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Now, to make the idea work against a malicious adversary, we inspect the
roles of the various parties and try to see the kind of attack that they can
mount. P1’s role only includes preparing two OT receiver messages and therefore
a corrupt P1 is taken care by the sender security of the OT against malicious
receivers. Next, a corrupt P2 plays the role of two receivers to P3 and one sender
to P1, where the messages and matching randomnesses used for the former role
are fed as input in the latter role. While OT’s sender security takes care, and in
effect, fixes P2’s input through the receiver messages, there is still a scope for P2

to launch a selective failure or input-dependent attack against P1 by selectively
choosing only one of the OT sender inputs correctly. This allows it to learn P1’s
input α, by simply observing whether P1 aborts or not. But the functionality
F†dSelPri allows this attack, and preventing this attack is taken care in the next
section. This brings us to the last case where P3 can be corrupt.

P3 prepares three OT sender messages, wherein the third instance takes the
result of first two instances as input and in addition, the inputs to the first
two instances need to be identical, namely (z0 + mask, z1 + mask). Tackling a
corrupt P3 clearly requires to step beyond OT receiver security against malicious
senders. Here, we deploy MPC-in-the-head approach [25] for the consistency
check, where P3 prepares states of m virtual parties in its head that jointly hold
a secret sharing of z0, z1,mask. The sharing is pairwise checkable and adheres
to a threshold that dictates its security. A bivariate polynomial based sharing
scheme fits the bill. Next, the i-th virtual party’s state includes the OT sender
messages that are prepared by simply replicating P3’s computation on the i-th
shares of z0, z1,mask. Now, the goal is to open some number of the states to P1 for
checking and we need to ensure that this number (a) is not big enough to violate
P3’s privacy, (b) but is enough to either catch a corrupt P3 or error-correct the
faults. Here, we invoke a 2-party NISC between P1 and P2 for computing the
Rabin OT functionality F(m,p)-RaOT, where P3 inputs the m states. F(m,p)-RaOT

ensures each state is chosen to be revealed to P1 independently with probability
p. Using Chernoff bounds, we can conclude that the probability that more than
the threshold number of states are revealed to P1 is negligible. Consequently,
the secrets z0, z1,mask are safe from P1 with overwhelming probability. On the
other hand, a corrupt P3 either gets caught with overwhelming probability when
it prepares a “large” number of wrong states and in the case where it ends up
maligning small number of states, we rely on error correction to ensure the
recovery of information. Since the NISC realizing F(m,p)-RaOT makes black-box
use of a two-round OT [26, 24], our final construction is black-box, as desired.

Inputs: P1 inputs (α, r) ∈ {0, 1} × {0, 1}, P2 inputs (y0, y1) ∈ {0, 1} × {0, 1}. For
every 3 ≤ i ≤ n, Pi inputs (zi0, z

i
1) ∈ {0, 1}λ × {0, 1}λ.

Output: P1 outputs (yα, {ziyα⊕r}3≤i≤n).

Protocol Π†dSelPri
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Primitives: (a) A malicious-secure two-round OT with equivocal receiver security
(KOT,OT1,OT2,OT3) (see Section 3.1). We use OT∗1 to denote an algorithm that
takes a crs and q(λ)-bit string (for some polynomial q(·)) as input and applies
OT1 to each bit of that string. (b) Functionality F(m,p)-RaOT where m = 3λ+ 1
and p = λ/2m.

Common Random/Reference String Generation: For each i ∈ [n], sample
crsi ← KOT(1λ). Set the crs to be (crs1, . . . , crsn).

Round-1: In the first round,
– P1 computes (otr, µ) ← OT1(crs1, α) and (otr, µ) ← OT1(crs1, r). For each
i ∈ [3, n], P1 sends (receiver, i, P1) to the F(m,p)-RaOT functionality.

– For each b ∈ {0, 1}, P2 computes (otrb, µb)← OT1(crs2, yb).
– For each i ∈ [3, n], Pi does the following:
• It chooses maski ← {0, 1}λ uniformly at random.
• It chooses three random degree-λ symmetric bivariate polynomials
Si0, S

i
1, S

i
2 over GF(2λ) such that Si0(0, 0) = zi0, Si1(0, 0) = zi1 and

Si2(0, 0) = maski.
• For each j ∈ [m] and for each γ ∈ [0, 2], let f i,jγ (x) = Siγ(x, j) (where we

associate j with the j-th element in GF(2λ)).
• For each j ∈ [m] and for each γ ∈ [0, 2], it computes (otri,jγ , µi,jγ ) :=

OT∗1(crsi, f i,jγ (x)).
– P1 broadcasts (otr, otr), P2 broadcasts (otr0, otr1) and for each i ∈ [3, n], Pi

broadcasts {otri,jγ }j∈[m],γ∈[0,2] to every party.
Round-2: In the second round,

– P2 computes ots← OT2(crs1, otr, (y0, µ0), (y1, µ1)).
– For every i ∈ [3, n], Pi does the following for each j ∈ [m],
• For each b ∈ {0, 1}, it chooses τ i,jb ← {0, 1}∗ and computes otsi,jb :=

OT2(crs2, otrb, f
i,j
0 (0) + f i,j2 (0), f i,j1 (0) + f i,j2 (0); τ i,jb ).

• It chooses random τ i,j ← {0, 1}∗ and computes otsi,j :=
OT2(crs1, otr, otsi,j0 , otsi,j1 ; τ i,j).

• It chooses random τ i,j ← {0, 1}∗ and computes ots
i,j ←

OT2(crs1, otr,−f i,j2 (0), f i,j1 (0)− f i,j0 (0)− f i,j2 (0); τ i,j).
• It sets the string si,j = ({f i,jγ (x), µi,jγ }γ∈[0,2], {otsi,jb , τ i,jb }b∈{0,1}, τ

i,j , τ i,j).
It then sends (sender, i, Pi, (si,1, . . . , si,m)) to the F(m,p)-RaOT functionality.

– P2 sends ots and for every i ∈ [3, n], Pi sends ({otsi,j , otsi,j}j∈[m]) to P1 via
private channels (which can implemented in two rounds over a public-channel
model using a two-round OT).

Output: To compute the output, P1 does the following: For each i ∈ [3, n],
– It receives (output, i, (si,1, . . . , si,m)) as the output from F(m,p)-RaOT.
– Let Ji ⊆ [m] such that for each j ∈ Ji, sij 6= ⊥.
– For each j ∈ Ji:
• It parses si,j as ({f i,jγ (x), µi,jγ }γ∈[0,2], {otsi,jb , τ i,jb }b∈{0,1}, τ

i,j , τ i,j).
• For each γ ∈ [0, 2], it checks if CheckValid(crsi, otri,jγ , (f i,jγ (x), µi,jγ )) (see

Sec. 3.1 for CheckValid) outputs 1 and if f i,jγ (x) is a degree-λ polynomial.
• For every k ∈ Ji \ {j} and γ ∈ [0, 2], it checks if f i,jγ (k) = f i,kγ (j).
• It checks if otsi,j := OT2(crs1, otr, otsi,j0 , otsi,j1 ; τ i,j) and ots

i,j ←
OT2(crs1, otr,−f i,j2 (0), f i,j1 (0)− f i,j0 (0)− f i,j2 (0); τ i,j).
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• It also checks if otsi,jb := OT2(crs2, otrb, f
i,j
0 (0) + f i,j2 (0), f i,j1 (0) +

f i,j2 (0); τ i,jb ) for each b ∈ {0, 1}.
• If any of the above checks fail, it aborts.

– It computes (yα, µα) := OT3(crs1, ots, (α, µ)). It then runs
CheckValid(crs2, otrα, (yα, µα)). If the algorithm outputs 1, then it proceeds.
Otherwise, it aborts.

– For each j ∈ [m],
• It computes otsi,jα := OT3(crs1, otsi,j , (α, µ)).
• It then computes Shi,jyα := OT3(crs2, otsi,jα , (yα, µα)).
• It also computes Sh

i,j
r := OT3(crs1, ots

i,j
, (r, µ)).

– It computes zi as the Reed-Solomon decoding of {Shi,jyα +Sh
i,j
r }j∈[m], correct-

ing at most λ errors.
It outputs (yα, {zi}i∈[3,n]).

Figure 4: Protocol Π†dSelPri

The following lemma proves Theorem 5. We defer the proof to the full version.

Lemma 3. Let A be an (possibly malicious) adversary corrupting an arbitrary
subset of parties in the protocol Π†dSelPri. There exists a simulator Sim such that
for any environment Z, EXECF†dSelPri,Sim,Z

c
≈ EXECΠ†dSelPri,A,Z

5.2 Conforming Protocols and The Round-collapsing Compiler

The steps 2 and 3 of building a maliciously-secure MPC protocol for a general
function require the usage of a conforming protocol introduced in [19]. In this
subsection, we recall this notion and present a slightly modified version given
in [17]. Further, these two steps will build upon the round-collapsing compiler
of [19].

Specification of a Conforming Protocol. Consider an n-party deterministic4
MPC protocol Φ between parties P1, . . . , Pn with inputs x1, . . . , xn, respectively
computing some function f(x1, . . . , xn). For each i ∈ [n], we let xi ∈ {0, 1}m
denote the input of party Pi. A conforming protocol Φ is defined by functions
pre, post, and computations steps or what we call actions φ1, · · ·φT . The protocol
Φ proceeds in three stages: pre-processing, computation and output.

– Pre-processing phase: For each i ∈ [n], party Pi first samples vi ∈ {0, 1}`
(where ` is the parameter of the protocol) as the output of a randomized
function pre(1λ, i) and sets zi as zi = (xi ⊕ vi[(i − 1)`/n + 1, (i − 1)`/n +
m])‖0`/n−m, where vi[(i− 1)`/n+ 1, (i− 1)`/n+m] denotes the bits of the
string vi in the positions [(i− 1)`/n+ 1, (i− 1)`/n+m]. Pi retains vi as the

4 Randomized protocols can be handled by including the randomness used by a party
as part of its input.
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secret information and broadcasts zi to every other party. We require that
vi[k] = 0 for all k ∈ [`]\{(i− 1)`/n+ 1, . . . , i`/n}.5

– Computation phase: For each i ∈ [n], party Pi sets st := (z1‖· · · ‖zn).
Next, for each t ∈ {1 · · ·T} parties proceed as follows:
1. Parse action φt as (i, f, g, h) where i ∈ [n] and f, g, h ∈ [`].
2. Party Pi computes one NAND gate as st[h] =

NAND
(
st[f ]⊕ vi[f ], st[g]⊕ vi[g]

)
⊕ vi[h] and broadcasts st[h] to

every other party.
3. Every party Pj for j 6= i updates st[h] to the bit value received from Pi.
We require that for all t, t′ ∈ [T ] such that t 6= t′, if φt = (·, ·, ·, h) and
φt′ = (·, ·, ·, h′) then h 6= h′. Also, we denote Ai ⊂ [T ] to be the set of rounds
in which Pi sends a bit. Namely, Ai = {t ∈ T | φt = (i, ·, ·, ·)} .

– Output phase: For each i ∈ [n], party Pi outputs post(st).

We now recall the following theorem proved in [19, 17].

Theorem 6 ([19, 17]). Any MPC protocol Π can be transformed into a con-
forming protocol Φ while inheriting the correctness and the security of the orig-
inal protocol. Furthermore, the post function of Φ is just a projection function
(i.e., it outputs some bits of st)6 and the simulated message zi (for every honest
party) is (ri‖0`/n−m) where ri is a uniformly chosen random string of length m
(independent of other simulated messages).

5.3 Second Step: Special Functionality with Standard Security

In this subsection, we define the n-party version of the double-selection func-
tionality FdSel in Figure 5 and give a three-round protocol for securely realizing
this functionality. The main theorem we prove in this subsection is given below.

FdSel is parameterized by an n-party function dSel whose description follows. dSel
receives (α, r) ∈ {0, 1} × {0, 1} from P1 and (y0, y1) ∈ {0, 1} × {0, 1} from P2. For
every 3 ≤ i ≤ n, dSelPri receives (zi0, z

i
1) ∈ {0, 1}λ × {0, 1}λ from Pi. dSel delivers

(yα ⊕ r, {ziyα⊕r}3≤i≤n) to every party (and this is where dSelPri differs from dSel).
Let xi be the input of party Pi to dSel (note that xi for different parties maybe of
different lengths) and let S be the adversary. FdSel proceeds as follows:

Functionality FdSel

5 Here, we slightly differ from the formulation used in [19, 17]. In their work, pre is
defined to additionally take xi as input and outputs (zi, vi). However, the trans-
formation from any protocol to a conforming protocol given in these works has the
above structure where the last `/n−m bits of zi are 0 and the first m bits of zi is
the XOR of xi and vi[(i− 1)`/n+ 1, (i− 1)`/n+m].

6 We note that this property can be generically added to any conforming protocol by
expanding the computation phase to include more actions that compute the output
of the protocol.
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1. For each i ∈ [3, n], Pi (and S on behalf of Pi if Pi is corrupted) sends
(input, sid, Pi, xi) to the functionality.

2. If either of P1 or P2 is honest, then for each i ∈ {1, 2}, Pi (and S on behalf of Pi
if Pi is corrupted) sends (input, sid, Pi, xi) to the functionality.

3. If P1 and P2 are both corrupted, S sends (Corrupt, sid, β) where β ∈ {0, 1}.
4. Upon receiving the inputs from all parties, the functionality computes:

out :=

{
(yα ⊕ r, {ziyα⊕r}i∈[3,n]) If P1 or P2 is honest.
(β, {ziβ}i∈[3,n]) If P1 and P2 are corrupt.

5. The functionality delivers (output, sid, out) to S. On receiving
(generateOutput, sid) from S, the functionality delivers (output, sid, Pi, out)
to every honest Pi. On the other hand, if S sends (abort, sid), then the function-
ality sends (output, sid, Pi, abort) to every honest Pi. (And ignores the message
if inputs from all parties in {P1, . . . , Pn} have not been received.)

Figure 5: Functionality FdSel

Theorem 7. There exists a three-round protocol ΠdSel (Figure 7) that UC-
realizes the FdSel functionality. ΠdSel makes black-box use of a two-round
malicious-secure OT with equivocal receiver security in the F†dSelPri-hybrid model.

Building ΠdSel. The primary challenge in ΠdSel, over Π†dSelPri, is to keep any
corrupt P2’s behaviour, as an OT sender, in check. We resort to an OT combiner
protocol [23, 12], that guarantees generation of a secure OT correlation given
a number of leaky OTs, as formalized by functionality Fκ-LeakyOT in Figure 6.

Let S be an adversary corrupting at most one among {P1, P2}.

– A party P1 (and S on behalf of P1 if P1 is corrupted) sends
(receiver, sid, P1, α1, . . . , ακ).

– Another party P2 (and S on behalf of P2 if P2 is corrupted) sends
(sender, sid, P2, (K, {(si0, si1)}i∈[κ])) to the functionality where K ⊆ [κ] is a set
of size at most λ and sib ∈ {0, 1} for each i ∈ [κ] and b ∈ {0, 1}.

– On receiving both these messages, the functionality computes out1 :=
{(αi, siαi)}i∈[κ] and out2 := {αi}i∈K .

– For i ∈ {1, 2}, if Pi is corrupted, the functionality delivers (output, sid, Pi, outi) to
S. On receiving (generateOutput, sid) from S (if either of P1 or P2 is corrupted),
the functionality delivers (output, sid, Pi, outi) to every honest Pi. On the other
hand, if S sends (abort, sid), it sends (output, sid, Pi, abort) to every honest Pi.

Functionality Fκ-LeakyOT

Figure 6: Functionality Fκ-LeakyOT
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In keeping with the goal of publishing a masked version of P1’s selected input
of P2, i.e. yα + r, we slightly stretch the goal of OT combiner from realizing a
secure OT correlation to realizing a simple two-party functionality captured by
FOTplus. FOTplus gets two bits (α, r) from the receiver and two bits (s0, s1) from
the sender and delivers (sα⊕r) to both parties. An information-theoretic protocol
for securely realizing FOTplus in the Fκ-LeakyOT-hybrid model is guaranteed from
an OT combiner protocol followed by a secure computation protocol in the OT-
hybrid model [28, 24].

Theorem 8 ([12, 28, 24]). Let κ = Ω(λ) and consider the Fκ-LeakyOT func-
tionality described in Figure 6. There exists a statistically secure protocol that
UC-realizes the FOTplus functionality making a single call to the Fκ-LeakyOT func-
tionality. Furthermore, the inputs to Fκ-LeakyOT given by an honest receiver in
the above protocol are uniformly chosen (α1, . . . , ακ) and the inputs given by an
honest sender are (∅, {(si0, si1)}i∈[κ]) where {(si0, si1)}i∈[κ] are uniformly chosen.

While Theorem 8 guarantees a protocol for FOTplus, it may be a multi-round
protocol and it is not clear how ΠdSel can use this for its goal to realize FdSel. Here,
we invoke the round-collapsing compiler of [19, 17] (for an informal discussion,
refer to Appendix ??) on a conforming protocol obtained from the protocol
implied by Theorem 8 in Fκ-LeakyOT-hybrid model. To be specific, Theorem 8
implies the following protocol for realizing FOTplus:

– Call to Fκ-LeakyOT functionality. The honest P1 samples uniform bits
(α1, . . . , ακ) as input to the functionality. The honest P2 samples uniform
bits {(si0, si1)}i∈[κ] and sends (∅, {(si0, si1)}i∈[κ]) to the functionality.

– Protocol ΠOTplus. Using the output of Fκ-LeakyOT functionality, P1 and P2

interact with each other using the statistically-secure protocol ΠOTplus (from
Theorem 8) that realizes the FOTplus functionality. In this protocol, P1’s
input is given by ((α, r), (s1

α1
, α1), . . . , (sκακ , ακ)) and P2’s input is given by

((y0, y1), (s1
0, s

1
1), . . . , (sκ0 , s

κ
1 )) (where (α, r) are the P1’s inputs to the FOTplus

functionality and y0, y1 are P2’s inputs). Without loss of generality, we as-
sume that the last message from P1 to P2 contains the output of FOTplus.

Let Φ be the conforming protocol obtained as a result of the transformation
given in Theorem 6 to the protocol ΠOTplus (as above). We assume w.l.o.g. that
the input of P1 in Φ is of the form (siα1

, . . . , siακ , α1, . . . , αk, α, r) and that of
P2 is ({si0, si1}i∈[κ], y0, y1). We further assume w.l.o.g. that at the end of the
computation phase of Φ, st[`/2] (for each i ∈ {1, 2}) contains the output of the
protocol (i.e., v1[`/2] = v2[`/2] = 0) and post just outputs this bit (if either
party has not aborted and this information is public from st).

Now to enable ΠdSel to achieve the larger goal of publishing "doubly-selected"
inputs of P3, . . . , Pn, all that is needed from P3, . . . , Pn is to take part in Φ and
listen to the conversation. That is, the garbled circuits generated by P1 and
P2 will perform the interaction as dictated by the protocol Φ while the garbled
circuits generated by all other parties will listen to this interaction. By the
virtue of listening to this interaction, the last garbled circuit of every party in
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{P3, . . . , Pn} will output the labels for st that has (sα ⊕ r) at the position `/2.
Specifically, we introduce another layer of garbled circuits for the parties P3 to
Pn that takes st as input, has zi0, zi1 hardwired and outputs zist[`/2] if st does
not indicate an abort of P1 or P2. W.l.o.g., we can assume that st contains this
information on abort. To tackle a malicious behaviour of Pi, we make them
commit to zi0, z

i
1 via OT receiver messages in the first round and reveal the

opening information via the garbled circuit.
There are two missing blocks now: (a) how to create the correlation of a

Fκ-LeakyOT functionality (since Φ runs given the output of Fκ-LeakyOT) and (b)
how to release the labels corresponding to the initial public joint state for every
party’s garbled circuit in 3 rounds. Both are resolved through κ calls to F†dSelPri
functionality (recall that κ is the OT combiner parameter). ΠdSel runs κ copies of
F†dSelPri with the input of P1 in the k-th copy being {αk, v1[k]}k∈[κ] (where v1 is
the private state of P1 as per the round-collapsing compiler and αk is uniformly
chosen), the input of P2 being a random pair of bits (sk0 , s

k
1) and the inputs

for the rest of parties being equal to a pair of secret keys for a SKE scheme
(looking ahead, these keys will enable release of the first set of labels). These κ
executions of F†dSelPri lead to P1 and P2 sharing κ-random OT correlations. It is
these κ random OT correlations that serve as the input and output of the leaky
OT functionality. Specifically, as argued in the proof, we show that a corrupt P2

cannot guess more than λ among (α1, . . . , ακ) without triggering an abort by an
honest P1 with overwhelming probability. In other words, the size of the set K
that a corrupt P2 sends to the Fκ-LeakyOT functionality is at most λ. This allows
us to use the security of the conforming protocol Φ to argue the security of the
round-collapsed protocol.

We now explain how to release the labels corresponding to the initial public
joint state for every party’s garbled circuit in 3 rounds. This is where we use
the secret keys in the calls to F†dSelPri. Recall that P1 gets Pj ’s secret key corre-
sponding to the bit skαk ⊕ v1[k] from F†dSelPri at the end of round-2. In round-3,
P1 sends this secret key and Pj sends a pair of encryptions, encrypting b-th label
under b-th key for b ∈ {0, 1}. Putting these two things together, all parties can
recover the label for Pj ’s circuit corresponding to the bit skαk ⊕ v1[k]. This way
all the parties obtain the labels for the first set of garbled circuits. This will
trigger evaluation of the bunch of circuits emulating Φ.

Lastly, we consider the F†dSelPri functionality instantiated with n + 1 parties
with P2 additionally playing the role of Pn+1. Specifically, the inputs of party
P2 includes (y0, y1) as well as (z2

0 , z
2
1).

Inputs: P1 inputs (α, r) ∈ {0, 1} × {0, 1}, P2 inputs (y0, y1) ∈ {0, 1} × {0, 1}. For
every 3 ≤ i ≤ n, Pi inputs (zi0, z

i
1) ∈ {0, 1}λ × {0, 1}λ.

Output: Every party outputs (yα ⊕ r, {ziyα⊕r}3≤i≤n).

Protocol ΠdSel
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Primitives and Functionalities: (a) A malicious-secure, two-round OT with
equivocal receiver security (KOT,OT1,OT2,OT3) (see Section 3.1). We use OT∗1
to denote an algorithm that takes a crs and q(λ)-bit string (for some polyno-
mial q(·)) as input and applies OT1 to each bit of that string. (b) Functionality
F†dSelPri. (c) The conforming protocol Φ obtained as a result of the transforma-
tion in Theorem 6 to ΠOTplus as discussed. (d) Garbling scheme (Garble,Eval)
(see Section ??) (e) A symmetric-key Encryption Scheme (Gen,Enc,Dec).

Common Random/Reference String: For each i ∈ [n], sample crsi ← KOT(1λ)
and output {crsi}i∈[n] as the common random/reference string.

Round-1: In the first round,
– P1 and P2 run pre(1λ, 1) and pre(1λ, 2) to get v1 and v2 respectively. For each
i ∈ [3, n], Pi sets vi = 0`.

– P1 chooses κ random bits α1, . . . , ακ and P2 chooses random pairs of bits
(sk0 , s

k
1) for each k ∈ [κ].

– For each i ∈ [2, n] and for each k ∈ [κ], Pi chooses two random secret keys
(ski,k0 , ski,k1 ) using Gen(1λ).

– For each k ∈ [κ], P1 sends (input, k, P1, (αk, v1[k])), P2

sends (input, k, P2, (s
k
0 , s

k
1)) and for each i ∈ [2, n], Pi sends

(input, k, Pi, (ski,k0 , ski,k1 )) to F†dSelPri.
– For each i ∈ [3, n], for each b ∈ {0, 1}, Pi computes (otrib, µ

i
b)← OT∗1(crsi, zib).

– For each i ∈ [3, n], Pi broadcasts {otrib}b∈{0,1} to every other party.
Round-2: In the second round,

– P1 sets xpart1 := (α1, . . . , ακ, α, r) and P2 sets x2 := ({sk0 , sk1}k∈[κ], y0, y1).
– P1 and P2 respectively set zpart1 := (xpart1 ⊕ v1[κ+ 1, 2κ+ 2])‖0`/2−(2κ+2) and
z2 := (x2 ⊕ v2[`/2 + 1, `/2 + 2κ+ 2])‖0`/2−(2κ+2).

– For each i ∈ {1, 2} and for each t such that φt = (i, f, g, h) (Ai is the set of
such values of t), for each α, β ∈ {0, 1}, Pi computes: (otri,t,α,β , µi,t,α,β) ←
OT1(crsi, vi[h]⊕ NAND(vi[f ]⊕ α, vi[g]⊕ β)).

– P1 broadcasts
(
zpart1 , {otri,t,α,β}t∈A1,α,β∈{0,1}

)
and P2 broadcasts(

z2, {otri,t,α,β}t∈A2,α,β∈{0,1}
)
to every other party.

Round-3: In the final round, each party Pi does the following:
– If i = 1, P1 receives for each k ∈ [κ],

(output, k, P1, (x1[k], {ski,kx1[k]⊕v1[k]}i∈[2,n])) from F†dSelPri where x1[k] = skαk .
a

– Pi sets st := 0κ‖(zpart1 ‖z2).

– If i ∈ [3, n], Pi computes (C̃hkC
i

, labi,T+1) ←
Garble(1λ,ChkCi[{zib, µib}b∈{0,1}]).

– If i ∈ {1, 2}, Pi sets labi,T+1 = {⊥,⊥}k∈[`].
– for each t from T down to 1,

1. Parse φt as (i∗, f, g, h).
2. If i = i∗ then it computes (where Ci,t is described in Figure 8)

(C̃i,t, labi,t)← Garble(1λ, Ci,t[vi, {µi,t,α,β}α,β ,⊥, labi,t+1]).
3. If i 6= i∗ then for every α, β ∈ {0, 1}, it sets otsi

∗,t,α,β ←
OT2(crsi

∗
, otri

∗,t,α,β , labi,t+1
h,0 , labi,t+1

h,1 ) and computes (C̃i,t, labi,t) ←
Garble(1λ, Ci,t[vi,⊥, {otsi

∗,t,α,β}α,β , labi,t+1]).
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– Each Pi sends ({C̃i,t}t∈[T ],{labi,1k,st[k]}k∈[κ+1,`]) to every other party and if

i ∈ [3, n], it also sends C̃hkC
i

. In addition, P1 sends
{
lab1,1k,x1[k]⊕v1[k], x1[k]⊕

v1[k], {ski,kx1[k]⊕v1[k]}i∈[2,n]
}
k∈[κ]

and for each i ∈ [2, n], Pi sends

{Enc(ski,k0 , labi,1k,0),Enc(ski,k1 , labi,1k,1)}k∈[κ].
Output. Each party Pi does the following:

– It sets st[k] = x1[k] ⊕ v1[k] for each k ∈ [κ] receiving the value from P1’s
broadcast.

– For each j ∈ [2, n] and k ∈ [κ], it recovers labj,1k,st[k] ←
Dec(skj,kst[k],Enc(sk

i,k
st[k], lab

i,1
k,st[k])).

– Let l̃ab
1,1

:=
{
{lab1,1k,x1[k]⊕v1[k]}k∈[κ], {lab

1,1
k,st[k]}k∈[κ+1,`]

}
.

– For each j ∈ [2, n], let l̃ab
j,1

:= {labj,1k,st[k]}k∈[`].
– for each t from 1 to T do:

1. Parse φt as (i∗, f, g, h).

2. Compute ((α, β, γ), µ, l̃ab
i∗,t+1

) := Eval(C̃i
∗,t, l̃ab

i∗,t
).

3. Set st[h] := γ.
4. for each j 6= i∗ do:
(a) Compute (ots, {labj,t+1

k }k∈[`]\{h}) := Eval(C̃j,t, l̃ab
j,t

).
(b) Recover labj,t+1

h := OT3(crsi
∗
, ots, (γ, µ)).

(c) Set l̃ab
j,t+1

:= {labj,t+1
k }k∈[`].

– For each j ∈ [3, n],

• Compute (zj , µj) := Eval(C̃hkC
j

, l̃ab
j,T+1

)
• Run CheckValid(crsj , otrjst[`/2], (z

j , µj)).
– If any of runs of the CheckValid algorithm outputs 0 then abort. Otherwise,

output (st[`/2], {zjst[`/2]}j∈[3,n]).

a This message is received in the end of round-2, since Π†dSelPri is a 2-round protocol.

Figure 7: Protocol ΠdSel

Input of Ci,t: st
Hard-coded Information of Ci,t: vi, {µi,t,α,β}α,β , {otst,α,β}α,β , and lab =
{labk,0, labk,1}k∈[`].

Code of Ci,t:
– Let φt = (i∗, f, g, h).
– if i = i∗ then:
• Compute st[h] := NAND(st[f ]⊕ vi[f ], st[g]⊕ vi[g])⊕ vi[h].
• Output ((st[f ], st[g], st[h]), µi,t,st[f ],st[g], {labk,st[k]}k∈[`]).

– else: Output (otsi
∗,t,st[f ],st[g], {labk,st[k]}k∈[`]\{h}).

Input of ChkCi: st

Circuit Ci,t and ChkCi
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Hard-coded Information of ChkCi: {zib, µib}b∈{0,1}.
Code of ChkCi:

– Check from st if P1 or P2 have not aborted. We assume w.l.o.g. that this
information is public from st.

– If no abort occurs, then output zist[`/2], µ
i
st[`/2]. Otherwise, output ⊥.

Figure 8: Circuit Ci,t and ChkCi

Lemma 4. Let A be an (possibly malicious) adversary corrupting an arbitrary
subset of parties in the protocol ΠdSel. There exists a simulator Sim such that for
any environment Z, EXECFdSel,Sim,Z

c
≈ EXECΠdSel,A,Z

We defer the proof of this lemma to the full version.

5.4 Third Step: Bootstrapping from Special to General Functions

In this section, we build a 3-round MPC protocol for any multiparty function f
in the FdSel-hybrid model. The main theorem shown here is the following.

Theorem 9. Let f be a n-party functionality. There exists a protocol Πf (Fig-
ure 9) that UC-realizes f in three rounds against malicious adversaries cor-
rupting an arbitrary number of parties. Πf makes black-box use of a two-round,
malicious-secure OT with equivocal receiver security and is in FdSel-hybrid model.

Building Πf . The protocol Πf is obtained as a result of applying the round-
collapsing compiler in [19, 17] to perfect/statistical protocols in the OT-
correlations model (e.g., [28, 26]) which have the following structure.

– Generating OT Correlations. Every pair of parties invoke a certain num-
ber of OT executions on uniformly chosen random inputs.

– Protocol Π. The parties augment their inputs with the OT correlations
generated in the previous phase. The parties then use the perfect/statistical
protocol from [28, 26] in the OT correlations model to securely compute f .

Let Φ be the conforming protocol obtained as a result of the transformation in
Theorem 6 to Π. For every i, j ∈ [n] such that i 6= j, let κ be the number of
random OT correlations required between party Pi (acting as the receiver) and
Pj (acting as the sender) in the protocol Φ. The building blocks we use for Πf

are the conforming protocol Φ, a two-round, malicious-secure OT with equivocal
receiver security, a garbling scheme for circuits and a symmetric key encryption.
Further, we assume without loss of generality, that the first (n− 1)κ bits of the
augmented input of party Pi in Φ contains the bits obtained from every other
party (acting as sender) in the OT correlations generation phase. Specifically,
the first κ bits are the received bits from P1 (if i 6= 1) and the second set of κ bits
are the received bits from P2 (if i 6= 2) and so on. We denote a function GetIndex
that takes i, j, k as inputs (where i, j ∈ [n], i 6= j and k ∈ [κ]) and returns an
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index ind ∈ [`] of the state st of the conforming protocol that corresponds to the
received bit in the k-th OT correlation between Pi (acting as the receiver) and
Pj (acting as the sender). We now present an information description of Πf .

Building on the round-collapsing compiler of [19, 17] (see Appendix ?? for an
informal description of the compiler), the main challenge in Πf is in making the
first set of labels for the joint state available within 3 rounds. Unlike [19, 17], the
input to the conforming protocol in our case not only includes the actual inputs
of the parties, but also the OT correlations. The generation of the latter (to be
specific, the output bit of an OT) is completed only at the end of round-2. As a
result, the public state of a party can be made available to all only in round-3
and the labels for the joint state in round-4. We overcome this challenge using
the double selection FdSel functionality. The double selection functionality allows
the parties to learn the labels corresponding to masked value of the correlation
bits at the end of round-3 allowing them to trigger the evaluation of garbled
circuits at the end of round-3.

Inputs: Pi for i ∈ [n] inputs xi.
Output: Every party outputs f(x1, . . . , xn).
Primitives and Functionalities: (a) A malicious-secure two-round OT with

equivocal receiver security (KOT,OT1,OT2,OT3) (see Section 3.1), (b) Func-
tionality FdSel (c) The conforming protocol Φ obtained as a result of the trans-
formation in Theorem 6 to Π as discussed (c) Garbling scheme (Garble,Eval)
(see Section ??) (d) A symmetric-key Encryption Scheme (Gen,Enc,Dec).

Common Random/Reference String: For each i ∈ [n], sample crsi ← KOT(1λ)
and output {crsi}i∈[n] as the common random/reference string.

Round-1: In the first round,
– Each Pi runs pre(1λ, i) to get vi.
– For each i, j ∈ [n] and i 6= j and for each k ∈ [κ], the parties invoke an

instance of functionality FdSel as follows:
• Pi, taking the role of P1, sends (input, (i, j, k), Pi, (α

i,j
k , ri,jk )) to FdSel where

αi,jk is a uniformly chosen bit and ri,jk := vi[GetIndex(i, j, k)].
• Pj , taking the role of P2, sends (input, (i, j, k), Pj , (y

i,j
k,0, y

i,j
k,1) to FdSel where

yi,jk,0, y
i,j
k,1 are uniformly chosen bits.

• For every s ∈ [n], Ps inputs (input, (i, j, k), Ps, (sk
s,i,j
k,0 , sks,i,jk,1 )) to FdSel

where sks,i,jk,0 , sks,i,jk,1 are sampled using Gen(1λ).
Round-2: In the second round, every Pi does the following

– It sets xparti := (xi, {αi,jk , yj,ik,0, y
j,i
k,1}j∈[n]\{i},k∈[κ]).

– It sets zparti := xparti ⊕ vi[(i− 1)`/n+ (n− 1)κ+ 1, i`/n].
– For each i ∈ [n] and for each t such that φt = (i, f, g, h) (Ai is the set of

such values of t), for each α, β ∈ {0, 1}, it computes: (otri,t,α,β , µi,t,α,β) ←
OT1(crsi, vi[h]⊕ NAND(vi[f ]⊕ α, vi[g]⊕ β)).

– It broadcasts
(
zparti , {otri,t,α,β}t∈Ai,α,β∈{0,1}

)
.

Protocol Πf
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Round-3: In the final round, each party Pi does the following:
– It sets st =

(
(0(n−1)κ‖zpart1 )||. . . ||(0(n−1)κ‖zpartn )

)
.

– It sets labi,T+1 := {labi,T+1
k,0 , labi,T+1

k,1 }k∈[`] where for each k ∈ [`] and b ∈
{0, 1}, labi,T+1

k,b := ⊥.
– for each t from T down to 1,

1. Let φt as (i∗, f, g, h).
2. If i = i∗, then it computes (C̃i,t, labi,t) ←

Garble(1λ, Ci,t[vi, {µi,t,α,β}α,β ,⊥, labi,t+1]) (where Ci,t is described
in Figure 8).

3. If i 6= i∗ then for every α, β ∈ {0, 1}, it sets otsi
∗,t,α,β ←

OT2(crsi
∗
, otri

∗,t,α,β , labi,t+1
h,0 , labi,t+1

h,1 ) and computes (C̃i,t, labi,t) ←
Garble(1λ, Ci,t[vi,⊥, {otsi,t,α,β}α,β , labi,t+1]) (where Ci,t is described in
Figure 8).

– Each Pi broadcasts {C̃i,t}t∈[T ], and for each j ∈ [n] and k 6∈ [(j −
1)`/n + 1, (j − 1)`/n + (n − 1)κ], Pi broadcasts labi,1k,st[k]. In addition, Pi

broadcasts for each j, j′ ∈ [n] such that j 6= j′ and k ∈ [κ],
(
cti,j,j

′

k,0 =

Enc(ski,j,j
′

k,0 , labi,1GetIndex(j,j′,k),0), cti,j,j
′

k,1 = Enc(ski,j,j
′

k,1 , labi,1GetIndex(j,j′,k),1)
)
.

Output: Each party Pi does the following:
– For each j, j′ ∈ [n] such that j 6= j′ and for each k ∈ [κ], let η :=

GetIndex(i, j, k) and do the following:
1. Receive (output, (j, j′, k), Pi, (zη, {sks,j,j

′

k,zη
}s∈[n])) from FdSel functionality.

2. Reset st[η] = zη.
3. For each s ∈ [n], set labs,1η,st[η] ← Dec(sks,j,j

′

k,st[η], ct
s,j,j′

k,st[η]).

– For every j ∈ [n], let l̃ab
j,1

= {labj,1k,st[k]}k∈[`], where
{labj,1k,st[k]}k∈[(j−1)`/n+1,(j−1)`/n+(n−1)κ] are decrypted as above and the
rest received from Pj ’s round-3 message.

– for each t from 1 to T do:
1. Parse φt as (i∗, f, g, h).

2. Compute ((α, β, γ), µ, l̃ab
i∗,t+1

) := Eval(C̃i
∗,t, l̃ab

i∗,t
).

3. Set st[h] := γ.
4. for each j 6= i∗ do:
(a) Compute (ots, {labj,t+1

k,st[k]}k∈[`]\{h}) := Eval(C̃j,t, l̃ab
j,t

).
(b) Recover labj,t+1

h,st[h] := OT3(crsi
∗
, ots, (γ, µ)).

(c) Set l̃ab
j,t+1

:= {labj,t+1
k,st[k]}k∈[`].

– Output post(st, vi).

Figure 9: Protocol Πf

Lemma 5. Let A be an (possibly malicious) adversary corrupting an arbitrary
subset of parties in the protocol Πf . There exists a simulator Sim such that for
any environment Z, EXECFf ,Sim,Z

c
≈ EXECΠf ,A,Z

We give the proof of this lemma in the full version.
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