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Abstract. Streaming algorithms are algorithms for processing large data
streams, using only a limited amount of memory. Classical streaming al-
gorithms typically work under the assumption that the input stream
is chosen independently from the internal state of the algorithm. Algo-
rithms that utilize this assumption are called oblivious algorithms. Re-
cently, there is a growing interest in studying streaming algorithms that
maintain utility also when the input stream is chosen by an adaptive ad-
versary, possibly as a function of previous estimates given by the stream-
ing algorithm. Such streaming algorithms are said to be adversarially-
robust.
By combining techniques from learning theory with cryptographic tools
from the bounded storage model, we separate the oblivious streaming
model from the adversarially-robust streaming model. Specifically, we
present a streaming problem for which every adversarially-robust stream-
ing algorithm must use polynomial space, while there exists a classical
(oblivious) streaming algorithm that uses only polylogarithmic space.
This is the first general separation between the capabilities of these two
models, resolving one of the central open questions in adversarial robust
streaming.
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1 Introduction

Consider a scenario in which data items are being generated one by one, e.g.,
IP traffic monitoring or web searches. Generally speaking, streaming algorithms
aim to process such data streams while using only a limited amount of mem-
ory, significantly smaller than what is needed to store the entire data stream.
Streaming algorithms have become a central and crucial tool for the analysis of
massive datasets.

A typical assumption when designing and analyzing streaming algorithms is
that the entire stream is fixed in advance (and is just provided to the streaming
algorithm one item at a time), or at least that the choice of the items in the
stream is independent of the internal state (and coin tosses) of the streaming
algorithm. We refer to this setting as the oblivious setting. Recently, there has
been a growing interest in streaming algorithms that maintain utility even when
the choice of stream items depends on previous answers given by the streaming
algorithm, and can hence depend on the internal state of the algorithm [21, 13,
14, 1, 2, 16, 7, 6, 18, 26]. Such streaming algorithms are said to be adversarially
robust.

Hardt and Woodruff [16] presented a negative result showing that, generally
speaking, linear streaming algorithms cannot be adversarially robust.5 This re-
sult does not rule out non-linear algorithms. Indeed, strong positive results were
shown by [6, 18, 26] who constructed (non-linear) adversarially robust algorithms
for many problems of interest, with small overhead compared to the oblivious
setting. This includes problems such as estimating frequency moments, counting
the number of distinct elements in the stream, identifying heavy-hitters in the
stream, estimating the median of the stream, entropy estimation, and more. The
strong positive results of [6, 18, 26] raise the possibility that adversarial robust-
ness can come “for free” in terms of the additional costs to memory, compared
to what is needed in the oblivious setting.

Question 1.1 Does adversarial streaming require more space than oblivious stream-
ing?

We provide a positive answer to this question. Specifically, we present a
streaming problem for which every adversarially-robust streaming algorithm
must use polynomial space, while there exists an oblivious streaming algorithm
that uses only polylogarithmic space.

1.1 Streaming against adaptive adversaries

Before describing our new results, we define our setting more precisely. A stream
of length m over a domain X consists of a sequence of updates x1, . . . , xm ∈ X.
For i ∈ [m] we write ~xi = (x1, . . . , xi) to denote the first i updates of the stream.
Let g : X∗ → R be a function (for example, g might count the number of distinct

5 A streaming algorithm is linear if for some (possibly randomized) matrix A, its
output depends only on A and Af , where f is the frequency vector of the stream.
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elements in the stream). At every time step i, after obtaining the next element
in the stream xi, our goal is to output an approximation for g(~xi). Throughout
the paper we use α for the approximation parameter and β for the confidence
parameter.

The adversarial streaming model, in various forms, was considered by [21, 13,
14, 1, 2, 16, 7, 6, 18, 26]. We give here the formulation presented by Ben-Eliezer
et al. [6]. The adversarial setting is modeled by a two-player game between a
(randomized) StreamingAlgorithm and an Adversary. At the beginning, we fix
a function g. Then the game proceeds in rounds, where in the ith round:

1. The Adversary chooses an update xi ∈ X for the stream, which can depend,
in particular, on all previous stream updates and outputs of
StreamingAlgorithm.

2. The StreamingAlgorithm processes the new update xi and outputs its cur-
rent response zi.

The goal of the Adversary is to make the StreamingAlgorithm output an
incorrect response zi at some point i in the stream, that is zi /∈ (1 ± α) · g(~xi).
For example, in the distinct elements problem, the adversary’s goal is that at
some step i, the estimate zi will fail to be a (1 + α)-approximation of the true
current number of distinct elements.

1.2 Our results

Loosely speaking, we show a reduction from a problem in learning theory, called
adaptive data analysis (ADA), to the problem of adversarial streaming. Our re-
sults then follow from known impossibility results for the adaptive data analysis
problem. In the ADA problem, given a sample S containing n independent sam-
ples from some unknown distribution D over a domain X, the goal is to provide
answers to a sequence of adaptively chosen queries w.r.t. D. Importantly, the
answers must be accurate w.r.t. the (unknown) underlying distribution D; not
just w.r.t. the empirical sample S. In more detail, in the ADA problem, on ev-
ery time step i we get a query qi : X → {0, 1}, and we need to respond with
an answer ai that approximates qi(D) , Ex∼D[qi(x)]. Observe that if all of the
queries were fixed before the sample S is drawn, then we could simply answer
each query qi with its empirical average qi(S) , 1

n

∑
x∈S qi(x). Indeed, by the

Hoeffding bound, in such a case these answers provide good approximations to
the true answers qi(D). Furthermore, the number of queries ` that we can sup-
port can be exponential in the sample size n. However, this argument breaks
completely when the queries are chosen adaptively based on previous answers
given by the mechanism, and the problem becomes much more complex. While,
information-theoretically, it is still possible to answer an exponential number of
queries (see [11, 5]), it is known that every computationally efficient mechanism
cannot answer more than n2 adaptive queries using a sample of size n.

We show that the ADA problem can be phrased as a streaming problem,
where the first n elements in the stream are interpreted as “data points” and later
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elements in the stream are interpreted as “queries”. In order to apply existing
impossibility results for the ADA problem, we must overcome the following two
main challenges.

Challenge 1 and its resolution. The difficulty in the ADA problem is to main-
tain accuracy w.r.t. the unknown underlying distribution (and not just w.r.t. the
given input sample, which is easy). In the streaming setting, however, there is no
underlying distribution, and we cannot require a streaming algorithm to be ac-
curate w.r.t. such a distribution. Instead, we require the streaming algorithm to
give accurate answers only w.r.t. the input sample (i.e., w.r.t. the dataset defined
by the first n elements in the stream). We then show that if these n elements are
sampled i.i.d. from some underlying distribution, then we can use compression
arguments to show that if the streaming algorithm has small space complexity,
and if its answers are accurate w.r.t. the empirical sample, then its answers must
in fact be accurate also w.r.t. this underlying distribution. In other words, even
though we only require the streaming algorithm to give accurate answers w.r.t.
the empirical sample, we show that if it uses small space complexity then its
answers must generalize to the underlying distribution. This allows us to formu-
late a link to the ADA problem. We remark that, in the actual construction, we
need to introduce several technical modifications in order to make sure that the
resulting streaming problem can be solved with small space complexity in the
oblivious setting.

Challenge 2 and its resolution. The impossibility results we mentioned for
the ADA problem only hold for computationally efficient mechanisms.6 In con-
trast, we aim for an information-theoretic separation. We therefore cannot apply
existing negative results for the ADA problem to our setting as is. Informally, the
reason that the negative results for the ADA problem only hold for computa-
tionally efficient mechanisms is that their constructions rely on the existence
of an efficient encryption scheme whose security holds under computational
assumptions. We replace this encryption scheme with a different scheme with
information-theoretic security against adversaries with bounded storage capabil-
ities. Indeed, in our setting, the “adversary” for this encryption scheme will be
the streaming algorithm, whose storage capabilities are bounded.

We obtain the following theorem.

Theorem 1.2 For every w, there exists a streaming problem over domain of
size poly(w) and stream length O(w5) that requires at least w space to be solved
in the adversarial setting to within (small enough) constant accuracy, but can be
solved in the oblivious setting using space O(log2(w)).

1.2.1 Optimality of our results in terms of the flip-number

6 While there exist information theoretic impossibility results for the ADA problem,
they are too weak to give a meaningful result in our context.
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The previous works of [6, 18, 26] stated their positive results in terms of the
following definition.

Definition 1.3 (Flip number [6]) Let g be a function defining a streaming
problem. The (α,m)-flip number of g, denoted as λ, is the maximal number of
times that the value of g can change (increase or decrease) by a factor of at least
(1 + α) during a stream of length m.

The works of [6, 26, 18] presented general frameworks for transforming an
oblivious streaming algorithm A into an adversarially robust streaming algo-
rithm B with space complexity (roughly)

√
λ · Space(A). That is, the results

of [6, 26, 18] showed that, generally, adversarial robustness requires space blowup
at most (roughly)

√
λ compared to the oblivious setting. For the streaming prob-

lem we present (see Theorem 1.2) it holds that the flip-number is O(w2). That
is, for every w, we present a streaming problem with flip-number λ = O(w2),
that requires at least w = Ω(

√
λ) space to be solved in the adversarial setting to

within (small enough) constant accuracy, but can be solved in the oblivious set-
ting using space O(log2(w)). This means that, in terms of the dependency of the
space complexity in the flip-number, our results are nearly tight. In particular,
in terms of λ, our results show that a blowup of Ω̃(

√
λ) to the space complexity

is generally unavoidable in the adversarial setting.

1.2.2 A reduction from adaptive data analysis

Informally, we consider the following streaming problem, which we call the
Streaming Adaptive Data Analysis (SADA) problem. On every time step i ∈ [m]
we get an update xi ∈ X. We interpret the first n updates in the stream
x1, . . . , xn as “data points”, defining a multiset S = {x1, . . . , xn}. This multiset
does not change after time n.

The next updates in the stream (starting from time i = n+1) define “queries”
q : X → {0, 1} that should be evaluated by the streaming algorithm on the
multiset S. That is, for every such query q, the streaming algorithm should
respond with an approximation of q(S) = 1

n

∑
x∈S q(x). A technical issue here

is that every such query is described using |X| bits (represented using its truth
table), and hence, cannot be specified using a single update in the stream (which
only consists of log |X| bits). Therefore, every query is specified using |X| updates
in the stream. Specifically, starting from time i = n+1, every bulk of |X| updates
defines a query q : X → {0, 1}. At the end of every such bulk, the goal of the
streaming algorithm is to output (an approximation for) the average of q on the
multiset S. On other time steps, the streaming algorithm should output 0.

As we mentioned, we use compression arguments to show that if the streaming
algorithm is capable of accurately approximating the average of every such query
on the multiset S, and if it uses small space, then when the “data points” (i.e.,
the elements in the first n updates) are sampled i.i.d. from some distribution
D on X, then the answers given by the streaming algorithm must in fact be
accurate also w.r.t. the expectation of these queries on D. This means that the
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existence of a streaming algorithm for the SADA problem implies the existence
of an algorithm for the adaptive data analysis (ADA) problem, with related
parameters. Applying known impossibility results for the ADA problem, this
results in a contradiction. However, as we mentioned, the impossibility results we
need for the ADA problem only hold for computationally efficient mechanisms.
Therefore, the construction outlined here only rules out computationally efficient
adversarially-robust streaming algorithms for the SADA problem. To get an
information-theoretic separation, we modify the definition of the SADA problem
and rely on cryptographic techniques from the bounded storage model.

Remark 1.4 In Section 6 we outline a variant of the SADA problem, which is
more “natural” in the sense that the function to estimate is symmetric. That is,
it does not depend on the order of elements in the stream. For this variant, we
show a computational separation (assuming the existence of a sub-exponentially
secure private-key encryption scheme).

2 Preliminaries

Our results rely on tools and techniques from learning theory (in particular
adaptive data analysis and compression arguments), and cryptography (in par-
ticular pseudorandom generators and encryption schemes). We now introduce
the needed preliminaries.

2.1 Adaptive data analysis

A statistical query over a domain X is specified by a predicate q : X → {0, 1}.
The value of a query q on a distribution D over X is q(D) = Ex∼D[q(x)]. Given
a database S ∈ Xn and a query q, we denote the empirical average of q on S as
q(S) = 1

n

∑
x∈S q(x).

In the adaptive data analysis (ADA) problem, the goal is to design a mecha-
nism M that answers queries w.r.t. an unknown distribution D using only i.i.d.
samples from it. Our focus is the case where the queries are chosen adaptively
and adversarially. Specifically, M is a stateful algorithm that holds a collection
of samples (x1, . . . , xn), takes a statistical query q as input, and returns an an-
swer z. We require that when x1, . . . , xn are independent samples from D, then
the answer z is close to q(D). Moreover we require that this condition holds for
every query in an adaptively chosen sequence q1, . . . , q`. Formally, we define an
accuracy game Accn,`,M,A between a mechanism M and a stateful adversary A
(see Algorithm 1).

Definition 2.1 ([11]) A mechanism M is (α, β)-statistically-accurate for `
adaptively chosen statistical queries given n samples if for every adversary A
and every distribution D,

Pr
S∼Dn

Accn,`,M,A(S)

[
max
i∈[`]
|qi(D)− zi| ≤ α

]
≥ 1− β. (1)



Separating Adaptive Streaming from Oblivious Streaming 7

Algorithm 1 The Accuracy Game Accn,`,M,A.

Input: A database S ∈ Xn.

1. The database S is given to M.

2. For i = 1 to `,

(a) The adversary A chooses a statistical query qi.

(b) The mechanism M gets qi and outputs an answer zi.

(c) The adversary A gets zi.

3. Output the transcript (q1, z1, . . . , q`, z`).

Remark 2.2 Without loss of generality, in order to show that a mechanism
M is (α, β)-statistically-accurate (as per Definition 2.1), it suffices to consider
only deterministic adversaries A. Indeed, given a randomized adversary A, if
requirement (1) holds for every fixture of its random coins, then it also holds
when the coins are random.

We use a similar definition for empirical accuracy:

Definition 2.3 ([11]) A mechanismM is (α, β)-empirically accurate for ` adap-
tively chosen statistical queries given a database of size n if for every adversary
A and every database S of size n,

Pr
Accn,`,M,A(S)

[
max
i∈[`]
|qi(S)− zi| ≤ α

]
≥ 1− β.

2.2 Transcript compressibility

An important notion that allows us to argue about the utility guarantees of an
algorithm that answers adaptively chosen queries is transcript compressibility,
defined as follows.

Definition 2.4 ([10]) A mechanism M is transcript compressible to b(n, `)
bits if for every deterministic adversary A there is a set of transcripts HA of size
|HA| ≤ 2b(n,`) such that for every dataset S ∈ Xn we have

Pr [Accn,`,M,A(S) ∈ HA] = 1.

The following theorem shows that, with high probability, for every query
generated throughout the interaction with a transcript compressible mechanism
it holds that its empirical average is close to its expectation.

Theorem 2.5 ([10]) Let M be transcript compressible to b(n, `) bits, and let
β > 0. Then, for every adversary A and for every distribution D it holds that

Pr
S∼Dn

Accn,`,M,A(S)

[∃i such that |qi(S)− qi(D)| > α] ≤ β,
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where

α = O

(√
b(n, `) + ln(`/β)

n

)
.

2.3 Pseudorandom generators in the bounded storage model

Our results rely on the existence of pseudorandom generators providing infor-
mation theoretic security against adversaries with bounded storage capabili-
ties. This security requirement is called the bounded storage model. This model
was introduced by Maurer [20], and has generated many interesting results,
e.g., [20, 8, 4, 3, 9, 12, 19, 17]. We give here the formulation presented by Vad-
han [24].

The bounded storage model utilizes a short seed K ∈ {0, 1}b (unknown to
the adversary) and a long stream of public random bits X1, X2, . . . (known to all
parties). A bounded storage model (BSM) pseudorandom generator is a function
PRG : {0, 1}a × {0, 1}b → {0, 1}c, typically with b, c � a. Such a scheme is
to be used as follows. Initially, two (honest) parties share a seed K ∈ {0, 1}b
(unknown to the adversary). At time t ∈ [T ], the next a bits of the public
stream (X(t−1)a, . . . , Xta) are broadcast. The adversary is allowed to listen to this
stream, however, it cannot store all of it as it has bounded storage capabilities.
The honest parties apply PRG(·,K) to this stream obtain c pseudorandom bits,
denoted as Yt ∈ {0, 1}c.

We now formally define security for a BSM pseudorandom generator. Let ρa
be the bound on the storage of the adversary A (we refer to ρ as the storage rate
of the adversary). We write St ∈ {0, 1}ρa to denote the state of the adversary at
time t. We consider the adversary’s ability to distinguish two experiments — the
“real” one, in which the pseudorandom generator is used, and an “ideal” one, in
which truly random bits are used. Let A be an arbitrary function representing
the way the adversary updates its storage and attempts to distinguish the two
experiments at the end.

Real Experiment:

• Let X = (X1, X2, . . . , XTa) be a sequence of uniformly random bits, let
K ← {0, 1}b be the key, and let the adversary’s initial state by S0 = 0ρa.
• For t = 1, . . . , T :

– Let Yt = PRG
(
X(t−1)a+1, . . . , Xta,K

)
∈ {0, 1}c be the pseudorandom

bits.
– Let St = A

(
Y1, . . . , Yt−1, St−1, X(t−1)a+1, . . . , Xta

)
∈ {0, 1}ρa be the

adversary’s new state.
• Output A (Y1, . . . , YT , ST ,K)

Ideal Experiment:

• Let X = (X1, X2, . . . , XTa) be a sequence of uniformly random bits, let
K ← {0, 1}b be the key, and let the adversary’s initial state by S0 = 0ρa.
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• For t = 1, . . . , T :

– Let Yt ← {0, 1}c be truly random bits.
– Let St = A

(
Y1, . . . , Yt−1, St−1, X(t−1)a+1, . . . , Xta

)
∈ {0, 1}ρa be the

adversary’s new state.

• Output A (Y1, . . . , YT , ST ,K) ∈ {0, 1}.

Note that at each time step we give the adversary access to all the past Yi’s
“for free” (i.e. with no cost in the storage bound), and in the last time step, we
give the adversary the adversary the key K.

Definition 2.6 ([24]) We call PRG : {0, 1}a × {0, 1}b → {0, 1}c an ε-secure
BSM pseudorandom generator for storage rate ρ if for every adversary A with
storage bound ρa, and every T ∈ N, the adversary A distinguishes between the
real and ideal experiments with advantage at most Tε. That is,∣∣∣∣Pr

real
[A (Y1, . . . , YT , ST ,K) = 1]− Pr

ideal
[A (Y1, . . . , YT , ST ,K) = 1]

∣∣∣∣ ≤ T · ε
Remark 2.7 No constraint is put on the computational power of the adversary
except for the storage bound of ρa (as captured by St ∈ {0, 1}ρa). This means
that the distributions of (Y1, . . . , YT , ST ,K) in the real and ideal experiments are
actually close in a statistical sense – they must have statistical difference at most
T · ε.

We will use the following result of Vadhan [24]. We remark that this is only
a special case of the results of Vadhan, and refer the reader to [24] for a more
detailed account.

Theorem 2.8 ([24]) For every a ∈ N, every ε > exp
(
−a/2O(log∗ a)

)
, and every

c ≤ a/4, there is a BSM pseudorandom generator PRG : {0, 1}a × {0, 1}b →
{0, 1}c such that

1. PRG is ε-secure for storage rate ρ ≤ 1/2.
2. PRG has key length b = O(log(a/ε)).
3. For every key K, PRG(·,K) reads at most h = O(c+ log(1/ε)) bits from the

public stream (nonadaptively).
4. PRG is computable in time poly(h, b) and uses workspace poly(log h, log b)

in addition to the h bits read from the public stream and the key of length b.

3 The Streaming Adaptive Data Analysis (SADA)
Problem

In this section we introduce a streaming problem, which we call the Streaming
Adaptive Data Analysis (SADA) problem, for which we show a strong positive
result in the oblivious setting and a strong negative result in the adversarial
setting.
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Let X = {0, 1}d × {0, 1}b be a data domain, let γ ≥ 0 be a fixed constant,
and let PRG : {0, 1}a × {0, 1}b → {0, 1}c be a BSM pseudorandom generator,
where c = 1. We consider the following streaming problem. On every time step
i ∈ [m] we get an update xi = (pi, ki) ∈ X. We interpret the first n updates in
the stream x1, . . . , xn as pairs of “data points” and their corresponding “keys”.
Formally, we denote by S the multiset containing the pairs x1, . . . , xn. For tech-
nical reasons,7 the multiset S also contains γn

1−γ copies of some arbitrary element
⊥. This multiset does not change after time n.

Starting from time j = n + 1, each bulk of (a + 1) · 2d updates re-defines a
“function” (or a “query”) that should be evaluated by the streaming algorithm
on the multiset S. This function is defined as follows.

1. For p ∈ {0, 1}d (in lexicographic order) do
(a) Let xp,1, . . . , xp,a ∈ X denote the next a updates, and let Γ p ∈ {0, 1}a

be the bitstring containing the first bit of every such update.
(b) Let xp,a+1 denote the next update, and let σp denote its first bit.
(c) For every k ∈ {0, 1}b, let Y pk = PRG(Γ p, k) and define f(p, k) = σp⊕Y pk .

2. Also set f(⊥) = 1.

This defines a function f :
(
{0, 1}d × {0, 1}b

)
∪ {⊥} → {0, 1}.

Definition 3.1 (The (a, b, d,m, n, γ)-SADA Problem) At the end of ev-
ery such bulk, defining a function f , the goal of the streaming algorithm is to
output (an approximation for) the average of f on the multiset S. On other time
steps, the streaming algorithm should output 0.

Remark 3.2 In the definition above, m is the total number of updates (i.e.,
the length of the stream), n is the number of updates that we consider as “date
points”, γ is a small constant, and a, b, d are the parameters defining the domain
and the PRG.

4 An Oblivious Algorithm for the SADA Problem

In the oblivious setting, we can easily construct a streaming algorithm for the
SADA problem using sampling. Specifically, throughout the first phase of the
execution (during the first n time steps) we maintain a small representative
sample from the “data items” (and their corresponding “keys”) from the stream.
In the second phase of the execution we use this sample in order to answer the
given queries. Consider Algorithm ObliviousSADA, specified in Algorithm 2.
We now analyze its utility guarantees. We will assume that ObliviousSADA is
executed with a sampling algorithm SAMP that returns a uniformly random
sample. This can be achieved, e.g., using Reservoir Sampling [25].

7 Specifically, recall that the error in the ADA problem is additive while the error in
the streaming setting is multiplicative. We add a (relatively small) number of ⊥’s to
S in order to bridge this technical gap.
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Algorithm 2 ObliviousSADA
Setting: On every time step we obtain the next update, which is an element of X =
{0, 1}d × {0, 1}b.
Algorithm used: A sampling algorithm SAMP that operates on a stream of elements
from the domain X and maintains a representative sample.

1. Instantiate algorithm SAMP.

2. REPEAT n times
(a) Obtain the next update in the stream x = (p, k).

(b) Output 0.

(c) Feed the update x to SAMP.

3. Feed (one by one) γn
1−γ copies of ⊥ to SAMP.

4. Let D denote the sample produced by algorithm SAMP.

5. REPEAT (each iteration of this loop spans over 2d(a+ 1) updates that define a
query)

(a) Let v denote the multiplicity of ⊥ in D, and set F = v
|D| .

(b) For every p ∈ {0, 1}d in lexicographic order do
i. Denote Kp = {k : (p, k) ∈ D}. That is, Kp is the set of all keys k such

that (p, k) appears in the sample D.

ii. REPEAT a times
– Obtain the next update x

– For every k ∈ Kp, feed the first bit of x to PRG(·, k).

– Output 0.

iii. For every k ∈ Kp, obtain a bit Yk from PRG(·, k).

iv. Obtain the next update and let σ be its first bit (and output 0).

v. For every k ∈ Kp such that σ⊕Yk = 1: Let v(p,k) denote the multiplicity

of (p, k) in D, and set F ← F +
v(p,k)
|D| .

(c) Output F .

Theorem 4.1 Algorithm ObliviousSADA is (α, β)-accurate for the SADA prob-
lem in the oblivious setting.

Proof. Fix the stream ~xm = (x1, . . . , xm). We assume that ObliviousSADA is ex-
ecuted with a sampling algorithm SAMP that returns a sample D containing |D|
elements, sampled uniformly and independently from S = (x1, . . . , xn,⊥, . . . ,⊥).
This can be achieved, e.g., using Reservoir Sampling [25]. As the stream is fixed
(and it is of length m), there are at most m different queries that are spec-
ified throughout the execution. By the Chernoff bound, assuming that |D| ≥
Ω
(

1
α2γ ln(mβ )

)
, with probability at least 1 − β, for every query f throughout

the execution we have that f(D) ∈ (1± α) · f(S). The theorem now follows by
observing that the answers given by algorithm ObliviousSADA are exactly the
empirical average of the corresponding queries on D. ut

Observation 4.2 For constant α, β, γ, using the pseudorandom generator from
Theorem 2.8, algorithm ObliviousSADA uses space O

((
log( 1

ε ) + b+ d
)
· log(m)

)
.
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Algorithm 3 AnswerQueries
Input: A database P ∈ ({0, 1}d)n containing n elements from {0, 1}d.
Setting: On every time step we get a query q : {0, 1}d → {0, 1}.
Algorithm used: An adversarially robust streaming algorithm A for the SADA prob-
lem with (α, β)-accuracy for streams of length m. We abstract the coin tosses of A
using two random strings, r1 and r2, of possibly unbounded length. Initially, we exe-
cute A with access to r1, meaning that every time it tosses a coin it gets the next bit
in r1. At some point, we switch the random string to r2, and henceforth A gets its coin
tosses from r2.
Algorithm used: BSM pseudorandom generator PRG : {0, 1}a × {0, 1}b → {0, 1}, as
in the definition of the SADA problem.

1. For every p ∈ {0, 1}d sample kp ∈ {0, 1}b uniformly.

2. Sample r1 ∈ {0, 1}ν uniformly, and instantiate algorithmA with read-once access
to bits of r1. Here ν bounds the number of coin flips made by A.

3. For every p ∈ P , feed the update (p, kp) to A.

4. Sample r2 ∈ {0, 1}ν uniformly, and switch the read-once access of A to r2. (The
switch from r1 to r2 is done for convenience, so that after Step 3 we do not need
to “remember” the position for the next coin from r1.)

5. REPEAT ` , m−n
(a+1)·2d times

(a) Obtain the next query q : {0, 1}d → {0, 1}.
(b) For every p ∈ {0, 1}d do

i. Sample Γ ∈ {0, 1}a uniformly.

ii. Feed a updates (one by one) to A s.t. the concatenation of their first
bits is Γ .

iii. Let Y = PRG(Γ, kp).

iv. Feed to A an update whose first bit is Y ⊕ q(p).
(c) Obtain an answer z from A.

(d) Output z.

Proof. The algorithm maintains a sampleD containingO(logm) elements, where
each element is represented using b+d bits. In addition, the pseudorandom gen-
erator uses O(log( 1

ε )) bits of memory, and the algorithm instantiates at most
|D| = O(logm) copies of it. ut

5 An Impossibility Result for Adaptive Streaming

Suppose that there is an adversarially robust streaming algorithm A for the
SADA problem. We use A to construct an algorithm that gets a sample P con-
taining n points in {0, 1}d, and answers adaptively chosen queries q : {0, 1}d →
{0, 1}. Consider Algorithm AnswerQueries, specified in Algorithm 3.

By construction, assuming that A is accurate for the SADA problem, we
get that AnswerQueries is empirically-accurate (w.r.t. its input database P ).
Formally,
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Claim 5.1 If A is (α, β)-accurate for the SADA problem, then AnswerQueries
is
(

α
1−γ , β

)
-empirically-accurate for m−n

(a+1)·2d adaptively chosen statistical queries

given a database of size n. Here γ is a fixed constant (mentioned above).

Proof sketch. Let q denote the query given at some iteration, and let f denote
the corresponding function specified to algorithm A during this iteration. The
claim follows from the fact that, by construction, for every (p, k) we have that
f(p, k) = q(p). Specifically, w.h.p., the answers given by A are α-accurate w.r.t.
P ∪ {⊥, . . . ,⊥}, and hence, α

1−γ -accurate w.r.t. P . ut

We now show that algorithm AnswerQueries is transcript-compressible. To
that end, for every choice of ~Γ ,~k, r1, r2 for the strings Γ , the keys k, and
the random bitstrings r1, r2 used throughout the execution, let us denote by
AnswerQueries~Γ ,~k,r1,r2 algorithm AnswerQueries after fixing these elements.

Claim 5.2 If algorithm A uses space at most w, then, for every ~Γ ,~k, r1, r2, we
have that algorithm AnswerQueries~Γ ,~k,r1,r2 is transcript-compressible to w bits.

Proof sketch. Assuming that the adversary who generates the queries q is deter-
ministic (which is without loss of generality) we get that the entire transcript is
determined by the state of algorithm A at the end of Step 3. ut

Remark 5.3 The “switch” from r1 to r2 is convenient in the proof of Claim 5.2.
Otherwise, in order to describe the state of the algorithm after Step 3 we need
to specify both the internal state of A and the position for the next coin from r1.

Combining Claims 5.1 (empirical accuracy), and 5.2 (transcript-compression),
we get the following lemma.

Lemma 5.4 Suppose that A is (α, β)-accurate for the SADA problem for streams
of length m using memory w. Then for every β′ > 0, algorithm AnswerQueries
is
(

α
1−γ + α′, β + β′

)
-statistically-accurate for ` = m−n

(a+1)·2d queries, where

α′ = O


√
w + ln( `β′ )

n

 .

Proof. Fix a distribution D over {0, 1}d and fix an adversary A that generates
the queries qi. Consider the execution of the accuracy game Acc (given in Algo-
rithm 1). By Claim 5.1,

Pr
S∼Dn

Accn,`,AnswerQueries,A(S)

[
∃i such that |qi(S)− zi| >

α

1− γ

]
≤ β,

where the zi’s denote the answers given by the algorithm. In addition, by Claim 5.2
and Theorem 2.5, for every fixing of ~Γ ,~k, r1, r2 we have that

Pr
S∼Dn

Accn,`,AnswerQueries,A(S)

[
∃i such that |qi(S)− qi(D)| > α′

∣∣∣~Γ ,~k, r1, r2] ≤ β′, (2)
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where

α′ = O

(√
w + ln(`/β′)

n

)
.

Since Inequality (2) holds for every fixing of ~Γ ,~k, r1, r2, it also holds when sam-
pling them. Therefore, by the triangle inequality and the union bound,

Pr
S∼Dn

Accn,`,AnswerQueries,A(S)

[
∃i such that |zi − qi(D)| > α

1− γ
+ α′

]

≤ Pr
S∼Dn

Accn,`,AnswerQueries,A(S)

[
∃i such that |qi(S)− zi| >

α

1− γ
or |qi(S)− qi(D)| > α′

]
≤ β + β′.

ut

To obtain a contradiction, we rely on the following impossibility result for
the ADA problem. Consider an algorithmM for the ADA problem that gets an
input sample P = (p1, . . . , pn) and answers (adaptively chosen) queries q. The
impossibility result we use states that ifM computes the answer to every given
query q only as a function of the value of q on points from P (i.e., only as a
function of q(p1), . . . , q(pn)), then, in general, M cannot answer more than n2

adaptively chosen queries. An algorithmM satisfying this restriction is called a
natural mechanism. Formally,

Definition 5.5 ([15]) An algorithm that takes a sample P and answers queries
q is natural if for every input sample P and every two queries q and q′ such that
q(p) = q′(p) for all p ∈ P , the answers z and z′ that the algorithm gives on
queries q and q′, respectively, are identical if the algorithm is deterministic and
identically distributed if the algorithm is randomized. If the algorithm is stateful,
then this condition should hold when the algorithm is in any of its possible states.

We will use the following negative result of Steinke and Ullman [23] (see
also [15, 22]).

Theorem 5.6 ([23]) There exists a constant c > 0 such that there is no natural
algorithm that is (c, c)-statistically-accurate for O(n2) adaptively chosen queries
given n samples over a domain of size Ω(n).

We have already established (in Lemma 5.4) that algorithm AnswerQueries
is statistically-accurate for ` = m−n

(a+1)·2d adaptively chosen queries, where ` can

easily be made bigger then n2 (by taking m to be big enough). We now want
to apply Theorem 5.6 to our setting in order to get a contradiction. However,
algorithm AnswerQueries is not exactly a natural algorithm (though, as we
next explain, it is very close to being natural). The issue is that the answers
produced by the streaming algorithm A can (supposedly) depend on the value
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Algorithm 4 AnswerQueriesOTP
Input: A database P ∈ ({0, 1}d)n containing n elements from {0, 1}d.
Setting: On every time step we get a query q : {0, 1}d → {0, 1}.
Algorithm used: An adversarially robust streaming algorithm A for the SADA prob-
lem with (α, β)-accuracy for streams of length m. We abstract the coin tosses of A
using two random strings, r1 and r2, of possibly unbounded length. Initially, we exe-
cute A with access to r1, meaning that every time it tosses a coin it gets the next bit
in r1. At some point, we switch the random string to r2, and henceforth A gets its coin
tosses from r2.
Algorithm used: BSM pseudorandom generator PRG : {0, 1}a × {0, 1}b → {0, 1}, as
in the definition of the SADA problem.

1. For every p ∈ {0, 1}d sample kp ∈ {0, 1}b uniformly.

2. Sample r1 ∈ {0, 1}ν uniformly, and instantiate algorithmA with read-once access
to bits of r1. Here ν bounds the number of coin flips made by A.

3. For every p ∈ P , feed the update (p, kp) to A.

4. Sample r2 ∈ {0, 1}ν uniformly, and switch the read-once access of A to r2. (The
switch from r1 to r2 is done for convenience, so that after Step 3 we do not need
to “remember” the position for the next coin from r1.)

5. REPEAT ` , m−n
(a+1)·2d times

(a) Obtain the next query q : {0, 1}d → {0, 1}.
(b) For every p ∈ {0, 1}d do

i. Sample Γ ∈ {0, 1}a uniformly.

ii. Feed a updates (one by one) to A s.t. the concatenation of their first
bits is Γ .

iii. If p ∈ P then let Y = PRG(Γ, kp). Otherwise sample Y ∈ {0, 1} uni-
formly.

iv. Feed to A an update whose first bit is Y ⊕ q(p).
(c) Obtain an answer z from A.

(d) Output z.

of the given queries outside of the input sample. Therefore, we now tweak algo-
rithm AnswerQueries such that it becomes a natural algorithm. The modified
construction is given in Algorithm AnswerQueriesOTP, where we marked the
modifications in red. Consider Algorithm AnswerQueriesOTP, specified in Algo-
rithm 4.

Lemma 5.7 Algorithm AnswerQueriesOTP is natural.

Proof sketch. This follows from the fact that the value of the given queries out-
side of the input sample P are completely “hidden” from algorithm A (namely,
by the classic “one-time pad” encryption scheme), and by observing that the
answer z given by algorithm AnswerQueriesOTP on a query q is determined by
the state of algorithm A at the end of the corresponding iteration of Step 5. ut

We now argue that the modification we introduced (from AnswerQueries
to AnswerQueriesOTP) has basically no effect on the execution, and hence, al-
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gorithm AnswerQueriesOTP is both natural and statistically-accurate. This will
lead to a contradiction.

Lemma 5.8 Suppose that A has space complexity w. Denote ` = m−n
(a+1)·2d . If

PRG is an ε-secure BSM pseudorandom generator against adversaries with stor-
age O(w+ `+b ·2d), then for every input database P and every adversary A, the
outcome distributions of Accn,`,AnswerQueries,A(P ) and Accn,`,AnswerQueriesOTP,A(P )
are within statistical distance 2dmε.

Proof. Recall that the outcome of Accn,`,AnswerQueries,A(P ) is the transcript of
the interaction (q1, z1, . . . , q`, z`), where qi are the queries given by A, and where
zi are the answers given by AnswerQueries. We need to show that the dis-
tributions of (q1, z1, . . . , q`, z`) during the executions with AnswerQueries and
AnswerQueriesOTP are close. Without loss of generality, we assume that A is
deterministic (indeed, if the lemma holds for every deterministic A then it also
holds for every randomized A). Hence, the transcript (q1, z1, . . . , q`, z`) is com-
pletely determined by the answers given by the mechanism. So we only need to
show that (z1, . . . , z`) is distributed similarly during the two cases. Note that,
as we are aiming for constant accuracy, we may assume that each answer zi is
specified using a constant number of bits (otherwise we can alter algorithm A
to make this true while essentially maintaining its utility guarantees).

Now, for every g ∈ {0, 1, 2, . . . , 2d}, let AnswerQueriesg denote an algorithm
similar to algorithm AnswerQueries, except that in Step 5(b)iii, we set Y =
PRG(Γ, kp) if p ∈ P or if p ≥ g, and otherwise we sample Y ∈ {0, 1} uniformly.
Observe that AnswerQueries0 ≡ AnswerQueries and that AnswerQueries2d ≡
AnswerQueriesOTP. We now show that for every g it hods that the statistical
distance between Accn,`,AnswerQueriesg,A(P ) and Accn,`,AnswerQueriesg+1,A(P ) is at
most εm, which proves the lemma (by the triangle inequality).

Fix an index g ∈ {0, 1, . . . , 2d − 1}. Let Acc∗g be an algorithm that simu-
lates the interaction between A and AnswerQueriesg on the database P , except
that during an iteration of Step 5b with p = g, algorithm Acc∗g gets Γ and Y
as input, where Γ is sampled uniformly and where Y is either sampled uni-
formly from {0, 1} or computed as Y = PRG(Γ, k) for some key k sampled
uniformly from {0, 1}b (unknown to AnswerQueriesg). These two cases corre-
spond to Accn,`,AnswerQueriesg+1,A(P ) and Accn,`,AnswerQueriesg,A(P ), respectively.

Observe that Acc∗g can be implemented with storage space at most Ŵ =

O(w+ `+ b ·2d), specifically, for storing the internal state of algorithm A (which
is w bits), storing all previous answers z1, z2, . . . , zi (which is O(`) bits), and
storing all the keys kp for p 6= g (which takes at most b · 2d bits). Note that, as
we assume that A is deterministic, on every step we can compute the next query
from the previously given answers.

Now, when Acc∗g is given truly random bits Y , then it can be viewed as an
adversary acting in the ideal experiment for PRG (see Section 2.3), and when
Acc∗g is given pseudorandom bits then it can be viewed as an adversary acting
in the real experiment. By Theorem 2.8, assuming that PRG is ε-secure against
adversaries with storage Ŵ , then the distribution on the storage of Acc∗g in the
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two cases is close up to statistical distance εm. The lemma now follows from
the fact that the sequence of answers (z1, . . . , z`) is included in the storage of
Acc∗g. ut

Combining Lemma 5.4 (stating that AnswerQueries is statistically-accurate)
with Lemma 5.8 (stating that AnswerQueries and AnswerQueriesOTP are close)
we get that AnswerQueriesOTP must also be statistically-accurate. Formally,

Lemma 5.9 Suppose that A is (α, β)-accurate for the SADA problem for streams
of length m using memory w, and suppose that PRG is an ε-secure BSM pseu-
dorandom generator against adversaries with storage O(w+ `+b ·2d), where ` =
m−n

(a+1)·2d . Then for every β′, ε > 0, we have that algorithm AnswerQueriesOTP is(
α

1−γ + α′, β + β′ + 2dmε
)

-statistically-accurate for ` queries where

α′ = O


√
w + ln( `β′ )

n

 .

So, Lemmas 5.7 and 5.9 state that algorithm AnswerQueriesOTP is both
natural and statistically-accurate. To obtain a contradiction to Theorem 5.6, we
instantiate Lemma 5.9 with the pseudorandom generator from Theorem 2.8. We
obtain the following result.

Theorem 5.10 For every w, there exists a streaming problem over domain of
size poly(w) and stream length O(w5) that requires at least w space to be solved
in the adversarial setting to within (small enough) constant accuracy, but can be
solved in the oblivious setting using space O(log2(w)).

Proof. To contradict Theorem 5.6, we want the (natural) algorithm
AnswerQueriesOTP to answer more than n2 queries over a domain of size Ω(n).
So we set ` = m−n

(a+1)·2d = Ω(n2) and d = O(1) + log n. Note that with these

settings we have m = Θ(n3 · a).
By Lemma 5.9, in order to ensure that AnswerQueriesOTP’s answers are

accurate (to within some small constant), we set n = Θ(w + log(m)) (large
enough). We assume without loss of generality that w ≥ log(m), as we can
always increase the space complexity of A. So n = Θ(w), and m = Θ(w3 · a).

In addition, to apply Lemma 5.9, we need to ensure that the conditions on
the security of PRG hold. For a small constant τ > 0, we use the pseudorandom
generator from Theorem 2.8 with ε = τ

m·2d = O( 1
mn ) = O( 1

mw ). To get security

against adversaries with storage O(w + ` + b · 2d) = O(w2 + bw), we need to
ensure

a = Ω
(
w2 + bw

)
and b = Ω

(
log
(a
ε

))
= Θ(log(am)).

It suffices to take a = Θ(w2) and b = Θ(log(wm)) = Θ(log(w)). Putting ev-
erything together, with these parameters, by Lemma 5.9, we get that algorithm
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AnswerQueriesOTP answers ` = Ω(n2) adaptive queries over domain of size
Ω(n), which contradicts Theorem 5.6. This means that an algorithm with space
complexity w cannot solve the (a, b, d,m, n, γ)-SADA problem to within (small
enough) constant accuracy, where a = Θ(w2), and b = d = O(log(w)), and
m = Θ(w5), and n = Θ(w).

In contrast, by Observation 4.2, for constant α, β, γ, the oblivious algorithm
ObliviousSADA uses space O(log2(w)) in this settings. ut

Remark 5.11 A natural requirement from a function g, defining a streaming
problem, is that the desired outcome does not change significantly from one up-
date to the next (such a function is said to be “insensitive”). In the SADA
problem, however, this is not the case. Nevertheless, our separation result can
be shown to hold also for such an insensitive function. For example, for a pa-
rameter k ∈ N, we could modify the definition of the SADA problem to ask for
the average of the last k given functions, instead of only the last function. This
would limit the changes to at most 1/k. Our separation continues to hold because
in the reduction from the ADA problem we could simply ask every query k times.

6 A Computational Separation

In the previous sections we presented a streaming problem that can be solved
in the oblivious setting using small space complexity, but requires large space
complexity to be solved in the adversarial setting. Even though this provides
a strong separation between adversarial streaming and oblivious streaming, a
downside of our result is that the streaming problem we present (the SADA
problem) is somewhat unnatural.

Question 6.1 Is there a “natural” streaming problem for which a similar sep-
aration holds?

In particular, one of the “unnatural” aspects of the SADA problem is that
the target function depends on the order of the elements in the stream (i.e., it
is an asymmetric function). Asymmetric functions can sometimes be considered
“natural” in the streaming context (e.g., counting the number of inversions in
a stream or finding the longest increasing subsequence). However, the majority
of the “classical” streaming problems are defined by symmetric functions (e.g.,
counting the number of distinct elements in the stream or the number of heavy
hitters).

Question 6.2 Is there a symmetric streaming problem that can be solved using
polylogarithmic space (in the domain size and the stream length) in the oblivious
setting, but requires polynomial space in the adversarial setting?

In this section we provide a positive answer to this question for computa-
tionally efficient streaming algorithms. That is, unlike our separation from the
previous sections (for the SADA problem) which is information theoretic, the
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separation we present in this section (for a symmetric target function) is com-
putational. We consider Question 6.2 (its information theoretic variant) to be
an important question for future work.

6.1 The SADA2 Problem

Let κ ∈ N be a security parameter, let m ∈ N denote the length of the stream,
and let d ∈ N and γ ∈ (0, 1) be additional parameters. Let (Gen,Enc,Dec)
be a semantically secure private-key encryption scheme, with key length κ and
ciphertext length ψ = poly(κ) for encrypting a message in {0, 1}. We consider
a streaming problem over a domain X = {0, 1}1+d+log(m)+ψ, where an update
x ∈ X has two possible types (the type is determined by the first bit of x):

Data update: x = (0, p, k) ∈ {0, 1} × {0, 1}d × {0, 1}κ,

Query update: x = (1, p, j, c) ∈ {0, 1} × {0, 1}d × {0, 1}logm × {0, 1}ψ.

We define a function g : X∗ → [0, 1] as follows. Let ~x = {x1, . . . , xi} be a
sequence of updates. For p ∈ {0, 1}d, let xi1=(0, p, ki1), . . . , xi`=(0, p, ki`) denote
all the “data updates” in ~x with the point p, and let ki1 , . . . , ki` denote their
corresponding keys (some of which may be identical). Now let kp = ki1∧· · ·∧ki` .
That is, kp is the bit-by-bit AND of all of the keys that correspond to “data
updates” with the point p. Now let S be the set that contains the pair (p, kp) for
every p such that there exists a “data update” in ~x with the point p. Importantly,
S is a set rather than a multiset. Similarly to the previous sections, we also add
special symbols, ⊥1, . . . ,⊥γ2d , to S. Formally, S is constructed as follows.

1. Initiate S = {⊥1, . . . ,⊥γ2d}.
2. For every p ∈ {0, 1}d:

(a) Let xi1=(0, p, ki1), . . . , xi`=(0, p, ki`) denote all the “data up-
dates” in ~x (i.e., updates beginning with 0) that contain the
point p.

(b) If ` > 0 then let kp = ki1 ∧ · · · ∧ ki` and add (p, kp) to S.

We now define the query q that corresponds to ~x. First, q(⊥1) = · · · =
q(⊥γ2d) = 1. Now, for p ∈ {0, 1}d, let

jmax
p = max

{
j : ∃c ∈ {0, 1}ψ such that (1, p, j, c) ∈ ~x

}
.

That is, jmax
p denotes the maximal index such that (1, p, jmax

p , c) appears in ~x for

some c ∈ {0, 1}ψ. Furthermore, let xi1=(1, p, jmax
p , ci1), . . . , xi`=(1, p, jmax

p , ci`)
denote the “query updates” with p and jmax

p . Now let cp = ci1 ∧ · · · ∧ ci` . That
is, cp is the bit-by-bit AND of all of the ciphertexts that correspond to “query
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Algorithm 5 ObliviousSADA2
Setting: On every time step we obtain the next update, which is an element of X =
{0, 1}1+d+log(m)+ψ.

1. Let D be a sample (multiset) containing O( 1
α2γ2

ln(m
β

)) i.i.d. elements chosen

uniformly from {0, 1}d∪{⊥1, . . . ,⊥γ2d}, and let D⊥ ← D∩{⊥1, . . . ,⊥γ2d}, and
let DX ← D \D⊥.

2. For every p ∈ DX , let inSp ← 0, let kp ← ~1, let jp ← 0, and let cp ← ~1.

3. REPEAT

(a) Obtain the next update in the stream x.

(b) If the first bit of x is 0 then
i. Denote x = (0, p, k).

ii. If p ∈ DX then let inSp ← 1 and let kp ← kp ∧ k.

(c) If the first bit of x is 1 then
i. Denote x = (1, p, j, c).

ii. If p ∈ DX and j = jp then set cp ← cp ∧ c.
iii. If p ∈ DX and j > jp then set cp ← c and jp ← j.

(d) Let v ← |{p ∈ DX : inSp = 1}|+ |D⊥| and let z ← |D⊥|
v

.

(e) For every p ∈ DX such that inSp = 1 set z ← z +
Dec(cp,kp)

v
.

(f) Output z.

updates” with p and jmax
p . If the point p does not appear in any “query update”

then we set cp = ~1 by default. The query q :
(
{0, 1}d × {0, 1}κ

)
→ {0, 1} is

defined as q(p, k) = Dec(cp, k).

Finally, the value of the function g on the stream ~x is defined to be

g(~x) = q(S) =
1

|S|

γ2d +
∑

(p,kp)∈S

q(p, kp)

 .
That is, g(~x) returns the average of q on S. Observe that g is a symmetric
function.

Definition 6.3 (The (d,m, κ, γ)-SADA2 Problem) At every time step i ∈
[m], after obtaining the next update xi ∈ X, the goal is to approximate g(x1, . . . , xi).

6.2 An Oblivious Algorithm for the SADA2 Problem

In this section we present an oblivious streaming algorithm for the SADA2 prob-
lem. The algorithm begins by sampling a multiset D containing a small number
of random elements from the domain {0, 1}d ∪ {⊥1, . . . ,⊥γ2d}. The algorithm
then proceeds by maintaining the set S and the query q (which are determined
by the input stream; as in the definition of the SADA2 problem) only w.r.t. ele-
ments that appear in the sample D. As we next explain, in the oblivious setting,
this suffices in order to accurately solve the SADA2 problem. Consider algorithm
ObliviousSADA2, given in Algorithm 5.
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Theorem 6.4 Assume that 2d = Ω( 1
γ ln(mβ )) and |D| ≥ Ω( 1

α2γ2 ln(mβ )). Then

ObliviousSADA2 is (α, β)-accurate for the SADA2 problem in the oblivious set-
ting.

Proof. Fix the stream ~xm = (x1, . . . , xm). Fix a time step i ∈ [m], and consider
the prefix ~xi = (x1, . . . , xi). Let Si = Si(~xi) be the set and let qi = qi(~xi) be
the query defined by ~xi, as in the definition of the SADA2 problem. Consider
the multiset T = {(p, kp) : p ∈ DX and inSp = 1} ∪ D⊥. Let zi be the answer
returned in Step 3f after precessing the update xi. Observe that zi is exactly the
average of qi on the multiset T , that is, zi = qi(T ).

Recall that |Si| ≥ γ2d, and recall that every element in D is sampled uni-

formly from {0, 1}d ∪ {⊥1, . . . ,⊥γ2d}. Therefore, ED[|D ∩ Si|] ≥ |D| · γ2d

2d+γ2d
=

|D| · γ
1+γ . By the Chernoff bound, assuming that 2d = Ω( 1

γ ln(mβ )), then with

probability at least 1 − β
m we have that |D ∩ Si| ≥ γ

2 |D|. We proceed with the
analysis assuming that this is the case.

Now, for every t ≥ γ
2 |D|, when conditioning on |D ∩ Si| = t we have that

T is a sample containing t i.i.d. elements from Si. In that case, again using the
Chernoff bound, with probability at least 1 − β

m we have that zi = qi(T ) ∈
(1 ± α) · qi(Si), assuming that t ≥ Ω( 1

α2γ ln(mβ )). This assumption holds when

|D| ≥ Ω( 1
α2γ2 ln(mβ )).

So, for every fixed i, with probability at least 1 − O( βm ) we have that zi ∈
(1±α)·qi(Si). By a union bound, this holds for every time step i with probability
at least 1−O(β). ut

Observation 6.5 For constant α, β, γ, algorithm ObliviousSADA2 uses space
Õ (log(m) · log |X|), in addition to the space required by Dec.

6.3 A Negative Result for the SADA2 Problem

We now show that the SADA2 problem cannot be solved efficiently in the adver-
sarial setting. To that end, suppose we have an adversarially robust streaming
algorithm A for the SADA2 problem, and consider algorithm AnswerQueries2
that uses A in order to solve the ADA problem. Recall that in the SADA2 prob-
lem the collection of “data updates” is treated as a set, while the input to an
algorithm for the ADA problem is a multiset. In the following claim we show
that AnswerQueries2 is empirically-accurate w.r.t. its input (when treated as a
set).

Claim 6.6 Let P ∈
(
{0, 1}d

)∗
be an input multiset, let P̃ be the set containing

every point that appears in P , and assume that |P̃ | = n. If A is (α, β)-accurate

for the SADA2 problem, then AnswerQueries2 (P ) is
(
α+ γ·2d

n , β
)

-empirically-

accurate for m−n
2d

adaptively chosen statistical queries w.r.t. the set P̃ .

Proof sketch. Let q denote the query given at some iteration, and let q~x and S~x
denote the query and the dataset specified by the updates given to algorithm A.
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Algorithm 6 AnswerQueries2
Input: A database P containing n elements from {0, 1}d.
Setting: On every time step we get a query q : {0, 1}d → {0, 1}.
Algorithm used: An adversarially robust streaming algorithm A for the (d,m, κ, γ)-
SADA2 problem with (α, β)-accuracy for streams of length m. We abstract the coin
tosses of A using two random strings, r1 and r2, of possibly unbounded length. Initially,
we execute A with access to r1, meaning that every time it tosses a coin it gets the
next bit in r1. At some point, we switch the random string to r2, and henceforth A
gets its coin tosses from r2.
Algorithm used: Encryption scheme (Gen,Enc,Dec), as in the definition of the
SADA2 problem.

1. For every p ∈ {0, 1}d sample kp ← Gen(1κ) independently.

2. Sample r1 ∈ {0, 1}ν uniformly, and instantiate algorithmA with read-once access
to bits of r1. Here ν bounds the number of coin flips made by A.

3. For every p ∈ P , feed the update (0, p, kp) to A.

4. Sample r2 ∈ {0, 1}ν uniformly, and switch the read-once access of A to r2. (The
switch from r1 to r2 is done for convenience, so that after Step 3 we do not need
to “remember” the position for the next coin from r1.)

5. For j = 1 to ` , m−n
2d

do

(a) Obtain the next query qj : {0, 1}d → {0, 1}.
(b) For every p ∈ {0, 1}d do

i. Let cp = Enc(qj(p), kp).

ii. Feed the update (1, p, j, cp) to A.

(c) Obtain an answer z from A.

(d) Output z.

The claim follows from the fact that, by construction, for every p ∈ P̃ we have
that q(p) = q~x(p, kp). Therefore,

q~x(S~x) =
1

|S~x|

γ · 2d +
∑
p∈P̃

q(p)

 =
1

n+ γ2d

γ · 2d +
∑
p∈P̃

q(p)


=

γ·2d
n

1 + γ·2d
n

+
1

n+ γ2d

∑
p∈P̃

q(p).

Therefore, q~x(S~x) ≤ γ·2d
n + q(P̃ ), and also q~x(S~x) ≥ 1

n+γ2d

∑
p∈P̃ q(p) which

means that q(P̃ ) ≤ n+γ2d

n · q~x(S~x) ≤ q~x(S~x) + γ2d

n . So, whenever the answers

given by A are α-accurate w.r.t. q~x(S~x), they are also
(
α+ γ2d

n

)
-accurate w.r.t.

P̃ . ut

We now show that algorithm AnswerQueries2 is transcript-compressible. To
that end, for every choice of ~k, r1, r2, ~rEnc for the keys k, the random bitstrings
r1, r2, and the randomness used by Enc at its different executions, let us denote
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by AnswerQueries2~k,r1,r2,~rEnc
algorithm AnswerQueries2 after fixing these ele-

ments.

Claim 6.7 If algorithm A uses space at most w, then, for every ~k, r1, r2, we
have that algorithm AnswerQueries2~k,r1,r2,~rEnc

is transcript-compressible to w
bits.

Proof sketch. Assuming that the adversary who generates the queries q is deter-
ministic (which is without loss of generality) we get that the entire transcript is
determined by the state of algorithm A at the end of Step 3. ut

Similarly to our arguments from Section 5, since algorithm AnswerQueries2
is both empirically-accurate and transcript-compressible, we get that it is also
statistically-accurate. Since we only argued empirical-accuracy when treating
the input multiset as a set, we will only argue for statistical-accuracy w.r.t. the
uniform distribution, where we have that the difference between a random set
and a random multiset is small. Formally,

Lemma 6.8 Suppose that A is (α, β)-accurate for the SADA2 problem for streams
of length m using memory w. Then for every β′ > 0, algorithm AnswerQueries2
is
(
α̃, β̃

)
-statistically-accurate for ` = m−n

2d
queries w.r.t. the uniform distribu-

tion over {0, 1}d, where β̃ = O
(
β + β′ + exp

(
− n2

3·2d

))
and

α̃ = O

α+
γ · 2d

n
+

n

2d
+

√
w + ln( `β′ )

n

 .

Proof sketch. The proof is analogous to the proof of Lemma 5.4, with the fol-
lowing addition. Let P be a multiset containing n i.i.d. uniform samples from
{0, 1}d, and let P̃ be the set containing every element of P . As we are considering
the uniform distribution on {0, 1}d, then by the Chernoff bound, with probabil-

ity at least 1− exp(− n2

3·2d ), it holds that the set P̃ and and the multiset P differ

by at most n2

2·2d points, i.e., by at most an n
2·2d -fraction of the points. In that

case, for every query q we have that |q(P )− q(P̃ )| ≤ n
2·2d . ut

So algorithm AnswerQueries2 is statistically-accurate. To obtain a contradic-
tion, we modify the algorithm such that it becomes natural. Consider algorithm
AnswerQueries2Natural. As before, the modifications are marked in red.

Observation 6.9 Algorithm AnswerQueries2Natural is natural.

Proof sketch. This follows from the fact that the value of the given queries out-
side of the input sample P are ignored, and are replaced with (encryptions of)
zero. ut

The following lemma follows from the assumed security of the encryption
scheme.
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Algorithm 7 AnswerQueries2Natural
Input: A database P containing n elements from {0, 1}d.
Setting: On every time step we get a query q : {0, 1}d → {0, 1}.
Algorithm used: An adversarially robust streaming algorithm A for the (d,m, κ, γ)-
SADA2 problem with (α, β)-accuracy for streams of length m. We abstract the coin
tosses of A using two random strings, r1 and r2, of possibly unbounded length. Initially,
we execute A with access to r1, meaning that every time it tosses a coin it gets the
next bit in r1. At some point, we switch the random string to r2, and henceforth A
gets its coin tosses from r2.
Algorithm used: Encryption scheme (Gen,Enc,Dec), as in the definition of the
SADA2 problem.

1. For every p ∈ {0, 1}d sample kp ← Gen(1κ) independently.

2. Sample r1 ∈ {0, 1}ν uniformly, and instantiate algorithmA with read-once access
to bits of r1. Here ν bounds the number of coin flips made by A.

3. For every p ∈ P , feed the update (0, p, kp) to A.

4. Sample r2 ∈ {0, 1}ν uniformly, and switch the read-once access of A to r2. (The
switch from r1 to r2 is done for convenience, so that after Step 3 we do not need
to “remember” the position for the next coin from r1.)

5. For j = 1 to ` , m−n
2d

do

(a) Obtain the next query qj : {0, 1}d → {0, 1}.
(b) For every p ∈ {0, 1}d do

i. If p ∈ P then let cp = Enc(qj(p), kp). Otherwise let cp = Enc(0, kp).

ii. Feed the update (1, p, j, cp) to A.

(c) Obtain an answer z from A.

(d) Output z.

Lemma 6.10 Suppose that (Gen,Enc,Dec) is semantically secure private-key
encryption scheme with key length κ = κ(m) against adversaries with time
poly(m). Fix α ∈ (0, 1). Let A be a data analyst with running time poly(m).
For a mechanism M that answers queries, consider the interaction between M
and A , and let E denote the event that M failed to be α-statistically accurate
at some point during the interaction. Then, for an input database P sampled
uniformly from {0, 1}d it holds that∣∣∣∣ Pr

P,A,AnswerQueries2(P )
[E]− Pr

P,A,AnswerQueries2Natural(P )
[E]

∣∣∣∣ ≤ negl(κ).

The proof of Lemma 6.10 is straightforward from the definition of security.
We give here the details for completeness. To that end, let us recall the formal
definition of security of an encryption scheme. Consider a pair of oracles E0
and E1, where E1(k1, . . . , kN , ·) takes as input an index of a key i ∈ [N ] and a
message M and returns Enc(M,ki), and where E0(k1, . . . , kN , ·) takes the same
input but returns Enc(0, ki). An encryption scheme (Gen,Enc,Dec) is secure if
no computationally efficient adversary can tell whether it is interacting with E0
or with E1. Formally,
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Algorithm 8 An adversary B for the encryption scheme

Algorithm used: An adversarially robust streaming algorithm A for the (d,m, κ, γ)-
SADA2 problem with (α, β)-accuracy for streams of length m.
Algorithm used: A data analyst A that outputs queries and obtains answers.
Algorithm used: Encryption scheme (Gen,Enc,Dec).
Oracle access: Eb(k1, . . . , kN , ·) where b ∈ {0, 1} and where N = 2d and k1, . . . , kN ←
Gen(1κ).

1. Let P be a multiset containing n uniform samples from {0, 1}d.
2. For every p ∈ P sample k̄p ← Gen(1κ) independently.

3. Instantiate algorithm A.

4. For every p ∈ P , feed the update (0, p, k̄p) to A.

5. Instantiate the data analyst A.

6. For j = 1 to ` , m−n
2d

do

(a) Obtain the next query qj : {0, 1}d → {0, 1} from the data analyst A.

(b) For every p ∈ {0, 1}d do

i. If p ∈ P then let cp = Enc(qj(p), k̄p). Otherwise let cp ← Eb(p, qj(p)).
ii. Feed the update (1, p, j, cp) to A.

(c) Obtain an answer z from A, and give z to A.

7. Output 1 if and only if event E occurs.

Definition 6.11 Let m : R → R be a function. An encryption scheme
(Gen,Enc,Dec) is m-secure if for every N = poly(m(κ)), and every poly(m(κ))-
time adversary B, the following holds.∣∣∣∣∣∣ Pr

k1,...,kN
B,Enc

[
BE0(k1,...,kN ,·) = 1

]
− Pr
k1,...,kN
B,Enc

[
BE1(k1,...,kN ,·) = 1

]∣∣∣∣∣∣ = negl(κ),

where the probabilities are over sampling k1, . . . , kN ← Gen(1κ) and over the
randomness of B and Enc.

Remark 6.12 When m is the identity function we simply say that
(Gen,Enc,Dec) is secure. Note that in this case, security holds against all ad-
versaries with runtime polynomial in the security parameter κ. We will further
assume the existence of a sub-exponentially secure encryption scheme. By that
we mean that there exist a constant τ > 0 such that (Gen,Enc,Dec) is m-secure
for m(κ) = 2κ

τ

. That is, we assume the existence of an encryption scheme in
which security holds agains all adversaries with runtime polynomial in 2κ

τ

.

To prove Lemma 6.10 we construct an adversary B for (Gen,Enc,Dec) such
that its advantage in breaking the security of this scheme is exactly the difference
in the probability of event E between the execution with AnswerQueries2 or
with AnswerQueries2Natural. This implies that the difference between these
two probabilities is negligible.
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Proof of Lemma 6.10. Let A be a data analyst with running time poly(m), and
consider algorithm B. First observe that if A and A are computationally efficient
(run in time poly(m)) then so is algorithm B.

Now observe that when the oracle is E1 and when k1, . . . , kN are chosen
randomly from Gen(1κ) then BE1(k1,...,kN ,·) simulates the interaction between
A and AnswerQueries2 on a uniformly sampled database P . Similarly, when
the oracle is E0 and when k1, . . . , kN are chosen randomly from Gen(1κ) then
BE0(k1,...,kN ,·) simulates the interaction between A and AnswerQueries2Natural
on a uniformly sampled database P . Thus,∣∣∣∣ Pr

P,A,AnswerQueries2(P )
[E]− Pr

P,A,AnswerQueries2Natural(P )
[E]

∣∣∣∣
=

∣∣∣∣∣∣ Pr
k1,...,kN
B,Enc

[
BE1(k1,...,kN ,·) = 1

]
− Pr
k1,...,kN
B,Enc

[
BE0(k1,...,kN ,·) = 1

]∣∣∣∣∣∣ = negl(κ).

ut

So, algorithm AnswerQueries2Natural is natural, and when A and A are
computationally efficient, then the probability that AnswerQueries2Natural
fails to be statistically-accurate is similar to the probability that AnswerQueries2
fails, which is small. We therefore get the following lemma.

Lemma 6.13 Algorithm AnswerQueries2Natural is natural. In addition, if
(Gen,Enc,Dec) is an m-secure private-key encryption scheme with key length
κ = κ(m), and if A is an adversarially robust streaming algorithm for the
(d,m, κ, γ)-SADA2 problem with space w and runtime poly(m), then algorithm

AnswerQueries2Natural is
(
α̃, β̃

)
-statistically-accurate for ` = m−n

2d
queries

w.r.t. the uniform distribution over {0, 1}d, and w.r.t. a data analyst A with

running time poly(m), where β̃ = O
(
β + β′ + exp

(
− n2

3·2d

)
+ negl(κ)

)
and

α̃ = O

α+
γ · 2d

n
+

n

2d
+

√
w + ln( `β′ )

n

 .

We now restate Theorem 5.6, in which we simplified the results of Steinke
and Ullman. In this section we use the stronger formulation of their results, given
as follows.

Theorem 6.14 ([23]) There exists a constant c > 0 such that no natural al-
gorithm is (c, c)-statistically-accurate for O(n2) adaptively chosen queries given
n samples over a domain of size Ω(n). Furthermore, this holds even when as-
suming that the data analyst is computationally efficient (runs in time poly(n2))
and even when the underlying distribution is the uniform distribution.

Combining Lemma 6.13 with Theorem 6.14 we obtain the following result.
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Theorem 6.15 Assume the existence of a sub-exponentially secure private-key
encryption scheme. Then, the (d=Θ(logm),m, κ= polylog(m), γ=Θ(1))-SADA2
problem can be solved in the oblivious setting to within constant accuracy using
space polylog(m) and using polylog(m) runtime (per update). In contrast, every
adversarially robust algorithm for this problem with poly(m) runtime per update
must use space poly(m).
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