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Abstract. We consider the question of minimizing the round complexity
of secure multiparty computation (MPC) protocols that make a black-box
use of simple cryptographic primitives with security against any number
of malicious parties. In the plain model, previous black-box protocols
required a high constant number of rounds (>15). This is far from the
known lower bound of 4 rounds for protocols with black-box simulators.
When allowing random oblivious transfer (OT) correlations, 2-round pro-
tocols making black-box use of a pseudorandom generator were known.
However, such protocols were obtained via a round-collapsing “protocol
garbling” technique that has poor concrete efficiency and makes non-
black-box use of an underlying maliciously secure protocol.
We improve this state of affairs by presenting the following types of
black-box protocols.
– 4-round “pairwise MPC” in the plain model. This round-

optimal protocol enables each ordered pair of parties to compute
a function of both inputs whose output is delivered to the second
party. The protocol makes black-box use of any public-key encryp-
tion (PKE) with pseudorandom public keys. As a special case, we
get a black-box round-optimal realization of secure (copies of) OT
between every ordered pair of parties.

– 2-round MPC from OT correlations. This round-optimal pro-
tocol makes a black-box use of any general 2-round MPC protocol
satisfying an augmented notion of semi-honest security. In the two-
party case, this yields new kinds of 2-round black-box protocols.

– 5-round MPC in the plain model. This protocol makes a black-
box use of PKE with pseudorandom public keys, and 2-round obliv-
ious transfer with “semi-malicious” security.

A key technical tool for the first result is a novel combination of split-state
non-malleable codes (Dziembowski, Pietrzak, and Wichs, JACM ’18)
with standalone secure two-party protocols to construct non-malleable
two-party protocols. The second result is based on a new round-optimized
variant of the “IPS compiler” (Ishai, Prabhakaran and Sahai, Crypto ’08).
The third result is obtained via a specialized combination of these two
techniques.



1 Introduction

Minimizing the round complexity of cryptographic protocols has been a central
theme of research in the past few decades. Much of this research focused on the
question of minimizing the round complexity of protocols for secure multiparty
computation (MPC), both in the general case as well as for special tasks of inter-
est such as zero-knowledge proofs, oblivious transfer (OT), or coin-tossing. This
question is motivated not only by its direct relevance to the latency of protocols
running over real-life networks, but also as an intriguing theoretical challenge
that often inspires new ideas and serves as a test bed for new techniques.

The round complexity of MPC. We consider the standard setting of MPC
with an arbitrary number of malicious parties, namely parties that are corrupted
by a central adversary who may arbitrarily change their behavior. What do we
know about the round complexity of MPC in this setting? Allowing a common
random string (CRS) setup, it was recently shown [13, 28] that 2-roundMPC pro-
tocols are possible under the (minimal) assumption that 2-round OT exists in the
CRS model. This round complexity is clearly optimal, even in the easier setting of
semi-honest adversaries who send messages as instructed by the protocol. In the
plain model, without any setup, a long line of works [27, 15, 6, 19, 54, 10, 9, 40]
has culminated in 4-round protocols that rely on the minimal assumption that
a 4-round OT protocol exists [19]. This round complexity is known to be opti-
mal for protocols that admit a black-box simulator [30, 52, 27]. All of the above
4-round protocols are of this kind.

Black-box constructions. Another central research theme in cryptography is
obtaining black-box constructions of higher-level primitives from simpler lower-
level primitives. A black-box construction of X from Y , also known as a (fully)
black-box reduction from X to Y [59], specifies an implementation of X that
only has oracle access to the input-output relation of Y , without being given
any explicit representation of Y , e.g., in the form of a Boolean circuit or a Tur-
ing Machine. Moreover, it is required that the security reduction be black-box
in the sense that any adversary AX “attacking” X can be used as a black-box
to obtain an adversary AY who obtains a similar advantage in attacking Y .
Originating from the pioneering work of Impagliazzo and Rudich [43], a long
line of works study the landscape of black-box reductions between natural cryp-
tographic primitives. More relevant to our work is the effort to replace known
instances of non-black-box constructions, where X requires access to the code of
Y , by black-box constructions.

In the MPC context, early examples of results along this line include a black-
box construction of constant-round honest-majority MPC protocols from one-
way functions [22] (replacing an earlier non-black-box construction from [12])
and a black-box construction of malicious-secure OT from semi-honest OT [39]
(replacing a non-black-box construction of [31]). Beyond the theoretical inter-
est in understanding the tightness of the relation between primitives, the goal
of replacing non-black-box constructions by black-box counterparts is strongly
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motivated by asymptotic and concrete efficiency. A well-known example in the
context of MPC is the non-black-box OT extension construction of Beaver [11],
which was replaced by a much more efficient black-box construction from [44]
that is commonly used as a basis for fast MPC implementations. We use the
term black-box MPC to refer generically to an MPC protocol obtained via a
black-box construction from simple low-level primitives (such as OT) that can
be easily and efficiently constructed from standard cryptographic assumptions.

Round complexity of black-box MPC. Interestingly, all of the round-optimal
MPC protocols in the standard setting we consider, including those mentioned
above, make non-black-box use of the underlying primitives. In the case of 2-
round MPC protocols in the CRS model, this is known to be inherent (even for
the easier goal of semi-honest security), at least for black-box constructions from
2-round OT or any other 2-party protocol [7]. However, no such impossibility re-
sult is known for 4-round MPC protocols in the plain model.

In the two-party case, a 4-round black-box protocol is known for one-sided
functionalities that deliver output to only one of the two parties [57, 24]. The
most general protocol of this kind makes a black-box use of any public-key en-
cryption (PKE) with pseudorandom public keys, which can be easily constructed
from most standard cryptographic assumptions [24]. This implies a similar 5-
round protocol for two-sided functionalities.

In contrast, for a general number of parties, all known constant-round proto-
cols are either complex and inefficient, or resort to idealized models such as the
Random Oracle (RO) model to achieve better efficiency but only heuristic secu-
rity. Despite the significant body of work on the round complexity of black-box
MPC and related primitives in the plain model, the best exact round complexity
that follows from existing works [49, 60, 32] is greater than 15 (see Section 1.2).
Recent attempts to minimize round complexity [27, 15, 6, 19, 54, 10, 9] have led
to complex protocols that make heavy non-black-box use of cryptography. This
gap gives rise to the first motivating question for our work.

What is the minimal round complexity of black-box MPC in the plain model?
Must we necessarily resort to idealized models to achieve simplicity and/or

efficiency?

Round complexity of black-box protocol transformations. It turns out
that if “plain model” is relaxed to allow a simple setup in the form of random OT
correlations between each pair of parties, the first part of the above question has
been settled. Concretely, given an OT correlation setup, which can be generated
with good concrete efficiency [44, 14], there is a 2-round MPC protocol making a
black-box use of a pseudorandom generator [26]. However, this 2-round protocol
is quite complex and inefficient, as it is obtained by applying a heavily non-
black-box “protocol garbling” transformation [28, 13] to an underlying multi-
round (information-theoretic) MPC protocol. This not only hurts asymptotic
and concrete efficiency, but also rules out applying this transformation while
respecting a black-box use of an underlying primitive. The latter includes a
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black-box use of an algebraic structure (e.g., a big finite field), a cryptographic
primitive (e.g., homomorphic encryption or even a random oracle), or an ideal
functionality oracle (e.g., OT or its arithmetic variant OLE). This is similar to
the classical non-black-box protocol transformation from semi-honest MPC to
malicious MPC, due to Goldreich, Micali, and Wigderson [31], which is limited
in the same way.

In contrast, “black-box protocol transformations” from weak MPC proto-
cols to stronger ones, commonly known as “MPC-in-the-head” transformations
[46, 49, 50], have successfully avoided these limitations. In a nutshell, such trans-
formations obtain a strong MPC protocol for f (say, with malicious security)
by making a black-box use of any weak MPC protocol (say, with semi-honest
security) for a related functionality f ′. The relation between f and f ′ needs
to be restricted in some way. Typically, f ′ is a next-message function of (an
information-theoretic) weak MPC protocol for f .

This black-box protocol transformation paradigm, systematically studied in
[48], has not only given rise to new theoretical feasibility and efficiency results,
but it has also led to practical zero-knowledge proof systems [29, 5], digital
signatures [16, 51], and MPC protocols [41]. The question we ask is whether one
can obtain a similar black-box protocol transformation in the context of 2-round
MPC with OT correlation setup:

Are there useful kinds of “black-box protocol transformations” from 2-round
semi-honest MPC to 2-round malicious MPC with OT correlation setup?

This question is particularly motivated in the two-party case, where there are
many different techniques for efficient 2-round semi-honest protocols that make
black-box use of algebraic or cryptographic primitives.

1.1 Our Contributions

We make progress on the aforementioned questions by obtaining the following
types of round-efficient black-box protocols.

Black-box 4-Round “Pairwise MPC” in the Plain Model. Our first result
addresses the first question by settling the round complexity of black-box MPC
for a restricted but useful class of functionalities. Concretely, we get a 4-round
black-box protocol for any pairwise MPC functionality that enable each ordered
pair of parties to simultaneously compute a function of their inputs, whose out-
put is delivered to the second party. The protocol makes a black-box use of any
public-key encryption (PKE) with pseudorandom public keys (which can be in-
stantiated based on CDH, LWE and LPN), similar to the 4-round 2-party OT
protocol of [24].

Informal Theorem 1 Let f be a pairwise MPC functionality. Assume the ex-
istence of a public-key encryption with pseudorandom public keys. There exists a
four round black-box MPC protocol in the plain model that securely implements
f against static corruptions of all-but-one parties.
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The central challenge in the pairwise MPC setting is to develop two-party
protocols that remain secure when executed in parallel. We develop new black-box
protocols for this setting, starting with the case of OT protocols, and generalizing
via the result of [45] to any two-party functionality. To this end, a technical
contribution of our work is a novel combination of split-state non-malleable
codes [23, 18] with standalone secure two-party protocols to obtain black-box,
non-malleable two-party protocols.

The resulting pairwise MPC can be used to generate OT correlations in
a preprocessing phase, as required by the 2-round black-box protocol of [26].
This results in a 6-round MPC protocol making black-box use of PKE with
pseudorandom public keys. While this already constitutes a major improvement
over the state of the art, it is still two rounds away from the 4-round lower
bound. Perhaps more importantly, as discussed above, the [26] approach employs
a round-collapsing “protocol garbling” that limits its efficiency and applicability
to protocols that make black-box use of algebraic or cryptographic primitives.
Motivated by both limitations, we would like to replace the protocol garbling
technique by a black-box protocol transformation that takes advantage of OT
correlations.

An “IPS-style Compiler” for 2-round MPC. Our second main contribu-
tion is a new black-box protocol transformation obtained via a round-optimized
variant of the “IPS compiler” [49]. This transformation uses a 2-round honest-
majority MPC protocol from [47, 58] to transform in a black-box way any 2-
round MPC protocol with an augmented variant of semi-honest security to ob-
tain a 2-round MPC protocol with malicious security. The transformation relies
on a special form of OT correlations (denoted as watchlist correlations) that can
be generated via the above mentioned pairwise MPC functionality. Specifically,
the watchlist correlations model outputs an n-party correlation between (n− 1)
senders and a single receiver, where each sender Si for i ∈ [n − 1] obtains a
random set of m strings xi,1, . . . , xi,m, and the receiver obtains a random subset
K ⊂ [m] of a fixed size, as well as the values {xi,j}i∈[n−1],j∈[k]. Combined with
our first main result, this yields the same kind of 6-round black-box protocol
obtained via [26], but with the advantage of making a black-box use of an aug-
mented semi-honest protocol (as opposed to a non-black-box use of a malicious
protocol incurred by the protocol garbling technique).

The augmented semi-honest security requirement combines the so-called semi-
malicious security [8], which is satisfied by most natural 2-round semi-honest
protocols, with a form of adaptive security with erasures. The latter is satisfied
by all natural information-theoretic protocols (with standard forms of setup), as
well as by computationally secure protocols with pre-processing. Concretely, we
show the protocol from [26] in the OT correlations model and the protocol from
[55] in the OLE correlations model satisfy augmented semi-honest security and
thus, can be used in our compiler.

Informal Theorem 2 Let f be an arbitrary multiparty functionality. Consider
the client-server MPC protocol from [47] that securely computes f . Let f ′ be
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the function computed by the servers in this protocol. There exists a black-box
transformation from a two-round MPC protocol for f ′ satisfying augmented semi-
honest security to a two-round malicious secure protocol for computing f in the
watchlist correlations model.

Towards concretely efficient 2-sided NISC. An interesting use case for the above
result is the 2-round, secure two-party protocol in which both parties get an
output. This should be contrasted with the standard notion of non-interactive
secure computation (NISC) [45] that applies to one-sided functionalities. Note
that this kind of 2-sided NISC cannot be obtained by simply running two par-
allel instances of standard NISC, since even if we ignore parallel composition
issues, there is no mechanism to enforce consistency between the inputs used in
these instances (unless we rely on zero-knowledge proofs and make non-black-
box use of cryptography). The only alternative black-box approach to 2-sided
NISC over OT correlations we are aware of is via the protocol garbling technique
that garbles the code of a malicious secure protocol and thus, has prohibitive
computational and communication cost. Even in the 1-sided case, existing pro-
tocols from [45, 1, 56, 42, 17] are heavily tailored to specific garbling techniques
and do not make a black-box use of an underlying semi-honest protocol.

We note that techniques developed in the context of an “IPS-style compiler"
in the two-round setting gives a new approach for constructing protocols for the
2-sided NISC problem. Specifically, if we use [47, 58] as the outer protocol and
use the simple two-sided version of Yao’s protocol (using Boolean garbling in the
OT correlations model) as the inner protocol, we obtain a 2-sided NISC protocol
that is secure against malicious adversaries in the OT correlations model.5 In
Section 8.5 of the full version, we suggest some optimizations to improve the
concrete efficiency.

Black-box 5-Round MPC in the Plain Model. Our third and final result
uses a specialized combination of the previous contributions to get “one round
away” from settling the main open question about the round complexity of black-
box MPC. Concretely, we get a 5-round MPC protocol that makes a black-box
use of PKE with pseudorandom public keys (as in the first contribution), along
with any 2-round OT protocol with “semi-malicious” security. The latter security
requirement is a very mild strengthening of semi-honest security in the context
of 2-round OT protocols, and is satisfied by most 2-round OT protocols from the
literature (for instance, it can be instantiated from standard assumptions such
as DDH, LWE, QR).

Informal Theorem 3 Let f be an arbitrary multiparty functionality. Assume
the existence of a public key encryption with pseudorandom public keys and a
two-round oblivious transfer protocol with semi-malicious security. There exists
a five-round black-box protocol in the plain model that securely implements f
against malicious adversaries that statically corrupts upto all-but-one parties.
5 As we noted before, for the case of constant number of parties, watchlist correlations
reduces to standard OT correlations.
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1.2 Related Work

In this subsection, we give a brief overview of the two main approaches taken by
prior work obtaining black-box MPC protocols in the plain model.

Coin tossing based approach. The main idea in this approach is to use a black-
box simulatable coin tossing protocol to setup a CRS and then use black-box
MPC protocols (such as [GIS18]) in the CRS model. Roughly, to generate the
CRS, the idea is for each party to commit to a random string ri and in a later
step, for all parties to reveal their coins. To ensure that malicious parties cannot
set their randomness as a function of that of other honest players, players should
use a (concurrent) non-malleable commitment in the commit phase.

But the main bottleneck to obtaining such a coin tossing protocol is achiev-
ing simulatability. To achieve the simulation guarantee and allow a simulator
to “force” the output of the coin toss to be a certain value6, one would need to
rely zero-knowledge protocols, which if applied naively make non-black-box use
of cryptography. Even if one were able to achieve simulation-based guarantees
via a specific protocol, one would need to tailor this to prove statements about
construction of bounded concurrent non-malleable commitment w.r.t. commit-
ment against synchronising adversaries, for which no round efficient black-box
constructions exist. More specifically, [35] gives a black-box protocol but the
number of rounds of this protocol is greater than 18 (the coin tossing requires at
least two more rounds. [36] gives a 3-round black-box construction of NMCom
but is only secure in the standalone setting. The other round efficient construc-
tions of concurrent NMCom [37, 20, 21, 53] make non-black use of cryptography.

IPS compiler based approach. The IPS compiler [49] gives a black-box MPC
protocol in the OT hybrid model. The main challenge in instantiating this ap-
proach in the plain model is in constructing a protocol that securely realizes
the ideal OT functionality. In particular, we need a protocol that realizes the
ideal OT functionality between every ordered pair of parties. [60] gave a non-
constant round black-box way to realize this which was improved by [32] who
gave a constant round protocol. The main component in the constant round
protocol is again a constant round black-box bounded concurrent non-malleable
commitment wrt replacement (which is weaker than the traditional definition of
non-malleable commitment wrt commitment). Even if we rely on a three-round
black-box version of such a non-malleable commitment from [34], the OT pro-
tocol requires at least 12 rounds of communication. A straightforward way of
combining this with the IPS approach incurs at least four more rounds.

2 Technical Overview

In this section, we provide an overview of the key technical ideas used in con-
structing a four round, black-box pairwise MPC in the plain model. One of the
6 Note that this corresponds to the programmability requirement.
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key building blocks used in this construction is a watchlist protocol. We give a
construction of this protocol based on any public-key encryption with pseudo-
random public keys and we elaborate on this next.

2.1 The Watchlist Protocol

We start by describing the ideal version of the watchlist functionality. The watch-
list functionality is nothing but an implementation of a k-out-of-m oblivious
transfer between each ordered pair of parties. Specifically, each ordered pair Pi
and Pj execute a k-out-of-m OT where Pi acts as a receiver and Pj acts as
a sender. We observe that the k-out-of-m OT is a one-sided functionality and
hence, this can be realized if parties have pairwise access to independent copies
of the ideal OT functionality [49, 45]. We call this as simultaneous secure OT
and would like to securely realize this ideal functionality in the plain model in
the presence of arbitrary malicious corruptions.

A Starting Point. A natural first attempt is to just have each pair of parties
simultaneously execute a two-party secure protocol computing the k-out-of-m
OT functionality. Such a protocol can be realized based on black-box use of any
public key encryption scheme with pseudorandom public keys [24, 57].

Unfortunately, this does not securely emulate access to independent copies of
the ideal OT functionality between pairs of participants, because this protocol
satisfies only stand-alone security. It is easy to achieve OT that composes under
parallel repetition with fixed roles, i.e., where many OT sessions are executed in
parallel, and an adversary either corrupts multiple senders or multiple receivers
but does not simultaneously corrupt (subsets of) senders and receivers. In par-
ticular, the stand-alone secure construction of OT from pseudorandom public
keys in [24] already achieves this notion of parallel composition.

But in the (more general) simultaneous setting, an adversarial party P ∗i par-
ticipates in many OT sessions simultaneously, as sender in some sessions and re-
ceiver in others. This gives P ∗i the opportunity to generate its own (e.g., sender)
message in some OT session as a function of a message generated by an honest
sender in a different OT session, thereby possibly making its own input depend
on the input(s) of honest player(s). Clearly, this is disallowed by the ideal si-
multaneous OT functionality; but not prevented by standalone OT. Our first
step towards addressing this vulnerability is to ensure that adversarial inputs
are independent of the inputs of honest players.

As discussed in the introduction, we develop a novel approach to achieving
such independence. In particular, we construct “non-malleable OT” that satisfies
the following guarantees.

– Receiver Security under Parallel Composition. For every adversarial
sender A∗ that corrupts the OT sender (or resp., multiple senders in any
parallel composition of the OT protocol), there exists a simulator that sim-
ulates the view of A∗ with black-box access to (resp., copies of) the ideal
OT functionality. This follows automatically from simulation-based security
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against malicious senders (resp., in the parallel composition setting) of the
underlying two-party secure protocol ΠF .

– Non-Malleability. Informally, here we consider a man-in-the-middle ad-
versary MIM that acts as a receiver in a subset of OT sessions (that we refer
to as “left” sessions) and as sender in a different subset of OT sessions (that
we refer to as “right” sessions).
We require the existence of a simulator-extractor Sim-Ext, that given the
inputs of all honest receivers (participating in all right sessions), is able to
extract all the implicit inputs used by the MIM in all its right sessions.
Crucially, Sim-Ext does not have access to the inputs of honest senders (par-
ticipating in the left sessions).
This is the key property that prevents an adversarial sender from “copying”
the inputs of honest senders, or more generally, generating its inputs as a
function of honest senders’ inputs. Achieving this property will be a key
technical focus of our work.

In what follows, we provide an overview of our construction of non-malleable
OT. Then, in Section 2.1, we discuss why any non-malleable OT protocol sat-
isfying these properties almost directly implies pairwise ideal OT functionality
(or, simulataneous secure OT), and therefore also securely realizes watchlists.

Towards Non-Malleable OT We take inspiration from recent works that
use non-malleable codes (introduced in [23]) to build cryptographic primitives
like non-malleable commitments [36], and non-malleable multi-prover interactive
proofs [33].

In more detail, we will build non-malleable OT by combining parallel com-
posable two-party secure computation with (an) appropriate (variant of) split-
state non-malleable codes. Such codes are specified by encoding and decoding
algorithms (Enc,Dec). The encoding algorithm Enc is a randomized algorithm
that encodes any message m into a codeword consisting of two parts or “states”
(L,R), and the decoding algorithm Dec on input a codeword returns the underly-
ing message. The security property is that for every pair of tampering functions
(f, g) with no fixed points, the (distribution of) m̃ ← Dec(f(L), g(R)), where
(L,R)← Enc(m), is independent of m. We now describe (a simplified variant of)
our construction.

Our Construction For simplicity, we will focus on the special case of implement-
ing non-malleable 1-out-of-2 OT, but our techniques immediately extend to the
more general setting of k-out-of-m OT. To prevent obvious copying attacks, we
will assign to each party a unique tag or identity.

Our construction of non-malleable OT simply involves executing a secure two-
party protocol Π between a sender S and a receiver R, for a special functionality
F . Before describing this functionality, we discuss the inputs of participants to
this functionality.

The sender S with on input (m0,m1) and tag encodes these messages using an
appropriate split-state non-malleable code (Enc,Dec). Specifically, S computes
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L0,R0 ← Enc(m0||tag) and L1,R1 ← Enc(m1||tag). The receiver R obtains as
input a choice bit b ∈ {0, 1}, and samples uniformly random c ∈ {0, 1}. S
and R then invoke a two-party secure protocol ΠF to compute functionality F
described in Figure 1. In addition, S sends tag to R.

Sender Inputs: m0, L0,R0,m1, L1,R1, tag. Receiver Inputs: b, c.

The functionality F(m0, L0,R0,m1, L1,R1, b, c, tag) is defined as follows.

1. If Dec(L0,R0) 6= (m0||tag) or Dec(L1,R1) 6= (m1||tag), output ⊥.
2. If c = 0, output (mb, L0, L1) and output (mb,R0,R1), otherwise.

Fig. 1: The functionality F
We note that the ideal functionality F reveals mb to R, and in addition,

reveals either only (L0, L1) or only (R0,R1). Because any split-state non-malleable
code is also a 2-out-of-2 secret sharing scheme [4], the shares L1−b and R1−b each
statistically hide m1−b from R. It is also clear that protocol Π makes only black-
box use of the underlying two-party computation protocol.

We show that (an appropriate k-out-of-m variant of) the protocol sketched
above securely realizes non-malleable OT, even when Π itself is only parallel
composable secure (but may be completely malleable).

Proving Sender Non-Malleability. For ease of exposition, let’s consider a sim-
pler man-in-the-middle adversary (MIM) that participates in a single left session
as receiver, and a single right session as sender. We will also assume that the
MIM never sends messages that cause an honest party to abort. Additionally, the
underlying secure two-party protocolΠ will be a round optimal (four round) pro-
tocol with sequential messages, and has the following specific structure. Namely,
it will require the receiver to commit to its input b in the first round of the
protocol, and at the same time, it will be delayed-input w.r.t. receiver input c,
which will be chosen by the receiver immediately before the third round begins.
Finally, it will require the inputs (m0,m1, L0,R0, L1,R1, tag) of the sender to be
committed in the second round of the protocol, before c is chosen by the receiver.

First Attempt: An Alternate Extraction Mechanism. One possible way to ex-
tract sender inputs from the right execution, is to execute the simulator of the
underlying two-party protocol Π. Unfortunately, this fails because Π is only par-
allel composable secure, and extracting from the right execution automatically
reveals honest sender inputs from the left execution.

Instead, we will use the specific way that sender inputs are encoded to intro-
duce an alternate extraction mechanism. Specifically, one could imagine rewind-
ing the third and the fourth round message of Π, using inputs c = 0 and c = 1
on behalf of the honest receiver in the real and rewinding threads, respectively.
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By our assumption, the adversary is non-aborting. Therefore, we expect to ob-
tain outputs (L̃0, L̃1) and (R̃0, R̃1) in the right session in the real and rewinding
threads respectively. At this point, we can use the decoder of the non-malleable
code to obtain (m̃0, m̃1), which, by correctness of the two-party protocol, should
correspond to the implicit inputs of the MIMin the right session.

It doesn’t seem like this argument gives us much (yet): rewinding the MIM’s
third and fourth rounds would also end up rewinding the third and the fourth
rounds of the left execution with (possibly different) inputs c̃, ĉ used by the
MIMin the main and rewinding threads. Thus, it may seem like we are back to
square one: it may not be possible to hide the inputs of the honest sender in the
presence of such rewinding.

Towards Resolving the Extraction Bottleneck: 1-Rewind Sender Security. To
tackle this problem, our first step will be to require that Π satisfy a stronger
security property: 1-rewind sender security. Roughly, this means that any ad-
versarial receiver R∗ that rewinds the honest sender one time in the third and
fourth rounds, using (possibly different) inputs c̃, ĉ in the main and rewinding
threads, does not recover any information beyond the output of F on inputs
(m0,m1, L0, L1,R0,R1, b̃, c̃) and (m0,m1, L0, L1,R0,R1, b̃, ĉ). We formalize this by
requiring the existence of a specific type of simulator: this simulator generates a
view for R∗ in the main thread given only (mb̃, L0, L1) and a view for R∗ in the
rewinding thread given only (mb̃,R0,R1) (or vice-versa). Now, it may seem like
this type of simulator may not be very meaningful, since the sum total of this
information could essentially allow the receiver to recover m1−b̃ by combining
L1−b̃ with R1−b̃.

However, the fact that (L0, L1) and (R0,R1) are made available in separate
threads can be exploited argue that the MIM’s input must be independent of
m1−b̃, as we discuss next.

Alternative Simulation. Let us go back to our alternate extraction mechanism
discussed earlier, where w.l.o.g. the third and fourth round messages of Π are
rewound with (honest) receiver input set to c = 0 in the main and c = 1 in
the rewinding thread, respectively. This means that in the main thread, the
challenger obtains output (L̃0, L̃1) in the right session. In the rewind thread,
setting c = 1, the challenger obtains outputs (R̃0, R̃1). Meanwhile the real and
rewinding left executions will simulated using only (mb̃, L0, L1) and (mb̃,R0,R1)
(or vice-versa) respectively, as described above. This means that in the main
thread, the MIM outputs (L̃0, L̃1) as a function of only (mb̃, L0, L1), and in the
rewinding thread, the MIM outputs (R̃0, R̃1) as a function of only (mb̃,R0,R1).7

We formalize this intuition to argue that the MIM’s behaviour naturally gives
rise to a split-state tampering function family. Here, one tampering function

7 Actually, the MIMmay also output (L̃0, L̃1) as a function of only (mb̃,R0,R1), and
(R̃0, R̃1) as a function of only (mb̃, L0, L1). We use codes satisfying an additional
symmetric decoding property to account for this case.
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corresponds to the MIM’s functionality in the main thread, and the other cor-
responds to the MIM’s functionality in the rewinding thread. This allows us to
rely on the non-malleability of the underlying encoding scheme to switch from
generating L1−b̃,R1−b̃ as an encoding of m1−b, to generating it as an encoding
of a dummy value.

This completes a simplified description of the main ideas in our protocol. We
swept several details under the rug but point out one important detail below.

Many-many Non-malleability. Recall that we simplified things earlier, to focus
on a setting where the MIM participates in a single left session as receiver and
a single right session as sender. For our application to watchlists, we require
security against adversaries that participate in multiple left and right sessions.

To achieve security in this setting, we will rely on many-many non-malleable
codes (that are implied by one-many non-malleable codes [18]) that achieve secu-
rity in the presence of multiple tamperings of a single codeword [18]. Moreover,
in order to deal with adversaries that may abort arbitrarily, we will modify the
functionality F . Instead of encoding (m0,m1) a single time, the sender generates
λ (where λ is the security parameter) fresh encodings
{(Lib,Rib)}i∈[λ],b∈{0,1} of m0 and m1. The receiver picks λ choice bits c1, . . . , cλ
instead of a single bit c. The functionality F checks if for every i ∈ [λ], b ∈ {0, 1},
{(Lib,Rib)}i∈[λ],b∈{0,1} encode mb. If the check fails, F outputs ⊥. If it passes, then
for every i ∈ [λ], it outputs (Li0, Li1) if ci = 0 and otherwise, outputs (Ri0,Ri1).

This helps ensure that for every adversary MIM that completes a main thread
(without aborting) given honest receiver input c = c1, . . . , cλ, there is (w.h.p.)
a rewinding thread with a different choice c′ = c′1, . . . , c

′
λ of honest receiver

input, that is also completed by the MIM. We then rely on any index i for which
ci 6= c′i to carry out the argument described above. Additional details of our
non-malleable OT protocol can be found in Section 5.1 in the full version.

From Non-Malleable OT to Watchlists We note that that our OT protocol,
as described above, prohibits an adversarial sender from generating its generating
its inputs as a function of honest senders’ inputs.

One could ask for an even stronger property, requiring the inputs of adver-
sarial receivers to be independent of the honest receivers’ inputs. At first glance,
this stronger property appears to be necessary, since pairwise access to ideal OTs
would actually enforce that all adversarial receiver inputs are independent of the
inputs of honest receivers.

But upon taking a closer look, we realize that non-malleable OT as described
in the previous section actually suffices to construct watchlists with security in
the real/ideal paradigm. Intuitively, this is because the outputs of honest parties
are affected only by the inputs of the adversarial senders, and are unaffected by
the inputs of adversarial receivers. In other words, even if adversarial receivers
manage to have their inputs depend on the inputs of the honest receivers, this
cannot affect the joint distribution of their view and the outputs of honest parties
in the ideal world. We formalize this intuition and show that non-malleable OT
generically implies a protocol for securely realizing the watchlist functionality.
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The only missing ingredient in our description is the 1-rewind sender secure
protocol, which we describe next.

Constructing a 1-Rewind Sender Secure Protocol In our actual construc-
tion of non-malleable OT, the receiver inputs (c1, . . . cλ) do not need to remain
hidden from a corrupted sender. In particular, all we need is for the protocol
to allow for delayed function selection, where the function to be computed (de-
fined by c1, . . . , cλ) is selected by the receiver in the third round. Given this, the
1-rewinding security property translates to requiring that any corrupt receiver
which rewinds the third and the fourth round messages of the sender by provid-
ing (possibly) different functions learns nothing beyond the output of these two
functions on sender and receiver inputs that were fixed in the first two rounds.

We will design such a 2-party protocol for NC1 circuits8 by relying on a
different variant [46, 49, 45] of the IPS paradigm. Specifically, we will use the
same 2-client m-server outer protocol [58] that was discussed at the beginning of
the overview, and combine it an inner protocol that is based a variant of Yao’s
garbled circuits [61]. Yao’s protocol also allows for the garbled circuits to be
generated in the final round, which immediately gives us the delayed function
selection property. Importantly, since we only care about parallel composable
security in the resulting two-party protocol, parallel composable but possibly
malleable 1-rewind secure OT will suffice to implement watchlists in this set-
ting. We slightly generalize the works of [57, 24] to obtain a maliciously secure
OT that satisfies 1-rewind sender security and makes black-box use of a PKE
with pseudorandom public keys. We refer the reader to Appendix C of the full
version for the details of constructing the secure computation protocol and to
Appendix D of the full version for the construction of a 1-rewind sender secure
OT protocol.

Immediate Application: Black-box Simultaneous Two-Party Compu-
tation Plugging the resulting simultaneous OT protocol in place of ideal OT,
into the non-interactive two-party secure black-box computation protocol of [45],
yields a round optimal two-party simultaneous secure computation, from black-
box use of any PKE with pseudorandom public keys.

Organization. Due to lack of space, we include our construction of non-malleable
OT in the body of the paper, and defer remaining protocols to the full version.

3 Preliminaries and Definitions

Let λ denote the security parameter. A function µ(·) : N → R+ is said to be
negligible if for any polynomial poly(·) there exists λ0 such that for all λ > λ0
we have µ(λ) < 1

poly(λ) . We will use negl(·) to denote an unspecified negligible

8 We show in Section 5.1 of the full version that 1-rewind secure 2PC for NC1 circuits
suffices to obtain non-malleable OT.
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function and poly(·) to denote an unspecified polynomial function. We use ∆ to
denote the statistical distance.

For a probabilistic algorithm A, we denote A(x; r) to be the output of A on
input x with the content of the random tape being r. When r is omitted, A(x)
denotes a distribution. For a finite set S, we denote x ← S as the process of
sampling x uniformly from the set S. We will use PPT to denote Probabilistic
Polynomial Time algorithm.

3.1 Non-malleable Codes

We will use non-malleable codes in the split-state model, that are one-many
secure and satisfy a special augmented non-malleability [2] property, as discussed
below.

Definition 1 (One-many augmented split-state non-malleable codes).
Fix any polynomials `(·), p(·). An `(·)-augmented non-malleable code with error
ε(·) for messages m ∈ {0, 1}p(λ) consists of algorithms NM.Code,NM.Decode
where NM.Code(m)→ (L,R) such that for every m ∈ {0, 1}p(λ),

NM.Decode(NM.Code(m)) = m

and for every set of functions f = (f1, f2, . . . f`(λ)), g = (g1, g2, . . . g`(λ)) there
exists a random variable Df,g on {{0, 1}p(λ) ∪ same∗}`(λ) which is independent
of the randomness in NM.Code such that for all messages m ∈ {0, 1}p(λ) it holds
that

∆
((
R, {NM.Decode

(
fi(L), gi(R)}i∈[`(λ)]

))
, (replace(Df,g,m))

)
≤ ε(λ)

∆
((
R, {NM.Decode

(
gi(R), fi(L)}i∈[`(λ)]

))
, (replace(Df,g,m))

)
≤ ε(λ)

where (L,R)← NM.Code(m) and the function replace : {0, 1}∗×{0, 1}∗ → {0, 1}
replaces all occurrences of same∗ in its first input with its second input s, and
outputs the result.

It was shown in [34, 38, 3] that the CGL one-many non-malleable codes
constructed in [18] are also one-many augmented non-malleable codes. But we
point out that in this definition, we also require messages obtained by decoding
the tampered codewords with left and right shares interchanged to be unrelated
with the original message. It is easy to see that this property is satisfied by
any non-malleable code with symmetric decoding (i.e. where NMDec(L,R) =
NMDec(R, L) ). This property can be achieved, as observed in [33], by modifying
any split-state code to attach a special symbol “`” to the left part of the code-
word, and a special symbol “r” to the right part of the codeword. This yields
the following imported theorem:

Theorem 1. (Imported.) [33, 34] For every polynomial `(·), there exists a poly-
nomial q(·) such that for every λ ∈ N, there exists an explicit `-augmented,
split-state non-malleable code satisfying Definition 1 with efficient encoding and
decoding algorithms with code length q(λ), rate q(λ)−Ω(1) and error 2−q(λ)

Ω(1)

.
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3.2 Low-Depth Proofs

We will describe how any computation that can be verified by a family of poly-
nomial sized ciruits can be transformed into a proof that is verifiable by a family
of circuits in NC1. Let R be an efficiently computable binary relation. Let L be
the language consisting of statements in R, i.e. for which R(x) = 1.

Definition 2 (Low-Depth Non-Interactive Proofs). A low-depth non-interactive
proof with perfect completeness and soundness for a relation R consists of an (ef-
ficient) prover P and a verifier V that satisfy:

– Perfect completeness. A proof system is perfectly complete if an honest
prover can always convince an honest verifier. For all x ∈ L we have

Pr[V (π) = 1|π ← P (x)] = 1

– Perfect soundness. A proof system is perfectly sound if it is infeasible to
convince an honest verifier when the statement is false. For all x 6∈ L and
all (even unbounded) adversaries A we have

Pr[V (x, π) = 1|π ← A(x)] = 0.

– Low depth. The verifier V can be implemented in NC1.

We outline a simple construction of a low-depth non-interactive proof, borrowed
from [25]. The prover P executes the verification circuit on x and generates
the proof as the sequential concatenation (in some specified order) of the bit
values assigned to the individual wires of the circuit computing R. The verifier
V proceeds by checking consistency of the values assigned to the internal wires
of the circuit for each gate. In particular for each gate in the verification circuit
the verifier checks if the wire vales provided in the proof represent a correct
evaluation of the gate. Since the verification corresponding to each gate can be
done independent of every other gate and in constant depth, we have that V
itself is constant depth.

Looking ahead, our construction of non-malleable OT makes use of a (mal-
leable) two-party computation protocol for NC1 that must verify validity of a
non-malleable code. We rely on low-depth proofs to ensure that the two-party
computation protocol only performs NC1 computations.

3.3 1-Rewind Sender-Secure Two-Party Computation

Let us consider a protocol Π between two parties, namely, the sender S and the
receiver R. The sender holds a private input xS and the receiver holds a private
input xR and they wish to compute some function of their private inputs securely
with the receiver obtains the output of the function. We want this protocol to
satisfy:
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– (Delayed-function selection) The function to be securely computed is only
decided in the third round by the receiverR. That is, the third round message
contains the explicit description of the function f to be computed and the
first two messages depend only on the size of the function.

– (1-Rewinding Security) Any malicious receiver that rewinds the third and
fourth rounds of the protocol once (by possibly giving different functions
f0, f1) cannot learn anything about the sender’s inputs except the output
on these two functions.

The syntax of the protocol and the two properties are formalized below.

Syntax. The special two party protocol Π is given by a tuple of algorithms
(Π1, Π2, Π3, Π4, outΠ). Π1 and Π3 are the next message functions run by the
receiver R and Π2 and Π4 are the next message functions run by the sender
S. At the end of the protocol, R runs outΠ on the transcript, its input and the
random tape to get the output of the protocol. We use πr to denote the message
sent in the protocol Π in round r for every r ∈ [4].

Definition 3. Let Π = (Π1, Π2, Π3, Π4, outΠ) be a 4-round protocol between a
receiver R and a sender S with the receiver computing the output at the end of
the fourth round. We say that Π is a 1-rewinding sender secure protocol with
delayed function selection for 1 circuits if it satisfies:

– Delayed Function Selection. The first and second message functions
Π1, Π2 take as input the size of the function f ∈1 to be securely computed
and are otherwise, independent of the function description. The third round
message from R contains the explicit description of the function f to be
computed.

– Receiver Security. For every malicious PPT adversary A that corrupts
the sender, there exists an expected polynomial (black-box) simulator SimR =
(Sim1

R,Sim
2
R) such that for all choices of honest receiver input xR and the

function f ∈1, the joint distribution of the view of A and R’s output in the
real execution is computationally indistinguishable to the output of the ideal
experiment described in Figure 2.

– 1-Rewinding Sender Security. For every malicious adversary A, cor-
rupting the receiver, there exists an expected polynomial time simulators
SimS = (Sim1

S ,Sim
2
S) such that for every choice of sender’s input xS , we

have:
Expt1(A, Π, xR, xS) ≈c Expt2(A,SimS , xR, xS)

where Expt1 and Expt2 are defined in Figure 3.

4 Non-Malleable Oblivious Transfer

4.1 Definition

We define non-malleable OT which considers a man-in-the-middle adversary that
generates OT messages as a function of those generated by honest players. The
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– The honest receiver R sends xR and f to the ideal functionality.
– Initialize A with uniform random tape r.
– Sim1

R on input f , interacts with A and outputs π1, π2, xS and sk.
– Send xS to the ideal functionality.
– Sim2

R on input sk, interacts with A and outputs π3 and π4. Sim2
R may send

an abort to the ideal functionality.
– Output (r, π1, π2, π3, π4) and the output of the honest R.

Fig. 2: Ideal Experiment in the Receiver Security Game

Expt1(A, Π, xS) = 1]

– Initialize A with a uniform random
tape s.

– π1 ← A(1λ; s).
– Choose r ← {0, 1}λ uniformly

at random and compute π2 ←
Π2(xS , π1; r).

– (f0, π3[0]), (f1, π3[1])← A(π2; s).
– π4[b] ← Π4(xS , π1, (fb, π3[b]); r) for
b ∈ {0, 1}.

– Output
(s, π1, π2, {fb, π3[b], π4[b]}b∈{0,1}).

Expt2(A, SimS , xS)

– Initialize A with a uniform random
tape s.

– Sim1
S interacts with A and produces

(π1, sk).
– Sim2

S on input sk interacts with A
and produces a query (xR, f0, f1) to
be sent to the ideal functionality.

– On receiving zb = fb(xR, xS)
from the ideal functionality, Sim2

S
interacts with A and produces
(π2, {fb, π3[b], π4[b]}b∈{0,1}).

– Output
(s, π1, π2, {fb, π3[b], π4[b]}b∈{0,1}).

Fig. 3: Descriptions of Expt1 and Expt2.

non-malleability property ensures that no PPT adversarial sender can generate
its OT inputs as a function of the (secret) inputs of honest senders.

Definition 4 (` non-malleable
(
m
k

)
Oblivious Transfer). An ` non-malleable(

m
k

)
Oblivious Transfer is a protocol between a sender S with inputs {mi}i∈[m]

and a receiver R with input K ⊂ [m] where |K| = k, that satisfies the following:

– Correctness. For every i ∈ [m],mi ∈ {0, 1}λ and K ⊂ [m] such that |K| =
k,

OutR〈S({mi}i∈[m]),R(K)〉 = {mi}i∈K
– (Parallel Composable) Receiver Security. For every PPT sender S∗

and every pair K,K ′ of k-sized subsets of [m], we require

ViewS∗〈S∗,R(K)〉 ≈c ViewS∗〈S∗,R(K ′)〉
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Additionally, we require that there exists a PPT extractor Sen.Ext that on
input any transcript τ and with black-box access to any PPT sender S∗
outputs {(m∗i,j)}i∈[m],j∈[`] where m∗i,j denotes the ith implicit input used by
S∗ in the jth session of τ (if any input is not well-defined, it outputs ⊥ in
its place)9.

– Non-Malleability. Consider any PPT adversary (denoted by MIM) that
interacts with upto ` senders S1, . . . ,S` on the left, where for every j ∈ [`],
Sj has input {mi,j ∈ {0, 1}n}i∈[m], and upto ` receivers R1, . . . ,R` on the
right, where for every j ∈ [`], Rj has input Kj.
We denote by ViewMIM〈{Sj({mi,j}i∈[m])}j∈[`], {Rj(Kj)}j∈[`]〉 the view of the
MIMin this interaction, and denote the ith implicit input used by the MIMin
the jth right session by m′i,j

10. We denote by RealMIM〈{Sj({mi,j}i∈[m])}j∈[`],
{Rj(Kj)}j∈[`]〉 the joint distribution of {(m′i,j)}i∈[m],j∈[`] and
ViewMIM〈{Sj({mi,j}i∈[m])}j∈[`], {Rj(Kj)}j∈[`]〉. Then, we require that there
exists a simulator-extractor pair, (SimOT,ExtOT) that outputs

IdealMIM({mi,j}i∈[m],j∈[`], {Kj}j∈[`]) = Sim
MIM,{OT({mi,j}i∈[m],·)}j∈[`]
OT (σ, {K̃j}j∈[`]),

for (σ, {K̃j}j∈[`])← ExtMIM
OT ({Kj}j∈[`]), s.t. for all honest inputs {mi,j}i∈[m],j∈[`],

{Kj}j∈[`], we have

RealMIM〈{Sj({mi,j}i∈[m])}j∈[`], {Rj(Kj)}j∈[`]〉 ≈c IdealMIM({mi,j}i∈[m],j∈[`], {Kj}j∈[`]).

4.2 Construction

In this subsection, we construct ` non-malleable m-choose-k OT. Here, ` de-
notes the number of executions that an MIM adversary may participate in. Our
construction is described in Figure 4, and makes use of the following:

– A 4 round two-party secure computation protocol Π with delayed-function
selection and 1-rewinding sender security.

– An information-theoretic m(λ) · `(λ) non-malleable secret sharing scheme.
– A low-depth proof for P.
– An existentially unforgeable signature scheme with algorithms denoted by

Signature.Setup, Signature.Sign and Signature.Verify.

We describe our protocol formally in Figure 4. The correctness of this protocol
follows from correctness of the underlying oblivious transfer, non-malleable codes
and signature scheme. In what follows, we prove security of this protocol.

Theorem 2. Let λ denote the security parameter, and m = m(λ), k = k(λ), ` =

`(λ) be arbitrary fixed polynomials. There exists a 4 round ` non-malleable
(
m
k

)
oblivious transfer protocol satisfying Definition 4 that makes black-box use of
any 4 round two-party secure computation protocol Π satisfying Definition 3,
and any existentially unforgeable signature scheme.
9 This property guarantees parallel composability, and is satisfied by most natural
rewinding-based protocols.

10 If any of these is not well-defined, we denote it by ⊥.
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Inputs: Sender S has inputs {mj}j∈m and receiver R has input a set K ⊆ [m]
where |K| = k.

Protocol: S and R do the following.

1. S samples (vk, sk)← Signature.Setup(1λ), then does the following.
– For each i ∈ [λ], j ∈ [m], pick uniform randomness ri,j and compute

(Li,j ,Ri,j) = NM.Code((vk|mj); ri,j).
– Set x = (vk, {(Li,j ,Ri,j ,mj)}i∈[λ],j∈[m]) and L ={

(vk, {(Li,j ,Ri,j ,mj)}i∈[λ],j∈[m]) : ∀i ∈ [λ], j ∈
[m],NM.Decode(Li,j ,Ri,j) = (vk|mj)

}
. Compute ldp = LDP.Prove(x,L).

2. For each i ∈ [λ], R picks ci ← {0, 1}.
3. Both parties engage in the protocol Π to compute functionality F where:

– R plays the receiver with input K committed in round 1 and delayed
function (c1, . . . , cλ) chosen in round 3.

– S plays the sender with input (x, ldp), where x is parsed as
(vk, {mj , (Li,j ,Ri,j)}i∈[λ],j∈[m].

– The functionality F on input (vk, {mj , Li,j ,Ri,j}i∈[λ],j∈[m],K, {ci}i∈[λ])
generates an output as follows:
• If LDP.Verify(x, ldp) 6= 1, output ⊥.
• Otherwise set out = vk, {mj}j∈K . Additionally, for every i ∈ [λ], if
ci = 0, append ({Li,j}j∈[m]) to out, else append ({Ri,j}j∈[m]) to out.

• Output out.
Additionally, S signs messages generated according to Π, denoted by
(Π2, Π4). It sets σ2 = Signature.Sign(Π2, sk), σ4 = Signature.Sign(Π4, sk).
It sends (σ2, σ4) to R.

4. R obtains output out and parses out = (vk, {mj}j∈K , ·). It outputs {mj}j∈K
iff Signature.Verify(σ2, Π2, vk) ∧ Signature.Verify(σ4, Π4, vk) = 1, otherwise ⊥.

Fig. 4: `(λ) Non-Malleable m(λ)-choose-k(λ) Oblivious Transfer

By relying on our 4 round two-party secure computation protocol satisfying
Definition 3 based on black-box use of any public-key encryption with pseudo-
random public keys, we obtain the following Corollary.

Corollary 1. Let λ denote the security parameter, and m = m(λ), k = k(λ), ` =

`(λ) be arbitrary polynomials. There exists a 4 round ` non-malleable
(
m
k

)
OT

protocol satisfying Definition 4 that makes black-box use of any public-key en-
cryption with pseudo-random public keys.

4.3 Security

We consider any man-in-the-middle adversary that participates as an OT re-
ceiver in upto `(λ) executions of this protocol on the right, and participates as
an OT sender in upto `(λ) executions on the left.

19



We will prove that there exists a PPT algorithm Sim-Ext, that with black-box
access to theMIM, to ` copies of the ideal OT functionalityOT = {OTj({mi,j}i∈[m], ·)}j∈[`]
and with input {Kj}j∈[`], simulates an execution of the protocol with theMIMand
extracts all the inputs {({m̃i,j}i∈[m])}j∈[`] used by the MIMin the executions
where theMIM is sender. We will prove that Sim-Ext outputs IdealMIM({mi,j}i∈[m],j∈[`], {Kj}j∈[`])
such that

RealMIM〈{Sj({mi,j}i∈[m])}j∈[`], {Rj(Kj)}j∈[`]〉 ≈c IdealMIM({mi,j}i∈[m],j∈[`], {Kj}j∈[`])

To prove indistinguishability, we define a sequence of hybrid experiments,
where the first one outputs the distribution RealMIM〈{Sj({mi,j}i∈[m])}j∈[`], {Rj(Kj)}j∈[`]
and the final one outputs the distribution IdealMIM({mi,j}i∈[m],j∈[`], {Kj}j∈[`]).
Formally, these hybrids are defined as follows:

Hyb0 : This corresponds to an execution of the MIMwith ` honest senders
{Sj}j∈[`] on the left, each using inputs {mi,j}i∈[m] respectively and ` honest
receivers on the right with inputs ({Kj}j∈[`]) respectively. The output of this
hybrid is RealMIM〈{Sj({mi,j}i∈[m])}j∈[`], {Rj(Kj)}j∈[`].

Hyb1 : This experiment modifies Hyb1 by introducing an additional abort condi-
tion. Specifically, the experiment first executes the complete protocol correspond-
ing to the real execution of the MIMexactly as in Hyb0 to obtain the distribution
RealMIM〈{Sj({mi,j}i∈[m])}j∈[`], {Rj(Kj)}j∈[`]〉.

Let p(λ) denote the probability that the MIMcompletes this execution with-
out aborting. Set γ(λ) = max

(
λ, p−2(λ)

)
. With the first two rounds of the

transcript fixed, the rewind the right execution up to γ(λ) times, picking inputs
(cj1, . . . , c

j
λ) for each of the ` receivers {Rj}j∈[`] independently and uniformly at

random in every run. If there exists a rewinding thread where the MIM com-
pletes the protocol execution, denote the inputs chosen by the challenger on
behalf of the honest receiver in this rewinding thread by (c′

j
1, . . . , c

′j
λ). For every

j ∈ [`], let index αj ∈ [λ] be such that cjαj = 0 and c′
j
αj = 1. Additionally for

every j ∈ [`], i ∈ [m], use (L̃jαj ,i, R̃
j
αj ,i

) obtained as output from the main and
rewinding executions respectively to compute m̃j

i = NM.Decode(L̃jαj ,i, R̃
j
αj ,i

).
If no such rewinding thread exists, or if there exists j ∈ [`] for which there

does not exist α ∈ [λ] such that cjα = 0 and c′
j
α = 1, then set m̃j

i = ⊥ for all
i ∈ [m]. Now, the output of this hybrid is the joint distribution

ViewMIM〈{Sj({mj
i}i∈[m])}j∈[`], {Rj(Kj)}j∈[`]〉, {m̃j

i}j∈[`],i∈[m].

Lemma 1. For every unbounded distinguisher D we have∣∣∣Pr[D(Hyb0) = 1]− Pr[D(Hyb1) = 1]
∣∣∣ = negl(λ)

Proof. Since the MIM’s inputs {(m̃j
i}j∈[`] are committed in round 2 of the pro-

tocol, then conditioned on the adversary providing a non-aborting transcript in
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a rewinding execution in Hyb1, by simulation security of the 2pc, {(m̃j
i}j∈[`] are

correctly extracted.
Therefore, to prove this lemma it suffices to show that such a rewinding

execution (with a non-aborting transcript) can be found within γ(λ) attempts,
except with probability negl(λ). To see this, we observe that the probability of a
non-aborting transcript is p(λ), and therefore, the probability that all γ(λ) trials
abort is (1− p(λ))`(λ) ≤ expp

−1(λ) = negl(λ).

Hyb2: This experiment modifies Hyb2 to execute the simulator of Π in all ses-
sions where the MIM is a receiver. Specifically, in these executions, instead of
the honest sender strategy with input {mj

i}i∈[m],j∈[`], we execute the simulator
Sim-2PCMIM,F(inpSj ,·)

Sen where

inpSj = ({mj
i , L

j
1,i, . . . , L

j
λ,i,R

j
1,i, . . . ,R

j
λ,i}i∈[m]).

Sim-2PCSen expects round 1 and round 3 messages from the MIM, and the MIM
in turn expects corresponding messages from the receiver in the right execution.
Receiver messages for the right execution are generated using honest receiver
strategy with inputs Kj fixed, and inputs cj1, . . . , c

j
λ chosen uniformly at random,

exactly as in Hyb1. Denote the view of the MIMby

View
Sim
{F(inpSj ,·)}j∈[`]

〈{Rj(Kj)}j∈[`]〉,

where for every j ∈ [`], inpSj is as defined above.
Next, with the first two rounds of the transcript fixed, the challenger rewinds

the right execution up to `(λ) times, picking inputs (cj1, . . . , c
j
λ) for Rj indepen-

dently and uniformly at random in every run, and generating messages in the
left execution by running the simulator Sim-2PCSen each time.

If there exists a rewinding execution where the MIMcompletes the protocol,
denote the inputs chosen by the challenger on behalf of the honest receiver in
this rewinding thread by (c′j1, . . . , c

′j
λ). For every j ∈ [`], let index αj ∈ [λ]

be such that cjαj = 0 and c′jαj = 1. Additionally for every j ∈ [`], i ∈ [m],
use (L̃jαj ,i, R̃

j
αj ,i

) obtained as output from the main and rewinding executions
respectively to compute m̃j

i = NM.Decode(L̃jαj ,i, R̃
j
αj ,i

). If no such rewinding
thread exists, or if there exists j ∈ [`] for which there does not exist α ∈ [λ] such
that cjα = 0 and c′jα = 1, then set m̃j

i = ⊥ for all i ∈ [m]. The output of this
hybrid is the joint distribution:

View
Sim
{F(inpSj ,·)}j∈[`]

〈{Rj(Kj)}j∈[`]〉, {m̃j
i}j∈[`],i∈[m],

where for every j ∈ [`], inpSj is as defined above.

Lemma 2. Assuming 1-rewinding secure two party computation, for every effi-
cient distinguisher D we have∣∣∣Pr[D(Hyb1) = 1]− Pr[D(Hyb2) = 1]

∣∣∣ = negl(λ)
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Proof. We consider a sequence of sub-hybrids Hyb1,0,Hyb1,1, . . .Hyb1,` where for
every j ∈ [`], Hyb1,j is identical to Hyb1,j−1, except that instead of executing
the honest sender strategy using honest sender inputs {mj

i}i∈[m], we execute the
simulator in the jth left execution, where Sim-2PCMIM,F(inpSj ,·)

Sen where

inpSj = ({mj
i , L

j
1,i, . . . , L

j
λ,i,R

j
1,i, . . . ,R

j
λ,i}i∈[m])

Suppose the lemma is not true. Then for every large enough λ ∈ N there
exists j∗(λ) ∈ [`(λ)], a polynomial p(·) and a distinguisher D such that for
infinitely many λ ∈ N,∣∣∣Pr[D(Hyb1,j∗−1) = 1]− Pr[D(Hyb1,j∗) = 1]

∣∣∣ = 1

q(λ)

We derive a contradiction by building a reduction A that on input λ, obtains
j∗(λ) as advice and with black-box access to the MIMand to D contradicts 1-
rewinding security of the two party computation protocol. A proceeds as follows:

– A first creates receiver R′ that interacts with the external challenger as
follows.
• Generate the first round messages according to receiver strategy with

inputs {Kj}j∈[`] for the right execution. Obtain first round messages
from the MIM, and output the MIM’s message in the j∗th left execution
to the challenger of the 2pc.

• Obtain the second round message for the left execution externally from
the 2pc challenger, and forward this to the MIMas Sj∗ ’s message in the
j∗th left execution. Obtain the second round message from the MIM for
the right execution.

• Generate the third round message for the right execution according to
honest receiver strategy, and obtain the third round message from the
MIM. Output the MIM’s message in left session j∗ to the challenger.

• Obtain the fourth round message for the left execution externally from
the challenger, and forward this to the MIMas S’s message in the j∗th

left execution. Obtain the fourth round message from the MIMfor the
right execution.

– Next, A rewinds R′ once, as follows.
• Generate the third round message according to honest receiver strategy,

and obtain the third round message from the MIM. Output the MIM’s
message in session j∗ to the challenger.

• Obtain the fourth round message for the left execution externally from
the challenger, and forward this to the MIMas S’s message in the j∗th

left execution. Obtain the fourth round message from the MIMfrom the
left execution.

• If none of the executions abort, for every j ∈ [`], find αj ∈ [λ] such that
cjαj = 0 and c′jαj = 1. and use it to compute m̃j

i = NM.Decode(L̃jαj ,i, R̃
j
αj ,i

)

for i ∈ [m], j ∈ [`]. Else, set m̃j
i = ⊥ for i ∈ [m], j ∈ [`]
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– A outputs the entire view ofR′ together with {m̃j
i}i∈[m],j∈[`]. If the challenger

used honest sender messages, we denote the distribution output by A in this
experiment by Dist1 and if the challenger used simulated messages, we denote
the distribution output by A in this experiment by Dist2.

If the challenger’s messages correspond to the real sender S, then the distribu-
tion output by A conditioned on not aborting corresponds to Hyb1, and if the
challenger’s messages correspond to Sim-2PCSen, then the distribution output by
A conditioned on not aborting corresponds to Hyb2.

By assumption, for infinitely many λ ∈ N,∣∣∣Pr[D(Hyb1) = 1]− Pr[D(Hyb2) = 1]
∣∣∣ = 1

q(λ)

Since the MIM completes any run of the protocol without aborting with prob-
ability at least p(λ), and because aborts are independent of the distinguishing
advantage, for infinitely many λ ∈ N:∣∣∣Pr[D = 1 ∧ ¬abort|Hyb1]− Pr[D = 1 ∧ ¬abort|Hyb2]

∣∣∣ ≥ 1

p(λ) · q(λ)

where ¬abort denotes the event that an execution that is completed in the main
thread, is also completed without aborting in one rewinding execution.

This implies that for infinitely many λ ∈ N:∣∣∣Pr[D(Dist1) = 1]− Pr[D(Dist2) = 1]
∣∣∣ ≥ 1

p(λ) · q(λ)
,

and thus D contradicts 1-rewinding security of the two party computation pro-
tocol.

Hyb3: This hybrid is the same as Hyb2 except whenever the challenger obtains
as output a verification key in one of the right sessions that is identical to a
verification key used in one of the left sessions, the hybrid outputs ⊥. By exis-
tential unforgeability of the signature scheme, given any PPT adversary MIM,
Hyb2 and Hyb3 are statistically indistinguishable.

Hyb4: This hybrid is the same as Hyb3 except that inpSj is set differently. Specif-
ically, for every j ∈ [`], i ∈ [m] and α ∈ [λ], we set (Ljα,i,R

j
α,i)← NM.Sim(1p(λ)),

and set
inpSj = ({mj

i , L
j
1,i, . . . , L

j
λ,i,R

j
1,i, . . . ,R

j
λ,i}i∈[m]).

We note that at this point, the functionality {F(inpSj , ·)}j∈[`] can be perfectly
simulated with access to the ideal functionality {OTj(mj

i ,m
j
i , ·)}j∈[`]. Therefore,

the output of this hybrid is identical to the ideal view IdealMIM({mj
i}i∈[m],j∈[`], {Kj}j∈[`]).

Lemma 3. Assuming m(λ) · `(λ) symmetric non-malleable codes, for every un-
bounded distinguisher D we have:∣∣∣Pr[D(Hyb4) = 1]− Pr[D(Hyb3) = 1]

∣∣∣ = negl(λ)

23



Proof. We prove indistinguishability between Hyb3 and Hyb4 by considering a
sequence of sub-hybrids, {Hyb3,i,j,k}i∈[1,m],j∈[1,`],k∈[0,λ] where:

– Hyb3 = Hyb3,0,`,λ, Hyb4 = Hyb3,m,`,λ,
– for i ∈ [m], Hyb3,i−1,`,λ = Hyb3,i,1,0
– for j ∈ [`], Hyb3,i,j−1,λ = Hyb3,i,j,0,
– for every i ∈ [m], j ∈ [`], k ∈ [λ], Hyb3,i,j,k is identical to Hyb3,i,j,k−1 except

that Hyb3,i,j,k samples (Ljk,i,R
j
k,i)← NM.Code(0).

Suppose the lemma is not true. Then there exists i∗ ∈ [m], j∗ ∈ [`], k∗ ∈ [λ],
an unbounded distinguisher D and a polynomial p(·) such that for large enough
λ ∈ N, ∣∣∣Pr[D(Hyb3,i∗,j∗,k∗) = 1]− Pr[D(Hyb3,i∗,j∗,k∗−1) = 1]

∣∣∣ = 1

p(λ)
(1)

We now define a pair of tampering functions (fMIM, gMIM), and additional func-
tion hMIM as follows:

– fMIM, gMIM and hMIM share common state that is generated as follows:
• Execute Sim-2PCMIM

Sen , using honest R strategy in the right executions
with input {Kj}j∈[`] and uniformly chosen {cj1, . . . c

j
λ}j∈[`], until Sim-2PCSen

generates a query to the ideal functionality F at the end of round 3.
• At this point, Sim-2PCMIM

Sen outputs a view and transcript of the MIMuntil
the third round, as well as {K̃j , c̃j1, . . . , c̃

j
λ}j∈[`] that correspond to the

receiver’s inputs in the left execution.
• Rewind the third round once with uniformly and independently chosen
{c′j1, . . . , c′

j
λ}j∈[`]. If for every j ∈ [`(λ)], there exists αj ∈ [λ] such that

cjαj = 0 and c′
j
αj = 1, continue, otherwise abort.

• Obtain the rewinding view (with the same prefix of the first two rounds),
as well as (c1, . . . , cn) that correspond to the receiver’s input in the left
session in this rewinding execution. If c̃jk 6= cjk, continue. Otherwise,
abort.

• Generate (Ljk,i,R
j
k,i) for every (i, j, k) ∈ [m] × [`] × [λ] \ {i∗, j∗, k∗} ac-

cording to Hyb3,i∗,j∗,k∗−1 (this is identical to setting them according to
Hyb3,i∗,j∗,k∗).

• Output the view of the MIMuntil round 3 in the main the rewinding
threads, including (i∗, j∗, k∗), the values (Ljk,i,R

j
k,i)(i,j,k)∈[m]×[`]×[λ]\{i∗,j∗,k∗}.

• Additionally, output the receiver’s inputs {K̃j , c̃j1, . . . , c̃
j
λ}j∈[`] and the

sender’s inputs {skj , vkj , {mj
i}i∈[m]}j∈[`].

– Next, the function hMIM on input L, sets Lj
∗

k∗,i∗ = L,Rj
∗

k∗,i∗ = 0.
Now, using hardwired values {vkj , {mj

i}i∈[m]}j∈[`], {K̃j , c̃j1, . . . , c̃
j
λ}j∈[`] as

well as the values (Ljk,i,R
j
k,i)(i,j,k)∈[m]×[`]×[λ]\{i∗,j∗,k∗}, it computes

out = {F j(vkj , {mi, L
j
k,i,R

j
k,i}i∈[m],k∈[λ], K̃

j , {c̃jk}k∈[λ])}j∈[`].
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It then invokes Sim-2PCSen on out to generate the fourth round message of
the protocol transcript in the main thread if c̃j

∗

k∗ = 0, and generates the
fourth round message of the protocol transcript in the rewinding thread if
cj
∗

k∗ = 0. It outputs the resulting transcript as the view of the MIM.
– The function fMIM on input L, sets Lj

∗

k∗,i∗ = L,Rj
∗

k∗,i∗ = 0.
Now, using hardwired values {vkj , {mj

i}i∈[m]}j∈[`], {K̃j , c̃j1, . . . , c̃
j
λ}j∈[`] as

well as the values (Ljk,i,R
j
k,i)(i,j,k)∈[m]×[`]×[λ]\{i∗,j∗,k∗}, it computes

out = {F jvkj , {mi, L
j
k,i,R

j
k,i}i∈[m],k∈[λ], K̃

j , {c̃jk}k∈[λ])}j∈[`].

It then invokes Sim-2PCSen on out to generate the fourth round message of
the protocol transcript in the main thread if c̃j

∗

k∗ = 0, and generates the
fourth round message of the protocol transcript in the rewinding thread if
cj
∗

k∗ = 0. It outputs the values {Ljαj ,i}i∈[m],j∈[`] or {Rjαj ,i}i∈[m],j∈[`] obtained
from the MIM.

– The function gMIM on input R, sets Rj
∗

k∗,i∗ = R, Lj
∗

k∗,i∗ = 0.
Now, using hardwired values {vkj , {mj

i}i∈[m]}j∈[`], {K̃j , c̃j1, . . . , c̃
j
λ}j∈[`] as

well as the values (Ljk,i,R
j
k,i)(i,j,k)∈[m]×[`]×[λ]\{i∗,j∗,k∗}, it computes

out = {F jvkj , {mi, L
j
k,i,R

j
k,i}i∈[m],k∈[λ], K̃

j , {c̃jk}k∈[λ])}j∈[`].

It then invokes Sim-2PCSen on out to generate the fourth round message of
the protocol transcript in the main thread if c̃j

∗

k∗ = 1, and generates the
fourth round message of the protocol transcript in the rewinding thread if
cj
∗

k∗ = 1. It outputs the values {Ljαj ,i}i∈[m],j∈[`] or {Rjαj ,i}i∈[m],j∈[`] obtained
from the MIM.

By security augmented non-malleable codes,(
L,NM.Decode

(
fMIM(L), gMIM(R)

)∣∣∣(L,R← NM.Code(mj∗

i∗ ))
)
≈ε(

L,NM.Decode
(
fMIM(L), gMIM(R)

)∣∣∣(L,R← NM.Code(0))
)
and(

L,NM.Decode
(
gMIM(R), fMIM(L)

)∣∣∣(L,R← NM.Code(mj∗

i∗ ))
)
≈ε(

L,NM.Decode
(
gMIM(R), fMIM(L)

)∣∣∣(L,R← NM.Code(0))
)

By the data processing inequality, this implies that for every function h(·),(
h(L),NM.Decode

(
fMIM(L), gMIM(R)

)∣∣∣(L,R← NM.Code(mj∗

i∗ ))
)
≈ε(

h(L),NM.Decode
(
fMIM(L), gMIM(R)

)∣∣∣(L,R← NM.Code(0))
)
and(

h(L),NM.Decode
(
gMIM(R), fMIM(L)

)∣∣∣(L,R← NM.Code(mj∗

i∗ ))
)
≈ε(

h(L),NM.Decode
(
gMIM(R), fMIM(L)

)∣∣∣(L,R← NM.Code(0))
)
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Setting h = hMIM, for fMIM and gMIM defined above, these distributions cor-
respond exactly to the outputs of Hyb3,i∗,j∗,k∗−1 and Hyb3,i∗,j∗,k∗ respectively,
whenever c̃j

∗

k∗ 6= cj
∗

k∗ . Whenever c̃j
∗

k∗ = cj
∗

k∗ , the distributions Hyb3,i∗,j∗,k∗−1 and
Hyb3,i∗,j∗,k∗ are statistically indistinguishable because they jointly only depend
on one of the shares, L or R. Since ε(λ) = negl(λ), this contradicts Equation (1),
completing our proof.

5 Summary of Results

In this section, we provide a theorem statement capturing two of our main results.
See full version for the proof.

Theorem 3. Let f be an arbitrary multiparty functionality.

– In the watchlist correlations model, assuming black-box access to a pseudo-
random generator, there exists a two-round protocol that computes f against
static, malicious adversaries satisfying security with selective abort. For f in
NC1, a similar protocol exists unconditionally.

– Further assuming black-box access to a public-key encryption with pseudo-
random public keys and a two-round oblivious transfer with semi-malicious
security, there exists a protocol that securely computes f in five rounds in
the plain model against static, malicious corruptions of all-but-one players
satisfying security with selective abort.

The communication and computation costs of both the protocols are poly(λ, n, |f |),
where |f | denotes the size of the circuit computing f , and where communication
is over a broadcast channel.
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