
Deniable Fully Homomorphic Encryption from
Learning With Errors

Shweta Agrawal?, Shafi Goldwasser??, and Saleet Mossel? ? ?

Abstract. We define and construct Deniable Fully Homomorphic
Encryption based on the Learning With Errors (LWE) polynomial
hardness assumption. Deniable FHE enables storing encrypted data
in the cloud to be processed securely without decryption, maintaining
deniability of the encrypted data, as well the prevention of vote-buying
in electronic voting schemes where encrypted votes can be tallied without
decryption.

Our constructions achieve compactness independently of the level of
deniability- both the size of the public key and the size of the ciphertexts
are bounded by a fixed polynomial, independent of the detection
probability achieved by the scheme. This is in contrast to all previous
constructions of deniable encryption schemes (even without requiring
homomorphisms) which are based on polynomial hardness assumptions,
originating with the seminal work of Canetti, Dwork, Naor and Ostrovsky
(CRYPTO 1997) in which the ciphertext size grows with the inverse of the
detection probability. Canetti et al. argued that this dependence “seems
inherent”, but our constructions illustrate this is not the case. We note
that the Sahai-Waters (STOC 2014) construction of deniable encryption
from indistinguishability obfuscation achieves compactness and can be
easily modified to achieve deniable FHE as well, but it requires multiple,
stronger sub-exponential hardness assumptions, which are furthermore
not post-quantum secure. In contrast, our constructions rely only on the
LWE polynomial hardness assumption, as currently required for FHE
even without deniability.

The running time of our encryption algorithm depends on the inverse
of the detection probability, thus the scheme falls short of achieving
simultaneously compactness, negligible deniability probability and poly-
nomial encryption time. Yet, we believe that achieving compactness is a
fundamental step on the way to achieving all properties simultaneously
as has been the historical journey for other primitives such as functional
encryption. Our constructions support large message spaces, whereas
previous constructions were bit by bit, and can be run in online-offline
model of encryption, where the bulk of computation is independent of the
message and may be performed in an offline pre-processing phase. This
results in an efficient online phase whose running time is independent of
the detection probability. At the heart of our constructions is a new way
to use bootstrapping to obliviously generate FHE ciphertexts so that it
supports faking under coercion.

? IIT Madras, shweta.a@cse.iitm.ac.in.
?? Simons Institute of TOC at UC Berkeley, shafi.goldwasser@gmail.com.

? ? ? MIT, saleet@mit.edu

1 Introduction

Deniable (public-key) encryption, which was introduced in a seminal work by
Canetti, Dwork, Naor and Ostrovsky (CRYPTO 1997) [13], is a seemingly
paradoxical primitive that enables a user, who may be coerced to reveal the
plaintexts corresponding to her public ciphertexts, to successfully lie about which
messages she encrypted.

In particular, suppose Alice encrypted a message m with ciphertext ct which
she deposits in the cloud for the purpose of cloud computing, and is later forced
by the government to reveal the randomness she used and the message encrypted.
Deniable encryption allows her to chose a different message m′ at coercion time
and reveal fake random coins, which convincingly explain ct as the encryption of
m′. Clearly, deniability is a property which may be highly desirable when one
uses a public resource such as cloud computing which expose him to possible
coercion. Another use case is preventing vote buying in electronic elections: if
the voter encrypts her vote using deniable encryption, then she can claim she
encrypted an alternate message when forced to reveal her vote, deeming vote
selling ineffective and encouraging honest voting since the voter cannot be forced
to reveal her choice.

In this work, we introduce the notion of deniable fully homomorphic encryption
(FHE) and provide the first constructions based on the Learning With Errors
polynomial hardness assumption. In deniable FHE, the encryptor can produce
ciphertexts that can be opened to fake messages under coercion, and additionally
support fully homomorphic computations and achieve security as in (by now)
classical FHE. We emphasize that for all the applications of deniable public key
encryption mentioned above, the capability of homomorphism is an important
implicit requirement – indeed, several modern e-voting protocols use FHE [15, 27],
and present-day encrypted data is often stored on a cloud server which assists
the data owner with computing “blind-folded” via FHE [21].

We proceed to describe important prior work before we proceeding to describe
our results in detail.

1.1 Prior Work on deniability.

Canetti et al. (CDNO) [13] provided elegant constructions of deniable encryption
based on the construct of so called “translucent sets”, which in turn can be
constructed from trapdoor permutations. A major disadvantage of the CDNO
construction was lack of compactness – the ciphertext size grows with the inverse
of the detection probability achieved by the scheme. Furthermore, it encodes
large messages bit by bit, where the ciphertext for each bit grows inversely with
the detection probability. CDNO provided a lower bound that shows that their
construction is in some sense optimal. They identified a structural property
of encryption, which they term as separability and argued that as long as a
construction is separable, the dependence of the ciphertext size with the inverse
of the detection probability “seems inherent”[13].

2

A significant step forward in our understanding of deniable encryption and
compactness was achieved via the work of Sahai and Waters in 2014 [29]
which provided the first construction achieving negligible deniability assuming
indistinguishability obfuscation (iO) and one way functions. However, iO seems
to be an inherently sub-exponential assumption [19, 20], and while exciting as a
feasibility result, does not provide a satisfying solution to the question of deniable
encryption from standard polynomial hardness assumptions.

CDNO also suggested the notion of weak deniability where the encryptor can
lie not only about the random coins used to generate the ciphertext, but also
the algorithm used to encrypt the message and the notion of receiver deniability,
where the receiver can also produce a fake secret key that decrypts the message
to an alternate one. In the weak model, [13] showed that compact public key and
ciphertext as well as negligible deniability are possible. However, whether the
weak model is meaningful for practical applications has been the subject of some
debate – as discussed in [28], a common objection to the weak model is “since
there are alternative deniable algorithms that are strictly more powerful than
the normal ones, why would anyone ever run the normal algorithms? And given
this situation, why would a coercer ever accept a transcript corresponding to the
normal algorithms?”. We refer the reader to [28] for a detailed discussion.

Other extensions to deniable encryption were also explored – O’Neill, Peikert
and Waters [28] provided the first constructions of non-interactive bi-deniable
encryption schemes where both the sender and the receiver can fake simultaneously
as well as the first construction of identity based bi-deniable encryption. Apon,
Fan and Liu [4] extended their results to provide the first construction deniable
attribute based encryption. However, in the full model, both works [28, 4] inherit
the detection probability of CDNO, which is inverse polynomial. Additional prior
work not directly related to the current work is discussed in Section 1.5.

Summarizing, barring the iO based construction which seems to require a
sub-exponential hardness assumption, all proposals for (fully) sender deniable
encryption schemes from standard assumptions suffer from ciphertext size that
is inversely proportional to the detection probability. This implies a prohibitively
large blow on efficiency. For a primitive as fundamental and interesting as deniable
encryption, this state of affairs is very dissatisfying.

1.2 Our Results.

In this work, we introduce the notion of deniable fully homomorphic encryption
(FHE) and provide the first constructions of deniable FHE based on the Learning
With Errors (LWE) assumption. Our constructions enjoy deniability compactness
- the public key as well as the ciphertext of our schemes have size that can be
bounded by a fixed polynomial, and are, in particular, independent of the level of
deniability (or detection probability) achieved by the scheme. Our constructions
support large messages paces, whereas all prior constructions encoded large
messages bit by bit. On the down side, our encryption time depends on the
inverse of the detection probability, thus the scheme falls short of achieving

3

simultaneously compactness, negligible deniability and polynomial encryption
time. Luckily, the scheme can be run in online-offline model of encryption, where
the bulk of computation, which grows with the inverse of the detection probability,
is independent of the message and may be performed in an offline pre-processing
phase. The running time of the online phase, is independent of the detection
probability.

We believe that achieving compact ciphertext even at the price of large
encryption time is a fundamental step forward – indeed, note that for the related
primitive of functional encryption (FE), compact ciphertext was later found to
imply compact running time [26] by additionally assuming LWE via the “succinct”
FE of Goldwasser et al. [24]. While this implication does not hold true for our
work at present, it is a tantalizing possibility for future work.

We now proceed to on expound on the particulars of our results.

Deniable FHE. A (public key, sender) deniable fully homomorphic encryption
consists of a tuple of algorithms DFhe = (Gen,Enc,Eval,Dec,Fake) where Gen, Enc
and Dec are the standard key-generation, encryption and decryption algorithms,
Eval is an algorithm that takes as input the public key, a circuit C and a
tuple of ciphertexts ct1, . . . , ctn encrypting x1, . . . , xn respectively, and outputs
a ciphertext ct∗ which encrypts C(x1, . . . , xn), and Fake is a faking algorithm,
which takes as input the public key, an original message m, randomness r, and
a fake message m∗ and outputs a fake randomness r∗ so that the encryption of
message m using randomness r produces the same ciphertext as the encryption
of message m∗ using randomness r∗, i.e. Enc(pk,m; r) = Enc(pk,m∗; r∗). The
detection probability is the probability with which an adversary can distinguish
r from r∗, and we denote it by 1/δ = 1/δ(λ) where λ is the security parameter.
Our notion of deniable FHE is formalized in Definition 2.8.

We naturally extend this definition to the weak model (Definition 2.11) –
a weakly deniable FHE is defined as wDFhe = (Gen,DEnc,Enc,Eval,Dec,Fake)
which is distinct from “fully” deniable FHE in that there are two distinct
algorithms for encryption, namely Enc and DEnc. Here, as in [13], leveraging
the additional secret “deniable” encryption algorithm DEnc, allows for better
constructions as discussed below (in particular, those that achieve negligible
deniability in polynomial time).

In more detail, Enc is an “honest” encryption algorithm and is used by the
encryptor when it does not wish to fake a ciphertext, and DEnc is a “deniable”
encryption algorithm, which is used when the encryptor wishes to retain the
ability of faking a ciphertext in the future. Let us say the encryptor wishes to
compute an encryption of m which it may later want to explain differently. Then
it produces a ciphertext ct∗ by running the algorithm DEnc with message m using
randomness r. To explain ct∗ as encrypting an arbitrary fake message m∗ at a
later time, the encryptor produces random coins r∗ using the Fake algorithm, so
that the ciphertext output by the honest encryption algorithm Enc on m∗ using
r∗ equals the ciphertext ct∗ which was produced using the deniable encryption
algorithm DEnc, i.e. DEnc(pk,m; r) = Enc(pk,m∗; r∗).

4

Next, we describe our constructions. We provide:

1. A weakly deniable FHE scheme for bits with negligible detection probability
(Section 4.1). We extend this scheme to support larger (polynomial sized)
message spaces (Section 5).

2. A fully deniable FHE scheme for bits with inverse polynomial detection
probability (Section 4.2). We also extend this scheme to support larger
(polynomial sized) message spaces (see the full version[1]). Both our fully
deniable FHE schemes have compact public key and ciphertext, i.e. with size
independent of the detection probability, but with encryption running time
that grows with the inverse of the detection probability.

3. Plan-ahead deniable FHE schemes which support exponentially large message
spaces (see the full version[1]). Plan-ahead deniable encryption [13] requires
the encryptor to choose all (polynomially many) possible fake messages at the
time of encryption. Later, when the encryptor desires to explain a ciphertext,
it can only provide convincing fake randomness for one of the fake messages
chosen during encryption.

Fake Evaluation. We note that our notions of deniable FHE also allow, in
some cases, to explain evaluated ciphertexts as encoding a fake message. For
instance, in the case that Eval is a deterministic algorithm, suppose that ct∗

was computed by homomorphically evaluating a polynomial sized circuit C on
ciphertexts ct1, . . . , ctn which encode messages x1, . . . , xn respectively. Suppose
an encryptor wishes to explain ct∗ as an encryption of an arbitrary message
m∗ 6= C(x1, . . . , xn), and C supports inversion, i.e. given a value m∗, it is possible
to efficiently sample x′1, . . . x

′
n such that C(x′1, . . . , x′n) = m∗. Then, the encryptor

may simply explain cti as an encryption of x′i for i ∈ [n] and exhibit that
the homomorphic evaluation procedure for C results in ct∗. This convinces the
adversary that ct∗ encodes m∗, as desired. We note that for several applications
of interest, the circuit C can indeed be invertible – for instance, C may represent
the vote counting circuit, which is simply addition and hence easily invertible.

On the Underlying Assumptions. We remark that the Sahai-Waters construction
of public key deniable encryption from indistinguishability obfuscation (iO) [29]
can be modified in a natural way to construct deniable fully homomorphic
encryption. This provides an appealing feasibility result for deniable fully
homomorphic encryption with negligible deniability, but rely on the strong
hammer of indistinguishability obfuscation. While (concurrent) exciting recent
work [25] has based indistinguishability obfuscation on well-founded assumptions,
this construction relies on the subexponential hardness of four different
assumptions, including assumptions on bilinear maps which are known to be
insecure in the post-quantum regime. It is also well known that existing reductions
to indistinguishability obfuscation [29] run into subexponential barrier due to the
number of hybrids used in the security reductions – this results a subexponential
assumption, please see [20] for a discussion.

The focus of our work is to rely on minimal assumptions. The primitive
of levelled (respectively, pure) fully homomorphic encryption may be based

5

on the polynomial hardness of the Learning With Errors (respectively, with
circular security) assumption, with polynomial approximation factors [12]. Our
constructions show that we can achieve (polynomially) deniable FHE without
making any additional assumptions.

Compact Deniable PKE from FHE. Homomorphism aside, as discussed above, our
construction implies, as a special case, a compact deniable public key encryption
scheme, where the size of the public key and ciphertext are independent of the
detection probability, which can be made an arbitrarily small inverse polynomial.
However, as discussed above, the running time of our encryption algorithm does
grow linearly with the inverse of the detection probability. This dependence again
seems inherent, since our constructions can be shown to be separable in the sense
of CDNO and hence subject to the lower bound (see the full version [1]). We
discuss in Section 1.4 the technical barriers in circumventing this lower bound
from non-obfuscation assumptions.

Online-Offline Encryption. Our constructions of deniable FHE also enjoy a
desirable online-offline property, which allows the encryptor to do the bulk of the
work in an offline phase that is independent of the message to be encrypted. In
more detail, our encryption algorithm can be divided into two parts – an offline,
message independent part which runs in time O(δ) (recall that 1

δ is the detection
probability), and an online phase which is efficient and independent of δ. We
believe this feature makes these schemes especially attractive for practice since it
mitigates the disadvantage of the large running time of encryption.

1.3 Our Techniques.

The primary technical challenge in (full) deniable encryption is satisfying the many
constraints imposed by the faking algorithm: the adversary knows the encryption
algorithm and must be shown correctly distributed randomness that explains a
given challenge ciphertext to a fake message. Excepting the construction based on
obfuscation [29], all prior work addressed this challenge by setting the ciphertext
to be a long sequence of elements that are either random or pseudorandom, and
encoding the message bit in the parity of the number of pseudorandom elements.
To fake, the encryptor pretends that one of the pseudorandom elements is in
fact random, thus flipping the parity of the number of pseudorandom elements,
and hence the encoded message. To construct a deniable fully homomorphic
encryption scheme, the first challenge that arises is that an FHE ciphertext
is highly structured, and this is necessary if it has to support homomorphic
evaluation. Moreover, valid FHE ciphertexts are sparse in the ciphertext space,
so randomly sampled elements are unlikely to be well-formed ciphertexts. Hence,
if the encryptor for deniable FHE constructs all components of the ciphertext by
running the FHE encryption algorithm i.e. Fhe.Enc(pk,m; r), then it is forced to
open the FHE ciphertexts to provide r honestly – the structure of ciphertexts
does not support lying about any of the encoded bits. The encryptor is thus faced

6

with the incongruous task of producing highly structured ciphertexts without
running the FHE encryption algorithm.

The Magic of Bootstrapping. To overcome this hurdle, we leverage the clever
idea of “bootstrapping” proposed by Gentry [21]. At a high level, bootstrapping
is the procedure of homomorphically computing the decryption circuit of a
given scheme, say Fhe, on a ciphertext of the same scheme, using an encryption
of the scheme’s secret key, denoted by ctsk. This procedure assumes circular
security, namely that semantic security of Fhe holds even when the adversary is
provided an encryption of the scheme’s own secret key. The original motivation
for bootstrapping was to reduce the “noise” level in FHE ciphertext – since the
decryption circuit of an FHE scheme is quite shallow, running the decryption
circuit homomorphically on some FHE ciphertext ct using the encryption of
the FHE secret key ctsk, removes the noise contained in ct via decryption, and
the noise in output ciphertext ct′ can be bound depending on the depth of the
decryption circuit and the noise in ctsk. To date, all constructions of “pure” FHE,
namely, FHE that supports unbounded depth circuits, must assume circular
security of the underlying “somewhat homomomorphic” encryption scheme, and
hence of the underlying Learning With Errors (LWE) assumption. Since circular
security is required anyway for the construction of pure FHE, we assume it in our
construction of deniable (pure) FHE, and in the exposition below for simplicity.
For the case of “levelled” FHE, which assumes a bound on the depth of supported
circuits, and which can be built from standard LWE, this requirement can be
removed as discussed in the full version [1].

Aside from noise reduction, an additional attractive feature of bootstrapping
is that it suggests a way to obliviously generate FHE ciphertexts. Suppose our
FHE scheme’s decryption algorithm always outputs a valid message regardless of
whether the ciphertext is well-formed or not. Then, by running the bootstrapping
procedure on a random element from the ciphertext space, we obtain a well formed,
valid FHE ciphertext for an unknown bit, by correctness of FHE evaluation.
Moreover, if we run the bootstrapping procedure on a valid FHE ciphertext
of any bit, the ciphertext output by bootstrapping still encodes the same
bit, by correctness of FHE decryption and evaluation. If FHE ciphertexts are
indistinguishable from random (which they usually are), then the encryptor may
cheat about which of the two types of inputs was provided to the bootstrapping
procedure and thereby lie about the encoded bit in the bootstrapped ciphertext.

While this feels like progress, it is still unclear how to encrypt a single bit
of one’s choosing using obliviously generated ciphertexts of unknown bits and
honestly generated ciphertexts of known bits.

Deniable FHE in the Weak Model. As a warm-up, let us consider the weak model
of deniability, where the encryptor can lie not only about the randomness used in
encryption but also the algorithm used. Let us suppose for the moment that we
may engineer the bootstrapping procedure so that an obliviously generated FHE
ciphertext is biased and encodes the bit 0 with overwhelming probability (we

7

will weaken this assumption later). Then, an approach to encrypt in the weak
model is as follows.

Let the bootstrapping procedure be denoted by boot. In the honest mode, the
encryptor encrypts bit 0 by choosing R1 and R2 randomly from the ciphertext
space, converting these to well formed FHE ciphertexts via the bootstrapping
procedure, and finally computing the homomorphic XOR operation (denoted by
⊕2) on these FHE ciphertexts. Thus, we have:

ct0 = boot(R1)⊕2 boot(R2)

Since we assumed that random elements are bootstrapped to encode 0 with
overwhelming probability, the ciphertext ct0 encodes 0 due to correctness of the
FHE evaluation procedure. To encrypt bit 1, the encryptor chooses R3 randomly
from the ciphertext space, and computes R4 as an honest encryption of 1 using
the FHE encryption algorithm. It then sets:

ct1 = boot(R3)⊕2 boot(R4)

It is easy to see that correctness is preserved by the same arguments as above.

In the deniable or fake encryption algorithm, the sender changes the way it
encrypts 0. Instead of choosing R1 and R2 uniformly at random, it now computes
both R1 and R2 as well formed FHE ciphertexts of 1. Bootstrapping preserves
the message bit and homomorphic evaluation of addition modulo 2 ensures that
ct0 is a valid encryption of 0. The bit 1 is encrypted as before. However, if asked
to explain, the encryptor can pretend that ct0 is in fact an encryption of 1 by
claiming that R1 is chosen uniformly and by explaining R2 as an encryption of
1. Since R1 is an FHE ciphertext, the adversary cannot tell the difference as
long as FHE ciphertext is pseudorandom. Similarly, if asked to explain ct1 as an
encryption of 0, she explains R4 as a randomly chosen element in the ciphertext
space. Thus, we obtain a construction of weakly deniable FHE for bits which
achieves negligible detection probability. For more details, please see Section 4.1.

Deniable FHE in the Full Model. In the full model, the encryptor is not allowed
to cheat about the algorithm it used for encryption, hence we may not take
advantage of different ways of sampling randomness in the real and deniable
encryption algorithms – there is only one encryption algorithm. In this model,
we obtain FHE with polynomial deniability but with compact public key and
ciphertext, that is, the size of the public key and ciphertext are independent of the
detection probability. We proceed to describe the main ideas in the construction.

Let δ be the inverse of the desired detection probability. To encrypt a bit b,
the encryptor samples uniform random bits x1, . . . , xδ such that

∑
i∈[δ] xi = b

(mod 2). It then computes δ elements R1, . . . , Rδ of which, Ri is computed as an
FHE encryption of 1 when xi = 1, and Ri is sampled uniformly at random when
xi = 0. Finally, it outputs

ct = boot(R1) ⊕2 boot(R2) ⊕2 . . . ⊕2 boot(Rδ)

8

To fake, it samples a random j ∈ [δ] such that xj = 1, sets x∗j = 0, and
x∗i = xi for every i 6= j, i ∈ [δ]. It pretends that Rj is chosen uniformly at random,
implying that boot(Rj) encodes 0 with overwhelming probability. It is easy to see
that this flips the message bit that was chosen during encryption. Moreover, the
statistical distance between honest randomness and fake randomness is O(1δ) and
we achieve polynomial deniability, so long as the encryption time is polynomial.
Please see Section 4.2 for more details.

Special FHE. The above informal description brushes several important details
under the rug. For instance, we assumed various properties about the underlying
FHE scheme which are not true in general. The most problematic assumption
we made is that the FHE bootstrapping procedure can be engineered so that it
outputs an encryption of 0 for a random input with overwhelming probability.

Some thought reveals that existing FHE schemes do not satisfy this property.
Fortunately however, we show that some constructions can be modified to do
so. For concreteness, we describe how to modify the FHE scheme by Brakerski,
Gentry and Vaikuntanathan [10] to get the “special FHE” that we require. At a
high level, decryption in the BGV cryptosystem is a two step procedure, where
the first step computes the inner product of the ciphertext and the secret key
over the ambient ring, and the second step computes the least significant bit
of the result, which is then output. One can check that for any well formed
ciphertext in this scheme, regardless of whether it encodes 0 or 1, the first step
of the decryption procedure always yields a “small” element. On the other hand,
for a random element in the ciphertext space, the first step of decryption yields
a random element, i.e. it is small with low probability. Thus, we may modify
the BGV decryption algorithm so that after computing the inner product in the
first step, it checks whether the output is small, and outputs 0 if not. This does
not change decryption for well formed ciphertexts but by a suitable setting of
parameters, it biases the output of decryption to 0 for random inputs. In fact, we
can make do with a weaker requirement on bias, namely that the bootstrapping
procedure outputs an encryption of 0 for a random input with only non-negligible
(not overwhelming) probability. However this makes the scheme more complicated,
so we do not discuss it here. Please see the full version [1] for details. We also
require some additional properties from our special FHE, which we define and
establish in Section 3.

Large Messages. In all prior constructions of deniable encryption, larger messages
were encoded bit by bit, where the ciphertext for a single bit is itself quite
substantial (O(δ)) as discussed above. To further improve efficiency, we again
leverage the power of FHE. This enables our schemes to support large message
spaces natively, thereby inheriting the significant advances in FHE schemes with
large information rate [30, 10, 9, 22], and bringing deniable FHE closer to practice.

LetM be the message space of an FHE scheme Fhe such that |M| = poly(λ).
Further, let us assume that Fhe satisfies the special properties discussed above
(formalized in Section 3). Then, to compute a ciphertext for a message mk ∈M,
we express mk as the output of a “selector” function which computes the inner

9

product of the kth unit vector with a vector of all messages inM. In more detail,
we express

mk = 1 ·mk +
∑

mi∈M,i6=k

0 ·mi

Here, the bits 0 or 1 are referred to as “selector” bits for obvious reasons. Our
main observation is that the deniable encryption scheme for bits can now be
used to add deniability to ciphertexts of selector bits and thereby to the overall
ciphertext.

In more detail, assume that the sender selects message mk at the time of
encryption. To compute a ciphertext of mk, she computes FHE ciphertexts cti for
all mi ∈M and selector bit ciphertexts ctsel

i for i ∈ [|M|] where ctsel
i encodes 0 if

i 6= k and 1 otherwise. We use deniable encryption to compute the ciphertexts
of selector bits as described above; thus, each selector bit is computed using
multiple elements {Ri} where i ∈ [δ]. She then homomorphically computes the
selector function described above to obtain a ciphertext ct∗ encoding mk. Under
coercion, she may explain ct∗ as encoding of any message mi, even for i 6= k, by
explaining the corresponding selector bits differently, i.e. by explaining ctsel

i as
an encryption of 1 and ctsel

k as an encryption of 0.

We note that the above description is oversimplified and glosses over many
technical details – for instance, the deniable FHE scheme for bits assumes that
decryption of a random element in the ciphertext space is biased to 0 with
overwhelming probability, which is no longer the case for FHE with large message
spaces. However, this and other issues can be addressed, and we get schemes in
both the weak and full models – please see Section 5 and the full version [1] for
details.

Plan-Ahead Deniability. Plan-ahead deniable encryption [13] requires the sender
to choose all possible fake messages at the time of encryption itself. For plan-ahead
fully homomorphic encryption, it becomes possible to instantiate the underlying
FHE to have super-polynomial message space. Intuitively, without the plan-ahead
restriction, the construction discussed above fails for exponentially large message
spaces, since it is not possible to “select” between exponentially many options
in polynomial time. However, if the number of possible fake messages is fixed
to some polynomial in advance, as is the case for plan-ahead deniability, then
the same construction as above works, as long as we can establish the “special”
properties of the FHE. We discuss how this can be achieved, please see the full
version [1] for details.

Online-Offline Encryption. We now describe how our encryption algorithms lend
themselves naturally to the online-offline model, where a bulk of the computation
required for encryption is performed before the message is available. Consider
the encryption algorithm for bits in the full model. Observe that sampling δ
random bits x1, . . . , xδ such that

∑
i∈[δ] xi = b (mod 2) is the same as sampling

δ − 1 random bits x1, . . . , xδ−1 and setting xδ = b+
∑
i∈[δ−1] xi (mod 2). In the

offline phase, we may select δ − 1 bits x1, . . . , xδ−1 at random as well as the

10

corresponding δ−1 elements Ri based on the bit xi as specified in the encryption
algorithm. Next, we homomorphically evaluate the bootstrapping circuit on the
δ − 1 random elements, i.e. boot(Ri) for i ∈ [δ − 1] and then compute:

ctoffline = boot(R1) ⊕2 boot(R2) ⊕2 . . . ⊕2 boot(Rδ−1).

Now, in the online phase we can simply select the last bit and corresponding
randomness Rδ according to the message b being encrypted, compute the
homomorphic bootstrapping algorithm on Rδ, and evaluate the homomorphic
addition mod 2 as: ct = ctoffline ⊕2 boot(Rδ). Thus, the online encryption time is
independent of δ.

Next, consider the encryption scheme for large message spaces. Even here,
note that the dependence of the encryption running time on the detection
probability comes from the construction of selector bits. Since the construction of
any ciphertext involves |M|− 1 encryptions of 0 and a single encryption of 1, the
encryptions of these selector bits can be computed in an offline pre-processing
phase. The encryptions of all possible messages in the message space can also be
performed offline. Then, in the online phase, given message mk, the encryptor
needs only to perform the homomorphic evaluation of the selector function to
compute the final ciphertext. This leads to an online encryption time which grows
with |M| but not with the inverse of the detection probability.

The online processing time may be optimized further as follows – now,
additionally in the offline phase, let the encryptor perform the homomorphic
evaluation of the selector function with all the selector bits set to 0, i.e.∑
mi∈M 0 · mi. It stores the ciphertexts for all possible messages m ∈ M,

the ciphertexts of the computed selector bits which are set to 0 as well as a
ciphertext ct1 for an extra selector bit which is set to 1. In the online phase,
when mk is known, it subtracts the “wrong” term ct0k · ctk and adds the term
ct1 · ctk to the evaluated ciphertext to obtain the correct ciphertext. Thus, the
online phase can be performed in time independent of both |M| as well as δ.

Removing the Circularity Assumption for Levelled FHE. Above, our usage of the
bootstrapping procedure implies the assumption of circular secure homomorphic
encryption, hence circular secure LWE. Since circular security is required anyway
for all known constructions of pure FHE (we refer the reader to [8] for a discussion),
this assumption currently comes “for free” in the construction of deniable pure
FHE. However, for levelled FHE, which only supports circuits of bounded depth
and can be constructed from standard LWE [11, 10, 23], the assumption of
circularity is not implied. In this setting, our construction can be easily adapted
to make do without the circularity assumption, as observed by [3]. The idea is
simple – instead of assuming that the encryption of a scheme’s secret key under
it’s own public key is secure, we can instead rely on two encryption schemes and
assume that the secret key of first scheme sk1 can be securely encrypted using
the public key of the second scheme pk2. Let us denote this ciphertext by ctsk1

.
Now, the obliviously sampled ciphertexts can be seen as encrypted under pk1
and the ciphertext ctsk1

may be used to translate these to valid ciphertexts under

11

pk2 via a variant of the bootstrapping procedure discussed above. In more detail,
the modified bootstrapping procedure computes the homomomorphic evaluation
procedure of the second scheme using as inputs the ciphertext ctsk1 and the
decryption circuit of the first scheme to produce valid ciphertexts under the
second scheme. We refer the reader to the full version [1] for more details.

1.4 Perspective: FHE as a Tool

As discussed above, bootstrapping enables us to obliviously sample FHE
ciphertexts, and homomorphic evaluation enables us to “compactify” the final
ciphertext – this makes FHE a useful tool even in the context of deniable public
key encryption (PKE). One of the main insights of our work is that evaluation
compactness in FHE can be leveraged to achieve deniability compactness in PKE.
All constructions of non-interactive sender deniable encryption in the full model
known from 1997 to date (excepting the one based on iO [29]), must provide
multiple elements in the ciphertext, both pseudorandom and random, and encode
the message bit in the parity of the number of pseudorandom elements leading
to ciphertext size that grows inversely with detection probability. We can avoid
this dependence using FHE.

Can FHE also help achieve compact runtime of encryption? If so, this would
lead to negligibly deniable PKE from LWE, resolving the long-standing open
problem of deniable PKE from a standard, polynomial hardness assumption,
with the post-quantum advantage as the “icing on the cake”. While this exciting
possibility cannot be ruled out, a thorny technical barrier that arises is the
hardness of inverting the bootstrapping procedure. Intuitively, deniable encryption
requires invertible biased oblivious sampling – the encryption procedure must
obliviously sample a ciphertext (biased to encoding 0, say) and the faking
procedure must invert a given ciphertext, encoding either 0 or 1, to produce
a well distributed randomness. In hindsight, even the iO based construction of
Sahai and Waters [29] can be viewed as a construction of invertible oblivious
sampling – indeed, similar techniques have been used to construct invertible
sampling [17].

Using our current techniques, bootstrapping enables us to perform oblivious
sampling, but not inversion. Due to this limitation, we are restricted to cheating
only in one direction – we can pretend that a ciphertext of 1 encodes 0 but not the
other way around. This leads to the attack discussed in the full version [1], which
curtails the scheme to polynomial deniability. However if, given y = boot(R),
we could compute well-distributed R′ such that boot(R′) = y ⊕2 1, where ⊕21
denotes homomorphic XOR of the bit 1, then we would gain the ability to cheat
in both directions and obtain negligibly deniable PKE. We remark that while
boot is a one way function, infeasibility of inversion does not apply since we
have potentially useful side information about the preimage – we must find the
preimage of y ⊕2 1 and know the preimage to y. Unfortunately, we currently
do not know how to leverage this information. Nevertheless, we view ciphertext
compactness as a useful stepping stone to full runtime compactness from LWE,
and hope it can lead to progress towards a full solution. Please see the full

12

version [1] for a more in-depth discussion on the barriers in achieving negligible
deniability.

In the full version[1], we discuss the notion of receiver deniable FHE.

1.5 Other Related Work

De Caro, Iovino and O’Neill [18] studied the notion of receiver deniable functional
encryption, but instantiating these constructions requires the assumption of full
fledged functional encryption, which in turn is known to imply indistinguishability
obfuscation (iO) [2, 6].

Aside from work extending the functionality of deniable encryption, there
was also progress in lower bounds – for receiver deniability, [5] showed that
a non-interactive public-key scheme having key size δ can be fully receiver-
deniable only with non-negligible Ω(1

δ) detection probability while for sender
deniability, Dachman-Soled [16] showed that there is no black-box construction
of sender-deniable public key encryption with super-polynomial deniability from
simulatable public key encryption. There has also been work on interactive
deniable encryption where the sender and receiver are allowed to participate in an
interactive protocol – in this setting, negligible bi-deniability in the full model has
been achieved based on subexponentially secure indistinguishability obfuscation
and one-way functions [14]. Our focus in this work is the non-interactive setting.

2 Preliminaries

In this section, we define the notation and preliminaries that we require in this
work. Some standard notions are moved to the full version [1] due to space
constraints.

2.1 Fully Homomorphic Encryption

Definition 2.1 (Fully Homomorphic Encryption). A public-key fully ho-
momorphic encryption scheme for a message spaceM consists of PPT algorithms
Fhe = (Gen,Enc,Eval,Dec) with the following syntax:

– Gen(1λ) → (pk, sk): on input the unary representation of the security
parameter λ, generates a public-key pk and a secret-key sk.

– Enc(pk,m)→ ct: on input a public-key pk and a message m ∈M, outputs a
ciphertext ct.

– Eval(pk, C, ct1, . . . , ctk)→ ct: on input a public-key pk, a circuit C :Mk →M,
and a tuple of ciphertexts ct1, . . . , ctk, outputs a ciphertext ct.

– Dec(sk, ct) → m: on input a secret-key sk and a ciphertext ct, outputs a
message m ∈M.

The scheme should satisfies the following properties:

13

Correctness. A scheme Fhe is correct if for every security parameter λ,
polynomial-time circuit C :Mk →M, and messages mi ∈M for i ∈ [k]:

Pr[Dec(sk,Eval(pk, C, ct1, . . . , ctk)) = C(m1, . . . ,mk)] = 1− negl(λ)

where (pk, sk)← Gen(1λ), and cti ← Enc(pk,mi) for i ∈ [k].
Compactness. A scheme Fhe is compact if there exists a polynomial poly(·)

such that for all security parameter λ, polynomial-time circuit C :Mk →M,
and messages mi ∈M for i ∈ [k]:

Pr [|Eval (pk, C, ct1, . . . , ctk)| ≤ poly(λ)] = 1

where (pk, sk)← Gen(1λ), and cti ← Enc(pk,mi) for i ∈ [k].
CPA Security. A scheme Fhe is IND-CPA secure if for all PPT adversary A:∣∣Pr

[
FheGame0A(λ) = 1

]
− Pr

[
FheGame1A(λ) = 1

]∣∣ ≤ negl(λ)

where FheGamebA(λ) is a game between an adversary and a challenger with a
challenge bit b defined as follows:

– Sample (pk, sk)← Gen(1λ), and send pk to A.
– The adversary chooses m0,m1 ∈M.
– Compute ct← Enc(pk,mb), and send ct to A.
– The adversary A outputs a bit b′ which we define as the output of the

game.

Definition 2.2 (Circular Security). A public-key encryption scheme with key
generation algorithm Gen and encryption algorithm Enc is circular secure if for
every PPT adversary A:∣∣Pr

[
CircGame0A(λ) = 1

]
− Pr

[
CircGame1A(λ) = 1

]∣∣ ≤ negl(λ)

where CircGamebA(λ) is a game between an adversary and a challenger with a
challenge bit b defined as follows:

– Sample (pk, sk)← Gen(1λ), compute ctsk ← Enc(pk, sk), and give (pk, ctsk) to
A.

– The adversary chooses m0,m1 ∈M.
– Compute ct← Enc(pk,mb), and give ct to A.
– The adversary A outputs a bit b′ which we define as the output of the game.

Definition 2.3 (Bootstrapping Procedure). [21] Let Fhe = (Gen,Enc,Eval,Dec)
be a public-key FHE scheme for a message space M with ciphertext space R`c .
We define the bootstrapping procedure, denoted by boot : R`c → R`c , as

boot(x) = Fhe.Eval(pk,Decx, ctsk)

where (pk, sk) ← Fhe.Gen(1λ), ctsk ← Fhe.Enc(pk, sk), and Decx(sk) =
Fhe.Dec(sk, x). Above, when sk /∈ M, we assume that sk may be represented
as a vector of elements in M, which would make ctsk a vector of ciphertexts.

14

Definition 2.4 (Valid Ciphertext). We say that an Fhe ciphertext ct is a
valid ciphertext of m, if either

ct← Enc(pk,m),

or for any polynomial-sized circuit C, we have that:

Pr[Dec(sk,Eval(pk, C, ct)) = C(m)] = 1− negl(λ),

where (pk, sk)← Gen(1λ) and λ is the security parameter.

Some Useful Functions. In this paragraph, we define notation for some functions
that will prove useful in our constructions.

Definition 2.5 (Addition Modulo 2). We denote by ⊕2 the homomorphic
evaluation of addition modulo 2 circuit, that is for k ≥ 2, ⊕2(ct1, . . . , ctk) = ct,

ct is a valid encryption of
∑k
i=1 xi (mod 2) where xi ∈ {0, 1} and cti is a valid

encryption of xi for i ∈ [k].

For ease of readability, we will often denote ⊕2(ct1, . . . , ctk) by ct1⊕2ct2 . . .⊕2ctk.

Definition 2.6 (Selector). Let bi ∈ {0, 1} such that for all i ∈ [k], i 6= j, bi = 0,
and bj = 1 for some fixed j ∈ [k]. For all i ∈ [k], let xi ∈M. We define a selector
function as

∑
i∈[k] bixi = xj.

We denote the homomorphic evaluation of this function by∑
i∈[k]

ctsel
i ⊗ cti = ct,

where ct is a valid encryption of the selected message xj , ct
sel
i is a valid encryption

of bi and cti is a valid encryption of xi for all i ∈ [k].

Definition 2.7 (Indicator Function). The indicator function for the set X ,
denoted by 1X (·), defined as

1X (x) =

{
1 x ∈ X
0 x /∈ X

.

2.2 Deniable Homomorphic Encryption

Definition 2.8 (Compact Deniable FHE.). A compact public-key deniable
fully homomorphic encryption scheme for message space M consists of PPT
algorithms DFhe = (Gen,Enc,Eval,Dec,Fake) with the following syntax:

– Gen(1λ) → (dpk, dsk): on input the unary representation of the security
parameter λ, generates a public-key dpk and a secret-key dsk.

– Enc(dpk,m; r)→ ct: on input a public-key dpk and a message m ∈M, uses
`-bit string randomness r, outputs a ciphertexts dct.

15

– Eval(dpk, C, dct1, . . . , dctk) → dct: on input a public-key dpk, a circuit C :
Mk →M, and a tuple of ciphertexts dct1, . . . , dctk, outputs a ciphertext dct.

– Dec(dsk, dct)→ m: on input a secret-key dsk and a ciphertext dct, outputs a
message m ∈M.

– Fake(dpk,m, r,m∗) → r∗: on input a public-key dpk, an original message
m ∈M, an `-bit string randomness r, and a fake message m∗ ∈M, output
an `-bit string randomness r∗.

The scheme should satisfies the following properties:

Correctness, Compactness & CPA Security. A scheme DFhe is correct,
compact and secure if the scheme (Gen,Enc,Eval,Dec) satisfies the standard
notions of correctness, compactness and IND-CPA security properties of fully
homomorphic encryption, as in Definition 2.1. We remark that a scheme
cannot simultaneously satisfy perfect correctness and deniability, so negligible
decryption error in correctness is inherent.

Deniability. A scheme DFhe is δ(λ)-deniable if for all PPT adversary A:∣∣Pr
[
DnblGame0A(λ) = 1

]
− Pr

[
DnblGame1A(λ) = 1

]∣∣ ≤ δ(λ)

where DnblGamebA(λ) is a game between an adversary and a challenger with
a challenge bit b defined as follows:

– Sample (dpk, dsk)← Gen(1λ), and send dpk to A.
– The adversary chooses m,m∗ ∈M.
– Sample r ← {0, 1}`, and r∗ ← Fake(dpk,m, r,m∗); if b = 0 give

(m∗, r,Enc(dpk,m∗; r)) to A, else if b = 1, give (m∗, r∗,Enc(dpk,m; r))
to A.

– The adversary A outputs a bit b′ which we define as the output of the
game.

Remark 2.9. We note that in our constructions, the length of randomness
used during encryption may depend on the message being encrypted. This
does not affect deniability, because the length of the randomness is only
revealed together with the encrypted message. For ease of exposition, we do
not introduce additional notation to capture this nuance.

Deniability Compactness. A δ(λ)-deniable scheme DFhe is deniability com-
pact if there exists a a polynomial poly(·) such that for all security parameters
λ, and message m ∈M:

Pr[|Enc(dpk,m)| ≤ poly(λ)] = 1

where (dpk, dsk)← Gen(1λ), regardless of the encryption running time.

Remark 2.10. The above definition can be modified to capture a compact deniable
public key encryption scheme by removing the evaluation algorithm required by
FHE.

16

Definition 2.11 (Weak Deniable FHE). A public-key weak deniable fully
homomorphic encryption scheme for message spaceM consists of PPT algorithms
wDFhe = (Gen,DEnc,Enc,Eval,Dec,Fake) where Gen,Eval, and Dec have the
same syntax as in Definition 2.8, and DEnc,Enc and Fake have the following
syntax:

– DEnc(dpk,m; r)→ ct: on input a public-key dpk and a message m ∈M, uses
`-bit string randomness r, outputs a ciphertexts dct.

– Enc(dpk,m; r)→ ct: on input a public-key dpk and a message m ∈M, uses
`∗-bit string randomness r, outputs a ciphertexts dct.

– Fake(dpk,m, r,m∗) → r∗: on input a public-key dpk, an original message
m ∈M, an `-bit string randomness r, and a faking message m∗ ∈M, output
an `∗-bit string randomness r∗.

The scheme should satisfies the following properties:

Correctness, Compactness & CPA Security. A scheme wDFhe is correct,
compact and secure if both schemes (Gen,Enc,Eval,Dec), and (Gen,DEnc,Eval,Dec)
satisfy the standard notions of correctness, compactness and IND-CPA
security properties of fully homomorphic encryption, as in Definition 2.1.

Weak Deniability. A scheme wDFhe is weakly-deniable if for all PPT adver-
saries A:∣∣Pr

[
wDnblGame0A(λ) = 1

]
− Pr

[
wDnblGame1A(λ) = 1

]∣∣ ≤ negl(λ)

where wDnblGamebA(λ) is a game between an adversary and a challenger with
a challenge bit b defined as follows:

– Sample (dpk, dsk)← Gen(1λ), and send dpk to A.
– The adversary A chooses m,m∗ ∈M.
– Sample r ← {0, 1}`∗ , r′ ← {0, 1}`, and r∗ ← Fake(dpk,m, r′,m∗); if b = 0

return (m∗, r,Enc(dpk,m∗; r)) else if b = 1 return (m∗, r∗,DEnc(dpk,m; r′))
to A.

– The adversary A outputs a bit b′ which we define as the output of the
game.

3 Special Homomorphic Encryption

Our constructions rely on a fully homomorphic encryption scheme which satisfies
some special properties. We define these and instantiate it below.

Definition 3.1 (Special FHE). A special public-key FHE scheme for a
message space M with ciphertext space R`c is a public-key FHE scheme,
Fhe = (Gen,Enc,Eval,Dec), with the following additional properties:

1. Deterministic Algorithms. The evaluation and decryption algorithms, Eval and
Dec respectively, are deterministic. In particular, this implies the bootstrapping
procedure boot, defined in 2.3, is deterministic.

17

2. Pseudorandom Ciphertext. The distribution Fhe.Enc(pk,m;U `) is computa-
tionally indistinguishable from R`c , where U ` is the uniform distribution over
`-bit strings, (pk, sk)← Fhe.Gen(1λ), and m ∈M. Moreover, the distribution
boot(R`c) is computationally indistinguishable from R`c , where boot is the
bootstrapping procedure as in Definition 2.3.

3. Decryption Outputs Valid Message. The decryption algorithm, Fhe.Dec,
always outputs a message from the message space M. Namely, for any
x ∈ R`c , Fhe.Dec(sk, x) ∈ M where (pk, sk) ← Fhe.Gen(1λ). In particular,
this implies that the output of the bootstrapping procedure boot is always a
valid ciphertext (Definition 2.4).

4. Biased Decryption on Random Input (Strong Version). The decryption
algorithm Fhe.Dec, when invoked with a random element in the ciphertext
space x← R`c , outputs a message from a fixed (strict) subset of the message
space S ⊂M with overwhelming probability.
Formally, we require that there exists a strict subset of the message space,
S ⊂M, such that

P (S) :=
∑
m∈S

P (m) ≥ 1− negl(λ)

where P : M → R is defined as P (m) := Pr [Fhe.Dec (sk, x) = m] where
x← R`c and (pk, sk)← Fhe.Gen(1λ). Moreover, we require that 0 ∈ S. Thus,
if the message space is binary, then S = {0}.
We remark that the above property, while sufficient, is not strictly necessary
for our constructions. However, for ease of exposition, our constructions
assume the “strong version” stated above. In the full version [1] we describe
how to modify our constructions to instead use the weaker version below.
Biased Decryption on Random Input (Weak Version). This version weakens
overwhelming to noticeable in the above definition, i.e. using the notation
above, we require:

P (S) :=
∑
m∈S

P (m) ≥ 1/ poly(λ)

As before, we require that 0 ∈ S.
5. Circular Secure. The scheme Fhe is circular secure as in Definition 2.2. As

discussed in Section 1, this condition may be removed at the cost of making
the construction more complicated, please see the full version [1] for details.
Since this condition is anyway required for the construction of pure FHE, we
assume it for ease of exposition.

3.1 Instantiation

For concreteness, we instantiate our special FHE scheme with (a modified version
of) the scheme by Brakerski, Gentry and Vaikuntanathan [10] (henceforth BGV),
which is based on the hardness of the learning with errors (LWE) problem. To
begin, note that BGV already satisfies the property that the algorithms for

18

evaluation and decryption are deterministic (property 1), the property that the
ciphertext is pseudorandom (property 2) as well as the property that decryption
always outputs valid message (property 3). The property of circular security
(property 5) does not provably hold in BGV, or indeed any existing FHE scheme,
but is widely assumed to hold for BGV. In particular, the authors already assume
it for optimized versions of their main construction (which does not require this
assumption)– please see [10, Section 5] for a discussion. We also remark that
circular security is assumed by all “pure” FHE schemes, namely, schemes that
can support homomorphic evaluation of circuits of arbitrary polynomial depth.
We require circular security for a different reason – to support the bootstrapping
operation, which allows us to obliviously sample FHE ciphertexts. Thus, it
remains to establish the property that decryption of a (truly) random element
from the ciphertext space outputs a biased message from the message space
(property 4). Establishing this property requires slight modifications to the BGV
scheme1. Next, we describe these modifications for the case when theM is binary,
of polynomial size and of super-polynomial size.

Recap of BGV. Let us consider the BGV construction for binary messages [10,
Section 4]. We begin by providing a brief recap of the features of BGV that
we require. We use the same notation as in their paper for ease of verification.
Let R be a ring and |R| = q. Recall that the key generation algorithm of
BGV samples a vector s′ ∈ Rn such that all the entries of s′ are “small” with
high probability (details of the distribution are not relevant here) and outputs
sk = s = (1, s′). The public key is constructed by sampling a uniform random
matrix A′ ← RN×n, an error vector e ∈ RN from a special “error” distribution,
and setting b = A′s′ + 2 · e. Denote by A the (n+ 1) column matrix consisting
of b followed by the n columns of −A′. Observe that A · s = 2e. The public key
contains A in addition to some other elements which are not relevant for our
discussion2. To encrypt a message bit m, set m = (m, 0, 0, . . . , 0) ∈ {0, 1}n+1,
sample r ← {0, 1}N and output ct = m + A> r. To decrypt, compute and
output [[〈ct, sk〉]q]2, where 〈· , ·〉 denotes inner product over the ring, and [·]p
denotes reduction modulo p. The above construction can be adapted to support
larger message spaces. A simple extension is to choose the message from Zp for a
polynomial sized prime p and multiply the error with p instead of 2. This, and
other extensions are discussed in detail in [10, Section 5].

Creating a Bias. Observe that the decryption algorithm, given a ciphertext ct
and secret sk, outputs the decrypted message bit as [[〈ct, sk〉]q]2 regardless of the
distribution of ct. Thus, even if ct is a random element from the ciphertext space
Rn+1 which may not be well formed, it still outputs a valid message from the
message space. However, it is easy to see that for a random element R← Rn+1,

1 We note that these properties are also satisfied by several other FHE schemes, for
instance [11, 7, 23].

2 Since we assume circular security which BGV do not, we can simplify their scheme –
in particular, we not need fresh keys for each level of the circuit as they do.

19

the output of [[〈R, sk〉]q]2 is a uniformly distributed random bit, whereas we
require the decryption algorithm to output a biased bit to satisfy property 4.
Below, we will describe the modification to BGV to achieve the strong version of
property 4. In the full version [1], we describe how we can instead rely on the
weak version of the property, which is satisfied by BGV unmodified.

To create a bias, an idea is to build in an additional step in the decryption
algorithm, which first checks whether the input ciphertext ct is well-formed. If
so, it proceeds with legitimate decryption, i.e. computes [[〈ct, sk〉]q]2. If not, it
simply outputs 0. Since well-formed ciphertexts in the BGV FHE are sparse in
the ciphertext space Rn+1, this ensures that a randomly chosen element from
the ciphertext space is decrypted to 0 with high probability.

It remains to identify an efficient check for the well-formedness of the
ciphertext. Towards this, we observe that for any valid ciphertext (Definition
2.4), the inner product [〈ct, sk〉]q = m+ 2e where m is the encrypted bit and e
is some error whose norm may be bounded using bounds on the norms of the
secret key s, the randomness r, the error term in the public key e and the depth
of the circuit – of which the norms of all aforementioned elements were chosen to
be sufficiently “small” and the depth of the circuit can be bounded by the depth
of the bootstrapping circuit [21].

Let us assume that the decryption error is bounded above by B − 1, for
some B = poly(λ). We note that this bound holds true for the current setting
of parameters in [10]. Then, it follows that the output of step 1 of decryption
can be bounded from above by B (for any well formed ciphertext). On the other
hand, the output of [〈R, sk〉]q for a random element R will also be uniformly
distributed, and hence will have norm ≤ B only with probability O(Bq). If we set
q to be super-polynomial in the security parameter, then this term is negligible.
Thus, we may modify the BGV decryption algorithm so that after computing
[〈ct, sk〉]q, it checks whether the output is ≤ B, and outputs 0 if not. This biases
the output of decryption to 0 for random inputs – in more detail, decryption
of a random element yields 0 with probability 1− negl(λ) as desired. With this
modification, we ensured that BGV satisfies all the properties required by special
FHE. We refer the reader to [10] for more details about the full construction of
FHE.

In the above description, we chose the ring modulus q to be super-polynomial
in the security parameter to obtain the desired bias. However, this large modulus
is unnecessary and affects the efficiency of the scheme negatively. In the full
version [1], we describe how to relax this requirement.

Next, we discuss how to modify the BGV scheme supporting larger
(polynomial) message spaces, as discussed in [10, Section 5]. As in the case
of binary messages (discussed above), we have that without performing any
modifications, the BGV decryption algorithm, if executed on a random element in
the ciphertext space, outputs a uniformly distributed message from the message
space.

20

It remains to establish property 4 which requires that there exists a strict
subset of the message space, S ⊂M, such that

P (S) :=
∑
m∈S

P (m) ≥ 1− negl(λ)

where P :M→ R is defined as P (m) := Pr [Fhe.Dec (sk, x) = m] where x← R`c
and (pk, sk)← Fhe.Gen(1λ).

Let S be an arbitrary subset of M that contains 0. For the binary message
case above, we described a trick that ensures that random elements are decrypted
to 0 with overwhelming probability. The same trick may be generalized to
larger message spaces. If the modulus q is superpolynomial, and the message
space is polynomial (say of size p), then the first step of decryption yields
[〈ct, sk〉]q = m + p · e for well-formed ciphertexts, and a random element in R
otherwise. Again, this term can be bounded by some polynomial B and the
decryption procedure can be modified to output 0 (or any element from the
set S) if the output of step 1 is greater than B. By the same reasoning as
above, this biases the output to S with overwhelming probability as long as q
is super-polynomial. Please see the full version [1] to avoid the restriction of
super-polynomial q.

Finally, we remark that BGV also includes variants where the message space
is super-polynomial in size [10, Section 5.4]. In this case, biasing the output to
a fixed set S is simple: we can just set S =M\ {1}. Moreover S has efficient
representation since it can simply be represented by its complement, which is
of small size and it is clear that the decryption output of a random element is
biased to S with overwhelming probability.

4 Deniable Encryption for Bits

In this section, we provide our constructions for weak deniable FHE, as in
Definition 2.11, and compact deniable FHE, as in Definition 2.8. Let Fhe =
(Gen,Enc,Eval,Dec) be a special public-key FHE scheme for the message space
M = {0, 1} with ciphertext space R`c , as in Definition 3.1. For reading
convenience, we denote by lowercase r, the `-bit string randomness that is input to
an Fhe.Enc algorithm, and by uppercase R, the elements in R`c , where R`c is the
co-domain of the algorithm Fhe.Enc. We denote by `′c the bit length of elements
in R`c (that is, `′c = d`c log2(|R|)e). Recall that boot denotes the bootstrapping
procedure described in Definition 2.3 and ⊕2 denotes the homomorphic evaluation
of addition mod 2 described in Definition 2.5.

4.1 Weakly Deniable FHE for Bits

Our public-key weak deniable fully homomorphic encryption scheme for message
space M = {0, 1}, wDFhe = (Gen,DEnc,Enc,Eval,Dec,Fake), is described as
follows:

21

wDFhe.Gen(1λ) : Upon input the unary representation of the security parameter
λ, do the following:
1. Sample (pk, sk)← Fhe.Gen(1λ), and ctsk ← Fhe.Enc(pk, sk).
2. Outputs dpk := (pk, ctsk), dsk := sk

wDFhe.DEnc(dpk,m; r): Upon input the public key dpk, a message bit m and
(3`+ `′c)-bit string randomness r, do the following:
1. Parse dpk := (pk, ctsk) and r = (r1, r2, r3, R4), where |ri| = ` for i ∈ [3]

and |R4| = `′c.
2. For i ∈ [3], set Ri = Fhe.Enc(pk, 1; ri).
3. Let ct0 = boot(R1)⊕2 boot(R2) and ct1 = boot(R4)⊕2 boot(R3).
4. Output dct = ctm.

wDFhe.Enc(dpk,m; r) : Upon input the public-key dpk, the message bit m, and
the (`+ 3`′c)-bit string randomness r, do the following:
1. Parse dpk := (pk, ctsk) and r = (R1, R2, R3, r4), where |Ri| = `′c for i ∈ [3]

and |r4| = `.
2. Set R4 = Fhe.Enc(pk, 1; r4).
3. Let ct0 = boot(R1)⊕2 boot(R2) and ct1 = boot(R3)⊕2 boot(R4).
4. Output dct = ctm.

wDFhe.Eval(dpk, C, dct1, . . . , dctk): Upon input the public key dpk = (pk, ctsk),
the circuit C and the ciphertexts dct1, . . . , dctk, interpret dcti as Fhe ciphertext
cti for i ∈ [k], and output dct = Fhe.Eval(pk, C, ct1, . . . , ctk).

wDFhe.Dec(dsk, dct): Upon input the secret key dsk and the ciphertext dct,
interpret dsk and dct as Fhe secret key sk and Fhe ciphertext ct and output
Fhe.Dec(sk, ct).

wDFhe.Fake(dpk,m, r,m∗): Upon input the public key dpk, the original message
bit m, (3`+ `′c)-bit string randomness r, and the faking message bit m∗, do
the following:
1. Parse dpk := (pk, ctsk) and r = (r1, r2, r3, R4), where |ri| = ` for i ∈ [3]

and |R4| = `′c.
2. For i ∈ [3], set Ri = Fhe.Enc(pk, 1; ri).
3. If m = m∗, then set R∗1 = R1, R∗2 = R2, R∗3 = R4, and r∗4 = r3.
4. Else if m 6= m∗, then set R∗1 = R4, R∗2 = R3, R∗3 = R1, and r∗4 = r2.
5. Output r∗ = (R∗1, R

∗
2, R

∗
3, r
∗
4)

We now prove the scheme satisfies correctness, compactness, CPA security
and weak deniability.

Compactness and Security. Observe that the output of both wDFhe.DEnc and
wDFhe.Enc is a valid ciphertext of the underlying Fhe scheme. This is due to
property 3 of the special FHE which states that the FHE decryption algorithm
always outputs a valid bit, and due to the correctness of FHE evaluation which
implies correctness of bootstrapping. Together, these two properties ensure that
boot always outputs a valid ciphertext. Moreover, correctness of homomorphic
evaluation implies that the addition mod 2 operation is performed correctly, so
that the output of wDFhe.DEnc and wDFhe.Enc is a valid ciphertext of FHE.

Since the underlying FHE scheme satisfies compactness, it holds that the
ciphertext output by wDFhe.DEnc and wDFhe.Enc is also compact. Similarly,

22

due to property 5 which states that the scheme is circular secure, and since the
ciphertext of the underlying FHE satisfies semantic security, so does the ciphertext
output by wDFhe.DEnc and wDFhe.Enc. Thus, both schemes are compact and
secure as the underlying FHE scheme is.

Correctness. We start by proving correctness of the deniable encryption algorithm
wDFhe.DEnc. Parse r ∈ {0, 1}3`+`′c as r = (r1, r2, r3, R4). Observe that:

1. Since Ri = Fhe.Enc(pk, 1; ri) for i ∈ [3], we have by correctness of the
underlying Fhe, that R1, R2 and R3 are valid encryptions of 1.

2. By properties 3 and 4 which state that FHE decryption always outputs a bit
and this bit is biased to 0 with overwhelming probability when decryption
is invoked with a truly random input, we have that boot(R4) is a valid
encryption of 0 with overwhelming probability.

Now, by correctness of FHE evaluation, we have that ct0 = boot(R1)⊕2 boot(R2)
is a valid encryption of 0 and ct1 = boot(R4)⊕2 boot(R3) is a valid encryption
of 1.

Next we prove correctness of wDFhe.Enc. Parse r ∈ {0, 1}`+3`′c as r =
(R1, R2, R3, r4). Observe that:

1. Since R4 = Fhe.Enc(pk, 1; r4), we have that R4 is a valid encryption of 1.
2. As above, we have by properties 3 and 4 that boot(Ri) for i ∈ [3] are valid

encryptions of 0 with overwhelming probability.

Thus, again by correctness of FHE evaluation, we have that ct0 = boot(R1)⊕2

boot(R2) is a valid encryption of 0 and ct1 = boot(R3) ⊕2 boot(R4) is a valid
encryption of 1.

Weak-Deniability. Next, we prove weak deniability of the construction. Fix a
security parameter λ, an original message m ∈ {0, 1}, and a faking message m∗ ∈
{0, 1}. Let (dpk, dsk)← wDFhe.Gen(1λ), and parse dpk := (pk, ctsk), dsk := sk.

Faking Case. First consider the distribution of (dpk,m∗, r,DEnc(dpk,m; r′)) in
the case of faking.
1. Select uniformly at random r′ ← {0, 1}3` ×R`c .
2. Parse r′ := (r1, r2, r3, R4), where |ri| = ` for i ∈ [3] and |R4| = `′c.
3. For i ∈ [3], set Ri = Fhe.Enc(pk, 1; ri).
4. Let r∗ = wDFhe.Fake(dpk,m, r′,m∗).
5. By the faking algorithm r∗ =

(
R∗1, R

∗
2, R

∗
3, r
∗
4) which is computed as

follows:
(a) Case m = m∗:

R∗1 = R1, R∗2 = R2, R∗3 = R4, r∗4 = r3.

By property 2 which asserts that ciphertexts are pseudorandom, we
can explain R∗1 and R∗2 as uniform from the ciphertexts space R`c .
Here, R∗3 = R4 is already a uniform element in R`c , and r∗4 = r3 is a
uniform ` bit string.

23

(b) Case m 6= m∗:

R∗1 = R4, R∗2 = R3, R∗3 = R1, r∗4 = r2.

As above, we can explain R∗2 and R∗3 as uniform elements in R`c , and
R∗1 = R4 and r∗4 = r2 are already uniform.

6. The output of this hybrid is:(
dpk,m∗, r∗ = (R∗1, R

∗
2, R

∗
3, r
∗
4) , ct∗ = wDFhe.DEnc(dpk,m; r′)

)
where ct∗ := ctm, ct0 = boot(R1) ⊕2 boot(R2) and ct1 = boot(R4) ⊕2

boot(R3).
Observe that ct∗ = wDFhe.Enc(dpk,m∗; r∗). Thus, the output of this
hybrid can be written as:(

dpk,m∗, r∗ = (R∗1, R
∗
2, R

∗
3, r
∗
4) , ct∗ = wDFhe.Enc(dpk,m∗; r∗)

)
where ct∗ := ctm∗ , ct0 = boot(R∗1) ⊕2 boot(R∗2), ct1 = boot(R∗3) ⊕2

boot(R∗4) and R∗1, R
∗
2, R

∗
3 and r∗4 are explained as uniform inR3`c×{0, 1}`.

Honest Case. Next, note that in the honest case r← R3`c×{0, 1}`, so the output
distribution is:(

dpk,m∗, r = (R1, R2, R3, r4) , ct∗ = wDFhe.Enc(dpk,m∗; r)
)

where ct∗ := ctm∗ , ct0 = boot(R1)⊕2 boot(R2), ct1 = boot(R3)⊕2 boot(R4)
and R1, R2, R3 and r4 are sampled uniformly. Hence, the two distributions
are indistinguishable.

4.2 Fully Deniable FHE for Bits

Our compact public-key 1/δ-deniable3 fully homomorphic encryption scheme for
message spaceM = {0, 1}, DFhe = (Gen,DEnc,Enc,Eval,Dec,Fake), is described
below. We also provide an alternate construction with slightly different parameters
in the full version [1]. Recall that boot denotes the bootstrapping procedure
described in Definition 2.3 and ⊕2 denotes the homomorphic evaluation of
addition mod 2 described in Definition 2.5). We let n = δ2.

DFhe.Gen(1λ) : Upon input the unary representation of the security parameter
λ, do the following:
1. Sample (pk, sk)← Fhe.Gen(1λ), and ctsk ← Fhe.Enc(pk, sk).
2. Outputs dpk := (pk, ctsk), dsk := sk.

DFhe.Enc(dpk,m) : Upon input the public-key dpk, the message bit m, do the
following:
1. Parse dpk := (pk, ctsk)
2. Select r as follows:

(a) Select uniformly x1, . . . , xn ∈ {0, 1} such that
∑n
i=1 xi = m (mod 2).

3 We remind the reader that δ = δ(λ), but we drop the λ for readability.

24

(b) For i ∈ [n]: if xi = 1, then select ri ← {0, 1}`; else if xi = 0, select
Ri ← R`c .

3. For i ∈ [n] such that xi = 1, set Ri = Fhe.Enc(pk, 1; ri).
4. Output dct = ⊕2(boot(R1), . . . , boot(Rn))

DFhe.Eval(dpk, C, dct1, . . . , dctk): Upon input the public key dpk = (pk, ctsk), the
circuit C and the ciphertexts dct1, . . . , dctk, interpret dcti as Fhe ciphertext
cti for i ∈ [k], and output dct = Fhe.Eval(pk, C, ct1, . . . , ctk).

DFhe.Dec(dsk, dct): Upon input the secret key dsk and the ciphertext dct,
interpret dsk and dct as Fhe secret key sk and Fhe ciphertext ct and output
Fhe.Dec(sk, ct).

DFhe.Fake(dpk,m, r,m∗): Upon input the public key dpk, the original message
bit m, randomness r, and the fake message m∗ do the following:

1. If m = m∗, output r∗ = r.
2. Parse dpk := (pk, ctsk) and r = (x1, . . . , xn, ρ1, . . . , ρn), where x1, . . . , xn ∈
{0, 1}, and for each i ∈ [n], if xi = 1, then |ρi| = `; else if xi = 0, |ρi| = `′c.

3. Select uniform i∗ ∈ [n] such that xi∗ = 1. If there is no such i∗, output
“cheating impossible”; else:
(a) Set x∗i∗ = 0 and ρ∗i∗ = Fhe.Enc(pk, 1; ρi∗);
(b) For i ∈ [n] \ {i∗}, set x∗i = xi and ρ∗i = ρi.

4. Output r∗ = (x∗1, . . . , x
∗
n, ρ
∗
1, . . . , ρ

∗
n).

We now prove the scheme satisfies correctness, compactness, CPA security
and poly deniability. Compactness and security follow exactly as in Section 4.1.

Correctness. To argue correctness, we note that:

1. Since Ri = Fhe.Enc(pk, 1; ri) for i such that xi = 1, we have by correctness
of the underlying Fhe that Ri, and hence boot(Ri) are valid encryptions of 1
for all i ∈ [n] such that xi = 1.

2. By properties 3 and 4 which state that FHE decryption always outputs a bit
and this bit is biased to 0 with overwhelming probability when decryption is
invoked with a truly random input, we have that boot(Ri) for i such that
xi = 0 is valid encryption of 0 with overwhelming probability.

Hence, since
∑n
i=1 xi = m (mod 2), the (FHE evaluation of) addition mod 2 of

boot(Ri) for i ∈ [n] yields an encryption of m. Hence, the scheme encodes the
message bit correctly.

Deniability. Next, we prove 1/δ-deniability of the construction. Fix a security
parameter λ, an original message m ∈ {0, 1}, and a faking message m∗ ∈ {0, 1}.
Let (dpk, dsk)← DFhe.Gen(1λ), and parse dpk := (pk, ctsk), dsk := sk. When the
original messagem and the fake messagem∗ are the same, the faked randomness r∗

is equal to the original randomness r. Thus in this case, m = m∗, the distributions
are identical:

(dpk,m∗, r,DFhe.Enc(dpk,m∗; r)) = (dpk,m∗, r∗,DFhe.Enc(dpk,m; r)).

25

When the original message m and the fake message m∗ are not the same,
observe that “cheating impossible” will be output only in case that xi = 0 for all
i ∈ [n], which occurs with probability 2−n. Assuming we are not in this case, the
output distribution is:

Faking Case. First consider the distribution of (dpk,m∗, r∗,DFhe.Enc(dpk,m; r))
in the case of faking, where r∗ ← DFhe.Fake(dpk,m, r;m∗).
1. Select uniform r := (x1, . . . , xn, ρ1, . . . , ρn), by,

(a) Select xi ← {0, 1} for i ∈ [n] such that
∑
i∈[n] xi = m (mod 2)

(b) For i ∈ [n], if xi = 1, select ρi ← {0, 1}`
(c) For i ∈ [n], if xi = 0, select ρi ← R`c

2. Let r∗ = DFhe.Fake(dpk,m, r,m∗), that is r∗ = (x∗1, . . . , x
∗
n, ρ
∗
1, . . . , ρ

∗
n)

which is computed as follows:
(a) Select a uniform index i∗ ∈ [n] such that xi∗ = 1, i.e. i∗ ← {i|xi = 1}.
(b) For i ∈ [n], i 6= i∗, set x∗i = xi and ρ∗i = ρi.
(c) Set xi∗ = 0, and ρ∗i∗ = Fhe.Enc(pk, 1; ρi∗).

Intermediate Case. By property 2 of the special FHE, which asserts that
ciphertexts are pseudorandom, we can explain ρ∗i∗ = Fhe.Enc(pk, 1; ρi∗) as
uniform element from the ciphertexts space R`c . The distribution of this
hybrid is (dpk,m∗, r′,DFhe.Enc(dpk,m; r)), where r′ = (x′1, . . . , x

′
n, ρ
′
1, . . . , ρ

′
n)

is sampled as follows:
1. Select xi ← {0, 1} for i ∈ [n] such that

∑
i∈[n] xi = m (mod 2)

2. Select a uniform index i′ ∈ [n] such that xi′ = 1 (i.e. i′ ← {i|xi = 1}),
and set x′i′ = 0, and for all i ∈ [n] \ {i′} set x′i = xi.

3. For i ∈ [n], if x′i = 1, select ρ′i ← {0, 1}`
4. For i ∈ [n], if x′i = 0, select ρ′i ← R`c

Honest Case. Note that in the honest case the distribution is
(dpk,m∗, r,DFhe.Enc(dpk,m∗; r)), where r = (x1, . . . , xn, ρ1, . . . , ρn) is sam-
pled as follows:
1. Select xi ← {0, 1} for i ∈ [n] such that

∑
i∈[n] xi = m∗ (mod 2).

2. For i ∈ [n], if xi = 1, select ρ′i ← {0, 1}`
3. For i ∈ [n], if xi = 0, select ρ′i ← R`c

The statistical distance between the two distributions used to sample (x1, . . . , xn),
in the honest case and in the intermediate/faking case, is 1√

n
. Hence, any PPT

adversary A can win the DnblGamebA(λ) game with probability at most 1√
n

,

which is 1
δ by our choice of n.

5 Weakly Deniable FHE with Large Message Space

In this section, we provide our construction for weak deniable FHE for polynomial
size4 message space M, as in Definition 2.11. Let Fhe = (Gen,Enc,Eval,Dec) be
a special public-key fully homomorphic encryption for the message space M
4 Polynomial in the security parameter. That is |M| = poly(λ).

26

with ciphertext space R`c , as in Definition 3.1, and boot(x) be the bootstrapping
procedure, described in Definition 2.3. We denote by S a strict subset of the
message space to which decryption of random elements is biased,5 by 1S the
indicator function for the set S = M\ S, described in Definition 2.7, and by
s a fixed element in S. Recall that ⊕2 denotes the homomorphic evaluation of
addition mod 2 described in Definition 2.5 and select denotes the selector circuit
described in Definition 2.6.

For reading convenience, we denote by lowercase r, the `-bit string randomness
that is input to an Fhe.Enc algorithm, and by upper case R, the elements in R`c ,
where R`c is the co-domain of the FHE encryption algorithm. We denote by
`′c the bit length of elements in R`c (that is, `′c = d`c log2(|R|)e). We index the
messages in the message space as M = {m0, . . . ,mµ}.

Our (public-key) weakly deniable fully homomorphic encryption scheme
for message space M wDFhe = (Gen,DEnc,Enc,Eval,Dec,Fake) is described as
follows:

wDFhe.Gen(1λ) : Upon input the unary representation of the security parameter
λ, do the following:
1. Sample (pk, sk)← Fhe.Gen(1λ), and ctsk ← Fhe.Enc(pk, sk).
2. Outputs dpk := (pk, ctsk), dsk := sk

wDFhe.DEnc(dpk,mk; r): Upon input the public key dpk, a message mk ∈ M
and ((4`+ `′c)µ)-bit string randomness r, do the following:
1. Parse the input.

dpk := (pk, ctsk), r = (r1, . . . , rµ, (r1,1, r1,2, r1,3, R̂1,4), . . . , (rµ,1, rµ,2, rµ,3, R̂µ,4))

where |ri| = |ri,j | = ` and |R̂i,4| = `′c for i ∈ [µ], j ∈ [3].
2. Generate ciphertexts for every possible message.

For i ∈ [µ], set cti = Fhe.Enc(pk,mi; ri).

3. Generate ciphertexts for “selector” bits.

(a) For every i ∈ [µ], j ∈ [3], set R̂i,j = Fhe.Enc(pk, s; ri,j).

(b) For every i ∈ [µ], j ∈ [4], set Ri,j = Fhe.Eval(pk,1S , R̂i,j).
(c) We compute ciphertexts for selector bits 0 and 1 for every index as

follows. For i ∈ [µ], compute

cti0 = boot(Ri,1)⊕2 boot(Ri,2), cti1 = boot(Ri,4)⊕2 boot(Ri,3)

(d) We let the kth message to be selected by setting it’s selector bit to 1,
and all others to 0 as follows. For every i ∈ [µ] if i 6= k, set ctsel

i = cti0;
else if i = k, set ctsel

i = cti1.
4. Evaluate selector circuit on ciphertexts.

Compute and output dct = select(ct1, . . . , ctµ, ct
sel
1 , . . . , ct

sel
µ), that is dct =∑

i∈[µ]
(
ctsel
i ⊗ cti

)
.

wDFhe.Enc(dpk,mk; r) : Upon input public-key dpk, a message mk ∈ M, and
((2`+ 3`′c)µ)-bit string randomness r, do the following:

5 Note that this exists from property 4 of the special Fhe.

27

1. Parse the input.

dpk := (pk, ctsk), r = (r1, . . . , rµ, (R̂1,1, R̂1,2, R̂1,3, r1,4), . . . , (R̂µ,1, R̂µ,2, R̂µ,3, rµ,4))

where |ri| = |ri,4| = ` and |R̂i,j | = `′c for i ∈ [µ], j ∈ [3].
2. Generate ciphertexts for every possible message.

For i ∈ [µ], set cti = Fhe.Enc(pk,mi; ri).

3. Generate ciphertexts for “selector” bits.

(a) For every i ∈ [µ], set R̂i,4 = Fhe.Enc(pk, s; ri,4).

(b) For every i ∈ [µ], j ∈ [4], set Ri,j = Fhe.Eval(pk,1S , R̂i,j).
(c) We compute ciphertexts for selector bits 0 and 1 for every index as

follows.
For i ∈ [µ], compute

cti0 = boot(Ri,1)⊕2 boot(Ri,2), cti1 = boot(Ri,3)⊕2 boot(Ri,4).

(d) We let the kth message to be selected by setting it’s selector bit to 1,
and all others to 0 as follows. For every i ∈ [µ] if i 6= k, set ctsel

i = cti0;
else if i = k, set ctsel

i = cti1.
4. Evaluate selector circuit on ciphertexts.

Compute and output dct = select(ct1, . . . , ctµ, ct
sel
1 , . . . , ct

sel
µ), that is∑

i∈[µ]
(
ctsel
i ⊗ cti

)
.

wDFhe.Eval(dpk, C, dct1, . . . , dctk): Upon input the public key dpk = (pk, ctsk),
the circuit C and the ciphertexts dct1, . . . , dctk, interpret dcti as Fhe ciphertext
cti for i ∈ [k], and output dct = Fhe.Eval(pk, C, ct1, . . . , ctk).

wDFhe.Dec(dsk, dct): Upon input the secret key dsk and the ciphertext dct,
interpret dsk and dct as Fhe secret key sk and Fhe ciphertext ct and output
Fhe.Dec(sk, ct).

wDFhe.Fake(dpk,mk, r,mk∗): Upon input the public key dpk, the original
message mk ∈M, ((4`+ `c)µ)-bit string randomness r and the fake message
mk∗ , do the following:
1. Parse dpk := (pk, ctsk), and

r := (r1, . . . , rµ, (r1,1, r1,2, r1,3, R̂1,4), . . . , (rµ,1, rµ,2, rµ,3, R̂µ,4)), where

|ri| = |ri,j | = ` and |R̂i,4| = `′c for i ∈ [µ], j ∈ [3].
2. For all i ∈ [µ], set r∗i = ri.

3. For every i ∈ [µ], j ∈ [3], set R̂i,j = Fhe.Enc(pk, s; ri,j).
4. For every i ∈ [µ] \ {k, k∗} set

R̂∗i,1 = R̂i,1, R̂∗i,2 = R̂i,2, R̂∗i,3 = R̂i,3, r∗i,4 = ri,4.

5. If k = k∗, then set

R̂∗k,1 = R̂k,1, R̂∗k,2 = R̂k,2, R̂∗k,3 = R̂k,4, r∗k,4 = rk,3;

Else if k 6= k∗, for every i ∈ {k, k∗} set

R̂∗i,1 = R̂i,4, R̂∗i,2 = R̂i,3, R̂∗i,3 = R̂i,1, r∗i,4 = ri,2.

28

6. Output r∗ = (r∗1 , . . . , r
∗
µ, (R̂

∗
1,1, R̂

∗
1,2, R̂

∗
1,3, r

∗
1,4), . . . , (R̂∗µ,1, R̂

∗
µ,2, R̂

∗
µ,3, r

∗
µ,4))

Remark 5.1. We observe that by using the circuit Mux instead of the circuit
select, we can use smaller randomness – in particular, we can achieve |r| =
µ`+ 2 log2(µ)`′c.

In the full version [1], we prove the scheme satisfies correctness, compactness,
CPA security and weak deniability. Due to space constraints, we provide our
construction of compact public-key 1/δ-deniable fully homomorphic encryption
scheme for polynomial sized message space in the full model in the full version of
this paper [1].

Acknowledgments

We are grateful to Daniele Micciancio for very insightful discussions about
bootstrapping, and helpful comments that helped us improve the quality of
this writeup. We thank Vinod Vaikuntanathan and Aayush Jain for suggesting
the use of a key-chain rather than key-cycle to get rid of circular security for
the case of levelled FHE. Research of the first author is supported by the
DST “Swarnajayanti” fellowship, an Indo-French CEFIPRA project and the
CCD Centre of Excellence. Part of the research corresponding to this work was
conducted while visiting the Simons Institute for the Theory of Computing.
Research of the second author is supported in part by DARPA under Agreement
No. HR00112020023. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect
the views of the United States Government or DARPA.

References

1. S. Agrawal, S. Goldwasser, and S. Mossel. Deniable fully homomorphic encryption
from lwe. Cryptology ePrint Archive, Report 2020/1588, 2020. https://eprint.

iacr.org/2020/1588.
2. P. Ananth and A. Jain. Indistinguishability obfuscation from compact functional

encryption. In Annual Cryptology Conference, 2015.
3. Anonymous. Removing circularity for levelled fhe. Personal Communication, 2020.
4. D. Apon, X. Fan, and F.-H. Liu. Deniable attribute based encryption for branching

programs from lwe. In Theory of Cryptography Conference, 2016.
5. R. Bendlin, J. B. Nielsen, P. S. Nordholt, and C. Orlandi. Lower and upper bounds

for deniable public-key encryption. In Asiacrypt, 2011.
6. N. Bitansky and V. Vaikuntanathan. Indistinguishability obfuscation from

functional encryption. Journal of the ACM (JACM), 2018.
7. Z. Brakerski. Fully homomorphic encryption without modulus switching from

classical gapsvp. In Annual Cryptology Conference, 2012.
8. Z. Brakerski. Fundamentals of fully homomorphic encryption. In Providing Sound

Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali.
2019.

29

https://eprint.iacr.org/2020/1588
https://eprint.iacr.org/2020/1588

9. Z. Brakerski, N. Döttling, S. Garg, and G. Malavolta. Leveraging linear decryption:
Rate-1 fully-homomorphic encryption and time-lock puzzles. In Theory of
Cryptography Conference, 2019.

10. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. ACM Transactions on Computation Theory
(TOCT), 2014.

11. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) lwe. SIAM Journal on Computing, 2014.

12. Z. Brakerski and V. Vaikuntanathan. Lattice-based fhe as secure as pke. In ITCS,
2014.

13. R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. In Crypto,
1997.

14. R. Canetti, S. Park, and O. Poburinnaya. Fully deniable interactive encryption. In
D. Micciancio and T. Ristenpart, editors, Crypto, 2020.

15. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. A homomorphic lwe based
e-voting scheme. In Post-Quantum Cryptography, 2016.

16. D. Dachman-Soled. On minimal assumptions for sender-deniable public key
encryption. In PKC, 2014.

17. D. Dachman-Soled, J. Katz, and V. Rao. Adaptively secure, universally composable,
multiparty computation in constant rounds. In TCC, 2015.

18. A. De Caro, V. Iovino, and A. O’Neill. Deniable functional encryption. In PKC,
2016.

19. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM
Journal on Computing, 2016.

20. S. Garg, O. Pandey, A. Srinivasan, and M. Zhandry. Breaking the sub-exponential
barrier in obfustopia. In Eurocrypt, 2017.

21. C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009. crypto.stanford.edu/craig.

22. C. Gentry and S. Halevi. Compressible fhe with applications to pir. In TCC, 2019.
23. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with

errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Annual
Cryptology Conference, 2013.

24. S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich. Reusable
garbled circuits and succinct functional encryption. In STOC, 2013.

25. A. Jain, H. Lin, and A. Sahai. Indistinguishability obfuscation from well-founded
assumptions. In STOC, 2021.

26. H. Lin, R. Pass, K. Seth, and S. Telang. Indistinguishability obfuscation with
non-trivial efficiency. In PKC, 2016.

27. B. Meng. A secure internet voting protocol based on non-interactive deniable
authentication protocol and proof protocol that two ciphertexts are encryption of
the same plaintext. J. Networks, 2009.

28. A. O’Neill, C. Peikert, and B. Waters. Bi-deniable public-key encryption. In Crypto,
2011.

29. A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In STOC, 2014.

30. N. P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. In PKC, 2010.

30

crypto.stanford.edu/craig

	 Deniable Fully Homomorphic Encryption from Learning With Errors

