
Round Efficient Secure Multiparty Quantum
Computation with Identifiable Abort

Bar Alon1⋆, Hao Chung2⋆⋆, Kai-Min Chung3⋆ ⋆ ⋆, Mi-Ying Huang3,4†, Yi
Lee3‡, and Yu-Ching Shen3⋆⋆

1 Department of Computer Science, Ariel University, Israel
2 Department of Electrical and Computer Engineering, Carnegie Mellon University,

USA
3 Institute of Information Science, Academia Sinica, Taiwan

4 Department of Computer Science and Information Engineering, National Taiwan
University, Taiwan

Abstract. A recent result by Dulek et al. (EUROCRYPT 2020) showed
a secure protocol for computing any quantum circuit even without the
presence of an honest majority. Their protocol, however, is susceptible
to a “denial of service” attack and allows even a single corrupted party
to force an abort. We propose the first quantum protocol that admits
security-with-identifiable-abort, which allows the honest parties to agree
on the identity of a corrupted party in case of an abort. Additionally,
our protocol is the first to have the property that the number of rounds
where quantum communication is required is independent of the circuit
complexity. Furthermore, if there exists a post-quantum secure classical
protocol whose round complexity is independent of the circuit complex-
ity, then our protocol has this property as well. Our protocol is secure
under the assumption that classical quantum-resistant fully homomor-
phic encryption schemes with decryption circuit of logarithmic depth
exist. Interestingly, our construction also admits a reduction from quan-
tum fair secure computation to classical fair secure computation.

⋆ E-mail: alonbar08@gmail.com. This work was supported by ISF grant 152/17 and
by the Ariel Cyber Innovation Center in conjunction with the Israel National Cyber
directorate in the Prime Minister’s Office. Part of the work was done while visiting
Academia Sinica.

⋆⋆ E-mail: haochung@andrew.cmu.edu/yuching@iis.sinica.edu.tw. This research is
partially supported by the Young Scholar Fellowship (Einstein Program) of the
Ministry of Science and Technology (MOST) in Taiwan, under grant number MOST
108-2636-E-002-014 and Executive Yuan Data Safety and Talent Cultivation Project
(ASKPQ-109-DSTCP).

⋆ ⋆ ⋆ E-mail: kmchung@iis.sinica.edu.tw. This research is partially supported by the
Air Force Office of Scientific Research under award number FA2386-20-1-4066, and
MOST, Taiwan, under Grant no. MOST 109-2223-E-001-001-MY3.

† E-mail: miyinghuangtw@gmail.com. This work is supported by the Young Scholar
Fellowship (Einstein Program) of the Ministry of Science and Technology (MOST)
in Taiwan, under grant number MOST 109-2636-E-002-025.

‡ E-mail: ethanlee515@gmail.com. This work was done in part while the author was
affiliated to National Taiwan University.

1 Introduction
In the setting of secure multiparty computation (MPC), the goal is to allow
a set of mutually distrustful parties to compute some function of their private
inputs in a way that preserves some security properties, even in the face of
adversarial behavior by some of the parties. Some of the desired properties of a
secure protocol include correctness (cheating parties can only affect the output
by choosing their inputs), privacy (nothing but the specified output is learned),
fairness (all parties receive an output or none do), and even guaranteed output
delivery (meaning that all honestly behaving parties always learn an output).
Informally speaking, a protocol π computes a functionality f with full-security
if it provides all of the above security properties.

It is well-known that, assuming an honest majority and a broadcast channel,
any functionality can be computed with full-security [RBO89]. However, achiev-
ing fairness, and hence full-security, is impossible in general assuming no honest
majority [Cle86]. Instead, one usually settles on a weaker notion called security-
with-abort, which completely disregards fairness. Roughly, security-with-abort
guarantees that either the protocol terminates successfully, in which case the
honest parties receive their outputs, or the protocol aborts, in which case all
honest parties learn that there was an attack. Note that since fairness is not
guaranteed, it might be the case where the adversary learns the output of the
corrupted parties. In many setting, however, security-with-abort is not enough,
as an adversary can cause a denial-of-service attack by repeatedly aborting the
protocol. Thus, it is highly desirable to consider the stronger security notion
called security-with-identifiable-abort (SWIA) [IOZ14]. Here, if the protocol is
aborted, then all honest parties additionally agree on an identity of a corrupted
party. It is well-known that there are protocols admitting SWIA for any number
of corrupted parties, e.g., the GMW protocol [GMW87].

In this work we consider the quantum version of MPC. In the fully quantum
setting, the functionality – including the inputs and outputs – is quantum. As
such, the parties, as well as the adversary attacking the protocol, are quantum.
Secure multiparty quantum computation (MPQC) in the fully quantum setting,
was first studied by [CGS02], who constructed a fully secure n-party protocol
tolerating strictly less than n/6. The threshold n/6 was subsequently improved
the more general honest majority setting [BOCG+06], assuming the availability
of a classical broadcast channel. Similarly to the classical setting, if there is no
honest majority, then full-security is impossible to achieve in general [ABDR04,
Kit].5 Moreover, [DNS12] presented a secure-with-abort protocol in the two-
party case, and recently [DGJ+20] extended it to the multiparty case, tolerating
any number of corrupted parties.

The protocol of [DGJ+20], however, does not admit identifiable abort. This
follows from the fact that it is impossible to broadcast a quantum state. Therefore
a corrupted party can accuse an honest party of not sending it a message, thus,
5 The impossibility proof is in the information theoretic setting, where the adversary is

unbounded. However, even though Cleve’s impossibility result is stated for classical
protocols, the proof can still be applied for quantum protocols.

2

not only is the quantum state lost, but the other parties cannot identify the
corrupted party. When compared to the classical setting, this raises the following
natural question.

Can any multiparty quantum circuit be computed with security-with-
identifiable-abort, tolerating any number of corrupted parties?

1.1 Our Results
In this paper, we answer the above question affirmatively. Additionally, our pro-
tocol is the first to have the property that the number of rounds where quantum
communication is required is independent of the circuit complexity. Furthermore,
if there exists a post-quantum secure classical protocol whose round complexity
is independent of the circuit complexity, then our protocol has this property as
well.

Similarly to [DGJ+20, DNS12], we present the results and the protocol, as-
suming the availability of a reactive trusted party, called cMPC, that is able to
compute any classical multiparty functionality. We refer to this as the cMPC-
hybrid model. Furthermore, we assume that the parties are able to broadcast
classical messages. The implementation of cMPC can be done by first removing
the reactive assumption using standard techniques, and then implement each
call using a post-quantum secure-with-identifiable-abort protocol. We refer the
reader to Section 3.2 for more details. We prove the following.

Theorem 1 (Informal). Assume the existence of a classical quantum-resistant
fully homomorphic encryption scheme with decryption circuit of logarithmic
depth. Then any multiparty quantum circuit can be computed with security-with-
identifiable-abort tolerating any number of corrupted parties in the cMPC-hybrid
model. Moreover, the round complexity of the quantum communication of the
protocol is independent of the circuit complexity.

The formal statement of the theorem appears in Section 4. A few notes are in
place. First, Brakerski and Vaikuntanathan [BV11] showed that the existence of
a fully-homomorphic encryption satisfying the conditions stated in Theorem 1
can be reduced to the learning with errors assumption.

Second, we note that the protocol can be split into an online phase and an
offline phase, where the parties have yet to receive their inputs. In the offline
phase, the parties prepare auxiliary magic states in order to compute quantum
gates later in the online phase. In fact, it suffices that the parties know only
an upper bound on the number of gates in the circuit before interacting in the
offline phase.

Third, although the number of rounds requiring quantum information to be
sent is independent of the circuit complexity (i.e., independent of the number of
gates), it still depends on the number of parties, the number of input-qubits and
output-qubits of the circuit, and the security parameter. Specifically, the offline
phase consists of O(n4 · κ) rounds, and the online phase consists of O(n3 · (ℓin +
ℓout)) rounds, where n is the number of parties, κ is the security parameter, and

3

ℓin and ℓout upper-bound the number of input-qubits and output-qubits of the
circuit, respectively.

Fourth, although our protocol admits security-with-identifiable-abort, any
single corrupted party can cause it to abort. It is arguably more desirable and
an interesting open problem to have a protocol that requires the adversary to
corrupt more parties to cause an abort.

Finally, an interesting consequence of our construction is that quantum fair
secure computation can be implemented assuming the hybrid functionality cMPC
is fair.6

In the following sections, we present the ideas behind the construction.

1.2 Our Techniques

In this section, we present the main ideas behind the construction of our protocol.

A Warm-Up: Reliable Transmission of Quantum States
Before presenting the general construction, let us consider the following sim-

ple task. Suppose that there are n parties P1, . . . ,Pn, where P1 – called the
sender – holds a quantum state ρ. The goal of the parties is to send ρ to Pn –
called the receiver – such that if either the sender or the receiver is corrupted
and deviate from the protocol, then the other parties can identify which of them
is corrupted. Moreover, this should hold even the corrupted party collude with
some of the other parties in {P2, . . . ,Pn−1}.

As stated before, simply having P1 send ρ to Pn, and have Pn broadcast a
complaint in case it did not receive a message, does not work. Indeed, it could
be the case where the receiver is corrupted, and falsely accuse the sender of not
sending ρ. Since broadcasting a quantum state is impossible, to the other parties,
this scenario is identical to the case where a corrupted sender did not send ρ.
Thus, the desired security property is not met. Moreover, due to the no-cloning
theorem, the state ρ is now permanently lost, making it unclear as to how to
proceed the protocol.

Dealing with false accusations. As such “packet loss” seems unavoidable, our
first idea is to not send ρ directly, but rather to encode ρ using a quantum error-
correcting code (QECC), that can tolerate d deletions, where d will be determined
below. This generates an q-qubit codeword (σk)

q
k=1, for some q, which will then

be transmitted qubit-by-qubit as explained below.7 By doing so, Pn can still
recover ρ as long as it receives enough qubits of the codeword.

We next explain how the parties can transmit the codeword’s qubits in such
a way that will allow them to identify the corrupted party, if such exists. For
simplicity of the current discussion, let us assume that the adversary can perform
one of the following two attacks. Either it does not send a message, or it can
falsely accuse a party of not sending a message. Below we will explain how to
6 Intuitively, fair computation means that either all parties receive their respective

outputs, or none of them do.
7 Here we abuse the notation that we denote the kth qubit of the codeword σk, while

these q qubits may be entangled.

4

remove this assumption and how to resist general malicious attackers. Under
these simplifying assumptions, we can make the following observation. If Pn

accused P1 of not sending a message, then all parties know that at least one
of them is corrupted. Therefore, they can agree to remove the channel between
them, and have P1 send the next qubit of the codeword via a different path.
The parties continue in this fashion until either enough σk’s where successfully
transmitted to the receiver, or until there is no path from the sender to the
receiver. Formally, the parties keep track of a simple and undirected graph G,
which represents trust between parties, i.e., an edge between two vertices exists
if and only if there was no accusation between the two parties that the vertices
represent. Observe that in the above protocol, all honest parties form a clique in
G. Thus, if G becomes disconnected, the honest parties can agree on a corrupted
party not connected to them. Therefore, using a QECC that can tolerate d =
Θ(n2) deletions results in a secure protocol.

Dealing with general malicious behavior. Next, we show to remove the sim-
plifying assumption of the behavior of the adversary, and allow it to tamper
with the messages arbitrarily. Here, we utilize quantum authentication codes
[BCG+02], that allow a party to verify if a quantum state was tampered with.
However, in our protocol the parties must know where on the path the message
had been tampered with (if any tampered occurred), in order to later remove
the corresponding edge. To achieve this, we define a new primitive, which we
call sequential authentication (SA), that allows the sender to transmit a qubit to
the receiver along some path, so that if the qubit was tampered with, all parties
know where on the path the tampering occurred. We then combine SA with the
previous protocol that dealt with false accusations, to construct a secure-with-
identifiable-abort protocol for the transmission of a quantum state. One subtlety
in the final construction, is that any path from P1 to Pn must go through all
parties, so as to ensure that at least one honest party can verify the integrity of
the message.

We now describe the construction of a protocol for sequential authentica-
tion. The construction is inspired by the swaddling notion from [DNS12] and
the public authentication test from [DGJ+20], which are both based on Clifford
authentication codes. Let us first recall Clifford codes [ABOE10]. Given a m-
qubit state ρ and a security parameter κ, the Clifford encryption8 appends an
auxiliary register |0κ⟩⟨0κ|, called traps. Then, a random Clifford operator E is
sampled from the Clifford group acting on m+κ qubits. Finally, the encryption
outputs the ciphertext E(ρ⊗ |0κ⟩⟨0κ|)E†, where E serves as the secret key. The
decryption of a Clifford ciphertext σ, simply applies E† to σ and measures the
last κ trap qubits. If the measurement outcome is all-zero, then the decoding
algorithm outputs the resulting state of the first m qubits. Otherwise, it rejects.
The security of Clifford codes stems from the fact that any operation that is

8 It is more common to use the term Clifford encoding. However, in the quantum
setting authentication implies encryption. Thus, we refer to these as encryptions to
remove confusion with the QECC encoding.

5

applied to the ciphertext, will flip each qubit in the trap with noticeable prob-
ability upon measurement. Moreover, the secret key of the Clifford code can be
sampled efficiently by a classical algorithm [DLT02].

Constructing a sequential authentication protocol. We utilize these property to
build a protocol for SA. Suppose that a message ρ is going to be transmitted
through ℓ parties. Let us first present a naïve solution. The first party on the path
will append ℓκ qubits of |0⟩ to ρ. Then, using the classical MPC functionality
cMPC, the parties will securely sample for P1 a Clifford key E1 to encrypt its
state. It then sends the encrypted message to P2. To verify the authenticity of the
state, the parties will again use cMPC for sampling a Clifford V2 = E2E

†
1, where

E2 acts only on the first (ℓ−1)κ qubits. We then let P2 receive V2 and apply it to
the encrypted message it received from P1. This allows P2 to measure the last κ
qubits and compare them to zero. For each party Pi on the transmitting path, Pi

measures κ qubits of traps. The parties can then continue in this fashion. Notice,
however, that a corrupt P1 might only append the last κ qubits honestly, which
will not be immediately detected by P2. This could later result in an honest
party accusing another honest party. To overcome this issue, we use a similar
trick to the public authentication test [DGJ+20], and have the Clifford V2 that
cMPC sampled include a random invertible linear transformation over F2 acting
on all traps. Specifically, we let V2 = E2G2E

†
1, where we abuse notations and let

G2 |x⟩ = |G2(x)⟩. Observe that if P1 did not prepare the traps correctly, then
upon measurement with high probability P2 will not obtain all-zero.

Security With Packet Drops
With the above technique, it is natural to incorporate it into the construction

of [DGJ+20]. This naïve solution, however, does not work. Towards explaining
the issue, let us first briefly describe the protocol of [DGJ+20]. Roughly, their
protocol starts with an input encoding phase, such that at the end of the phase
each party’s input is encrypted under a Clifford code with cMPC holding the
secret Clifford key. This is done similarly to the sequential authentication pro-
tocol described earlier. The parties then proceed to perform computation over
the encrypted inputs. Computation over single-qubit Clifford gates can be done
by simply letting cMPC update its key, while CNOT gates require communica-
tion since the inputs to CNOT gates are encrypted separately under different
Clifford keys.

While the input encoding phase can be modified to admit security-with-
identifiable-abort, it is unclear how to modify the computation phase of the
protocol. This follows from the fact that the parties are required to use QECC
over their inputs in the input encoding phase, thus at the end of this phase,
each party will hold a Clifford encoding of each qubit of its input’s codeword.
As a result, the parties have to either perform the computation over QECC
codewords in some way, or decode the Clifford encrypted codewords and perform
computation similarly to [DGJ+20]. We next give an intuitive explanation as to
why both solutions fail.

6

Let us first argue why the second solution fails. That is, suppose the parties
decode all QECC encodings before starting to perform any computation. The
issue here is that once the parties decode the QECC they lose its protection,
hence the protocol cannot tolerate losing quantum states after this step. Since
the protocol of [DGJ+20] requires communicating quantum messages to compute
CNOT gates, this causes inevitable packet drops during computation, causing the
honest parties to output incorrect values.

The former solution fails due to the fact that a corrupted party might not
encode its qubit correctly using the QECC. Observe that our sequential authen-
tication protocol will not be able to detect such error, since it is able to detect
an attack only after a Clifford had been applied. Furthermore, this error might
propagate into the evaluation. Indeed, consider the following example.

Suppose that the parties use repetition code as an implementation of the
QECC.9 In repetition code, a logical zero |0̄⟩ is encoded as |000⟩ and a logical
one |1̄⟩ is encoded as |111⟩. The decoding is done by taking the majority, e.g.,
|000⟩, |001⟩, |010⟩ and |100⟩ are all decoded to |0̄⟩. Suppose three parties wish to
compute the following circuit, where the CNOTs are applied transversally, and
where the inputs |ψi⟩ are repetition codes of logical |0̄⟩.

|ψ1⟩ •
|ψ2⟩ •
|ψ3⟩

Clearly, in an honest execution the value of |ψ3⟩ becomes |000⟩ which decodes
to |0⟩. Now, suppose the two parties holding |ψ1⟩ and |ψ2⟩ are corrupted and
prepares |ψ1⟩ = |001⟩ and |ψ2⟩ = |010⟩. Then the value of |ψ3⟩ under such an
attack becomes |011⟩. Consequently, even if all codewords are of logical 0 at the
beginning, the decoding would result in a logical 1.

A possible way to try and fix this issue, would be to try to correct the QECC
codewords. However, this in particular would require the parties to compute a
multi-qubit gate (e.g., CNOT), which as stated before, cannot be done without
losing the quantum states due to a potential attack.

With this state of affairs, we aim to construct a protocol that has the property
that no adversary can cause qubits to be “dropped” during the computation
of the circuit. Thus, we first propose an abstraction of a security notion that
allows the adversary to “drop” some of the input-states and output-states. We
call this security notion secure-with-identifiable-abort-and-packet-drop (IDPD-
security). We then show how to reduce the problem of constructing a secure-
with-identifiable-abort protocol to the problem of constructing an IDPD-secure
protocol.

Defining IDPD-security. Let us now define IDPD-security. Similarly to other
notions of security in multiparty computation, here we follow the standard
ideal vs. real paradigm. Roughly, the ideal-world follows similar instructions to
9 Repetition codes only resist bit-flip error (i.e., Pauli X attack). However, it is suffi-

cient for the purposes of demonstration here.

7

that of the security-with-identifiable-abort ideal-world, with the following two
additions. First, when the parties send their inputs to the trusted party, the
adversary additionally sends it a bounded-sized set, representing which input-
qubits are to be replaced with |0⟩ (modelling “packet drop”). Note that it might
be the case where a single party holds several qubits as inputs, and the adver-
sary changes only a subset of them to the 0 state. The second change we make
is done after the adversary receives its output from the trusted party. Here,
the adversary either instructs the trusted party to abort while revealing the
identity of a corrupted party, or it instructs the trusted party to continue and
drop some qubits from the output.10 In case the adversary instructed to con-
tinue, the trusted party then sends to all other parties their respective outputs
that remained. Additionally, the trusted party reveals which input-qubits and
which output-qubits were dropped. The formal definition of IDPD-security can
be found in Section 3.1.

Reducing SWIA to IDPD-security. We now show a simple reduction from SWIA
to IDPD-security. The reduction makes use of a QECC. Let C be the circuit that
the parties wish to compute. First, each party encodes its input using the QECC.
The parties then use an IDPD-secure protocol in order to compute the circuit
C ′ that first decodes its inputs using the QECC, then applies C, and finally
re-encodes each output using the QECC. Upon receiving their encoded outputs,
each party locally decodes it to obtain their output. To see why this reduction
works, observe that the adversary can only drop some of the qubits in the input
to C ′ and some of the qubits in the output. Therefore, by the properties of the
QECC and IDPD-security, either the original state can be reconstructed, or the
adversary has revealed the identity of a corrupted party.

Securely Computing A General Circuit
We next explain how to achieve a secure protocol for computing a general cir-

cuit. With the above reduction, it suffices to construct an IDPD-secure protocol.
Unfortunately, previous approaches, such as that of [DGJ+20], for constructing
secure protocols fail to achieve IDPD-security. Indeed, as stated before, the pro-
tocol of [DGJ+20] requires communicating quantum messages to compute CNOT
gates, which causes inevitable packet drops during computation and thus fails
to achieve IDPD-security.

Our approach. To circumvent the aforementioned issue, the parties need a way
to perform computation without quantum communication. To do so, our main
idea is to delegate the computation to some designated party, say P1, and let
it perform computation under verifiable quantum fully homomorphic encryption
(VQFHE) [ADSS17]. More precisely, the first step of our protocol will encrypt
all parties’ input using the VQFHE scheme of [ADSS17], called TrapTP, send
their encrypted inputs to P1, and store the VQFHE classical secret key sk in
cMPC. We refer to this step as the pre-computation step. This allows us to let P1

10 Formally, the ideal-world is parametrized by two polynomial in the security param-
eter that bound the number input-qubits and number of output-qubits that can be
dropped.

8

perform the computation homomorphically to obtain encrypted output without
any quantum communication. Furthermore, the verification of the evaluation
can be done using the help of cMPC holding sk. If the verification passes, P1

delivers the output to each party. Note that an additional advantage of our
approach is that the round complexity of our protocol is independent of the
circuit complexity.

VQFHE scheme TrapTP. We first review some useful facts about the TrapTP
scheme. In TrapTP, the encryption of a 1-qubit state |ψ⟩ consists of a quantum
part and a classical part. The quantum part is a trap code encryption of |ψ⟩

ΠXxZz(QECC.Enc(|ψ⟩)⊗ |0⟩⊗κ ⊗ |+⟩⊗κ
),

where Π is a random permutation over 3κ qubits (which is part of the secret key
sk) and x, z ← {0, 1}3κ are sampled independent and uniformly at random. The
classical part is a classical FHE encryption of the Pauli key x, z. Homomorphic
evaluation requires a quantum evaluation key ρevk, which consists of multiple
TrapTP encryptions of magic states, including ancilla zero states, phase (P)
states |P ⟩ := P |+⟩, Hadamard (H) states |H⟩ := (H ⊗ I)CNOT(|+⟩ ⊗ |0⟩),
T states |T ⟩ := T |+⟩, and a special gadget state |γ⟩ (see Section 7.3 in the
full version [ACC+20] for a more detailed definition of |γ⟩). These (encrypted)
states are used to perform computation homomorphically over the underlying
trap codes.

The pre-computation step. Recall that the goal is to send TrapTP encrypted
inputs to P1, with the secret key stored in cMPC. The first step is to let each
party send their input to P1 using the technique we developed in Section 1.2.
Namely, we let each party to send Clifford encryptions of their input qubits using
sequential authentication protocol through paths determined by a trust graph
G. We formalize this as an authenticated routing (AR) protocol that achieves
the following functionality with IDPD-security.

Authenticated Routing (AR): As input, each sender Pi holds multi-
ple quantum messages ρ1, . . . , ρℓ (the “packets”) to send to P1. As out-
put, the receiver P1 receives Clifford ciphertexts σj = Ej(ρj⊗|0t⟩⟨0t|)E†

j

with trap size t and cMPC receives the Clifford keys Ej for j ∈ [ℓ] with
at most n2 packet drop.

We note that in AR, a packet ρj can consist of multiple qubits and the trap
size can be set arbitrarily; these properties will be useful later. Here, we let each
Pi send their input qubit-by-qubit to P1 using AR with trap size 3κ− 1. After
that, P1 holds Clifford encodings of all parties’ input (with certain packet drops).
Note that AR allows to drop at most n2 input states, while it is acceptable in
IDPD-security.

However, in TrapTP, the quantum messages are encrypted under trap code
instead of Clifford code. We next use the following simple re-encrypt protocol
to turn Clifford codes into trap codes: Let σ = E(ρ ⊗ |03κ−1⟩⟨03κ−1|)E† be a

9

Clifford encoding of ρ held by P1 with the corresponding Clifford key E held by
cMPC. We simply let cMPC send to P1 the Clifford operator

V = XxZzΠ(UEnc ⊗ I⊗κ ⊗H⊗κ)E†,

where UEnc is an unitary operator maps ρ⊗|0κ−1⟩⟨0κ−1| into an QECC codeword.
Observe that if P1 applies V to σ, the result would be a trap-code encryption of
ρ, which is also the quantum part of the TrapTP encryption of ρ. Also note that
since the Clifford key E is uniformly random to P1, it serves as a one-time pad,
hence P1 learns nothing about the trap code secret Π,x, z from V . After that,
we can let cMPC generate and send the classical part of the TrapTP encryption
of ρ to P1 so that it obtains a complete TrapTP encryption of ρ.

It is worth mentioning that a natural alternative is to use trap code to con-
struct SA in AR to avoid using two different codes with re-encryption. However,
this does not provide a secure protocol since, unlike Clifford codes, in trap codes
each qubit is encrypted individually. If only one qubit has been tampered with,
then there is no guarantee that the adversary would be immediately caught.

To conclude the pre-computation step, it is left to prepare the evaluation key
ρevk for P1, which consists of multiple TrapTP encryptions of auxiliary magic
states and a special gadget state. Preparing such states turns out to be involved,
which we discuss next.

Magic state preparation (except T). We first note that it suffices to generate
Clifford encryption of these states, and we can apply the above re-encryption
protocol to turn them into TrapTP encryption.

Let us start with the simplest case of ancilla zero state |0⟩. For this, we can
use the AR protocol to send the the empty state, denoted ε, with trap size 3κ
to prepare it. Indeed, the Clifford encoding outputs

E(ε⊗ |03κ⟩⟨03κ|)E† = E(|0⟩⟨0| ⊗ |03κ−1⟩⟨03κ−1|)E†,

as required. Note that AR protocol takes as input a list of “packets,” where
n2 packets may be dropped. Since magic state preparation is independent to
parties’ private states, the parties actually call AR protocol with n2 +1 packets
to make sure that at least one packet can be delivered. Then, the server and
cMPC keep the lexicographically first remaining packet. For simplicity, we omit
the number of initial packets.

Next, consider preparing a |P ⟩ magic state. Since a P gate is a Clifford, we
can generate it by preparing encoding of |0⟩ and update the Clifford key held
by cMPC. Specifically, if cMPC updates its Clifford E to E(PH)† (where PH is
applied only to the first qubit of the codeword), then decrypting the ciphertext
with the updated key would result in

(E(PH)†)†E(|0⟩ ⊗ |03κ−1⟩) = PH(|0⟩ ⊗ |03κ−1⟩) = |P ⟩ ⊗ |03κ−1⟩ .

The |H⟩ magic state, is also generated by a Clifford, but consists of two
qubits. To generate this, we first use AR to send the the empty state with trap

10

size 6κ and view it as

E(|0⟩M1 ⊗ |0⟩M2 ⊗ |03κ−1⟩T1 ⊗ |03κ−1⟩T2
),

where the gray superscript denote the registers the qubits are stored in. Then,
we let cMPC send to P1 the Clifford operator

V = (EM1T1
1 ⊗ EM2T2

2)(H ⊗ I)CNOT(H ⊗ I)M1M2E†,

where E1 and E2 are two Clifford sampled uniformly at random and indepen-
dently, and where the gray superscript denote the registers on which each op-
erator acts. Observe that upon applying V to its codeword, P1 will obtain an
encrypted H state. Additionally, as V is distributed like a uniform random Clif-
ford operator, it follows that a corrupted P1 will gain no new information.

More generally, the above examples suggest that we can prepare any ℓ-qubit
state in the Clifford group by first preparing Clifford encoding of 3ℓκ qubits
E |03ℓκ⟩ using AR, and letting cMPC send Clifford operator V to instruct P1 to
prepare the Clifford state and split it into ℓ Clifford encodings of each qubit.
We note that the special gadget state |γ⟩ is of this type and therefore can be
prepared in this way.

T magic state preparation. Among all magic states, the preparation of T := T |+⟩
magic state is the most difficult, since T is not a Clifford operator. We follow a
similar approach to that of [DGJ+20], but with modifications to achieve security-
with-identifiable-abort. Here, we give a brief overview of their construction and
discuss the required modifications.

At a high-level, the protocol asks a party, say P1, to prepare a large number
N of (supposedly) |T ⟩ states under Clifford encoding with Clifford keys stored
in cMPC. This can be done by, e.g., letting P1 send these states using AR in
our context. Then, the parties randomly distribute these encoded states among
themselves, and have P2, . . . ,Pn verify that they are indeed |T ⟩ states. This is
done by sending the Clifford keys to Pi, and having Pi measure the decoded
states in the {|T ⟩ , |T⊥⟩}-basis. If any |T⊥⟩ outcome is detected, the protocol
aborts. If not, then we know that the states held in P1 contains only a small
number of errors with high probability. The protocol then apply a T state dis-
tillation circuit (over the encoded states) to distill the desired T magic states.

To achieve security-with-identifiable-abort, we cannot let the protocol be
aborted when an error is detected, since the parties cannot distinguish the case
where the error was due to a malicious P1 preparing incorrect states, or a mali-
cious party Pi falsely reporting the error. Thus, to identify the malicious party,
we let each party Pi report its error rate ϵi, i.e., the fraction of |T⊥⟩ outcomes it
obtained, to cMPC with ϵ1 set to 0. cMPC then sort these numbers, and check if
there are two consecutive numbers with difference greater than a certain thresh-
old δ that is larger than expected sampling errors. If so, cMPC finds the smallest
such pairs, say, they are ϵi < ϵj reported by Pi and Pj , respectively, and pub-
lish the result. The parties then abort, with an honest party Pk identifying Pi

(resp., Pj) as the malicious party if ϵk ≥ ϵj (resp., ϵk ≤ ϵi). Intuitively, this

11

works since all honest parties should obtain roughly the same error rate up to
a small sampling error, and hence they will belong to the same side and accuse
the same party being the malicious party. Also, if the protocol does not abort,
it means that all reported error rates are small, since ϵ1 = 0 and we still have
the guarantee that the error rate of the states held in P1 is small.

The second issue is that we need to be able to apply the T state distilla-
tion circuit to the (Clifford encrypted) states held by P1, which is a classically-
controlled Clifford circuit (A circuit consists of Clifford gates and measurements,
and which Clifford gates should be applied depends on all previous measurement
outcomes.). If these states are encrypted separately, then we do not know how
to compute the distillation circuit without quantum communication, as this is
the problem we want to solve to begin with. Fortunately, as discussed above, if
these states are encrypted as a single Clifford ciphertext of a multi-qubit mes-
sage, then we can perform Clifford operation on the underlying message and
split it into multiple Clifford ciphertexts of smaller messages by letting cMPC
sending proper Clifford instruction to P1. We can further extend it to evaluate
classically-controlled Clifford circuit. Based on this observation, we let P1 to
prepare the N copies of |T ⟩ states and send it as a N -qubit quantum message
ρ = |T ⟩⊗N in AR (with a sufficiently large trap size). This allows us to dis-
tribute the states to all parties (by splitting the ciphertexts) and apply the T
state distillation circuit to the states held by P1 later.

Final issue: re-encryption to Clifford codes. The computation step is rather
straightforward, so we do not discuss the details here but just state that as a
result, P1 holds trap code encoding of the output. All that is left is to show how
it can distribute each output to its corresponding party. The idea is to reverse
the operations done until now. That is, to first re-encrypt the trap codes back
to Clifford codes, and then use AR to distribute the outputs. The final issue is
that re-encrypting trap code to Clifford cannot be done in the same way as it
was done in the other direction. This is because before, we use the randomness
of the Clifford key as one-time pad to protect the trap code key, but now the
randomness in the trap code key is not enough to protect the Clifford key.

To resolve the issue, we again use AR. Let us say σ is a trap code that P1

needs to send to a party Pi. We let P1 send ρ as a 3κ-qubit message to itself using
AR. As a result, P1 will receive a Clifford encoding σ = E(ρ⊗|0t⟩⟨0t|)E† (with a
sufficiently large trap size t) for which we can let P1 perform Clifford operation on
the underlying message ρ. Note that if P1 is malicious, the underlying message
ρ of σ may not be a valid trap code. Thus, we let P1 and cMPC verify and
decode the supposedly trap code ρ. Specifically, cMPC will check the classical
parts of the computation. If the verification rejects, we abort and identify P1

as the malicious party. If it passes, then we obtain a Clifford encoding of the
qubit underlying the trap code as desired. Finally, we remind the reader that
some of the trap codes in ρ may be dropped by AR, but this is allowed since
IDPD-security allows to drop part of the output qubits.

12

1.3 Roadmap
In Section 2 we provide the required preliminaries. In Section 3 we explain in
detail the model of our computation. Then, in Section 4 we state our main
theorem and show the reduction to IDPD-security. In Section 5 we give the con-
struction of sequential authentication, and in Section 6 we use it to construct
authenticated routing. These constructions admits information theoretic secu-
rity. Following that, in Section 7 we show how to prepare all required magic
states. In Section 8 we show how to securely compute the pre-computation pro-
tocol, Section 9 is dedicated to performing the computation of the circuit, and
finally, in Section 10 we show how the parties can distribute the output securely.
We note that only the computation protocol from Section 9 has computational
security.

2 Preliminaries
For space considerations, most standard definitions and notations are deferred
to the full version [ACC+20]. We next provide the definitions that we find more
essential for the readability of the bulk of the paper.

For n ∈ N, let [n] = {1, 2 . . . n}. We also let Symn to denote the symmetric
group over n symbols. Given a binary string x, we write |x| to denote the length
of x, and w(x) to denote the relative Hamming weight of x which equals to
Hamming weight of x divided by |x|. For a string x and a subset S ⊆ [|x|], we
use xS to denote the substring of x indicated by S.

Given a set S, we write s ← S to indicate that s is selected uniformly at
random from S. Similarly, given a random variable (or a distribution)X, we write
x← X to indicate that x is selected according to X. A function µ : N→ [0, 1] is
called negligible, if for every positive polynomial p(·) and all sufficiently large n,
it holds that µ(n) < 1/p(n). We use neg(·) to denote an unspecified negligible
function.

For n ∈ N, we use Hn to denote the Hilbert space of n qubits. We write
D(H) to denote the set of density matrices over the Hilbert space H, and let
Dn := D(Hn). We define D∗ :=

∪∞
n=0D(Hn) to denote the set of the density

matrices acting on the Hilbert space of arbitrary number of qubits. We use
lowercase Greek alphabets, e.g., ρ, σ, τ , to denote quantum state. We use capital
Latin alphabets, e.g., A,B,M, T , to denote quantum registers. For a quantum
register A, we write |A| to denote the number of qubits in it. We denote the
Hilbert space of a quantum register A by HA. The Hilbert space HAB of a
joint quantum register AB is the tensor product of the Hilbert spaces of each
subsystems, that is, HAB = HA⊗HB . It will be convenient to denote by ε ∈ D0

the empty state.
The trace distance between two quantum states ρ and σ, denoted as ∆(ρ, σ),

is define by ∆(ρ, σ) = 1
2∥ρ− σ∥1, where ∥M∥1 = tr

(√
M†M

)
is the trace norm

of a matrix. Let |+⟩ = 1√
2
(|0⟩ + |1⟩) and |−⟩ = 1√

2
(|0⟩ − |1⟩). An EPR pair is

the two-qubit state |Φ+⟩ = 1√
2
(|00⟩+ |11⟩).

A state ensemble ρ = {ρa,κ}a∈Dκ,κ∈N is an infinite sequence of quantum
states indexed by a ∈ Dκ and κ ∈ N, where Dκ is a domain that might depend

13

on κ. When the domains of a and κ are clear from context, we remove them for
brevity. We write ρ ≈neg(κ) σ if there exists a negligible function µ, such that for
all κ ∈ N and a ∈ Dκ, it holds that ∆(ρa,κ, σa,κ) ≤ µ(κ). We sometimes abuse
notations and write ρa,κ ≈neg(κ) σa,κ.

Let qpt stand for quantum polynomial time. Computational indistinguisha-
bility is defined as follows.
Definition 1 Let ρ = {ρa,κ}a∈Dκ,κ∈N and σ = {σa,κ}a∈Dκ,κ∈N be two ensem-
bles. We say that ρ and σ are computationally indistinguishable, denoted ρ C≡ σ,
if for every non-uniform qpt distinguisher D, there exists a negligible function
µ(·), such that for all κ ∈ N and a ∈ Dκ, it holds that

|Pr [D(ρa,κ) = 1]− Pr [D(σa,κ) = 1]| ≤ µ(κ).

For a quantum operator U , we write UA to specify that the quantum operator
U acts on register A. Similarly, we write ρA to specify that the quantum state ρ
lies in register A. Here, the register written in gray on the superscript is only for
reminder, and whether it is written does not change the meaning of the operator
or the state. That is, UA = U and ρA = ρ. We write χA to denote the maximally
mixed state IA/|A| of register A. For n ∈ N we let Cn denote the set of Clifford
operators acting on n qubits.

In this paper we make use of quantum error-correcting codes (QECC) and
quantum authentication scheme (QAS) [ABOE10]. A QAS is a way to ensure
that quantum state was not tampered with. We refer the reader to Section 2 of
the full version [ACC+20] for a formal definition of a QAS. To remove confusion
with the encoding and decoding of QECC, we view QAS as an encryption scheme.

We make use of Clifford codes [ABOE10]. Roughly, they are defined as fol-
lows. The encryption procedure, denoted CAuth.EncE , encrypt a quantum mes-
sage ρ using a Clifford E as its key (sampled uniformly at random). The proce-
dure first append to ρ a trap |0t⟩⟨0t|, where t is considered the security parameter,
and then applies the Clifford E to ρ⊗|0t⟩⟨0t|. The decoding procedure, denoted
CAuth.DecE , accepts if and only if after applying E† to its input and measure
the traps, the value of the trap is |0t⟩⟨0t|. We refer the reader to Section 2 of the
full version [ACC+20] for a formal definition alongside the security properties of
Clifford encodings.

We also use trapcodes [BGS13]. A trapcode encrypts a single qubit ρM held
in register M as follows. First, apply QECC.Enc on register M , and append t-
qubits from register TX in the state (|0⟩⟨0|)⊗t, and append t-qubits from register
TZ in the states (|+⟩⟨+|)⊗t. Then permute the qubits of M̃TXTZ according to
Π, where M̃ is the register holding the encoding of the qubit ρ. Finally, apply
XxZz on register M̃TXTZ . That is,

TAuth.EncΠ,x,z(ρ) := XxZzΠ
(
QECC.Enc(ρ)⊗ (|0⟩⟨0|)⊗t ⊗ (|+⟩⟨+|)⊗t

)
(XxZzΠ)†.

The decryption applies (XxZzΠ)† onto register M̃TXTZ , and measure the
register TX in computational basis, and measure the register TZ in Hadamard
{|+⟩ , |−⟩}-basis. If the outcome of TX is all zeros and the outcome of TZ is
all +, then apply QECC.Dec on register M̃ and set |Acc⟩⟨Acc| in F . Otherwise,

14

replace the state in M with |⊥⟩⟨⊥| and set |Rej⟩⟨Rej| in F . Since XxZz is a
Pauli operator up to a phase ±1 or ±i, we sometimes write TAuth.EncΠ,P and
TAuth.DecΠ,P , where P is a Pauli operator. We refer the reader to Section 2
of the full version [ACC+20] for a formal definition alongside the security and
homomorphic properties of trapcodes.

We define the trap code partial decryption operation TAuth.PDec, as the
unitary part of TAuth.Dec. That is, it decodes the permutation and quantum one
time pad, perform the (unitary part of) QECC decoding on the first t qubits,
and then apply Hadamards on the last t qubits to map |+⟩ to |0⟩. Formally, we
define it as follows.
Definition 2 Let x, z ∈ {0, 1}m and let Π ∈ Symm. Then,

TAuth.PDecΠ,x,z := (UDec ⊗ I⊗2t)(I⊗2t ⊗H⊗t)(XxZzΠ)†,

where UDec is the unitary operator corresponding to the QECC.Dec circuit.
Notice that when applied to a TAuth.Enc encoding of ρ using the same keys,
the result is ρ ⊗ |02t⟩⟨02t|. Similarly, we define the trap code partial encryption
operation TAuth.PEnc as the unitary part of TAuth.Enc.
Definition 3 Let x, z ∈ {0, 1}m and let Π ∈ Symm. Then,

TAuth.PEncΠ,x,z := XxZzΠ(UEnc ⊗ I⊗t ⊗H⊗t),

where UEnc is the unitary operator corresponding to the QECC.Enc circuit.

3 The Model of Computation
The security of multiparty computation protocols is defined using the real vs.
ideal paradigm. In this paradigm, we consider the real-world model, in which
protocols are executed. Here, an n-party quantum protocol π for computing a
quantum circuit family C = {Cκ}κ∈N is defined by a set of n interactive uniform
qpt circuits P = {P1, . . . ,Pn}. To alleviate notation, we simply write C for the
circuit. We then formulate an ideal model for executing the task. This ideal model
involves a trusted party whose functionality captures the security requirements
of the task. Finally, we show that the real-world protocol “emulates” the ideal-
world protocol, i.e., for any real-world adversary A there exists an ideal-world
adversary Sim (called the simulator) such that the global output of an execution
of the protocol with A in the real-world is distributed similarly to the global
output of running Sim in the ideal model.

In this work we are mainly interested in the security notion called security-
with-identifiable-abort. Due to space considerations, the formal definition is de-
ferred to Section 3 of the full version [ACC+20].

3.1 Security With Packet Drops
We now introduce a relaxed security notion of security-with-identifiable-abort
that allows the adversary to drop some of the input-qubits and some of the
output-qubits. We call this security notion IDPD-security. This security notion is

15

parameterized with two polynomials din = din(κ) and dout = dout(κ) representing
an upper bound on the number of input-qubits and output-qubits, respectively,
the adversary is allowed to drop from the computation. The definition follows
the standard ideal vs. real paradigm.

Informally, in the ideal world, in addition to sending inputs, the adversary
also instructs the trusted party which single qubits are to be replaced with 0.
Then, upon receiving the output, the adversary can decide to either abort the
protocol while revealing the identity of a corrupted party, or to instruct the
trusted party to discard some of the qubits in the output and distribute it.

We now formally describe the (din, dout)-IDPD ideal model, which specifies
the requirements for an IDPD-secure computation of a circuit C with security
parameter κ. Unlike the informal discussion from Section 1.2, it will be more
convenient to have the adversary send to the trusted party the set of remaining
qubits. Let A be an adversary in the ideal-world, which is given an auxiliary
quantum state ρaux and corrupts a subset I of the parties.

Security with identifiable abort and packet drops

Inputs: Each honest party Pi holds the security parameter 1κ where κ ∈ N
and an input ρi = (ρij)

ℓin
j=1 where each ρij ∈ D1 is single-qubit. The

adversary is given 1κ, input ρi of every corrupted party Pi ∈ I, and an
auxiliary input ρaux. Finally, the trusted party T is given the security
parameter 1κ.

Parties send inputs: Each honest Pi sends ρi to T. For every corrupted
party Pi, the adversary sends a state ρ∗i to T as the input of Pi.

The adversary instructs T to drop some input-qubits: The adversary
sends to T a set Rin ⊆

{
(i, j) ∈ N2 | i ∈ [n], j ∈ [ℓin]

}
of size |Rin| ≥

nℓin − din (note that it could be the case that nℓin < din, in which case
no restriction are imposed on Rin). Denote

ρ′ij =

|0⟩⟨0| if (i, j) /∈ Rin

ρij if (i, j) ∈ Rin and i /∈ I
ρ∗ij if (i, j) ∈ Rin and i ∈ I

and let ρ′ = (ρ̂ij)i∈[n],j∈[ℓin]
.

The trusted party performs the computation: The trusted party T
prepares ancilla zero states ρ0 and computes C(ρ′, ρ0). Let
(σ1, . . . , σn, σdiscard) be the resulting output-states, where σi is the out-
put associated with party Pi. The trusted party sends σI to A.

Adversary instructs T to drop some output-qubits or halt: For ev-
ery i ∈ [n] write σi = (σij)

ℓout
j=1, where each σij ∈ D1 is single-qubit.

The adversary A sends to T either (continue,Rout) where Rout ⊆{
(i, j) ∈ N2 | i ∈ [n], j ∈ [ℓout]

}
is of size |Rout| ≥ ℓout−dout, or (abort,Pi)

for some Pi ∈ I. If the adversary sent (continue,Rout), then for every
honest party Pi /∈ I, the trusted party sends it (Rin,Rout, σ

′
i), where

16

σ′
i =

(
σ′
ij

)ℓout
j=1

are defined as

σ′
ij =

{
σij if (i, j) ∈ Rout

⊥ if (i, j) /∈ Rout

Otherwise, if A sent (abort,Pi), then T sends (abort,Pi) to all honest
parties.

Outputs: Each honest party outputs whatever it received from the trusted
party, the parties in I output nothing, and the adversary outputs some
function of its view.

Observe that if din = dout = 0 then the above process is identical to the
security-with-identifiable-abort process. We denote by IDEAL

(din,dout)-IDPD
C,A(ρaux)

(κ, (ρi)
n
i=1)

the joint output of the adversary A and the honest parties in an execution of the
above ideal-world computation of C, on security parameter κ, inputs (ρi)

n
i=1,

auxiliary input ρaux, and packet-drop bounds din and dout. When din and dout are
clear from context, we remove them from the notations.

We next give the definition of IDPD-security.

Definition 4 (IDPD-security) Let π be a protocol for computing a circuit C,
and let din = din(·) and dout = dout(·) be two polynomials. We say that π computes
C with computational (din, dout)-IDPD-security, if the following holds. For every
non-uniform qpt adversary A, controlling a set I ⊂ P in the real-world, there
exists a non-uniform qpt adversary SimA, controlling I in the IDPD ideal-world,
such that{

IDEAL
(din,dout)-IDPD
C,SimA(ρaux)

(κ, (ρi)
n
i=1)

}
κ∈N,ρ1,...,ρn,ρaux∈D∗

C≡
{

REALπ,A(ρaux) (κ, (ρi)
n
i=1)

}
κ∈N,ρ1,...,ρn,ρaux∈D∗ (1)

Statistical and perfect security are defined similarly by replacing C≡ with ≈neg(κ)

and =, respectively, and assuming unbounded adversaries and simulators.

In Section 4, we reduce the problem of constructing a secure-with-identifiable-
abort protocol, to the problem of constructing an IDPD-secure protocol.

3.2 The Hybrid Model
The hybrid model is a model that extends the real model with a trusted party
that provides ideal computation for specific circuits. The parties communicate
with this trusted party as specified by the ideal model.

Let C be a quantum circuit. Then, an execution of a protocol π computing
a circuit C ′ in the C-hybrid model involves the parties sending normal messages
to each other (as in the real model) and in addition, having access to a trusted
party computing C. It is essential that the invocations of C are done sequentially,
meaning that before an invocation of C begins, the preceding invocation must

17

finish. In particular, there is at most a single call to C per round, and no other
messages are sent during any round in which C is called.

Let type be an ideal world. Let A be a non-uniform qpt machine with
auxiliary input ρaux controlling a subset I ⊂ P of the parties. We denote by
HYBRIDC,type

π,A(ρaux)
(κ, ρ1, . . . , ρn) the joint output of the adversary and of the honest

parties, following an execution of π with ideal calls to a trusted party computing
C according to the ideal model “type,” on inputs ρ1, . . . , ρn, auxiliary input ρaux
given to A, and security parameter κ. We call this the (C, type)-hybrid model.
When type is clear from context we remove it for brevity.

The Classical MPC Hybrid Model
Following [DNS12, DGJ+20], throughout the paper, we assume the availabil-

ity of a trusted party, denoted cMPC, that is able to compute any efficiently
computable classical multiparty functionality. Furthermore, we assume cMPC is
a reactive functionality, i.e., it is allowed to have an internal state that may be
taken into account the next time it is invoked. One particular classical function-
ality we employ is the broadcast functionality. Thus, we implicitly assume that
each party can broadcast a classical message at any given round of the protocol.

Similarly to [DGJ+20], we can implement cMPC using a post-quantum secure
protocol. Specifically, we first remove the assumption that cMPC is reactive via
standard techniques. To maintain security-with-identifiable-abort, this is done as
follows. At the end of each call to cMPC, its state s will be shared in an additive
n-out-of-n secret sharing scheme. Let si denote the ith share. The functionality
then uses a post-quantum secure signature scheme to sign each share. Let σi
denote the signature of si. The output of Pi will now additionally include si,
σi, and the verification key of the signature scheme (which is the same for all
parties). Note that the parties do not keep the signing key. In the next call to
cMPC, the parties will additionally send their signed shares and keys to cMPC.
If the keys are not all equal, then cMPC sends to party Pi the output (abort,P),
where P is the lexicographically smallest party whose key differs from the key of
Pi. Otherwise, if all the keys are the same, cMPC verifies all shares, sending the
identity of a party whose verification failed if such a party exists, and reconstruct
the state s and continue with the computation otherwise. Note that since the
honest parties forward the output they received from the previous call, in case
of abort they all agree on the identity of a corrupted party.

Finally, we can implement each call to cMPC assuming a correlated random-
ness setup, using the information theoretic UC-secure protocol of [IOZ14] and
apply [Unr10]’s lifting theorem, to obtain post-quantum security. Furthermore,
pre-computing the randomness in an off-line phase yields a protocol in the pre-
processing model [DPSZ12]. Such protocols have an off-line phase which admits
computational security, however, assuming no attack was successful during this
phase, their online-phase admit information theoretic security.

Furthermore, for the sake of presentation, we sometimes abuse the existence
of cMPC, and construct some of the ideal worlds with the ability to interact with
it. Although this cannot happen in the standalone model, such an assumption

18

can be removed using the techniques described above, i.e., each party will hold
a signed share of cMPC’s input and receive a signed share of its output.

We denote by HYBRIDcMPC
π,A(ρaux)

(κ, (ρi)
n
i=1) the joint output of the adversary A,

cMPC, and of the honest parties in a random execution of π in the cMPC-hybrid
model on security parameter κ ∈ N, inputs ρ1, . . . , ρn, and an auxiliary input
ρaux.

4 Statement of Our Main Result

In this section we present the main theorem of the paper, namely that any mul-
tiparty quantum functionality can be computed with security-with-identifiable-
abort against any number of corrupted parties.

Theorem 2. Assume the existence of a classical quantum-resistant fully ho-
momorphic encryption scheme with decryption circuit of logarithmic depth. Let
C be an n-ary quantum circuit. Then C can be computed with computational
security-with-identifiable-abort in the cMPC-hybrid model. Moreover, the round
complexity of the protocol is independent of the circuit depth.

Toward proving Theorem 2 we first show how to reduce the problem to
the problem of constructing an IDPD-secure protocol for a related circuit. The
following lemma states the existence of such an IDPD-secure protocol.

Lemma 1. Assume the existence of a classical quantum-resistant fully homo-
morphic encryption scheme with decryption circuit of logarithmic depth. Let C be
an n-ary quantum circuit. Then C can be computed with computational (n2, 2n2)-
IDPD security in the cMPC-hybrid model. Moreover, the round complexity of the
protocol is independent of the circuit depth.

The proof of Lemma 1 is given in Section 10. Toward proving it, in the following
sections we construct several building blocks used in the construction of the final
protocol. We now use it to prove Theorem 2. It suffices to prove the following
claim, asserting that security-with-identifiable-abort can be reduced to IDPD-
security.

Claim 3 Let C be an n-ary quantum circuit and let din = din(κ) and dout =
dout(κ) be two polynomials. Additionally, let QECC denote a quantum error-
correcting code that can tolerate max{din, dout} errors. Then C can be computed
with perfect security-with-identifiable-abort in the (C ′, (din, dout)-IDPD)-hybrid
model, where

C ′ = QECC.Enc⊗nℓout ◦ C ◦ QECC.Dec⊗nℓin .

That is, C ′ transversely decodes each of its inputs using the QECC, computes
C, and then re-encode each output.

Due to space considerations, the formal proof is deferred to Section 4 of the
full version [ACC+20].

19

5 Sequential Authentication

In this section, we present a protocol, called sequential authentication (SA), that
allows a party – called the sender – to send an encryption of its input along a
predetermined path known to everyone, to a designated party called the receiver
(not necessarily different from the sender). The security achieved by this protocol
roughly guarantees that in case the protocol is aborted, the parties will identify
two parties, one of which is guaranteed to be corrupted. Later, in Section 6, using
sequential calls to SA we show how to use it in order to augment the security to
obtain an IDPD-secure protocol.

Let us first formally define the ideal world of SA. To simplify the presenta-
tion, we assume that cMPC is an additional party that will receive an output.
Additionally, the parties have two common inputs, in addition to the security
parameter. These are a path PATH and number of traps t. The domain of PATH
is the set of all (non-simple) paths that goes through all parties, whose length
is exactly11 ℓ := n2. To remove confusion with the parties themselves, we call
the parties along the path relays and denote by Qi the ith party along the path
(note that a single party may be multiple relays on the path). Furthermore, we
call Q1 the sender, and call Qℓ the receiver.

Ideal world of sequential authentication

Inputs: Each party Pi and cMPC holds the security parameter 1κ, a path
description PATH = (Q1, · · · ,Qℓ) that goes through every party at least
once, and the number of traps t = t(κ) required for the output cipher-
text. The sender Q1 holds an m-qubit input state ρ. The adversary A
is given an auxiliary quantum state ρaux.

The sender sends input: If Q1 /∈ I, then it sends ρ as its input to T.
Otherwise, the adversary chooses an input ρ∗ to be given to T. Let ρ′
be the input received by the trusted party.

The trusted party encodes the state and sends A its output: T sam-
ples a Clifford E ← Cm+t and encode ρ′ to obtain σ ← CAuth.EncE(ρ

′).
If Qℓ ∈ I, then T sends σ to A.

The adversary instructs trusted party to continue or to abort: The
adversary A sends to T either continue or (abort,Qi,Qi+1) where
1 ≤ i < ℓ and where either Qi or Qi+1 is corrupted. If A sent continue,
then T sends E to cMPC. Additionally, if the receiver Qℓ /∈ I is hon-
est, then T sends it σ. Otherwise, if A sends (abort,Qi,Qi+1), then T
forwards it to the cMPC and all honest parties.

Outputs: The honest parties output whatever they received from T, the
corrupted parties in I output nothing, and the adversary outputs some
function of its view.

11 The reason for the fixed length is due to a technicality that follows from the way SA
is used.

20

We denote by SAA(ρaux)(κ, PATH, t, ρ) the joint output of A, the honest parties,
and cMPC, in an execution of the above ideal world, on security parameter κ,
input ρ, auxiliary input ρaux, path PATH, and the number of traps t.

As mentioned in Section 1.2, our construction is similar to swaddling from
[DNS12] and the public authentication test from [DGJ+20], both of which are
based on Clifford code. Due to space limitations the construction alongside its
proof of security is deferred to Section 5 of the full version [ACC+20].

We also make use of a variant of SA, where the input – instead of an arbitrary
state – is encrypted under Clifford encryption, with the key being held by cMPC.
We call this variant input-ciphertext SA (CTSA). The protocol follows the same
lines as the protocol for computing SA and is presented in Section 5.2 of the full
version [ACC+20]. We stress that unlike the protocol for SA, this protocol is not
secure and will only be used as a subroutine in other protocols.
6 Authenticated Routing
In this section, we present a protocol, called authenticated routing (AR), that
allows the parties to securely send an encryption of their inputs to a des-
ignated party. The security achieved by this protocol is IDPD-security (i.e.,
security-with-identifiable-abort-and-packet-drops), as was defined in Section 3.1.
We extensively use AR as a building block in order to construct a secure-with-
identifiable-abort protocol for a general circuit.

We next define the AR functionality. For a polynomial t = t(κ) ≥ κ, rep-
resenting trap-size, denote by AR = ARt the following mapping. Each party Pi

holds ℓin packets ρi = (ρij)
ℓin
j=1, where each ρij ∈ Dm. An output is given only

to P1 – called the receiver – and to cMPC. Specifically, cMPC receives a collec-
tion of Cliffords (Eij)i∈[n],j∈[ℓin]

, where Eij ← Cm+t are sampled independently
and uniformly at random, and the receiver P1 receives the Clifford encoding
of each packet ρij under Eij ; that is, P1 receives (CAuth.EncEij

(ρij))i∈[n],j∈[ℓin].
In the following section we present a protocol that computes AR with (n2, 0)-
IDPD-security in the cMPC-hybrid model, i.e., at most n2 input-packets can be
dropped by the adversary while no output-packets can be dropped.

6.1 The Authenticated Routing Protocol
In this section, we present our protocol for authenticated routing. Roughly, the
idea is as follows. Throughout the entire interaction, we let cMPC maintain
a graph G that represents trustfulness. In more details, each vertex in G cor-
responds to a party and the graph is initialized as the complete graph. Then,
whenever a party accuses another party, the corresponding edge will be removed
from G.12 Following the initialization, each party Pi tries to send its packets
(ρij), one by one, to P1 along a path that goes through all parties. Such a path
can be computed, and thus agreed upon, by having cMPC repeatedly applying
BFS/DFS to find a path from Pi to P2, then to P3 until it reaches the last party
12 We note that this technique, of using the graph to allow honest parties to unani-

mously agree on the identity of a corrupted party, was independently used in another
recent paper by [BMMMQ20].

21

Pn, from which it finds a path to P1. The parties will send the packets along
the path using the SA functionality.13 If SA aborted, then the parties now hold
two identities Pa and Pb given to them by SA, one of which is guaranteed to be
corrupted. cMPC will then remove the edge ab from the graph G. Now, party
Pi will try to send the rest of its packets using a different route that does not
pass through the edge ab. The parties continue in this fashion until either most
qubits were sent successfully, or until G becomes disconnected, in which case all
honest parties are in the same connected component. Therefore, they can agree
to identify a party not connected to them as malicious.

Let us now consider the case where a call SA ended in abort. Here, a single
packet had been dropped, and so by the ideal-world definition of IDPD-security,
the parties must agree to replace this packet with the 0 state. To do this, the
parties will call SA again with the empty state ε ∈ D0 and m + κ traps. To
see why this work, notice that the Clifford encoding of the empty state with
m+κ traps, is equivalent to a Clifford encoding of |0m⟩ with κ traps. Moreover,
by the security of Clifford encoding, if the adversary changes the traps from 0
then SA will abort again, which will remove another edge from the graph. Thus,
this can be done repeatedly until either G becomes disconnected or the parties
successfully encode the 0 state.

The IDPD-security of the protocol described so far can still be breached by
a malicious adversary, due to the following difficulty one would encounter while
constructing a simulator. Suppose that the adversary corrupted the receiver
P1, and consider a call to SA, for a packet (1, j) for some j ∈ [ℓin], i.e., the
receiver sends to itself an encoding of the packet. To generate the corresponding
transcript, the simulator in the ideal-world must query the adversary for its input
ρ to the SA functionality and must send to A an output in return. Observe that
A expects to receive σ = CAuth.EncE(ρ) where the key E is held by the cMPC.
Since the simulator does not know the key E, it cannot generate a-priori a value
σ that is consistent with the output of cMPC. On the other hand, the simulator
may not be ready to send inputs to the trusted party either, as it must hold all
input packets from the adversary. Since rewinding the adversary can help the
environment to distinguish between the real world and ideal world, it seems to be
the case where there are no good ways to generate this output of SA. One possible
solution is to modify the AR ideal functionality so it will immediately encode
and output each received packet before receiving the next packet. Unfortunately,
the resulting ideal functionality would be too weak for our purposes later.

It is possible to overcome this challenge by tweaking the protocol. A simple
solution to this issue would be to have the receiver, after it has received all of the
packets, to send them to itself again using CTSA (that is, the ciphertext-input
version of SA). With this modification, the simulator can send authentication
of 0s to the receiver as the outputs of SA. To see why this works, recall that
Clifford authentication ciphertexts are identical to maximally mixed states due

13 Recall that SA requires the path to be of length n2. Note that the way cMPC
computes the path always generates a path of length at most n2. If the path is
shorter, then cMPC can just add the last party repeatedly.

22

to Clifford twirling. Thus, the simulator can then collect all input packets and
interact with the trusted party to receive the correct outputs. When the receiver
sends the dummy ciphertexts to itself, the simulator collects and verifies them,
before replacing them with the correct outputs.

Although this approach works, as CTSA is not secure as a standalone pro-
tocol, it hard to formally argue the security of the above protocol. Instead, we
slightly modify the protocol and also construct a slightly different simulator.
The idea is to have the simulator send halves of EPR pairs as the output of SA,
instead of authentications of 0s. Since halves of EPR pairs are indistinguishable
from Clifford authentication ciphertexts, the adversary will reply with the same
messages in both the real and the ideal world. After the simulator collects all
packets and interact with the trusted party, it then replaces these halves of EPR
pairs with the correct output via quantum teleportation. To complete the tele-
portation, the simulator must send a Pauli operator for the adversary to apply.
Thus, we correspondingly add a key-update step at the end of the protocol to
provide an opportunity for this.

Protocol 1 Authenticated Routing protocol πAR
Inputs: Each party Pi holds private input ρi = (ρij)

ℓin
j=1 where ρij ∈ Dm.

Common input: The security parameter 1κ and the packet-size m.

1. cMPC initializes G as the complete graph with n vertices where each vertex
represents a party, and initializes a set Rin = ∅, which will keep track of all
packets that were sent successfully.

2. For each packet (i, j) ∈ [n]× [ℓin]:
(a) cMPC computes a path PATHij in G from Pi to P1 that goes through all

parties of size exactly n2, and send it to all parties.
(b) The parties call SA with Pi’s input being ρij , with κ as the common

trap-size, and PATH as the common path.
– If SA outputs (abort,Pa,Pb) for some a, b ∈ [n], then cMPC removes

the edge ab from the graph G. If G becomes disconnected, then cMPC
sends ab to all parties. Each party then outputs (abort,P), where
P ∈ {Pa,Pb} is the party on the edge not connected to it on the
graph, and halts.

– Otherwise SA terminates successfully, sending a uniform random
Clifford Fij ← Cm+κ to cMPC, sending σij to P1, where σij =
CAuth.EncFij

(ρij), and sending continue to all other parties. In this
case, cMPC adds (i, j) to Rin.

3. For each dropped packet (i, j) ∈ ([n]× [ℓin]) \ Rin:
(a) cMPC finds a path PATH′ij in G from P1 to itself that passes through

every party and send it to all parties.
(b) The parties call SA, trap-size m + κ, no private inputs, and PATH′ij as

the common input.
– If SA outputs (abort,Pa,Pb) for some a, b ∈ [n], then, similarly to

Step 2b, cMPC removes the edge ab from the graph G. If G becomes
disconnected, then cMPC sends ab to all parties. Each party P then

23

outputs (abort,P′), where P′ ∈ {Pa,Pb} is the party on the edge not
connected to P, and halt. Otherwise, if the graph is still connected,
then the parties go back to Step 3a.

– Otherwise SA terminates successfully, sending a uniform random
Clifford Fij ← Cm+κ to cMPC, sending σij to P1, where σij ←
CAuth.EncFij

(ε), and sending continue to all other parties.
4. For all packets (i, j) ∈ [n]× [ℓin]:

(a) cMPC samples a Pauli independently and uniformly at random Pij ←
Pm+κ and sends it to P1.

(b) P1 applies Pij to σij , obtaining τij .
(c) cMPC updates its Clifford key to be Eij = PijFij .

5. cMPC sends Rin to all parties.
6. Each party outputs (continue,Rin), cMPC additionally outputs the Cliffords
{Eij}ij∈Sinput , and P1 additionally outputs {τij}ij∈Sinput .

We next state the security of the protocol.

Lemma 2. Protocol πAR computes the functionality AR with perfect (n2, 0)-
IDPD-security in the {cMPC,SA}-hybrid model.

The proof of security is deferred to Section 6 of the full version [ACC+20].
We also make use of the input-ciphertext variant of AR, denoted CTAR. Similarly
to CTSA, this is also insecure in general, so we only describe the protocol. Here,
unlike in AR, there is only a single sender, denoted P1, and multiple receivers.
The goal of this variant is to send each plaintext from the P1 to its designated
receiver, encrypted under a new key. The protocol follows similar ideas to πAR
and is given in Section 6.2 of the full version [ACC+20]. We let πCTAR be the
protocol for computing the input-ciphertext variant of the AR functionality.

7 Magic State Preparation
Recall that we aim to have a single designated party to homomorphically evalu-
ate a universal circuit over encrypted values. Towards achieving this, the parties
require five kinds of magic states. These include ancilla zero states, P magic
states, T magic states, H magic state and gadgets γ. In all magic state prepa-
ration protocols, an output will be given to only two parties: the server P1 and
cMPC. Furthermore, since the preparation is independent of the parties’ inputs,
these can be prepared in advance in an offline phase (in fact, the parties only
require to know an upper bound on the number of gates in the circuit).

For space considerations, we will only present a rough overview of the con-
struction of the protocol for preparing T magic states. The rest of the magic
states can be prepared by using simpler protocols. These protocols can be found
in the full version [ACC+20]. To simplify the presentation, the protocol and the
functionality will prepare a single magic state. This, however, can be easily gen-
eralized to create more magic T states using the same number of rounds (see
the full version for more details).

24

We next define the functionality MSPT for preparing a single T magic state,
|T ⟩ := T |+⟩. The other functionalities are denoted MSPms, where ms ∈ {Z,P,H, γ},
are defined similarly (here ms represents either the ancilla zero state, |P ⟩ :=
P |+⟩ state, |H⟩ := (H ⊗ I) |Φ+⟩ state, or a gadget state |γ⟩ defined in Section
7.3 of the full version [ACC+20] , respectively). MSPT is a no-input functionality
whose output is defined as follows. Let E ← C3κ be a uniform random Clifford.
Then the mapping outputs to P1 a Clifford encryption of the T magic state
CAuth.EncE(|T ⟩⟨T |) and outputs to cMPC the corresponding key E.

7.1 T Magic State Preparation Protocol

Our protocol is a modification of the protocol of [DGJ+20] for preparing T magic
states, which achieves only security-with-abort. Let us first give an overview
of the protocol of [DGJ+20]. First, recall the result of magic state distillation
[BK05] (or see the discussion in Section 2.4 of the full version [ACC+20]), that
given poly(log(1/δ0)) copies of noisy T magic states with a constant fraction
error, using the T distillation circuit we can obtain δ0-close |T ⟩ state. Now, in
[DGJ+20], the server P1 prepares κn copies of |T ⟩. Then, the parties execute
the secure-with-abort input-encoding protocol of [DGJ+20], which generates a
Clifford encoding of each |T ⟩ state, i.e., (CAuth.EncEj

(|T ⟩⟨T |))κnj=1, and outputs
to cMPC the corresponding Clifford keys. Following this, cMPC samples disjoint
sets S1, · · · , Sn ⊆ [κn], each of size κ, uniformly at random, and sends them to
all parties. For each subset Si, the server P1 sends {CAuth.EncEj

(|T ⟩⟨T |)}j∈Si
to

Pi and cMPC sends {Ej}j∈Si
to Pi. Then, party Pi decrypts and measures the

received states in the {|T ⟩ , |T⊥⟩}-basis, and broadcast an abort if it gets |T⊥⟩
in any of the measurements. We refer to this step as the random sampling test.
Upon receiving an abort from a party, all parties abort and halt. Otherwise,
[DGJ+20] showed that the remaining copies the server holds differ by a constant
fraction from {CAuth.EncEj

(|T ⟩⟨T |)}j∈S1
with respect to the trace distance. The

server can then get a state of negligible trace distance from CAuth.EncE(|T ⟩⟨T |)
with respect to a new key E, by running the T distillation circuit (guaranteed
to exist by Theorem 2.8 in the full version [ACC+20]).

Clearly, the above protocol does not admits security-with-identifiable-abort.
Indeed, not only is the input-encoding protocol of [DGJ+20] does not admit
security-with-identifiable-abort, it further holds that a corrupted party may
accuse an honest server by lying about the states that it measured. To over-
come this two issues, we perform the following modifications to the protocol of
[DGJ+20].

First, we make the following observations. Regardless of what the server
prepares, assuming all states were successfully sent during the random sampling
test, with overwhelming probability all honest parties will have roughly the same
number of |T⊥⟩ states upon measurement. Therefore, instead of broadcasting
abort, we consider each party’s error rate, defined to be number of |T⊥⟩ it
holds divided by κ. These will be sent to cMPC, who compares them. If there
are two parties whose error rates are significantly far apart, then cMPC can
publish them, and the honest parties can agree on which is corrupted.

25

Second, note that the previous observation holds only if the states were faith-
fully distributed by during the random sampling test. Indeed, the corrupted
parties can bias the error rates by dropping the packets. Consider the following
example. Suppose that P1 is corrupted and P2, . . . ,Pn are honest. The server P1

prepares each state to be |T ⟩ with probability 1/2 and |T⊥⟩ with probability 1/2.
Then, after cMPC sends to P1 the set S2, the adversary drops the all |T ⟩ states
that belong to S2. As for the the states that belong to S3, the adversary will
drop the |T⊥⟩ states. Consequently, the error rate ϵ2 will be much higher than
1/2 while ϵ3 will be much lower than 1/2. To solve this issue, we would like that
for any state that was dropped, the error rate will not include it. We achieve
this as follows. The server first prepares N0 := 3n2 + 1 copies of |T ⟩⟨T |⊗κn.
Then, for each copy of |T ⟩⟨T |⊗κn a random sampling test is applied, where each
party receives κ of the qubits among |T ⟩⟨T |⊗κn. Moreover, the qubits will be
transmitted to their destination using the AR functionality, to ensure that the
adversary cannot drop too many qubits. If there is a state that was lost during
the transmission, all parties start the random sampling test for another copy of
|T ⟩⟨T |⊗κn.

Third, the parties need to be able to sample a subset of the qubits held
by P1, even if |T ⟩⟨T |⊗κn are encrypted under a Clifford code. The idea is to
have cMPC update the encryption keys so that they will randomly permute the
qubits and re-encrypt using a new key of the form (E1 ⊗ · · · ⊗ En), where each
Ei ← Cκ+t, where t is the number of traps. Additionally, the permutation must
ensure that each κ of the T states have t trap states |0⟩ appended to. Observe
that decrypting using such key would result in n pieces of T states, each of size
κ and encrypted under a different key with t traps. The parties can then use
input-ciphertext authenticated routing (formally defined as Protocol 5 in the full
version [ACC+20]) to distribute the states.

Finally, we encounter the following difficulty when constructing the simulator.
The T distillation circuit is not deterministic in the sense that which gates should
be applied depend on previous measurement outcomes. To simplify the security
proof, after performing the T distillation, the parties execute πCTAR to have the
server P1 route all ciphertexts generated by the T distillation circuit to itself.
Now, similarly to πAR, we let cMPC updating its key using a random Pauli.
Then, similarly to the simulation for AR, the simulator can send halves of EPR
pairs as the output during the execution of πCTAR. Among the remaining packets
after πCTAR, the simulator can teleport the output it got from the trusted party
to P1.

The formal description of the protocol alongside its proof of security are
deferred to Section 7.4 of the full version [ACC+20].

8 Secure Delegation of The Computation – Preparation
In this section, we present a protocol, which we call pre-computation, that al-
lows the parties to securely delegate the computation to a designated party,
called the server. More concretely, at the end of the protocol, the server will
hold an encryption of each of the parties’ inputs, while cMPC will hold the
keys used for the encryption. Later, in Section 9, we show how the server and

26

cMPC can homomorphically evaluate a quantum circuit over the encrypted in-
puts. Thus, we require that the encryption used by the parties to be the TrapTP
VQFHE scheme of [ADSS17]. Recall that a VQFHE is four-tuple of qpt algo-
rithms (KeyGen,Enc,Eval,Dec), that generate keys, encrypt plaintext, evaluate
a circuit of an encrypted message, and decrypt a ciphertext while verifying the
evaluation was performed honestly. Our pre-computation protocol can thus be
viewed as a way to implement TrapTP.KeyGen and TrapTP.Enc – the key gen-
eration and encryption algorithms of TrapTP, respectively – in a distributed
manner. We next present a formal definition of the functionality we wish to
compute.

Let L = L(κ) be a polynomial (this will later represent an upper-bound
on the size of a circuit to be evaluated and the number of ancilla 0 states it
requires). Denote by PreComp = PreCompL the following mapping. Party Pi

holds an ℓin-qubit input ρi = (ρij)
ℓin
j=1, where ℓin = ℓin(κ) ∈ N is some polyno-

mial. Only the server P1 and cMPC are given outputs, defined as follows. Let
(sk, ρevk) ← TrapTP.KeyGen(1κ, 1L) (recall that sk ∈ {0, 1}∗ is a classical string
and ρevk is a quantum state). Then cMPC receives sk and P1 receives the en-
cryptions of each input-qubit, encryptions of 0 states, and the evaluation key
ρevk, i.e., it receives (ρ̂, ρ̂0, ρevk) where ρ̂ = (TrapTP.Encsk(ρij))(i,j)∈[n]×[ℓin]

, and
ρ̂0 = (TrapTP.Encsk(|0⟩⟨0|))

L
i=1.

We now present a rough overview of our protocol for computing PreComp with
(n2, 0)-IDPD-security that outputs ciphertexts of size 3κ. The formal description
of the protocol alongside its proof of security are deferred to Section 8 of the full
version [ACC+20]. Conceptually, the protocol consists of three main steps. First,
the private inputs of each party are routed to P1 by a call to AR. This results
in P1 holding the Clifford ciphertexts of all private inputs, and cMPC holding
the keys. Second, the parties call the magic state preparation functionalities.
This include MSPZ that prepares ancilla 0 states, MSPP that prepares magic
P states, MSPH that prepares magic H states, MSPT that prepares magic T
states, and MSPγ that prepares gadget states. At the end of the call, the server
P1 holds the Clifford ciphertexts of all these magic states, while cMPC holds the
Clifford keys. Finally, as we use the TrapTP scheme, the homomorphic evaluation
can only be applied to trap-code ciphertexts. Thus, we show how the server and
cMPC can re-encrypt all Clifford ciphertexts to trap-code ciphertext.
9 Secure Delegation of The Computation – Computation
In the previous section we introduced the PreComp protocol for generating a key
of TrapTP and outputs to the server P1 encryptions of all inputs. In this section,
we present a protocol that securely implements evaluation and verified decryp-
tion. This in turn, allows P1 to perform the circuit evaluation, while ensuring to
the other parties that the evaluation was done correctly. Looking ahead, as the
server would need to distribute the outputs, unlike in PreComp, the resulting
encrypted value held by the server would be under Clifford code. In Section 10
below, we will show how to securely distribute these Clifford ciphertexts.

Formally, let C be an n-ary circuit. Define the functionality Comp as follows.
Let ℓin and ℓout be the number of input-qubits and output-qubits, respectively,

27

of each party Pi. Denote the input of Pi as ρi. An output is given only to the
server P1 and cMPC, as follows. cMPC receives a uniform random Clifford for
each output-qubit, namely it receives (Eij)(i,j)∈[n]×[ℓout]

where Eij ← C1+n2κ are
sampled independently and uniformly at random. The server P1 receives the
Clifford encryptions of each of the output-qubits encrypted with the Cliffords
given to cMPC. That is, P1 receives CAuth.EncEij (σij), where for all i ∈ [n]
and j ∈ [ℓout] it holds that σij ∈ D1 is a single qubit, and these are defined as
(σij)(i,j)∈[n]×[ℓout]

= C(ρ1, . . . , ρn).
Roughly, our protocol works as follows. First, the parties prepare the values

required to run TrapTP.Eval. That is, they generate keys and ciphertexts of their
inputs under TrapTP using PreComp. The server P1 can now run TrapTP.Eval on
the ciphertexts to homomorphically evaluate the circuit, obtaining the outcome
σ̂ij for every party i and qubit j (possibly after some qubits where dropped).
As σ̂ij is encrypted using TrapTP, the parties now need to re-encrypt it to a
Clifford ciphertext. To do this, the parties call AR, to have the server route the
encrypted results to itself. This results in a Clifford ciphertext τij of a trap code
ciphertext of the outputs.

We now explain how cMPC can verify the computation. Let us first re-
call two important properties of TrapTP.Eval and TrapTP.VerDec. Recall that
TrapTP.Eval, in addition to performing a computation over trap codes, if fur-
ther produces a log of the computation, that includes all the classical messages
including randomness, computation steps, and all intermediate results during
evaluation. Next recall, that although TrapTP.VerDec is a quantum procedure,
it includes a classical subroutine that verifies these logs. We denote this subrou-
tine by CheckLogs. It is given a secret key sk (generated from TrapTP.KeyGen
used in PreComp) and a log to be checked, and outputs updated Pauli keys and
a flag to indicate whether the computation was performed faithfully. We refer
the reader to [ADSS17] for a detailed construction of the classical algorithm.

Now, P1 sends log to cMPC who applies CheckLogs to check validity. Then,
the server split the trap registers into Z1 and Z2 for each ciphertext τij , and
cMPC sends it the Clifford

Vij = (EMZ2
ij ⊗RS

ij ⊗ TAuth.PEncTZ1

Πij ,Qij
)TAuth.PDecMST

Π0,Pij
F †
ij .

Here, the first term F †
ij would remove the Clifford encryption added by AR,

resulting in a trap code ciphertext. Then the partial decryption of the trap code
TAuth.PDec is applied (see Definition 2), using the global permutation Π0, and
the Pauli Pij it got from checking the logs using CheckLogs. This converts the
trap code ciphertext into a plaintext in register M , traps to be verified in register
T , and the syndrome in register S (recall that trap codes use QECC in their con-
struction). The term Eij is a new Clifford that re-encrypts the plaintexts under
a Clifford code, the term Rij is a random Pauli that overwrites the syndromes to
prevent leak of information, and TAuth.PEncΠij ,Qij perform partial encryption
of the trap code (see Definition 3), to re-encrypt the traps in register T under
trap code with a newly sampled key. The server is then asked to homomorphi-
cally measure these traps and send the measurement results to cMPC to verify,

28

who aborts if the verification failed. Specifically, the verification compares the
measured traps to 0’s. If the protocol does not abort, the server outputs the
computation results that is now under a Clifford code, and cMPC outputs the
corresponding keys.

The proof of security is done by reducing it to the security of the TrapTP
scheme. The formal description of the protocol alongside its proof of security are
deferred to Section 9 of the full version [ACC+20].

10 Secure Computation of a Quantum Circuit With
Packet Drops

In this section, we are finally ready to present our protocol for computing an
arbitrary quantum circuit C with IDPD-security. That is, we prove Lemma 1.
We do so by constructing a protocol in the {cMPC,Comp}-hybrid model. Given
the functionality Comp from the previous section, the protocol is rather simple.
The parties first call Comp, which ensures that P1 will hold a Clifford encoding
of the output of each party, and cMPC will hold the keys. The parties then
execute πCTAR to route each output held by P1 to the correct party. Finally, if
the protocol did not yet abort, then cMPC will send the keys to each output to
the corresponding party.

The formal description of the protocol and its proof of security are deferred
to Section 10 of the full version [ACC+20].
Remark 1. Interestingly, assuming that cMPC sends all Clifford keys to the par-
ties simultaneously, it follows that identifiable fair14 classical MPC is sufficient
for identifiable fair quantum MPC (see Appendix A of the full version [ACC+20]
for a formal definition). Indeed, observe that until cMPC sends the Clifford keys,
all quantum states held by each party is encrypted. Therefore, an adversary that
causes the protocol to abort gains no information on the output. Thus, if the
last call to cMPC is fair, then all parties will receive the keys to their respective
encrypted output simultaneously. This results in a fair MPQC protocol in the
cMPC-hybrid model.

Acknowledgements
The authors would like to thank the anonymous reviewers for their useful com-
ments and suggestions, and in particular for pointing out the existence of NC1

decryption of classical fully homomorphic encryption schemes [BV11]. We would
also like to thank Eran Omri for many useful conversations.

14 In addition to fairness, identifiable fair computation have the added property that
in case the protocol aborts, the honest parties agree on the identity of at least one
corrupted party.

29

Bibliography

[ABDR04] Andris Ambainis, Harry Buhrman, Yevgeniy Dodis, and Hein
Rohrig. Multiparty quantum coin flipping. In Proceedings. 19th
IEEE Annual Conference on Computational Complexity, 2004.,
pages 250–259. IEEE, 2004.

[ABOE10] Dorit Aharonov, Michael Ben-Or, and Elad Eban. Interactive
proofs for quantum computations. In Andrew Chi-Chih Yao, edi-
tor, Innovations in Computer Science - ICS 2010, Tsinghua Uni-
versity, Beijing, China, January 5-7, 2010. Proceedings, pages
453–469. Tsinghua University Press, 01 2010.

[ACC+20] Bar Alon, Hao Chung, Kai-Min Chung, Mi-Ying Huang, Yi Lee,
and Yu-Ching Shen. Round efficient secure multiparty quantum
computation with identifiable abort. Cryptology ePrint Archive,
Report 2020/1464, 2020. https://eprint.iacr.org/2020/1464.

[ADSS17] G. Alagic, Y. Dulek, C. Schaffner, and F. Speelman. Quantum
fully homomorphic encryption with verification. 2017.

[BCG+02] H. Barnum, C. Crepeau, D. Gottesman, A. Smith, and A. Tapp.
Authentication of quantum messages. In The 43rd Annual IEEE
Symposium on Foundations of Computer Science, 2002. Proceed-
ings. IEEE Comput. Soc, 2002.

[BGS13] Anne Broadbent, Gus Gutoski, and Douglas Stebila. Quantum
one-time programs. In Advances in Cryptology – CRYPTO 2013,
pages 344–360. Springer Berlin Heidelberg, 2013.

[BK05] Sergei Bravyi and Alexei Kitaev. Universal quantum computation
with ideal clifford gates and noisy ancillas. Physical Review A,
2005.

[BMMMQ20] Nicholas-Philip Brandt, Sven Maier, Tobias Müller, and Jörn
Müller-Quade. Constructing secure multi-party computation with
identifiable abort. IACR Cryptol. ePrint Arch., 2020:153, 2020.

[BOCG+06] Michael Ben-Or, Claude Crepeau, Daniel Gottesman, Avinatan
Hassidim, and Adam Smith. Secure multiparty quantum com-
putation with (only) a strict honest majority. In 2006 47th
Annual IEEE Symposium on Foundations of Computer Science
(FOCS'06). IEEE, 2006.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homo-
morphic encryption from (standard) LWE. In Rafail Ostrovsky,
editor, IEEE 52nd Annual Symposium on Foundations of Com-
puter Science, FOCS 2011, Palm Springs, CA, USA, October 22-
25, 2011, pages 97–106. IEEE Computer Society, 2011.

[CGS02] Claude Crépeau, Daniel Gottesman, and Adam Smith. Secure
multi-party quantum computation. In Proceedings of the thiry-
fourth annual ACM symposium on Theory of computing - STOC
'02. ACM Press, 2002.

https://eprint.iacr.org/2020/1464

[Cle86] Richard Cleve. Limits on the security of coin flips when half the
processors are faulty. In Proceedings of the eighteenth annual ACM
symposium on Theory of computing, pages 364–369, 1986.

[DGJ+20] Yfke Dulek, Alex B Grilo, Stacey Jeffery, Christian Majenz, and
Christian Schaffner. Secure multi-party quantum computation
with a dishonest majority. Advances in Cryptology - EURO-
CRYPT 2020., 2020.

[DLT02] D. P. DiVincenzo, D. W. Leung, and B. M. Terhal. Quantum data
hiding. IEEE Transactions on Information Theory, 48(3):580–598,
2002.

[DNS12] Frédéric Dupuis, Jesper Buus Nielsen, and Louis Salvail. Actively
secure two-party evaluation of any quantum operation. In Annual
Cryptology Conference, pages 794–811. Springer, 2012.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryp-
tion. In Annual Cryptology Conference, pages 643–662. Springer,
2012.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play ANY
mental game. In Proceedings of the nineteenth annual ACM con-
ference on Theory of computing - STOC '87. ACM Press, 1987.

[IOZ14] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-
party computation with identifiable abort. In Advances in Cryp-
tology – CRYPTO 2014, pages 369–386. Springer Berlin Heidel-
berg, 2014.

[Kit] Alexei Kitaev. Quantum coin-flipping. Talk at QIP 2003 (slides
and video at MSRI), December 2002.

[RBO89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and mul-
tiparty protocols with honest majority. In Proceedings of the
twenty-first annual ACM symposium on Theory of computing,
pages 73–85, 1989.

[Unr10] Dominique Unruh. Universally composable quantum multi-party
computation. In Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, pages 486–505.
Springer, 2010.

31

	Round Efficient Secure Multiparty Quantum Computation with Identifiable Abort

