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Abstract. The inherent difficulty of maintaining stateful environments
over long periods of time gave rise to the paradigm of serverless com-
puting, where mostly stateless components are deployed on demand to
handle computation tasks, and are torn down once their task is complete.
Serverless architecture could offer the added benefit of improved resis-
tance to targeted denial-of-service attacks, by hiding from the attacker
the physical machines involved in the protocol until after they complete
their work. Realizing such protection, however, requires that the protocol
only uses stateless parties, where each party sends only one message and
never needs to speaks again. Perhaps the most famous example of this
style of protocols is the Nakamoto consensus protocol used in Bitcoin:
A peer can win the right to produce the next block by running a local
lottery (mining) while staying covert. Once the right has been won, it
is executed by sending a single message. After that, the physical entity
never needs to send more messages.
We refer to this as the You-Only-Speak-Once (YOSO) property, and
initiate the formal study of it within a new model that we call the
YOSO model. Our model is centered around the notion of roles, which
are stateless parties that can only send a single message. Crucially, our
modelling separates the protocol design, that only uses roles, from the
role-assignment mechanism, that assigns roles to actual physical entities.
This separation enables studying these two aspects separately, and our
YOSO model in this work only deals with the protocol-design aspect.
We describe several techniques for achieving YOSO MPC; both compu-
tational and information theoretic. Our protocols are synchronous and
provide guaranteed output delivery (which is important for application
domains such as blockchains), assuming honest majority of roles in ev-
ery time step. We describe a practically efficient computationally-secure
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protocol, as well as a proof-of-concept information theoretically secure
protocol.
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1 Introduction

A somewhat surprising feature of our networked world is just how hard it is to
keep a working stateful execution environment over long periods of time. Even
in non-adversarial settings, it is a major challenge to keep a server operational
and connected through software updates, local physical events, and global infras-
tructure interruptions. This becomes even harder in adversarial environments.
Consider for example a network adversary targeting a specific protocol, watch-
ing the communication network and mounting a targeted denial of service (DoS)
attack on any machine that sends a message in this protocol. In high-stake
environments, one also must worry about near-instant malicious compromise,
unleashed by well equipped adversaries with a stash of zero-day exploits.

One approach for mitigating this issue is the paradigm of serverless com-
puting, where mostly-stateless components are deployed on demand to handle
computation tasks, and are torn down once their task is complete. In addition
to economic benefits, a protocol built from such components could offer better
resistance against strong adversaries by hiding the physical machines that play
a role in the protocol, until after they complete their work and send their mes-
sages. To realize this protection, however, the protocol must utilize only stateless
components, making it harder to design.

Perhaps the best-known example of this style of protocol is the Nakamoto
consensus protocol used in Bitcoin [19]. A salient property of the Bitcoin design
is that a peer can win the right to produce the next block by running a local
lottery (mining), while staying covert. Once the right has been won, it is executed
by sending a single message. After that, the physical entity never needs to send
another message. Another example is the Algorand consensus protocol [8] with
its player-replaceability property.

In this work we initiate a formal study of protocols of this style, which we refer
to as You-Only-Speak-Once (YOSO). An important conceptual contribution of
our work is the (relatively) clean modeling of such protocols, centered around
their use of roles (which is the name we use for those one-time stateless parties).
Crucially, our modeling separates the protocol design using roles from the role-
assignment functionality that assigns the roles to actual physical machines.

This separation lets us study the protocol design problem on its own, freeing
us from having to specify the role-assignment implementation which is necessar-
ily very system dependent: a proof-of-work blockchain will have very different
role-assignment mechanisms from a proof-of-stake blockchain, and a traditional
cloud environment will use yet different mechanisms. However, all these systems
could use the same protocol for secure computation once the roles have been
properly assigned. On the technical side we make the following contributions:
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– We present a formal model for defining and studying such protocols, called
the YOSO model, which in particular codifies the separation between role-
assignment and protocol execution and formally defines the notion of only
speaking once. The YOSO model is cast within the UC framework [5] and
therefore can draw on the existing body of research on UC security. An
overview of the model is provided in Section 2. For a more detailed treatment
see the full version of the paper [14].

– We also devise tools for working in the YOSO model, and describe two dif-
ferent secure MPC protocols. Our main solution presented in Section 3 is an
information theoretic proof-of-concept protocol that provides statistical secu-
rity.5 Additionally, in the full version [14] we also describe a computationally-
secure protocol. Both protocols are synchronous and provide guaranteed out-
put delivery (which is important for our application domain), assuming an
honest majority of roles in every protocol step.

– We show that an information theoretic secure YOSO MPC can be compiled
into a natural UC secure protocol running on a toy model of a blockchain
with role assignment. This is meant as a sanity check of the abstract role-
based YOSO model. It shows that protocols developed in this model can
indeed be compiled to practice. We show that if we start with a static-
secure (analogously, adaptive-secure) YOSO protocol, we can get a static-
secure (analogously, adaptive-secure) UC protocol with essentially the same
corruption threshold.

1.1 The YOSO Model

We introduce the YOSO model to make it easy to start studying YOSO MPC
independently of blockchain and role assignment.

Role-based computation In the YOSO model, participants in protocols are called
roles rather than parties or nodes or machines. The reason for the name “roles” is
that we usually think of these one-time parties as playing some role in a protocol.
Some examples of roles include “Party #3 in the 2nd VSS protocol on the 8th
round”, “the prover in the 6th NIZK”, etc. Formally, a role is just a stateless
party that can only send a single message before it is destroyed, and a protocol
is an interaction between roles. Throughout this manuscript we use the following
terminology:
Roles: are abstract formal entities that perform the protocol actions and com-

municate with other roles.
Nodes/Machines: refer to stateful long-living entities that the adversary can

identify and target for corruption. These can be physical or virtual machines,
that would typically have some identifying characteristics such as an IP
address that can be used by the adversary to attack them.

5 As we explain below, the restrictions of working in the YOSO model are so severe
that a priory it was not clear to us that information-theoretical security is even
possible in the “2t+ 1 regime”. Indeed this work began as an attempt to prove that
no such protocols exist.
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We sometimes use the term parties, but only in informal discussions and in
contexts where the distinction between roles and machines is immaterial.

Importantly, roles are detached from machines, and mapping of machines to
roles happens at execution time. A protocol in the YOSO model will inevitably
be executed alongside a role-assignment functionality, and the security of the
protocol will rely on the guarantees provided by that functionality. Ideally, this
assignment should be unknown to the attacker until after the machine plays its
role and sends a message, hence limiting the adversary’s ability to target the
role for corruption.

The YOSO model can be used with different role-assignment functionalities
with different guarantees. In this work we mainly consider a simple random-
assignment functionality: it assigns each role to a random machine from among
a universe of available ones, and hides that assignment from the adversary (unless
the chosen machine is already corrupted). An adversary that corrupts machines
will therefore be unable to predict which roles will be corrupted; upon corruption
of a machine the adversary will be handed the random roles that are mapped
to that machine. This allows for a simplified view of the adversary where all
corruptions are random.

1.2 MPC in the YOSO Model

A compelling motivation for these protocols is scalable computation in the pres-
ence of an adaptive fail-stop adversary (a powerful DoS adversary, as noted
earlier). Imagine a large number — perhaps millions — of nodes that want to
engage in a secure computation in the presence of such an adversary. Assum-
ing that the DoS adversary cannot take down more than some threshold of the
nodes, then running an MPC protocol among all of them would yield the de-
sired result. However, running classical MPC protocols among a large number
of nodes is expensive. All of the nodes typically need to communicate with all
of their peers, creating a prohibitive communication load. YOSO MPC enables
the computation to be run by a small subset of the nodes, with an independent
subset — or committee — participating in every round. YOSO MPC thwarts
an adaptive DoS adversary because the adversary is unable to predict which
fail-stops will be useful to foil the security; thus it creates the opportunity for
execution of the protocol with small committees resulting in communication that
is sub-linear in the number of nodes in the network.

As a more concrete example of a scenario where such scalable computation
would be necessary, consider “MPC as a service”. That is, an outsourced com-
putation service where clients submit inputs for a joint computation so that the
privacy of the inputs and the correctness of the output are guaranteed, even if
a fraction of the provider’s servers are adversarially controlled. However, while
full corruption of servers is expensive, dedicated denial of service against tar-
geted servers is an easier attack to carry out, and the protocol should be able
to withstand it. YOSO MPC offers a solution that remains secure under these
realistic conditions.
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Role Assignment for YOSO MPC. In order to reap the benefits of such scalable
YOSO MPC, it is important to assign YOSO MPC roles to machines in a scal-
able way without revealing the role assignment before the roles need to speak.
Furthermore, the assigned machines should be able to receive secret messages
(even while the message senders do not know their identities). This is challenging
since, being able to speak only once, the machine having won a role cannot first
make a public key available, and then receive messages and execute its role in
the protocol. This would involve speaking at least twice.

One solution that was recently proposed by Benhamouda et al. [3] involves
the use of nominating committees: each machine has a public key for an encryp-
tion scheme allowing the rerandomization of public keys. For each role R there
will be a delegator role D. (We call R the delegate, and D the delegator.) First a
machine is assigned a delegator role D using, e.g., cryptographic sortition (or just
by solving some puzzle). Then the delegator D will pick, uniformly at random,
another machine to play the delegate role R. It will take that machine’s public
key pki, rerandomize it into p̃ki, and publish p̃ki. Note that p̃ki does not reveal
the identity of the machine that was assigned to R; however, it enables other
roles to send secret messages to the delegate R by encrypting to p̃ki. Finally, the
delegate R will execute the role.

One drawback of this approach is that the role R will be corrupt if the
delegator is corrupt or if the delegate is corrupt. This essentially doubles the
corruption budget of the adversary. It is an interesting research direction to
develop more practical and more secure role assignment mechanisms. However,
this is orthogonal to the design of MPC protocols which will be run by the roles,
which is the focus of our work. In the full version [14] we give a toy example of
compiling a YOSO protocol to run on top of a blockchain with role assignment
to illuminate this compelling use case.

Parameters of YOSO MPC Protocols. When designing a YOSO MPC protocol
there is a number of interesting parameters to consider. In addition to the many
“generic” aspects of MPC (such as corruption type and threshold, hardness as-
sumptions, trusted setup, security guarantees, etc.) YOSO MPC protocols have
some new parameters in their design.

– Future/Past Horizon: When a role speaks, it may send private messages to
roles intended to speak in future rounds. The future horizon describes how
far into the future a role may need to speak (similarly past horizon is how
far back a role may need to listen). The method of assigning roles impacts
and is impacted by the future and past horizons and should be taken into
consideration. For example, for proof-of-stake systems it is undesirable to
assign roles in advance using the current stake distribution. Or if roles are
assigned on the fly parties would need to read the history of communication
far into the past. One should therefore try to use as short a future/past
horizon as possible.

– Dynamic and Static Execution Time: Static execution time refers to the
ability to know ahead of time when a role would speak in the protocol,

5



contrasted with the dynamic case where the time to speak is only determined
at run-time. As YOSO protocols are ideal for serverless architectures where
servers are only running when they need to act, static execution time may
save resources (e.g. cloud rental).
A related distinction (in the dynamic case) is whether only the role itself
can determine when it is going to speak, or whether it can be determined
publicly. (This could make a difference, e.g., in agreement protocols that
must accumulate enough votes before moving to the next phase, where we
may want to know if we still need to wait for the vote from the role or can
we assume that it crashed and will never vote.)

YOSO MPC from Additive Homomorphic Threshold Encryption. Our
first technical contribution is a YOSO MPC protocol in the computational set-
ting with guaranteed output delivery in a synchronous model, tolerating a dis-
honest minority of roles at any given round. Specifically, in every round we will
have some number n of roles that will form an honest-majority committee. As
stated, it falls to the role-assignment functionality to supply us with committees
with honest majority; in this work we allow ourselves to just assume that we
have them.

Given a supply of committees with honest majority, our construction is based
on the CDN protocol [10]. Informally, CDN requires a system-wide public key pk
for an additively homomorphic threshold encryption scheme, where the secret
key sk is shared among the committee members (with each member i hold-
ing ski). The participants then perform the entire computation using additive
homomorphism, interspersed with public decryption of masked intermediate val-
ues. The protocol uses Beaver triples that are generated on-the-fly to support
multiplications; the secret key shares are used to open values in every round of
Beaver triple use, and to obtain the computation output at the end.

We note that CDN is already almost a YOSO protocol: the only state the
participants need is the secret key shares ski, and the only messages that they
send are their decryption shares (with the ciphertexts all being public). Providing
the participants with shares of the global secret key sk can be done, e.g., using the
proactive handover protocol of Benhamouda et al. [3], which is a YOSO protocol.
In each protocol round, committee members get their decryption shares, and then
the committee decrypts the current batch of ciphertexts and reshares sk to the
next committee.

To get a YOSO protocol, we also need to generate the Beaver triples YOSO-
style. We will use two committees — CA and CB — to generate many triples of
the form

(
Enc(a),Enc(b),Enc(ab)

)
, which will be consumed by future committees

during multiplications. We first have members Pi of committee CA individually
choose random ai’s and publish the ciphertexts ai = Enc(ai) along with NIZK
proofs that these are valid ciphertexts. All parties can use additive homomor-
phism to obtain a, an encryption of the sum a of the ai’s. Then members Pj of
committee CB will individually choose random bj ’s and set bj = Enc(bj), then
use additive homomorphism to compute cj , an encryption of bja. Pj then pub-
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lishes (bj , cj), along with proofs that they were generated properly. All parties
can use additive homomorphism to obtain b and c, encryptions of the sums b of
the bj ’s and c of the bja’s, respectively. (a, b, c) form a Beaver triple. Note that
as long as all the NIZK proofs are valid and there is at least one honest party
in each committee CA, CB , the triple is indeed a Beaver triple for the values
a =

∑
i ai and b =

∑
j bj which are unknown to the adversary.6

We describe the complete CDN-based protocol ΠCDN, and prove its security,
in the full version [14] . For now, we state the following informal theorem.

Theorem. (informal) Any multiparty function F can be securely implemented by
the CDN YOSO protocol in a synchronous network with authenticated broadcast
channel, resilient against a fraction τ < 1/2 of random Byzantine corruptions.

We note that another approach for achieving computational security would be
to leverage fully homomorphic encryption (FHE). This requires an FHE scheme
with a one-message threshold decryption procedure, and also one whose secret
key could be maintained proactively using a YOSO protocol. Proactive mainte-
nance of the secret key can be achieved, e.g., using the YOSO handover protocol
of Benhamouda et al. [3], and one-round decryption can be achieved using the
techniques from Asharov et al. [1] and Mukherjee-Wichs [18] (after a one-time
trusted setup to generate the required evaluation key). In terms of complexity,
an FHE-based solution may be more efficient in number of rounds and total
communication, but it requires much more local computation, more per-round
communication, and a more complicated trusted setup.

YOSO MPC from Information Theoretic Techniques. Our second (and
main) technical contribution is a proof-of-concept information theoretic YOSO
protocol with guaranteed output delivery in a synchronous model, tolerating any
dishonest minority of roles at any given committee. This protocol does not need
any trusted setup, but it relies on secure point-to-point channels between roles,7
as well as a totally-ordered broadcast. One consequence of this protocol is statis-
tically unbiased coin-flip in the YOSO model, which (together with appropriate
role-assignment) implies unbiased public randomness in public blockchains via
a YOSO protocol.

We begin by observing that YOSO is easy in the semi-honest model, in
fact semi-honest BGW [2] is basically already a YOSO protocol. The BGW
protocol only uses secret sharing and reconstruction: secret sharing can be done
to a future committee (instead of the current one) over point-to-point channels,
and reconstruction can be done publicly. When implementing a circuit, each
6 If we have many honest parties in CA, CB (say m of them in each committee), then

we can improve efficiency and get Ω(m) triples at roughly the same bandwidth using
standard techniques.

7 We note again that such secure point-to-point channels would have to be imple-
mented somehow, even though the receiving role may not have been assigned yet
to a machine. This task falls to the role-assignment functionality, which we do not
specify in this work.

7



multiplication gate has two committees, one for each round in the multiplication
protocol. For a gate with large fan-out, the gate committee will reshare their
shares to the committees of all the downstream gates.

It is only when switching to the malicious model that things get hard, as
YOSO seems to rule out many common information-theoretic techniques. In
particular, patterns such as “committing” to a value and then being challenged
on it, or even just using the same secret value in many parts of the protocol,
seem to inherently require a party to stick around and speak more than once.
The same can be said for cut-and-choose techniques that have a party generating
multiple values, being challenged to open (say) half of them, and if they are all
valid then the other half is used in the protocol.

It is also easy to see that simplistic solutions such as one party sending
all its secret state to another will not help: It would allow the adversary to
get this secret value if either the sender or the receiver are corrupted, hence
amplifying the adversary’s power. A more promising avenue is to let a party
share its secret state with future committees (maybe more than one), and have
these committees emulate it in the future as needed. However, ensuring that a
message from one party is recoverable intact by future committees is challenging;
this is essentially a verifiable-secret-sharing (VSS) functionality. Ensuring that
the party shares the same message to multiple committees poses more challenges
still. In Section 3 we address these challenges by gradually developing stronger
and stronger primitives that build on each other. Here we just give a hint for
some of the observations that enable these tools, and the various steps that go
into the construction.

Step 1, Future Broadcast (FBcast). In Section 3.2 we describe a Future Broadcast
construction that enables a party to prepare a message that should be sent in a
future round. This may be complicated in general, since we need to ensure that
the message delivered in the future is in fact the message of the party creating
it, the kind of authenticity often requires VSS. But in our context we observe
that we only need to ensure this authenticity for messages of honest parties, as
faulty parties can say whatever they want at any time. Hence, for the FBcast
primitive we can assume an honest dealer, which makes the design a lot easier.

Observe that in the computational setting this is straightforward to achieve.
A party shares its value using a Shamir secret sharing and also provides every
share holder with a digital signature on the share. When the value is recon-
structed only shares with valid signatures are taken into the interpolation, if
they all lie on a degree-t polynomial then the constant term is taken as the
broadcasted message. In the IT setting we show that if the dealer is honest,
information theoretic MACs are sufficient to replace digital signatures in this
construction.

Step 2, Distributed Commitment (DC). In this contruction we want to offer some
guarantees for reconstructing a value at a later time also in the case when the
dealer is faulty. DC enables a dealer to commit in a distribute manner to a value
and at a later time either open the committed value or null. This is exactly the

8



functionality of a commitment in the computational setting, but it is achieved
in the IT distributed setting.

To deliver DC we fortify the IT MACs into IT signatures (IT-SIG). An IT-SIG
offers a holder of the signature on a value some assurances that in fact the value
will be verified when presented. Our techniques build on the VSS interactive
tools of Rabin and Ben-Or [22] adjusted to the YOSO model. We transform
the IT-SIG from [22] into one where a party knows in advance all the messages
that it may need to send in the future. This makes it possible to replace the
multiple speaking rounds in the original protocol, by having each party share its
future messages using FBcast (Section 3.3). The IT-SIGs provide enough of the
digital signature properties for the purpose of realizing distributed commitments
(Section 3.4).

Step 3, Duplicate DC (DupDC) and VSS. Proceeding towards VSS, we again
turn to Rabin and Ben-Or [22], who utilize DC to achieve VSS via a cut-and-
choose proof. The complication in using in the YOSO model is that in this proof
one value needs to be used multiple times. In the YOSO model, this requires
creating duplicates of the same committed value, each to be used in a different
step of the proof. Letting the dealer run multiple DC’s does not work as the
dealer might be faulty and share different values. Thus, we would need the
dealer to prove that all the committed values are the same. This will create a
problem because for the proof to go through the committee holding the sharing
would need to talk. Once they talk they have exhausted their one opportunity
to speak and now the duplicate of the value has been wasted. Thus, we need to
create a mechanism that duplicates values without “wasting” them. Surprisingly,
we observe that our DC protocol allows the share holders themselves to create
duplicates of the commitment. This avoids the need for additional proofs, the
committee of shareholders is mostly honest so all the duplicates will be the same
by design (see Section 3.5). Here, yet again, we can make all elements of the
proof public, thus informing all parties of the result of the computation. This
enables us to finalize the design of the VSS (Section 3.6).

To eventually complete the design of the MPC we would also need duplicates
of the VSS as the same value might go into multiple gates and the committee
holding the value can only speak once. Luckily, we can derive the duplicates of
the VSS directly from the duplicates of the DC.

Step 4, Augmented VSS (AugVSS). We need one more level of sharing which we
call Augmented VSS. In this level of sharing we add the property that not only
is a secret s shared via VSS but also that all the shares that define the sharing
of s are VSSed. This will enable the MPC.

Step 5, Secure-MPC. Once we have AugVSS, getting information-theoretic secure-
MPC can be done using standard techniques that need to be adapted to the
YOSO model. We maintain the variant throughout the computation that the
values on the wires are AugVSS. Hence we prove:
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Theorem. (informal) Any multiparty function F can be securely implemented by
an information-theoretic YOSO protocol in a synchronous network with broadcast
and secure point-to-point channels, resilient against a fraction τ < 1/2 of random
Byzantine corruptions. The protocol additionally tolerates any number of chosen,
Byzantine corruptions of input roles and output roles.

It is crucial, for practical purposes, that we can tolerate chosen corruptions
of input roles and output roles. Often the inputs and outputs are given by known
clients that could more easily be targeted by an attack.

Epilogue, Public Randomness. The cut-and-choose protocols in our design are
described using access to public randomness (which defines the challenges in
those protocols). But where can we get this public randomness? Producing true
randomness in a distributed setting seems to require MPC, creating a circular
problem. Yet, we can show that our protocols remain secure when using unpre-
dictable (high min-entropy) values, rather than truly random ones. Producing
public unpredictable values in the honest-majority setting is much easier, and
can even be done in a YOSO fashion. Thus, we can complete the MPC without
the need for true randomness.

Of course, once we are able to get full-blown MPC, we can use it to produce
completely uniform public randomness. This in particular solves the problem
of obtaining public uniform randomness on a public blockchain using a YOSO
protocol, a problem that was explored by a few previous works [6,7].

On the impossibility of Garay et al. [12]. In [12] it was shown that any pro-
tocol in the information theoretic model with a sublinear message complexity
(in the number of parties) cannot withstand adaptive corruptions of a fraction
equal or greater than 1 −

√
0.5 of the total number of parties. Yet, we claim

that our IT protocol can withstand less than n/2 adaptive corruptions. This
is not a contradiction. Our proof proceeds in two steps. In the first we prove
that our IT protocol is adaptively secure without the assumption of sublinear
message complexity. In the second part, when we prove the protocol that has
sublinear message complexity, we need to combine our IT protocol with some
role-assignment mechanism. This inevitably takes our protocol out of the IT
model, making the lower bound of [12] not applicable.8

YOSO can be Realized. Our YOSO protocols are abstract in that they only
consider abstract roles; we abstract away role assignment and machines. To show
that protocols designed in our abstract YOSO model can be used in practice,
we show how to compile these asbtract protocols into concrete protocols that
use physical machines, assuming an underlying role-assignment service. To that
end, we define a simple UC functionality FRA, modeling a system with role
8 Specifically, the implementation of our communication channels which are needed to

enable the solution can only be achieved in the computational setting (in our specific
case we assume a PKI and more).

10



assignment: That functionality “spits out” a sequence of random public keys,
where the corresponding secret key is known by a random, secret node in the
system.

Assuming access to this role-assignment functionality, in addition to a broad-
cast channel and point-to-point channels between physical machines in the system
(modeled as ideal functionalities FBC, FSPP), we show how to compile any ab-
stract protocol Π in the YOSO model into a concrete protocol in the UC hybrid
model with functionalities FRA, FBC, and FSPP. (These functionalities can then
be implemented using an underlying blockchain, e.g., as described in [3].)

We prove two results: (1) We show that an abstract YOSO protocol Π that
IT YOSO-implements a secure function evaluation of F against t random, static
corruptions, can be compiled using hybrid functionalities FBC and FSPP into a
UC secure protocol Π ′ for the FRA-hybrid model that tolerates ρ chosen, static
corruptions for any ρ < t. (2) We show the same for adaptive security.

We can get security against chosen corruptions from security against random
corruptions because the adversary does not know the role-to-machine association
chosen by FRA. Intuitively, corrupting a machine just corrupts random roles.

1.3 Related Work

Protocols built out of ephemeral one-time roles became popular over the last
decade with the emergence of public blockchains, whose defining feature is not
relying on long-term participants with fixed identities. In particular, starting
with Nakamoto’s consensus protocol [19], these protocols became popular for
achieving agreement in different settings, e.g., [17,20,8,4].

Only very recently did we start seeing attempts at using this style of pro-
tocols for other cryptographic tasks: Benhamouda et al. [3] described how to
use such protocols for long-term maintenance of secrets on public blockchains,
and mentioned the possibility of using these secrets for various tasks, including
for general-purpose secure computation. Blum et al. [4] described how to imple-
ment input-free protocols in this model (such as coin tossing), and also described
informally an FHE-based solution for functions with input (similar to the one
sketched in Section 1.2 above).

Choudhuri et al. [9] described general-purpose secure-MPC protocols of this
style (that they call fluid), where the participants need to volunteer for roles
(in our terminology we would call it a volunteer-based role-assignment function-
ality). Such protocols can be tweaked and casted as YOSO protocols with a
volunteer-based role assignment. However, the protocols of [9] only guarantee
security with abort, making their use extremely fragile as a single corruption
can abort the protocol. Moreover, volunteer-based role assignment seems sus-
ceptible to an adversary filling the volunteering parties with faulty parties by
volunteering many times.
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2 YOSO for the Working Cryptographer

The YOSO model can be cast within the UC framework [5] by identifying the
roles in YOSO protocols with the party identifiers of the UC framework. This
means that the roles are executed by the UC model, which completely abstracts
away how these roles are actually assigned to physical machines; in fact, there
is not even a notion of physical machines left. We then introduce a notion of
random corruptions that are out of the control of the adversary. This can be
used to model a set of roles which, in the now abstracted away real world, are
hidden inside random physical machines, and the adversary can corrupt machines
of its choosing.

Below we always use the term roles rather than parties, just to stress that we
are in the YOSO model. This terminology is for didactic purposes only; a role
in our formal model is identical to a party in the normal UC framework. The
“speak once” aspect is enforced by our execution model, as we now explain.

2.1 YOSO Wrappers

To force roles to only speak once, we are explicitly “yosofying” them with a
YOSO wrapper. Namely, our execution model postulates a wrapper around each
role, that kills it immediately after the first time that it speaks. When that
happens, the wrapper sends a Spoke token to the environment, the adversary
and all its sub-routines (sub-protocols and ideal functionalities). Thereafter it
responds with a Spoke token to the environment whenever activated, and only
sends Spoke to the sub-routines that it is connected to.

Defining what it means for a role to “speak for the first time” is somewhat
nontrivial. The main issue to tackle is whether sending messages to functionali-
ties constitute speaking. To see the issue, consider a protocol Π (that implements
some functionality F), in which a role R must listen for many incoming messages
before deciding to send a message. In this case, the F-hybrid model could have
the role R sending its input to F very early, but the implementation would have
R actually speaking much later.

To account for that, we let functionalities reply to parties with the special
Spoke token. The functionality can freely choose when to send this token, and
the YOSO wrapper will kill the role as soon as it receives a Spoke token from
any functionality. For example, a communication-channel functionality will reply
with a Spoke token as soon as a party sends anything on it, while a higher-level
functionality may trigger a Spoke token based on some input from the adversary.
Note that when a communication channel outputs Spoke to a role, the role will
pass it on to all its sub-routines and then its environment/outer protocol. Hence
the entire composed role will be crashed.

We denote the “yosofied” role R by YoS(R), and the protocol that we get by
yosofying all the roles in Π is denoted by YoS(Π).
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2.2 Random Corruptions

In addition to the usual corruptions of the UC model we also model random
corruptions in the YOSO model — that is, corruptions out of the control of the
adversary.

We do this without changing the UC framework itself. Recall that in UC a
corruption is implemented by the adversary just writing (corrupt, cp) on the
backdoor tape of the party, where cp is some auxiliary information like the type
of corruption: Byzantine, semi-honest, et cetera. There is no explicit mechanism
in UC for limiting how many parties are corrupted or with which flavor. However,
we often choose to analyze protocols under a restricted set of corruptions. This
is simple to do by only quantifying over adversaries adhering to this restriction.
This is easy to formulate for settings like “only semi-honest corruptions” or “at
most a minority of the parties”. However, it seems to be trickier for random
corruptions: if the adversary corrupts a role R, how can we know that R was
chosen at random? We need a precise meaning for this in order to be able to
make precise security claims. For this purpose, we introduce a simple notion
called the corruption controller (CC), that runs as part of the environment. If
an adversary wants to do a random corruption, it asks the environment, which
will pass the request to the CC. Then, the CC will sample the corruption and
inform the adversary which role was corrupted (via the environment). If the
environment sees the adversary is not respecting the decision of the CC, then the
environment will make a random guess in the security game. This enforces that
no distinguishing advantage comes from executions violating the will of the CC.
We then only prove security under the class of environments having such a CC
and using it as intended. We call this the class of controlled environments.

These random corruptions can be mixed freely with other corruption types,
but it is illustrative to consider a generalization of the usual adversary structures
to random corruptions. We codify the corruption power of the adversary by
means of a corruption structure.

Let Role be the set of (names of) roles in the system. A corruption structure
on Role is a set of probability distributions over 2|Role|. A static adversary would
choose at the beginning of the execution a specific corruption distribution C ∈ C
and give it to the CC via the environment. Then the CC samples c ← C and
give it to the adversary via the environment, and each role R ∈ Role can now be
corrupted if R ∈ c. Note that a corruption structure with only point distributions
(i.e. with a single probability-one pattern c ∈ C) corresponds exactly to standard
static corruptions with these allowed patterns, coinciding with the notion of
general adversary structure of Hirt and Maurer [15]. We stress that corruption
structure represents our assumption about the corruption power of the adversary
when designing the protocol. It is up to the role-assignment functionality to
ensure that realistic adversaries will be unlikely to exceed this power.

When considering adaptive corruptions several choices are possible. We con-
sider two in this work called sample corruptions and point corruptions. In sample
corruptions the adversary gives a distribution on a set of roles and gets one of
them corrupted, within some bound. In point corruptions the adversary can ask
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permission to corrupt a given role with some limited probability. If the corruption
fails the role stays honest forever after. It is interesting future work to explore
the relation between different notions of random corruptions.

2.3 YOSO Security

The notion of a protocol realizing a functionality is borrowed from the UC model.
Namely, we say that Π YOSO-realizes (implements) F for some class of envi-
ronments (possibly using random corruptions) if YoS(Π) UC-realizes F . The
considered class of environments should be a subset of the controlled environ-
ments.

It is easy to see that UC composition still holds for controlled environments.
If an environment is composed with a protocol or simulator to define a new
environment, as happens in the proof of the UC theorem, then this composed
environment still uses the CC of the original one. The same holds when one
composes an environment with a simulator. Therefore we get UC composition
also for controlled environments.

YOSO composition then follows directly from UC composition. Let Π be a
protocol for the G-hybrid model and assume that Π YOSO-realises F . Assume
that Γ YOSO-realises G. As usual in the UC framework letΠG→Γ be the protocol
Π with calls to G replaced by calls to Γ . It follows that ΠG→Γ YOSO-realises F .
To see this, note that the premises give us that YoS(Π) UC-realises F and that
YoS(Γ ) UC-realises G. By the usual UC theorem we get that YoS(Π)G→YoS(Γ )

UC-realises F . Then use that by construction YoS(Π)G→YoS(Γ ) = YoS(ΠG→Γ ).
This follows by the way the YoS wrapper passes around the Spoke token to shut
down entire composed parties.

2.4 Common Features, Functionalities, and Models

Synchrony. To simplify the treatment of synchronous clocks, we assume that
in every round the environment sends a Tick message to all the roles and also
to all the functionalities and the adversary, in addition to any other inputs that
it wants to provide them. We use the model in [16] for this.
Communication Channels and PKI. We assume an authenticated broadcast
channel denoted FBC, and usually also secure point-to-point channels FSPP (or
at least authenticated channels FPP). These functionalities are defined more or
less as usual in the UC framework, except that in our case they return a Spoke
token to any role immediately in the step following the receipt of message from
it.9 These functionalities are formally presented in the full version [14]. We also
sometimes use a PKI functionality, which is specified in Figure 1.
YOSO Secure Function Evaluation. We consider secure function evaluation
in the YOSO model. We assume that the roles of a protocol Π are divided into
9 We allow a role to send messages on multiple channels in the same step, then it will

receive Spoke tokens from all of them in the next step.
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On the first input Tick sample (pkR, skR)← Gen for all R ∈ Correct∪Crash. Output
pk to O. For all R ∈ Leaky output skR to O. For each R ∈ Malicious query O to get
the keys (pkR, skR) for R. Then for each R ∈ Correct output (skR, { pkR′}R′∈Role) to
R.

Fig. 1: The ideal functionality FGen for a very simple PKI setup with key gener-
ator Gen.

input roles, output roles and computation roles. The input roles receive inputs
from the environment and the output roles will deliver the outputs back. The
computation nodes carry out intermediary steps of the computation and do not
interact with the environment.

As usual for UC-like models, to formulate the assertion that a function F
could be computed securely we need to wrap that function by a compatible
functionality FFMPC, as described in[14]. Importantly, we assume that the roles
receiving the output do not speak in an implementation (so FFMPC never sends
Spoke tokens to the output roles). Otherwise these output roles would not be
able to contribute the result to the higher-level protocol.

By default, we assume that the roles receiving the inputs and the roles giving
the outputs can be corrupted using the usual chosen corruptions. This is rea-
sonable since in most of the meaningful high-level protocols, like elections, the
inputs to the protocol are given by known machines that might be subject to
targeted DoS attacks. Computation nodes however, are only subject to random
corruptions; when running in the “real world” with a concrete role assignment
mechanism, we get to execute computation roles on random machines.

We then say that Π YOSO securely implements F with a fraction τ random
corruptions if Π implements FFMPC against any number of chosen corruptions of
input roles and output roles and random corruptions of up to a fraction τ of the
computation roles.
The IT YOSO Model. We define the standard IT YOSO model to be the
model with broadcast and secure point-to-point channels, unbounded environ-
ments, and poly-time protocols, ideal functionalities and simulators.
The Computational YOSO Model. The computational YOSO model is
equipped with an authenticated broadcast channel, perhaps authenticated point-
to-point channels, a PKI functionality (such as the one from Figure 1), and
poly-time environments, protocols, ideal functionalities and simulators.

3 The Information-Theoretic t < n
2 MPC Protocol

In this section we describe an MPC protocol in the information theoretic YOSO
model for a fraction τ < 1/2 of random Byzantine corruptions.

Theorem 1. For any multiparty function F , there exists a poly-time protocol
Π described below running with the network (FBC,FSPP) which YOSO-realizes
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the ideal functionality FFMPC in the information theoretic YOSO model. The
protocol tolerates any number of chosen, Byzantine corruptions of input roles
and output roles, and for any τ < 1/2 it tolerates adaptive, Byzantine, random
τ -point-corruptions of computation nodes.

Recall that the reason we allow chosen corruptions of input roles and output
roles is that in a real-life setting we cannot reasonably assume that it is un-
known which machines will give input or get the outputs. So input and output
roles could be targeted. On the other hand, we want to model that computation
roles are run on random, secret machines, so we only allow random corruptions
of computation nodes. Recall that τ -point corruptions just means that the ad-
versary can point to a role R and ask for a corruption. Then the role is made
corrupted with probability τ , and with probability 1 − τ it will remain honest
forever after. The type of random corruption it not essential for our proof. The
reason why we prove security against point corruptions is that this is the type
of corruption needed for the compilation result shown in the full version [14].

Below we will phrase the protocol in terms of disjoint committees of size n.
We call the roles in a committee parties. Let c be the number of committees that
we need. We then start with N = cn computation roles R1, . . . ,RN . We call the
committees C1, . . . ,Cc where Cj = {Pj1, . . . ,Pjn} and Pji = Ri+(j−1)n. We call Pji
party i in committee j. Notice that this grouping of roles into committees is static.
This does not affect security as the adversary cannot bias corruption towards a
specific committee. Each party is still subject only to τ -point corruptions. If we
set τ < 1/2 then we can clearly pick n large enough that we can conclude from
a tail bound that all committees have at most t < n/2 corrupted parties except
with negligible probability. For the rest of the section we then assume that this
has been done. From this point on the only assumption we need for security is
that each committee has t < n/2 corrupted parties.

Note that we allow any number of corruptions among input roles and output
roles. However, input roles and output roles are not part of committees, so this
does not violate the honest majority assumption for committees.

Our protocol is adaptively secure. We will, however, below mainly prove static
security and only briefly discuss adaptive security. The reason is that for point
corruptions, the distinction between adaptive corruptions and static corruptions
is minimal. An adaptive point corruption just means that the adversary chooses
to be oblivious to whether a party is corrupt or not until the point corruption.
This gives it no new powers over static corruptions. Note, in particular, that
corruption control component CC could sample before the UC execution starts
for each role Ri a bit bi which is 1 with probability τ . If later the adversary
does a point corruption of Ri it will become corrupted if and only if bi = 1.
Therefore, even in the adaptive case, the corruptions can be thought of as being
static: they were chosen before the execution started. The only complication in
proving adaptive security compared to proving static security is then that in the
adaptive case, the simulator will not know bi until the adversary does a point
corruption of Ri. Below we phrase the proof in terms of static security. The proof
can be adapted to the adaptive case using standard techniques.
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The challenge in designing an information-theoretic MPC protocol in the
YOSO model is in replacing the actions of parties that interact and speak mul-
tiple times in regular MPC protocols with parties (more precisely, roles) that
speak only once. For this we introduce several tools and components for YOSO
adaptation that may be useful for other protocols as well. A first such tool is
Future Broadcast (FBcast) that allows a party P , that in the standard model
would speak in several rounds, to send its future messages to future roles that
will transmit the messages (either privately or through broadcast) when the time
for those messages to be delivered comes. For example, consider a non-YOSO
protocol where a party P transmits a message m at round i and a message m′
at round i + 3. In the YOSO adaptation, the role representing the actions of
P in round i will transmit m at round i and also, in the same round, apply
FBcast(m′) to pass message m′ to a role that will speak m′ in round i + 3.
Note that this procedure is possible only in cases where the future message is
known in advance. An interesting point to observe is that correctness of FBcast
(in particular, in terms of correctness of messages sent “into the future”), needs
only be guaranteed for original senders of m′ that are honest as faulty ones can
choose to speak any message of their choice whenever they speak. The sender Pji
uses FBcast(m′) to replace its own sending of m′ in the future. In the emulated
protocol a corrupt Pji could send m′′ 6= m′ at this future point. So it is tolerable
that FBcast(m′) may open to m′′ 6= m′ in the future when Pji is corrupt.

As a first application of FBcast, we use it to adapt the IT-SIGs of [22,21] to
the YOSO model and then use this YOSOfied primitive to build a Distributed
Commitment (DC) protocol in the YOSO model. In it, a party (honest or faulty)
commits to a value that it can later choose to reveal or not, but it cannot change
the committed value. Furthermore, it is guaranteed that values committed by
honest parties are always revealed correctly. We then use DC as an essential
ingredient in the design of a YOSO Verifiable Secret Sharing (VSS) scheme
which in turn is a central component of our YOSO information-theoretic MPC
solution.

In various steps in our protocol we need access to some form of randomness
and for clarity of presentation we will assume the presence of a beacon func-
tionality. However, in actuality we need something much weaker than a truly
random source to deliver our results, it is enough that the challenge cannot be
guessed. Thus, we can have a very simple implementation of the beacon (see
full version [14]). We denote this functionality as FUPBeacon to reflect that it is
an unpredictable beacon. During the analysis we at first assume it returns uni-
formly random elements. At the end we then return to why it is enough that it
is unpredictable and how to implement it.

The solutions presented in this section make essential and repeated use of
secret sharing techniques. In all cases, the underlying scheme is Shamir’s scheme
over a given field, and we assume all committees into which secrets are shared
to have at least t + 1 honest parties where t + 1 > n/2. Thus, the polynomials
defining shares are of degree t.
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3.1 Information Theoretic and Homomorphic MAC

Message authentication codes (MAC) are used for verifying the authenticity of
messages between a sender and receiver that share a secret key. Following the
construction of [22] we have the following two protocols.

Three-party Setting. There exists (i) a sender S holding a message m, it chooses
a key K and generates its corresponding MAC tag M computed under a key K;
(ii) S sends the pair (m,M) to a receiver R; (iii) S sends the key K to a verifier
V . The verification procedure combines the pair (m,M) held by R with the key
K held by V .

For our purposes, we consider an information theoretic MAC function with
the following properties: (i) producing a correct MAC without knowing the key
succeeds with negligible probability even for an unbounded attacker; (ii) mes-
sage hiding: nothing is learned about the message m from the key K; (iii) homo-
morphic: the MAC function is homomorphic with respect to appropriate group
operations in the following sense. If Mi = MACKi(mi), i = 1, 2, and the keys
K1,K2 were computed by the same party (they might need to be correlated)
then M1 +M2 = MACK1+′K2(m1 +m2).

Such a MAC can be implemented as follows (all elements and operations are
over a finite field, e.g., Zp): Ki = (a, bi), Mi = ami+bi and Ki+′Kj = (a, bi+bj).
In the sequel, we will say that keys that share the same coefficient a but differ
in bi are correlated.

MAC with Distributed Public Verification. In the above setting, to verify a MAC
one has to trust V to provide the correct key. In the scenarios in this paper, we
often do not trust any single party individually, but rather can only count on
committees with a majority of honest participants. Thus, we extend the basic 3-
party scheme to one where the role of V is instantiated by an n-party committee
V = {V1, . . . , Vn}. Given a message m that S hands to R, S creates a MAC for
m as follows. For i = 1, . . . , n, S chooses keys Ki, computes Mi = MACKi(m),
and provides all Mi to R and Ki to Vi. When m needs to be verified, R first
broadcasts m and the values Mi. Then, each Vi broadcasts Ki and the value m
is accepted (i.e., the MAC validates) if and only if it holds that Mi = MACKi

(m)
for at least t+ 1 values of i.

The scheme guarantees that if S follows the protocol and t + 1 > (n − 1)/2
members of V are honest, then only a message m originating from S will be
accepted. Note that the validation of m is public once R and members of V
broadcast their values.

When the MAC in use is homomorphic, we have that if S MACs messages
m1,m2 in the above way, with the same R and same committee V, then the
message m = m1 + m2 can be validated as follows. R outputs m and Mi =
M

(1)
i + M

(2)
i , i = 1, . . . , n, and each Vi outputs K(1)

i +′ K(2)
i . Here, M (1)

i ,M
(2)
i

are the MAC values received by R for m1 and m2, respectively, and K
(1)
i ,K

(2)
i

are the keys received by Vi for m1 and m2, respectively. We therefore say that
this MAC procedure is homomorphic.
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This protocol is inherently YOSO as each party speaks only once and we refer
to it in the following as IT-MAC.

3.2 Future Broadcast

We introduce Future Broadcast (FBcast), a fundamental primitive in the YOSO
setting that allows an honest party P that speaks at time t to prepare a mes-
sage m for broadcasting at a future time t′. This is accomplished by having P
simply secret share m to a committee that will broadcast m at time t′, hence
bypassing the limitation of speaking only once. To guarantee that the message
can be reconstructed (in the case that P is honest and the committee has an
honest majority), FBcast implements a robust secret sharing scheme. Namely, a
scheme where correct reconstruction is guaranteed as long as the sharing was
done correctly and at least t + 1 honest parties provide their shares (i.e., bad
shares from corrupt parties can be identified and eliminated). In settings where
digital signatures are available, robust secret sharing is implemented by hav-
ing the dealer sign its shares. In our information-theoretic setting, we achieve a
similar effect using the IT-MAC procedure from Section 3.1 for verifying share
integrity.

FBcast.Share (Executed by S on input m) FBcast.Reveal(with public verification)
Set two n-party committees, ShareHolder
and ShareVerifier.

1. Compute a (t, n)-secret sharing
(m1, . . . ,mn) of m for t = (n− 1)/2.

2. Generate keys Ki,j , 1 ≤ i, j ≤ n and
compute Mi,j = MACKi,j (mi).

3. For i = 1, . . . , n:
Send mi,Mi,1, . . . ,Mi,n to ShareHolderi;
Send K1,i, . . . ,Kn,i to ShareVerifieri.

1. ShareHolderi bcasts mi,Mi,1, . . . ,Mi,n.
2. ShareVerifieri bcasts K1,i, . . . ,Kn,i .
3. Accept mi iff Mi,j = MACKi,j (mi) for

at least t+ 1 of the keys.
4. If there are at least t + 1 accepted

shares and they all define a single
polynomial of degree t then output
the constant term. Otherwise, output
”fail”.

Fig. 2: Future Broadcast Protocol

The FBcast protocol is presented in Figure 2. Its first phase, FBcast.Share,
is executed by a party S on input message m. It consists of S secret sharing m
with a committee ShareHolder where in addition to its share, each ShareHolderi
receives an IT-MAC of the share computed by S using the above distributed
MAC procedure. An additional committee, ShareVerifier, receives the MAC keys
from S. When the value m needs to be broadcast in the future, FBcast.Reveal
is performed following the distributed verification procedure: the ShareHolder
members first broadcast their shares together with their MAC values, followed
by a broadcast of keys held by ShareVerifier (note that ShareVerifier must speak
after ShareHolder hence requiring two separate committees). Shares that do not
pass verification are discarded and if those that remain interpolate to a single
polynomial of degree t, the secret is reconstructed, otherwise reconstruction fails.
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We denote by FBcast.ShareS(m) the sharing by S of a valuem and FBcast.RevealS(m)
the revealing of m (executed by two committees), and refer to the whole protocol
execution as FBcastS(m).

Analysis. We show that FBcast satisfies the requirement that if S is honest and
used m as input to FBcast.Share then m will be reconstructed when FBcast.Reveal
is executed. For this we need to show that only mi’s that originated from S are
accepted and that there are sufficiently many accepted shares to interpolate the
polynomial. If mi is accepted then the MAC was verified by a key broadcast
by at least one honest ShareVerifier. As S is honest, only mi’s created by S are
accepted by an honest party. Furthermore, each share broadcasted by an honest
ShareHolder is accepted as there will be at least t+ 1 honest ShareVerifiers whose
broadcasted keys satisfy the MAC. By construction, no party speaks twice.

Homomorphism of FBcast. Note that when used with a homomorphic MAC,
FBcast inherits the homomorphic property of the distributed MAC scheme from
Section 3.1. We denote this fact as FBP (m1) + FBP (m2) = FBP (m1 + m2) for
any messages m1 and m2 shared by the same party P . Yet, as the keys need to
be correlated the creator of the MAC needs to know in advance what two values
will be added. This is easily achievable in our protocols.

3.3 Homomorphic IT-SIG

Our protocols would benefit from a signature functionality in order to construct
a VSS protocol. Of course in the information theoretic setting we cannot achieve
the full properties of a signature, but we can achieve enough of the functionality
to deliver the result. The property which we need is the following. Assume again
the setting from the IT-MAC (Section 3.1). We would want to assure R that the
message that it holds will be accepted by the committee V. In essence, that it
has a “signature” on the message that it holds.

Unlike the transformation of the basic IT-MAC from [22] that did not require
modification to comply with the YOSO model, the IT-SIG construction from
that paper does require changes as it has interaction. Our protocol IT-SIG is
described in Figure 3. It consists of two phases, IT-SIG.Setup and IT-SIG.Reveal.
In IT-SIG.Setup, a sender S provides a receiverR with a valuem and also provides
verification information to a committee V of n verifiers V1, . . . , Vn. The goal is
for R to disclose m in the IT-SIG.Reveal phase in a way that allows to publicly
verify the correctness of m with the help of committee V and with the following
guarantees, assuming that V contains an honest majority:

– If S and R are honest then the correct value m is disclosed and verified
during IT-SIG.Reveal and no information on m is revealed prior to that.

– If both S and R are corrupt we make no requirement at all.
– If only S is corrupt, at the end of IT-SIG.Setup, R holds a value m′ that will

pass verification in IT-SIG.Reveal.
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IT-SIG.Setup IT-SIG.Reveal

1. On input m, the sender S:
(a) Generates keys Ki,j , 1 ≤ i ≤

n, 1 ≤ j ≤ κ (for security pa-
rameter κ), and computes Mi,j =
MACKi,j (m).

(b) Transfers (m, {Mi,j}1≤i≤n,1≤j≤κ)
to receiver R and {Ki,j}1≤j≤κ to
Vi.

(c) Executes FBcast.ShareS(m), and
FBcast.ShareS(Ki,j), 1≤ i≤ n, 1 ≤
j ≤ κ.

2. Party Vi:
(a) Chooses half of the indices at ran-

dom, denoted by INXi.
(b) Broadcasts Ki,j for j ∈ INXi.
(c) Executes

FBcast.ShareVi (Ki,j), j /∈ INXi.
3. Execute FBcast.RevealS(Ki,j) j ∈

INXi for all i; denote by K̄i,j the re-
constructed values.

4. If there exist indexes i and j for which
MACK̄i,j

(m) 6= Mi,j then R asks that
FBcast.RevealS(m) be executed to re-
veal m̄. If m̄ = ⊥ set m̄ to a default
value.

1. If m̄ was revealed in IT-SIG.Setup out-
put this as S’s message.

2. R broadcasts (m,
{Mi,j}1≤i≤n,j /∈INXi

).
3. Set the number of votes form to be the

number of i’s for which K̄i,j 6= Ki,j for
some j ∈ INXi from the setup.

4. For all i’s not counted in the previous
step, execute FBcast.RevealVi (Ki,j) for
j /∈ INXi. If MACKi,j (m) = Mi,j for
any one of the recovered values then
increment the vote by ”1”.

5. If vote is at least t+ 1 then output m
as S’s message. Otherwise, output ⊥.

Fig. 3: Information Theoretic SIG

– If only R is corrupt, no value other than the m that originated with S in
IT-SIG.Setup can pass verification in IT-SIG.Reveal.

In addition, the protocol needs to satisfy the YOSO model where parties speak
only once. We build it so that R speaks only once (either in IT-SIG.Setup or
in IT-SIG.Reveal) while in the case of S and the parties in V, from which the
logic of the protocol requires more than one message, we resort to FBcast for
distributing their future messages so that a different committee broadcasts them
when needed, and all parties speak only once.

Analysis. The following assumes an honest majority in committee V and that
at most one of R and S is corrupted.

– Corrupt S: We need to show that at the end of IT-SIG.Setup, R holds a
value m′ that can pass verification in IT-SIG.Reveal. We split our analysis
into two cases. First, if a value m̄ is revealed during Step 4 of IT-SIG.Setup
we set m′ to m̄ and the rest follows trivially as this value will be outputted
in IT-SIG.Reveal. Otherwise, we set m′ to the value m received from S and
show that m′ will have at least t+ 1 votes in IT-SIG.Reveal. Indeed, for each
honest Vi, either K̄i,j 6= Ki,j for some j ∈ INXi and thus their vote is
counted; otherwise, it holds that MACKi,j

(m) = Mi,j for all j ∈ INXi as
R did not complain against these values. Thus, with (overwhelming) proba-
bility 1/

(
κ
κ/2
)

due to the cut-and-choose technique, there exists a j 6∈ INXi
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such that MACKi,j
(m) = Mi,j , and hence a vote for i will be counted. This

guarantees at least t+ 1 votes for the value m = m′.
– Corrupt R: In this case we show that only the m that originated with S

will pass verification in IT-SIG.Reveal. If the message associated with S is set
to the value derived from FBcast.RevealS(m) in the setup, it is certainly a
message that originated with S. If it is set to the message published by R,
then that message must get t+ 1 “votes”. Votes can be generated by corrupt
Vi publishing incorrect keys in Step 2b of IT-SIG.Setup; however, there are at
most t such corrupt Vi. The only other way to generate a vote for an incorrect
m is to forge a MAC M , which happens with negligible probability.

– If S and R are honest, then due to the message hiding property of the MAC
function, no information on m is revealed until IT-SIG.Reveal is executed.
Indeed, the only case where R requests to broadcast m prior to IT-SIG.Reveal
is when the keys broadcasted by S do not verify the MACs; this cannot be
the case when S and R are both honest.

Homomorphism of IT-SIGs. The homomorphic properties of the MAC con-
struction from Section 3.1, imply similar properties for IT-SIG in Figure 3 when
the underlying MAC function is homomorphic. Namely, if m,m′ are messages
on which the (same) sender S runs IT-SIG.Setup with the same set V of verifiers
and with correlated keys (i.e., corresponding keys use the same coefficient a in
the scheme from Section 3.1), then an IT-SIG on m + m′ can be verified with
committee V using the MAC keys held by V for m and for m′. This homomorphic
property is used in an essential way when performing additions/multiplications
in an arithmetic circuit as described in Section 3.11. A consequence of the need
for correlated keys is that if two messages may need to be added in the future,
this fact needs to be known at the time of generating the IT-SIG for both m1
and m2. In our application this is always the case as the need for additions is
determined by the specific circuit being computed.

3.4 Distributed Commitment (DC)

The FB protocol does not offer any guarantees in the case when the dealer is
faulty. Here, we introduce the distributed commitment protocol DC that strength-
ens FB by providing better guarantees when the dealer is corrupt. DC consists of
two phases, DC.Commit and DC.Reveal. In DC.Commit, a committer C commits
to a value m that may later be revealed in DC.Reveal. More precisely, if C is
honest, then as in the case of FB, the revealed value is m, and m is hidden until
it is revealed. However, if C is corrupt, the execution of DC.Commit determines
a single value m such that the output of DC.Reveal is guaranteed to be either
⊥ or m (where m itself can be ⊥). In other words, C can choose to prevent
reconstruction, but if it allows for it to happen then it can only be to a value it
committed to at the end of DC.Commit. Reconstruction is public, namely, there
will be public agreement on the output of DC.Reveal. In essence, this is analogous
to a regular commitment in the computational setting where the committer is
bound to the value but has the option not to reveal it.
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DC.Commit (executed by C on input m) DC.Reveal
Let ShareHolder and ShareVerifier be two
n-party committees.

1. Committer C computes a t-secret
sharing of m, (m1, . . . ,mn) for t ≥
(n− 1)/2.

2. For i = 1, . . . , n: C executes
IT-SIG.Setup on input mi with
ShareHolderi as receiver R and the set
ShareVerifier acting as the set of veri-
fiers V (same ShareVerifier committee
is used in all the invocations).

1. For i = 1, . . . , n, run IT-SIG.Reveal
with ShareHolderi as receiver R; let m̄i

to the output of this execution.
2. Take all m̄i that are not ⊥ and in-

terpolate a polynomial through these
points. If the polynomial is of degree t
or less output its constant term, oth-
erwise output ⊥.

Fig. 4: Distributed Commitment

Protocol DC uses the IT-SIGs (Figure 3) in an essential way. In particu-
lar, in Step 3 of DC.Commit, for each mi, C executes IT-SIG.Setup(mi) with
ShareHolderi acting as the receiver and with ShareVerifier as the set V of ver-
ifiers. The n executions (one for each mi) are performed in parallel using the
same set ShareVerifier in all these executions.

Analysis. We show that at the end of DC.Commit a value m (or ⊥) is deter-
mined, and during DC.Reveal, if C is honest m will be revealed, and if C is
corrupt, either m or ⊥ will be revealed.

In DC.Commit, C executes IT-SIG.Setup with at least t+1 honest parties act-
ing as receivers R. For these honest parties, due to the properties of IT-SIG.Setup,
it is guaranteed that the value they hold will be accepted in IT-SIG.Reveal. We
claim that at the end of DC.Commit, a single value m is committed to, such
that the output in DC.Reveal is either m or ⊥ (where m itself can be ⊥). To
show this, we define m as the constant term of a polynomial of degree at most
t interpolated through the set of shares held by the honest parties (this value
might be ⊥ if the points interpolate to a polynomial of a higher degree than t).
We now show that if a value is outputted in DC.Reveal it can only be m. When
C is honest then only shares that were created by C are accepted and thus the
polynomial will interpolate properly during DC.Reveal. If C is faulty we know
that at least the shares of the honest parties will be included in the set of shares
being interpolated and this is a set of at least t + 1 shares. Thus, the message
which is opened can only be m or ⊥, with the latter happening only if the shares
mi did not corresponf to points on a polynomial of degree at most t.
We denote by DCP (m) the output of the execution of DC.Commit by party P
on message m.

Homomorphism of DC. Due to the homomorphic properties of the IT-SIG
and FBcast, we have that for any two values m and m′ committed by the same
honest party P , it holds that DCP (m)+DCP (m′) = DCP (m+m′). The same con-
siderations for ensuring the homomorphism of IT-SIG described in Section 3.3
hold here too (i.e., the DC operations need to be performed by the same commit-
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ter using correlated keys). In particular, if this property may be required in the
future for two messages m,m′, then this fact needs to be known at the time of
running DC.Commit on these values (fortunately, for our application this require-
ment does hold). The question might be raised if we know that m and m′ will
be added why compute individual DC.Commit for both rather than the sum. In
many instances we will need to utilize all three values in different computations.

3.5 Duplicate DC

In our protocols, we often need to use a committed value multiple times, thus
requiring the decommitting parties in the DC protocol to act in more than one
round, a violation of the YOSO model. One possible solution is for the committer
C to commit twice (or more) onto different committees to the same value and
provide a proof of equality for the committed values; yet this proof of equality
will “waste” the sharing, which is what we need to prevent. Thus, we avoid
proofs of equality by having the parties in ShareHolder and ShareVerifier reshare
the values that they receive in IT-SIG.Setup. It suffices that honest parties share
their shares correctly to guarantee that all duplicates commit to the same value.
We are using in an essential way the fact that it is the shareholders and verifiers
that reshare their values rather than C, and that we can rely on a majority of
honest shareholders.

We define protocol DupDC that allows for the duplication of a DC-committed
value m. Let d be the number of duplicates needed. In a first committing phase,
DupDC.Commit, committer C runs DC.Commit with a committee ShareHolder,
sharing its input m so that ShareHolderi receives a share mi. To generate d
duplicates, for each i, 1 ≤ i ≤ n, C runs d copies of IT-SIG.Setup on mi, each copy
with an independent set of MAC keys. The same ShareVerifier committee is used
for all invocations. The d copies are verified by ShareHolderi, acting as receiver
R, as specified by IT-SIG.Setup. Finally, in the last step of DupDC.Commit, the
ShareHolderi’s and ShareVerifiers execute d independent FBcast.Share for all the
values that they holds, onto 2d separate committees.

The DupDC.Reveal phase follows DC.Reveal where the opening of mi is im-
plemented via share reconstruction by one of the d ShareHolder committees to
which mi was shared. Additional information that needs to be broadcast and ver-
ified as specified by IT-SIG.Reveal is performed via FBcast.Reveal by the FBcast
committees created by ShareHolderi during DupDC.Commit.

Analysis. It is straightforward to check that if the original committer C was
honest, all duplicated values are correct DC commitments and they will open to
the same committed value during DupDC.Reveal. If C is dishonest, but ShareHolderi
is honest, and verification against a ShareVerifier committee fails during the
IT-SIG.Setup actions, then the committed value is set to the one that is FBcast.Reveal
as part of Step 4 in IT-SIG.Setup. Otherwise, the value mi can be reconstructed
correctly by any of the d sharings of mi shared by ShareHolderi. Since there is
a majority (t + 1 or more) of honest shareholders in each of the d ShareHolder
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committees, it is guaranteed that only the committed value or ⊥ will be recon-
structed in each of the d copies.

It follows from the properties of the DC and FBcast protocols. We note that
C still has the option of not opening any subset of these duplicate commitments,
but all those that will be open will be open to the same value. Note that if the
verification fails for one of the duplicates and a value m̄ is revealed then it is
used for all duplicates.

3.6 Verifiable Secret Sharing Scheme

The distributed commitment DC functionality ensures that the committer, even
a corrupt one, is committed to a single value at the end of DC.Commit. However,
a corrupt committer can prevent reconstruction of the committed value during
DC.Reveal. In our applications, we need a commitment scheme with the property
that if the commitment phase is successful then reconstruction of the commit-
ted value is guaranteed. We achieve this via Verifiable Secret Sharing (VSS),
a protocol where a dealer secret shares a value s during a VSS.Share phase so
that s is guaranteed to be reconstructed during VSS.Reveal from any subset of
shareholders that includes t + 1 honest ones. This is the case even for corrupt
dealers that were not disqualified during VSS.Share.

First, we introduce a procedure used in our VSS design as well as part of
the MPC protocol. The goal is to guarantee that two parties that are supposed
to share the same value s, had in fact done so. We describe the protocol us-
ing generic sharing that can be instantiated with any of the sharing protocols
discussed in this paper, including DC, VSS, and its variants.
Protocol Share Equality Test.
1. Party P1 shares two values a1, ρ1 and P2 shares values a2, ρ2.
2. Value r is obtained from an unpredictable beacon FUPBeacon
3. The values a1 + r · ρ1 and a2 + r · ρ2 are reconstructed from their sharings.
4. If the reconstruction succeeds and the reconstructed values are equal, con-

clude the test was successful and a1 = a2. In any other case reject the test.

It follows using a standard argument that if a1 6= a2 then there is at most a single
challenge r that will make the proof pass, implying a probability error of |F|−1

for unpredictable r. Therefore, an unpredictability beacon FUPBeacon suffices (see
the full version [14] for details).
Protocol VSS.Share proceeds as follows.
1. The dealer D chooses a random polynomial f(x), s.t. f(0) = s and an

additional random polynomial r(x), both of degree t. Let the coefficients of
f(x) and r(x) be, respectively, fj , rj for 0 ≤ j ≤ t.

2. Given a set ShareHolder = {P1, . . . , Pn}, D computes si = f(i), ρi = r(i) for
1 ≤ i ≤ n and transfers these values privately to Pi.

3. In the same step as above, D performs DupDC.Committo all the values fj , rj .
Due to the homomorphic properties of DC, this results in implicit DCD(si)
and DCD(ρi) sharings (shares of fj , rj allow the ShareHolder committee to
compute values si, ρi for all i).
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4. Pi performs DupDC.Commit(si) to obtain two copies of DCPi
(si) (particular

applications, such as MPC, may require more copies) and performs DCPi
(ρi),

all with homomorphically correlated keys. Additionally, Pi shares the ρi to
one of the committees to which it duplicates the si.

5. Run the above Equality Test on the sharings of D and Pi of value si and aux-
iliary ρi (in the case of D, the committee uses the implicit DC commitment
of si, ρi).

6. If the values are not equal execute DC.Reveal of D’s sharing of si. If it returns
⊥ disqualify the dealer.

Protocol VSS.Reveal proceeds as follows.

1. Execute DC.Reveal for all si shared by Pi
2. Interpolate a polynomial using all these share and output the constant term.

Analysis. The VSS protocol needs to ensure that all of the dealer’s shares si
are points on a polynomial of degree at most t and that the value si shared
by Pi is the same as the one received from D. The former property is enforced
via the DC-sharing of polynomial coefficients by D (it ensures the degree of the
polynomial and the implicit DC sharing of shares si and ρi) while the latter uses
the equality test to compare the sharings of D and Pi.

Homomorphism of VSS. VSS inherits the homomorphic properties of DC,
importantly, in the case of VSS, these properties hold even if the VSS was per-
formed by two different dealers as long as it was done into the same set of
shareholders. Namely, for two secrets m1 and m2, and two dealers D1 and D2,
we have VSSD1

(m1) + VSSD2
(m2) = VSS(m1 + m2). Note that the right-hand

side VSS is not associated to a specific dealer as it combines sharings of D1 and
D2. The reason the homomorphism holds across dealers is due to the homomor-
phic properties of DCPi

(·) (that only hold for same committer) and the fact that
the same Pi’s act in both VSS dealings as shareholders.

3.7 Duplicate VSS

As in the case of DC, we also need duplicates of VSS values as a value will need
to be part of various computations. Recall that a VSS is a sharing of a value s
where each share si of the sharing is shared as DCPi

(si). It is easy to see that
duplicating the DCPi

(si) commitments results in duplicate VSSs.

3.8 Augmented VSS

In our application, particularly for the multiplication protocol, we need an Aug-
mented VSS (AugVSS), where not only the secret given as input is shared with
VSS but also the shares resulting from VSS(s) are shared with VSS.

AugVSS is achieved via the following computation. The dealer D holding a
value s defines a polynomial f(x) = ftx

t + ...+ f1x+ f0 where f0 = s. It carries
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out VSS(f`) for 0 ≤ ` ≤ t. Through the homomoprhic properties of the VSS,
this implicitly creates a VSS(si) where si = f(i).

It can easily be verified that AugVSS is also additively homomorphic, inher-
iting this property from the homomorphic properties of the VSS. Furthermore,
an AugVSS of a value m can be added to a VSS of a value m′ creating a VSS
sharing of m+m′.

3.9 Duplicate AugVSS

Unlike the previous duplications, e.g. duplicate VSS, where we need to simply
have another copy of the value, the duplicate AugVSS needs to provide a stronger
guarantee. It needs to have a sharing of the same value but with a differnet
polynomial. The need for this will become evident when we describe the MPC
protocol. AugVSS is modified as follows.

A single duplicate VSS is carried out for the constant term, DupVSS(f0).
In addition, two sets of values ft, ..., f1 and f ′t , ...f

′
1 are chosen. Each set in

combination with f0 defines a different polynomial with the same constant term.
The protocol from above is executed on both these sets to create two duplicates.
If more copies are needed additional coefficients need to be chosen.

3.10 Proof of Local Multiplication (PLM)

In the following protocol, a prover P shares values a, b and c using VSS and
proves that a · b = c. The proof uses two committees, C and C ′.

1. P performs VSSP (a) and VSSP (c) onto committee C, and VSSP (b) onto com-
mittee C ′. In addition, P chooses a random value b′ and executes VSSP (b′)
onto committee C ′ and VSSP (a · b′) onto committee C.

2. Receive random e from FUPBeacon;
3. Committee C ′ reconstructs using VSS.Reveal the value r = e · b+ b′;
4. Committee C reconstructs using VSS.Reveal the value d = r·a− e·c− a·b′
5. Accept the proof if d = 0 and reject otherwise.

It follows using a standard argument that if c 6= ab then d 6= 0 except with
probability |F|−1. In particular, there is a single e which will let the proof pass.
Hence it is enough that e cannot be guessed with non-negligible probability. The
rest of the argument for the correctness of the proof follows from the properties
of the VSS.

3.11 YOSO MPC

Using the tools developed up to now we can show how to do secure function
evaluation (or MPC) in the YOSO model. That is, we are given an arithmetic
circuit C, with m secret inputs provided by m parties (roles), and we show how
to privately compute the circuit on the inputs, in the YOSO model.
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Let C be a given arithmetic circuit with m inputs x1, . . . , xm and gates
g1, . . . , g`. For the YOSO computation of C, we show how to create, given a
gate gi with input values vi1, vi2, both shared with DupAugVSS, a committee Ci
that will hold a DupAugVSS sharing of the output of the gate. In addition, there
will be a collection of d duplicates of the AugVSS of the gate’s output, where d
is the number of gates to which this output enters as an input.

With a lot of attention to details and committee selection we could do the
addition of the MPC without interaction. However, to simplify the description
of the protocol and to make the addition and multiplication more uniform we
will describe things in the same manner.

Gate input setup: As we are looking at a single gate we refer to the commit-
tee computing the gate as C. The parties in this committee are P1, ..., Pn.
Assume that the value on one input wire is a and the second is b.
The parties in the committee C needs to receive its shares of the values
on the input wires. As we assume that the values a and b of input wires
are shared using AugVSS this means that the share ai and bi of party Pi
are shared using a VSS. These values are reconstructed towards Pi. Once
Pi receives these two shares it shares them using DupVSS. In addition, Pi
proves that it shared the values which it received, and this is done using the
proof of equality of sharing from Section 3.6.

Addition: An addition gate can be implemented without interaction. However,
for simplicity, we take advantage of the fact that (as needed for multiplica-
tion gates) input wires are shared using DupAugVSS, hence we can use the
homomophic properties of AugVSS to implement addition.

Multiplication: 1. Party Pi holding shares ai and bi of the input wires, shares
the value γi = ai ·bi using DupAugVSS. The sharing of these values needs
to be done onto different committees as specified by the PLM protocol.

2. It executes the PLM protocol to prove that γi is the product of its two
input shares (Section 3.10).

3. For any i for which the DupAugVSS or the PLM procedures fail, the
committee that holds ai and bi uses VSS.Reveal to publicly reconstruct
these values. Later, when the protocol uses the value γi, its value is set
to the product ai · bi of the reconstructed values.

4. The linear combination of the AugVSS of the γi’s define the AugVSS
of c = a · b = Σ2t+1

i=1 λi(γi = ai · bi). This also creates the VSS(ci) =
Σ2t+1
j=1 λjVSS(γj,i) for the appropriate Lagrange coefficients.

Security argument. The multiplication protocol follows the design of [13]. The
correctness of the AugVSS sharing of the multiplication c = a · b follows from: (i)
the fact that AugVSS(γi) completed in a proper manner and its homomorphic
properties (ii) the correctness of the PLM; (iii) the public availability of γi values
for those i where verification failed (these values are available because in AugVSS
of the input values of the wires, not only the secret is shared but also its shares).
(iv) the existence of Lagrange coefficients λi for which c = a·b = Σ2t+1

i=1 λi(ai ·bi).
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Formalizing security follows standard arguments. In particular, the simulator
proceeds as follows. Use the AugVSS’s to reconstruct the inputs of the corrupted
parties. Input these to FFMPC where F denotes the function computed by C.
Use dummy inputs of the honest parties in the simulation. Run the simulated
protocol honestly with these dummy inputs. When processing an output gate,
learn the correct output from FFMPC. Then from the t simulated shares of the
corrupted parties and the output acting as share t + 1 compute the matching
shares of the honest parties. Then send these in the simulation. Furthermore,
the simulation of the IT-MAC and IT-SIG are straightforward.

To prove adaptive security the simulator will for each committee Cj start
out with a set Cj of size t playing the role of the corrupted parties and will
simulate as in the static case with Cj being corrupted. If party Pji in Cj becomes
corrupted and Pji 6∈ Cj then the simulator will swap Pji with an honest party in
Cj and then patch the view of the party to get a simulated state of Pji . If Pji holds
a share on a random, unknown polynomial of degree at most t, the share will
just be simulated by a random field element. If Pji holds a share on a random,
known polynomial of degree at most t, as is the case for a reconstructed output
of the computation, then the simulator will know the output and will, with the
additional t simulated shares of Cj , have t + 1 simulated shares. From these it
can compute the corresponding simulated share of Pji and claim this as the state
of Pji . In general the adaptive patching follows using standard techniques from
MPC and can be done along the lines of [11] where the patching technique is
used to prove [2] adaptive secure in the UC model.
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