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Abstract. Many recent private set intersection (PSI) protocols encode
input sets as polynomials. We consider the more general notion of an
oblivious key-value store (OKVS), which is a data structure that com-
pactly represents a desired mapping ki 7→ vi. When the vi values are
random, the OKVS data structure hides the ki values that were used
to generate it. The simplest (and size-optimal) OKVS is a polynomial p
that is chosen using interpolation such that p(ki) = vi.
We initiate the formal study of oblivious key-value stores, and show new
constructions resulting in the fastest OKVS to date.
Similarly to cuckoo hashing, current analysis techniques are insufficient
for finding concrete parameters to guarantee a small failure probability
for our OKVS constructions. Moreover, it would cost too much to run
experiments to validate a small upperbound on the failure probability.
We therefore show novel techniques to amplify an OKVS construction
which has a failure probability p, to an OKVS with a similar overhead
and failure probability pc. Setting p to be moderately small enables to
validate it by running a relatively small number of O(1/p) experiments.
This validates a pc failure probability for the amplified OKVS.
Finally, we describe how OKVS can significantly improve the state of the
art of essentially all variants of PSI. This leads to the fastest two-party
PSI protocols to date, for both the semi-honest and the malicious settings.
Specifically, in networks with moderate bandwidth (e.g., 30 - 300 Mbps)
our malicious two-party PSI protocol has 40% less communication and is
20-40% faster than the previous state of the art protocol, even though
the latter only has heuristic confidence.

1 Introduction

Private set intersection (PSI) allows parties to learn the intersection of sets that
they each hold, without revealing anything else about the individual sets. One
common technique that has emerged in several PSI protocols (and protocols for
closely related tasks) is to encode data into a polynomial. More precisely, a party
interpolates a polynomial P so that P (xi) = yi, where the xi’s are their PSI input



set and yi are some values that are relevant in the protocol. The polynomial P
compactly encodes a chosen mapping from xi’s to yi’s, but it has the additional
benefit that it hides the xi’s, when the yi’s are random. This property is critical
since the xi’s coincide with some party’s private input set, which must be hidden.

We present two major contributions. First, we abstract the properties of
polynomials that are needed in these applications, and define “oblivious key-value
stores” (OKVS) as objects satisfying these properties. We show how to construct
a substantially more efficient OKVS that has linear size, similar to polynomials,
and replaces the task of polynomial interpolation with an efficient linear time
computation. Second, we observe that current analysis techniques are insufficient
for setting concrete parameters to ensure a concrete upper bound (say, 2−40) for
the failure probability of our OKVS construction. (This is also true for many
other randomized constructions, such as cuckoo hashing, used in PSI and in
other cryptographic algorithms.) Furthermore, running experiments in order
to validate this upper bound for a specific choice of parameters is extremely
resource-intensive. Most previous work used heuristic techniques for setting the
parameters for similar constructions. We overcome this issue by introducing
new techniques for amplifying a randomized OKVS construction with a failure
probability p, to an OKVS with a similar overhead and a failure probability pc.
Since p can be rather moderate, it is relatively easy to empirically validate that
the failure probability of a specific choice of parameters is indeed bounded by p.

1.1 Polynomial Encodings for PSI

Cryptographic protocols which use polynomial encodings to hide input values
date back to at least the work of Manulis, Pinkas, and Poettering [27], in the
context of “secret handshake” protocols (closely related to covert MPC and to
PSI). Other examples that we are aware of include:5

– Cho, Dachman-Soled, and Jarecki [9] achieve 2-party PSI using a polynomial
whose outputs (yi values) are protocol messages from a suitable string-equality
test protocol.

– Kolesnikov et al. [25] introduce a primitive called oblivious programmable
PRF (OPPRF), which acts like an oblivious PRF with a twist. A sender
selects (or learns) a PRF seed k and a receiver learns PRF (k, a) for one
or more values a of his/her choosing. But additionally, the sender gets to
“program” the PRF on values of its choice as PRF (k, xi) = zi, where the
special xi points remain secret. This is achieved by combining a standard
oblivious PRF F (k, xi) with a polynomial which encodes “output corrections”

5 We note that there are also PSI constructions which use arithmetic manipula-
tions of polynomials. These constructions encode input values as roots of polynomi-
als [13,23,14] or into separate monomials of a polynomial [15], and manipulate the
polynomials in order to compute set operations. Our focus is on encodings, which
is the more efficient versions of PSI, and do not require arithmetic manipulation of
polynomials in order to compute the intersection.
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that the receiver applies in order to make the output match the sender’s
xi 7→ zi mappings.
They use this OPPRF to construct a multi-party PSI protocol. Later, Pinkas
et al. [35] also use an OPPRF to construct a protocol for computing arbitrary
functions of the intersection (of two sets). Recently, OPPRFs were used by
Chandran et al. for constructing circuit-PSI and multi-party PSI [6,5].

– Pinkas et al. [33] construct a low-communication PSI protocol using a poly-
nomial whose outputs are values from the IKNP OT extension protocol [20].

– Kolesnikov et al. [26] construct a private set union protocol, using a variant
of the OPPRF technique.

One downside to polynomials is that interpolating and evaluating them is not
cheap. To interpolate a polynomial through n (unstructured) points, or to evaluate
such a polynomial at n points, requires O(n log2 n) field operations, using the
FFT algorithms of [29]. This cost becomes substantial for larger values of n, and
raises the following natural question:

Is there a data structure that is better than a polynomial, for use in these
PSI (and related) protocols?

In addition to these applications of polynomials, Pinkas et al. [34] used a related
technique to construct the fastest malicious-secure 2-party PSI protocol to date.
They introduced a data structure called a PaXoS (probe and XOR of strings)
which, similar to a polynomial, encodes a mapping from keys to values while
hiding the keys. PaXoS took a significant step toward the abstraction of an
OKVS, however, it is not sufficiently general. In particular, PaXoS is a specific,
binary type of OKVS, whereas other types exist (like a linear OKVS, which is
applicable in Oblivious Polynomial Evaluation [31]). The PaXoS data structure
is the starting point for our constructions.

1.2 Correctness Amplification

One of the most challenging aspects of designing efficient PSI and OKVS construc-
tions, is obtaining concrete bounds on extremal properties of randomized data
structures. For example, exactly how many bins are required for cuckoo hashing
with 3 hash functions, to ensure that the induced “cuckoo graph” avoids a certain
structure with probability at least 1−2−40? This problem is crucial for PSI, since
most PSI constructions are based on randomized data structures such as cuckoo
hashing. Any failure in these constructions (e.g., too many collisions) leads to
a violation of privacy. An implementation of PSI needs to be instantiated with
specific parameters that will ensure a sufficiently small failure probability, but
the available literature describing and analyzing the randomized constructions
only describes asymptotic bounds, and it seems highly non-trivial to translate
them to concrete numbers.

Prior PSI work which used such constructions, in particular variants of cuckoo
hashing, either ran a small number of experiments in order to heuristically set
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the parameters, or, as in [37], invested significant efforts (e.g., millions of core
hours) to empirically measure the failure probability of these data structures.
(This is needed since validating an upper bound of p on the failure probability
requires running more than 1/p experiments.) But even after expending such
efforts, it was not possible to validate the desired failure probabilities (e.g., 2−40),
since they were too small. So ultimately in [37] and in other constructions which
are based on the same set of experiments, the failure probabilities of the final
constructions were only extrapolated from these empirical trials.

The lack of a concrete analysis for the failure probabilities of different ran-
domized constructions, and the extreme cost of experimentally verifying small
upper bounds on these probabilities, raise the following question:

Is is possible to start with a construction that has a moderately high
failure probability, and which can therefore be validated through efficient
experiments, and amplify it to obtain a construction which has a much
smaller failure probability?

For example, we can validate on a laptop an upper bound of 2−25 or 2−13,
whereas validating a 2−40 failure probability might require using a large cluster.

1.3 Our Results

In this work, we initiate the study of OKVS data structures and their properties.

– We introduce the abstraction of an oblivious key-value store (OKVS).
An OKVS consists of algorithms Encode and Decode. Encode takes a list of
key-value pairs (ki, vi) as input and returns an abstract data structure S.
Decode takes such a data structure and a key k as input, and gives some
output. Decode can be called on any key, but if it is called on some ki that
was used to generate S, then the result is the corresponding vi. The most
basic property of an OKVS echoes the important property of polynomials;
namely, S hides the ki’s, when the vi’s are random. We identify and formalize
important properties that allow OKVS to be plugged into different protocols.

– We catalog existing OKVS constructions and introduce several new and
improved ones.

– We describe amplification techniques that can be used to bootstrap strong
OKVS out of weaker ones. Amplification only requires to validate a relatively
high upper bound on the failure probability of the corresponding randomized
construction, a task that can be accomplished through efficient experiments.
As an example, we can construct an OKVS with provable error probability
2−40, from an OKVS with error probability 2−25. The latter probability is
high enough that it can be empirically and efficiently verified with very high
statistical confidence.
Besides having more manageable error analysis, our new OKVS constructions
improve considerably over the state of the art in terms of size and speed.
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– We show that many existing PSI protocols can be written abstractly in
terms of a generic OKVS. These PSI protocols are therefore automatically
improved by instantiating with our improved OKVS constructions. As a
flagship example, we demonstrate the improvement on the so-called “PaXoS-
PSI” protocol of [34], which is the state of the art protocol with malicious
security. Specifically, our protocol has 40% less communication and is 20%
and 40% faster over medium and slow networks6, respectively, for sets of a
million items (over a fast network it is only 5% slower). In addition, on slow
networks, our malicious protocol is even faster than the state of the art semi-
honest protocol [33] (and is only about 10% and 20% slower than the best
semi-honest protocols over fast [24] and medium [7] networks, repectively).
We also note that the covert MPC protocols of [27,9] can be expressed using
our OKVS constructions to exhibit a higher level of abstraction and to achieve
a better runtime.

– Finally, we show two improvements to existing PSI protocols, beyond replacing
their underlying OKVS with a better one.
First, we observe that the leading state-of-the-art PaXoS PSI protocol of [34]
can be generalized to be built from vector-OLE rather than 1-out-of-N OT
extension. Since vector-OLE enjoys more algebraic structure, the generalized
PSI protocol can take advantage of a more general class of OKVS, and also
avoid one source of overhead in the construction.
Second, we show that one of the multi-party PSI constructions of Kolesnikov
et al. [25], which is the most efficient of the constructions presented in that
paper but only has “augmented semi-honest security” rather than semi-
honest security, actually enjoys malicious security. Hence, we obtain the most
efficient malicious, multi-party PSI protocol to date.

2 Oblivious Key-Value Stores

2.1 Definitions

Definition 1. A key-value store is parameterized by a set K of keys, a set V
of values, and a set of functions H, and consists of two algorithms:

– EncodeH takes as input a set of (ki, vi) key-value pairs and outputs an object
S (or, with statistically small probability, an error indicator ⊥).

– DecodeH takes as input an object S, a key k, and outputs a value v.

A KVS is correct if, for all A ⊆ K × V with distinct keys:

(k, v) ∈ A and ⊥ 6= S ← EncodeH(A) =⇒ DecodeH(S, k) = v

In the rest of the exposition we choose to omit the underlying parameter H
as long as the text remains unambiguous.

6 The slow network (33 Mib/s); medium network (260Mib/s); fast network (4.6 Gib/s)
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In all the algorithms that we describe, the decision whether Encode outputs
⊥ depends on the functions H and the keys ki and is independent of the values
vi. If the data is encoded as a polynomial then Encode always succeeds.

To be clear, one may invoke Decode(S, k) on any key k, and indeed it is our
goal that one cannot tell whether k was used to generate S or not. This is stated
in the next definition.

Definition 2. A KVS is an oblivious KVS (OKVS) if, for all distinct
{k01, . . . , k0n} and all distinct {k11, . . . , k1n}, if Encode does not output ⊥ for
(k01, . . . , k

0
n) or (k11, . . . , k

1
n), then the output of R(k01, . . . , k

0
n) is computation-

ally indistinguishable to that of R(k11, . . . , k
1
n), where:

R(k1, . . . , kn):

for i ∈ [n]: do vi ← V
return Encode({(k1, v1), . . . , (kn, vn)})

In other words, if the OKVS encodes random values (as it does in our applications),
then for any two sets of keys K0,K1 it is infeasible to distinguish between an
OKVS encoding of the keys of K0 from an OKVS encoding of the keys of K1.
In fact, all our constructions satisfy the property that if the values encoded in
the OKVS are random (as in the experiment R), then the two distributions are
perfectly indistinguishable.

2.2 Linear OKVS

Some applications of an OKVS use it to encode data that is processed in some
kind of homomorphic cryptographic primitive. In that case, it is convenient for
Decode(·, k) to be a linear function for all k.

Definition 3. An OKVS is linear (over a field F) if V = F (“values” are
elements of F), the output of Encode is a vector S in Fm, and the Decode
function is defined as:

Decode(S, k) = 〈d(k), S〉 def=

m∑
j=1

d(k)jSj

for some function d : K → Fm. Hence Decode(·, k) is a linear map from Fm to F.

The mapping d : K → Fm are typically defined by the hash function H.

For a linear OKVS, one can view the Encode function as generating a solution
to the linear system of equations:

− d(k1) −
− d(k2) −

...
− d(kn) −

S> =


v1
v2
...
vn
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Hence, it is necessary that for all distinct k1, . . . , kn, the set {d(k1), . . . , d(kn)} is
linearly independent, with overwhelming probability. However, we also consider
how efficiently Encode finds such a solution, since solving systems of linear
equations is expensive in general . It is often convenient to characterize a linear
OKVS by its d function alone.

Note that when Encode chooses uniformly from the set of solutions to the
linear system, and the vi values are uniform, the output S is uniformly distributed
(and hence distributed independently of the ki values). In other words, a linear
OKVS satisfies the obliviousness property.

2.3 Binary OKVS

A binary OKVS over a field F is a special case of a linear OKVS, where the
d(k) vectors are restricted to {0, 1}m ⊆ Fm. Then Decode(S, k) is simply the sum
of some positions in S.

We generally restrict our attention to F = GF (2`) ∼= {0, 1}`, in which case
the addition operation over F is XOR of strings. In [34], a binary OKVS is called
a probe and XOR of strings (PaXoS) data structure.

In a binary OKVS we have (in addition to the usual properties of a linear
OKVS) the property that:

Decode
(

(S1 ∧ x, . . . , Sm ∧ x), k
)

= Decode
(

(S1, . . . , Sm), k
)
∧ x

where “∧” is bitwise-AND of strings, and x ∈ {0, 1}`. This additional property is
used in one of the important applications of OKVS.

2.4 OKVS Overfitting

Often in malicious protocols, the simulator obtains an OKVS from a corrupt
party and must “extract” the items that are encoded in that OKVS. Generally
this is done by requiring an OKVS to include mappings (ki, vi) 7→ H(ki) where
H is a random oracle.7 The simulator can observe the adversary’s queries to H,
and then later test which of those k sastisfy Decode(S, k) = H(k).

An OKVS whose parameters are chosen to encode n items can often hold even
more than n items, especially when generated by an adversary. In the context of
PSI, this leads to an adversary holding more items than advertised. It is therefore
important to be able to bound the number of items that an adversary can “overfit”
into an OKVS. In order to define this property we define a “game” which lets
the adversary choose an arbitrary data structure S, of a size which can normally
encode n (key,value) pairs. The adversary wins the game if it can find an S which
encodes much more than n pairs of the form (ki, H(ki)). More formally, we use
the following definition.

7 We abuse notation herein and use H to denote a random oracle rather than the
underlying OKVS parameter, which remains implicit.
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Definition 4. The (n, n′)-OKVS overfitting game is as follows. Let
Encode,Decode be an OKVS with parameters chosen to support n items, and let
A be an arbitrary PPT adversary. Run S ← AH(1κ). Define

X = {k | A queried H at k and Decode(S, k) = H(k)}

If |X| > n′ then the adversary wins.

We say the (n, n′)-OKVS overfitting problem is hard for an OKVS construc-
tion if no PPT adversary wins this game except with negligible probability.

The work in [34] gives an unconditional bound on the success probability in
the overfitting game. They prove the bound for binary OKVS (“PaXoS”, in their
terminology), but the only property of OKVS they use is its correctness; hence it
applies to any KVS:

Lemma 5 ([34]). Let H be a random oracle with output length `, and let
Encode,Decode be an OKVS scheme supporting n key-value pairs, where the
output of Encode is a bit string of length `′. Then the probability that an adversary
who makes q queries to H wins the (n, n′)-OKVS overfitting game is ≤

(
q
n′

)
2`
′−n′`.

The nature of this bound is to argue that an OKVS that encodes n′ items simply
can’t exist; for if it did exist, then it could be used to construct a compressed
representation of the random oracle. One may further conjecture that an OKVS
construction has a hard overfitting problem (for some relationship between n
and n′) against polynomial-time adversaries. For example, perhaps it may be
hard to find a single polynomial of degree n that matches the random oracle on
n′ = n+ 100 points, even in the case that such a polynomial exists.

Better cryptanalysis of these kinds of overfitting problems would lead to a
tighter security analysis of our malicious-secure PSI protocols: the protocols
would be proven to more strongly enforce the size of corrupt party’s input sets.

2.5 Efficiency of OKVS

We can measure the efficiency of an OKVS based on the following measures: (1)
The rate of an OKVS which encodes n elements from F is the ratio between
the size of the OKVS and n · |F|, which is the minimal size required for this
encoding. (2) The encoding time is the time which is required for encoding n
items in the OKVS. (3) The decoding time is the time required for decoding
(querying) a single element, while the batch decoding time is the time required
for decoding n elements.

3 Existing OKVS constructions

In this section we list existing constructions that fit to the OKVS definition.
These are summarized in Table 1.
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OKVS type rate encoding cost (batch) decoding cost

polynomial linear 1 O(n log2 n) O(n log2 n)
random matrix linear 1 O(n3) O(n2)
random matrix binary 1/(1 + λ) O(n3) O(n2)
garbled Bloom filter [11] binary O(1/λ) O(nλ) O(nλ)
PaXoS [34] binary 0.4− o(1) O(nλ) O(nλ)

Ours: 3H-GCT (§4.1)
binary

0.81− o(1) O(nλ) O(nλ)
linear

Fig. 1: Different OKVS constructions and their properties, for error probability
2−λ. (The rate of the 3H-GCT construction can be improved to 0.91 by using
the hypergraph construction of [45], but this improvement takes effect only for
very large values of n.)

Polynomials A simple and natural OKVS is a polynomial P satisfying P (ki) = vi.
The coefficients of the polynomial are the OKVS data structure, and decoding
amounts to evaluating the polynomial at a point k. This OKVS has optimal rate
1, and is linear since P (k) is the inner product of (1, k, k2, . . .) and the vector
of coefficients. Encoding n items takes O(n log2 n) field operations using the
FFT interpolating algorithms of [29]. Batch decoding of n items likewise takes
O(n log2 n) operations, while decoding a single items takes O(n) operations.

Dense matrix Another simple OKVS sets d(k) to be a random vector in Fm for
each k. This means that the encoding matrix is a random matrix. It is well-known
that a random matrix with n rows and m ≥ n columns has linearly dependent
rows with probability at most

n∑
j=1

Pr[row j ∈ span of first j − 1 rows | first j − 1 rows linearly ind.] (1)

=

n−1∑
i=0

|F|i

|F|m
=

1

|F|m
· |F|

n − 1

|F| − 1
< |F|n−m−1 (2)

For an exponentially large field F, we can have m = n and hence achieve rate
1. If we desire a binary OKVS, then d(k) are {0, 1}-vectors and we must have
m ≥ n+ λ− 1 for error probability 2−λ.

While achieving a good rate, the encoding and decoding procedures are
expensive. Encoding n items corresponds to solving a linear system of n random
equations, which requires O(n3) operations using Gaussian elimination. Decoding
each item costs O(n). A random matrix OKVS has worse performance than a
polynomial-based OKVS. The main reason for using a random matrix OKVS is
if the underlying field F is smaller than n, for example, is a binary field, in which
case it is impossible to define an n-degree polynomial over F.

Garbled Bloom filter (GBF) In a garbled Bloom filter [11], n items are encoded
into a vector of length m = O(λn), i.e. it has a rate of O(1/λ). The scheme
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is parameterized by λ random functions H = {h1, . . . , hλ} with range [m]. We
have d(k) zero everywhere except in the positions h1(k), . . . , hλ(k), where it is 1.
Hence a garbled Bloom filter is a binary OKVS.

Encoding is done in an online manner, one item at a time. Encoding fails with
probability 1/2λ, and the specific error probability is exactly the same as the
false-positive probability for a standard Bloom filter with the same parameters
(namely, using λ hash functions and a vector of size m = 1.44λn result in a failure
probability of 1/2λ [28]).

Encoding n items costs O(nλ), and decoding each item likewise costs O(λ),
since only λ positions in d(k) are nonzero.

GBFs were used in multiple PSI papers, beginning in [12], and including the
multi-party protocols of [19,46,1]. A major drawback of the usage of GBFs is the
larger communication overhead of sending a GBF of length O(λn), instead of
sending an object of size O(n), and computing O(λn) oblivious transfers.

PaXoS [34] In a probe-and-xor of strings (PaXoS), n items are encoded into a
vector S of length m = (2 + ε)n+ log(n) + λ.

Let us describe a simplified version of PaXos for which S is of size m = (2+ε)n.
This scheme is parameterized by 2 random hash functions H = {h1, h2} with a
range [(2 + ε)n]. Decoding of a key x sums the vector entries at h1(x) and h2(x).
Encoding is done by generating the “cuckoo graph” implied by the n keys and
the functions h1, h2. In that graph, there are m vertices u1, . . . , um such that
each ki implies an edge (uh1(ki), uh2(ki)). The encoding then peels that graph, by
recursively removing each edge (uh1(ki), uh2(ki)) for which the degree of either
uh1(ki) or uh2(ki) is 1, and pushing that ki to a stack. That process ends when
the graph is empty of edges. Then, the unpeeling process iteratively pops an item
kj from the stack and uses it to fill the vector’s entries: If both S[uh1(kj)] and
S[uh2(kj)] are unassigned yet, then they are assigned random values such that
S[uh1(kj)] + S[uh2(kj)] = vj . Otherwise, if only S[uh2(kj)] is unassigned (w.l.o.g)
then assign S[uh2(kj)] = vj − S[uh1(kj)]. This process succeeds as long as the
peeling indeed removes all edges. However, there is a high probability for the
peeling process to end with a non-empty graph where none of the vertices is of
degree 1. The size of the remaining graph is known to be with at most O(log n)
vertices. This is solved by extending the vector S with extra O(log n) + λ entries.

In a concrete instantiation of PaXoS [34] the authors set ε = 0.4, which
becomes standard in Cuckoo hashing based constructions. However, that assign-
ment is heuristic, and no failure probability was proven. Encoding is linear in
the number of items and decoding takes 2 + c·logn+λ

2 time, for some constant c
([34] used c = 5).

4 New OKVS Constructions

The main issue that the new OKVS constructions aim to improve over the existing
polynomial-based or random matrix OKVS constructions, is improving the run
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time to be linear in the number of key-value pairs. This comes at the cost of
slightly increasing the size of the OKVS.

4.1 OKVS based on a 3-Hash Garbled Cuckoo Table (3H-GCT)

The PaXoS construction of [34] uses cuckoo hashing with two hash functions. It
is well-known that the efficiency of cuckoo hashing improves significantly when
using three rather than two hash functions (see orientability analysis, with ` = 1
and k ∈ {2, 3} in [44, Table 1]). Hence, in this section we suggest generalizing the
OKVS construction to three hash functions. (It is crucial that the construction
uses not more than three hash functions. We describe in Footnote 9 that using
more functions will result in better memory and network utilization, but will not
support an efficient linear time peeling algorithm for finding the right assignment
of values to memory locations. Therefore, with current techniques it seems that
using three hash functions is optimal.)

Peeling. The construction follows a basic peeling based approach. The OKVS
data structure S is a hypergraph G3,n,m, with m nodes and n hyperedges, each
touching 3 nodes. The construction uses three hash functions h1, h2, h3, and
maps each key k to the hyperedge (h1(k), h2(k), h3(k)).8 The simplest OKVS
construction is binary, and encodes a pair (k, v) into the graph to satisfy the
property that v = S(h1(k))⊕ S(h2(k))⊕ S(h3(k)). Namely, the value associated
with a key k is encoded as the exclusive-or of the three nodes of the hyperedge
to which it is mapped. The number of nodes m must be at least the number of
values n, and our aim is to make it as close as possible to n.

This mapping is possible if the binary n × m matrix in which each row
represents a key and has 1 entry corresponding to the three nodes to which
the key is mapped, is of rank n, and can be therefore be found in time O(n3).
However, our goal is to compute a mapping in time which is close to linear.
This is done by a peeling based algorithm: Suppose that there is a key k with
a corresponding hyperedge (h1(k), h2(k), h3(k)), and that, say, h2(k) is a node
to which no other key is mapped. Then we can set values to all other nodes in
the graph, including nodes h1(k) and h3(k), and afterwards set the value of node
h2(k) so that the equality v = S(h1(k))⊕ S(h2(k))⊕ S(h3(k)) holds. To denote
this property we can orient the hyperedge towards h2(k). This property also
means that we can remove this hyperedge from the graph, solve the mapping for
all other keys, and then set the value of node h2(k) so that the mapping of k is
correct. This can of course be done for all hyperedges that touch nodes of degree
1. Moreover, removing these hyperedges might reduce the degrees of other nodes,
and this enables removing additional hyperedges from the graph.

8 The hyperedge is sampled uniformly at random from all subsets of 3 different nodes
in the graph. We simplify the notation by referring to hash functions h1, h2, h3, but
these functions are invoked together under the constraint that the outputs of the
three hash functions are distinct from each other.
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The peeling process that we described essentially works by repeatedly choosing
a node of degree 0 or 1 and removing it (and the incident edge if present) from the
hypergraph. The removed edge is oriented towards the node. If this process can
be repeated until all nodes are removed then the graph is said to be “peelable”.
Otherwise, the process ends with a 2-core of the hypergraph (the largest sub-
hypergraph where all nodes have a degree of at least 2). We first discuss the
expected number of nodes that is required to ensure that the peeling process
can remove all edges. We then discuss how to handle the case that the peeling
process ends with a non-empty 2-core.

Peelability threshold. It is well known that for random 3-hypergraphs, peelability
asymptotically succeeds with high probability when the number of nodes is at least
1.23n. (See [30,2] for an analysis, and [16] for implementation and measurements.)
A recent result in [45] shows that choosing hyperedges based on a specific different
distribution reduces the number of nodes to be as low as 1.1n, but based on
experiments in [45] and on our experiments these results seem to be applicable
only to very large graphs of tens of millions of nodes.)9 Of course, we also wish to
ensure that the OKVS construction fails with only negligible probability, or with
a sufficiently small concrete probability (2−λ, for λ = 40). The known analysis
methods do not provide concrete parameters for guaranteeing a 2−λ failure
probability. We will describe in Section 5 how to amplify OKVS constructions
in order to verify experimentally that failures happen with sufficiently small
probability.

Handling the 2-core in binary 3-hash OKVS. Let χ(G) be the number of hyper-
edges in the 2-core of a hypergraph G with n edges, and let d(n) be an upper
bound on χ(G) which holds with overwhelming probability (d(n) will typically be
very small). The peeling stops working when reaching the 2-core. We follow [34]
in using a datastructure of the form S = L||R, where L consists of the nodes
of the hypergraph, and R includes additional d(n) + λ nodes, where 2−λ is the
allowed statistical failure probability. The hypergraph construction maps each
key k to 3 nodes in L. Denote these nodes using a binary vector l(k) of length
L, which has 3 bits set to 1. In addition, we use another hash function to map
k to a random binary string r(k) of length d(n) + λ, where the bits which are

9 For uniformly random d-regular hypergraphs (we use d = 3), increasing d improves
the threshold of memory utilization that enables mapping values to hyperedges.
Namely, increasing d enables to use a graph of fewer nodes in order to successfully
orient the same number of hyperedges towards different nodes. Successfully orienting
the nodes implies that it is possible to assign values to nodes to enable the recovery
all values associated with hyperedges. However, this does not imply that mapping
values to nodes can be efficiently found in linear time, such as by running by a peeling
process. Unfortunately, increasing the degree d also makes it harder to succeed in
peeling, and requires a substantially higher ratio between the number of nodes and
the number of hyperedges in order for peeling to succeed (see first row of Table 1
in [45].) Our construction is based on peeling, and therefore our usage of hyperedges
of size d = 3 is optimal.
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set to 1 indicate a subset of the nodes in R. The value of a key k from the
OKVS is retrieved as the exclusive-or of the values of the 3 nodes to which it is
mapped in L and the values of the nodes to which it is mapped in R, namely
it is (l(k)||r(k)) · S. Therefore the encoding process must set the values in S to
satisfy these requirements.

After running the peeling process, we are left with χ(G) ≤ d(n) hyperedges
in a 2-core of G. We solve the system of linear equations (l(ki)||r(ki)) · S for all
keys ki whose corresponding hyperedges are in the 2-core.10 Solving this system
of equations sets values to the nodes in R, and to the nodes in L to which the
edges in the 2-core are mapped. This can be done in O((d+ λ)3) time. We can
then run the peeling process in reverse: take the peeled hyperedges in reversed
order and set values to the nodes in L to which they are oriented, to satisfy the
decoding property for all other hyperedges in the graph. The entire algorithm is
defined in Figure 2. The proof of Lemma 6 below is in the full version.

Lemma 6. Let d(n) be a parameter such that Pr[G3,n,m has 2-core > d(n)] ≤ ε1.
Then the construction with |R| = d(n) + λ is an OKVS with error ε1 + 2−λ.

4.2 OKVS based on Simple Hashing and Dense Matrices

Another possible approach for constructing an OKVS is to randomly map the
key-value pairs into many bins, and implement an independent OKVS per bin
(using the polynomial-based or the random matrix approaches). The computation
cost of these smaller OKVS instances is much smaller, and the space utilization
only needs to take into account the maximum number of items that might be
mapped into a bin.

Suppose we hash n pairs into m bins, where key-value pair (k, v) is placed
into bin h(k) based on a random function h : {0, 1}∗ → [m]. Encode each bin’s
set of key-value pairs into its own OKVS using any “inner OKVS” construction.
The overall result is also an OKVS. More formally, if (Encode,Decode) is the
inner OKVS, then given (D1, . . . , Dm)← Encode({ki, vi}) the new OKVS is

Decode∗
(

(D1, . . . , Dm), k
)

def
= Decode(Dh(k), k)

The corresponding Encode∗ is defined as explained above.

10 An alternative approach is to use a graph without an R component, and try to solve
the system of equations for the l(ki) nodes of the 2-core alone. However, experiments
that we ran show that in many cases where the 2-core is small but not empty, the
2-core includes only two hyperedges. This means that these two hyperedges are
mapped to exactly the same set of 3 nodes, and therefore the two associated linear
equations are identical and cannot be solved.

We additionally note that PSI applications require using a Binary linear combina-
tion of the OKVS values. Other applications might allow using linear combinations
with larger coefficients. In these cases there will likely be no need for adding the R
nodes to the graph.
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Encode({ki, vi}):
Parameters:

– The algorithm is parameterized with the functions H = {h1, h2, h3}, each has
a range [m].

– In addition the algorithm uses the functions l(·) and r(·) where l(x) outputs
a bit-vector of length m with zero at all entries except of entries h1(x), h2(x)
and h3(x). The function r(x) outputs a random bit-vector of length r.

Algorithm:

1. Initialize empty vectors L ∈ Fm and R ∈ Fr.
2. Initialize stack P .
3. (Identify nodes which are touched by only a single hyperedge, and push

them to P .) While there is a node j ∈ [m] such that the set {ki 6∈ P | j ∈
{h1(ki), h2(ki), h3(ki)}} is a singleton: Let ki be the element of that singleton,
and push ki onto P .

4. Solve the system of equations 〈l(ki)‖r(ki), L‖R〉 = vi for ki 6∈ P , and assign
the solutions to the corresponding locations in S.

5. While P not empty:
(a) pop ki from P .
(b) L is undefined in at least one of the positions h1(ki), h2(ki), h3(ki). Set

the undefined position(s) so that 〈l(ki)‖r(ki), L‖R〉 = vi.
6. Set any empty position in L or R with a random value from F.

Fig. 2: 3-Hash Garbled Cuckoo Table, fitting n key-value pairs (ki, vi) to a data
structure S ∈ Fm+r.

In choosing parameters for the inner OKVS, the näıve error analysis would
proceed as follows. First compute a bound β such that all bins have at most β
items except with the target ε probability. Choose parameters such that each
bin’s OKVS fails on β items with probability bounded by ε/m. Then by a union
bound the entire encoding procedure fails with probability at most m · ε/m = ε.

We can do better when the inner OKVS is a polynomial OKVS. If the field
is small, we can use a random dense-matrix OKVS. For this OKVS the error
probability within each bin drops off gradually with the number of items (rather
than having a sharp threshold). Suppose we have n items into m bins, and each
bin is a dense-matrix OKVS with w slots (so that the entire data structure is mw
in size). If exactly t items happen to be assigned to a particular bin, then that
bin’s OKVS fails with probability bounded by |F|w−t. Using the union bound,
we bound the probability of the overall OKVS failing as:

m · Pr[bin #1 OKVS fails] ≤ m
∑
t

(
n

t

)(
1

m

)t(
m− 1

m

)n−t
︸ ︷︷ ︸
Pr[bin #1 holds exactly t items]

min

{
1,

1

|F|w−t

}

It is straightforward to calculate this probability exactly, and it leads to better
bounds on OKVS size.
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Example. Consider the case of |F| = {0, 1}, hashing n = 1000 items into
m = 100 bins. How wide must each bin’s dense-matrix OKVS be for an
overall error probability of 2−40? The näıve analysis proceeds as follows.
With probability 1 − 2−40 all bins have at most 42 items. We must ensure
Pr[inner OKVS fails on 42 items] < 2−47, so that the union bound over m = 100
bins bounds the overall failure probability by 2−40. Hence, each bin must have
w = 42+47 = 89 slots. In contrast, the more specialized analysis above shows that
only w = 61 slots suffice per bin, for error probability 2−40 (a 31% improvement).

5 Amplifying OKVS Correctness

Premise: Empirically Measuring Failure Probabilities. The most efficient OKVS
constructions are likely to be based on randomized constructions. Unfortunately,
we lack techniques for finding tight concrete bounds of the relevant failure
probabilities for constructions of this type, such as cuckoo hashing, and for
choosing appropriate concrete parameters (e.g., how many bins are needed to
hash a concrete number of n items with k hash functions so that the 2-core of
the cuckoo graph has size bounded by 2 log2 n with probability 1− 2−λ?1112

The best we can currently hope for is to empirically measure failure probabil-
ities. Since we seek data structures where the failure probabilities are extremely
small (e.g., 2−40) empirical measurement is extremely costly. One would have
to perform trillions of trials before expecting to see any failures at all. Alterna-
tively, one must typically perform many trials with higher error probabilities,
and extrapolate to the lower probabilities. This approach was used in, e.g., [37,8].

In this section we show methods for amplifying the probabilistic guarantees
of an OKVS. For example, we show how to use an OKVS with failure probability ε
to build an OKVS with failure probability c ·εd (for explicit constants c, d). Think
of ε as being moderately small, e.g., ε = 2−15, and therefore sufficiently large to
enable running efficient empirical experiments to obtain 99.99% certainty about
whether ε bounds the failure event. Using an OKVS with such an empirically-
validated failure probability, we can construct a new OKVS with the desired
failure probability (e.g., 2−40).

Since our amplification algorithms may instantiate two or more OKVS struc-
tures for the same set of keys and values, in this section we make the set of hash

11 For cuckoo hashing, the relation between the number of items n, number of hash
functions k, number of bins m = (1+β)n for β ∈ (0, 1), stash size s, and the insertion
failure probability ε, is proven in [22]: for any k ≥ 2(1 + β) ln 1

β
and s > 0, mapping

n items to (1 + β)n bins fails with probability O(n1−c(s+1)) for a constant c and
n→∞. However, the constants in the big “O” notation are unclear and therefore
we do not know which concrete parameters are needed in order to instantiate such
constructions.

12 We stress that the failure events in Cuckoo hashing and in OKVS are slightly different.
Specifically, an OKVS fails if the size of the 2-core is too large whereas CH can
handle a large 2-core, as long as there are not too many intersecting cycles.
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functions used in each instantiation explicit. That is, an OKVS scheme is a pair
of algorithms (EncodeH ,DecodeH) as defined in Section 2.

In the following, we describe three amplification architectures for constructing
a new OKVS scheme (Encode∗H ,Decode

∗
H) using an underlying OKVS scheme

(EncodeH ,DecodeH). We assume that the OVKS is over a finite field and that
randomly sampling a vector of appropriate length from that field samples a
random OVKS. For the underlying scheme, we denote by size(n) the size of the
resulting OKVS for encoding n items. (Recall that by the obliviousness property,
it follows that the OKVS size depends only on the size of the key-value set and not
on the keys themselves.) We note that the amplification constructions sometimes
invoke EncodeH with a set of key-value pairs only to check whether encoding
succeeds or fails, and do not necessarily use the outcome of that encoding. Recall
that even though the input to EncodeH consists of key-value pairs, success or
failure depend only on the keys.

5.1 Replication Architecture

The following construction is mainly described as a warmup towards more involved
constructions, since it substantially increases the space requirements. The idea
is to amplify the success probability by doubling the size and computation, by
using two OKVS constructions and retrieving values as the sum of the retrieved
values from both constructions. The encoding procedure checks if any of two
random hash functions results in a successful OKVS for the given set of keys. The
encoding fails only if both hash functions result in a failure. Its main disadvantage
is the double space usage.

Formally:

– Encode∗H({(ki, vi)}) views H as two sets of hash functions H1 and H2. It
outputs two dictionaries S1 and S2 as follows:

• Compute S′ ← EncodeH1
({(ki, vi)}).

• If S′ 6= ⊥: set S2 ← Fsize(n) randomly, i.e. S2 is a random OKVS
independent of {(ki, vi)}. Then, define the set {(ki, v′i)} where v′i =
vi − DecodeH2(S2, ki). Finally, compute S1 ← EncodeH1({(ki, v′i)}). We
know that S1 6= ⊥ (since S′ 6= ⊥ and S1 uses the same set of keys as S′)
and therefore output S = (S1, S2).

• Otherwise (S′ = ⊥): set S1 ← Fsize(n). Then, define the set {(ki, v′i)}
where v′i = vi−DecodeH1

(S1, ki) and compute S2 ← EncodeH2
({(ki, v′i)}).

If S2 6= ⊥ then output S = (S1, S2), otherwise, output ⊥.

– Decode∗H(S, x): Interpret H = (H1, H2) and S = (S1, S2). Output y =
DecodeH1

(S1, x) + DecodeH2
(S2, x).

Clearly, this construction only fails if both encodings fail. Therefore, if
(Encode,Decode) fails with probability ε then (Encode∗,Decode∗) fails with prob-
ability ε2.
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Generalization The above construction uses two ‘replicas’. It could be generalized
to c > 2 replicas, resulting in an OKVS of size c · size(n), failure probability
εc and overall encode/decode time that is c times greater than the underlying
scheme. Denote an OKVS scheme with c replicas by (Encode∗c,Decode∗c). We
use such a scheme in the generalized construction described below (Section 5.3).

The obvious undesirable property of this construction is that the size of the
OKVS increases by a factor of c. (This is also true for the encoding and decoding
times, but these performance parameters are typically less critical since they are
small for hashing-based OKVS.) In the rest of this section we describe how to
amplify the failure probability from ε to εc while keeping the size of the resulting
OKVS not much larger than the underlying OKVS (certainly not larger by a
factor of c).

5.2 Star Architecture

We next show how to reduce the error probability while keeping the OKVS size
to be almost size(n). In our concrete instantiation (presented in Section 8) we
are able to almost square the failure probability while increasing the OKVS size
by less than 10% for n = 220 items.

At the high-level idea, imagine a star-shaped graph consisting of q + 1 nodes,
one central node and q leaves. Each node, including the central node, is associated
with an OKVS data structure and should be large enough to store about n/q
items. Each item is retrieved from one leaf node and from the root node, and the
returned value is the sum of the two retrieved values. More precisely, to probe
for an item x, probe for x in the central OKVS and probe for x in the OKVS of
leaf h̃(x) (where h̃ is a random function), and add the results. The construction
is robust to a hashing failure of a single node since we can set that node to have
random values and can still set the values of all the other nodes to ensure that
the correct sums are returned (this is true for either a leaf node or the root node).
Therefore the system fails only if at least two nodes fail. Security holds since one
node is set to be random, while the other nodes store random OKVS values.

Formally, the new OKVS scheme is defined in the following way: Let n′ be
an upper bound on the maximum load of a bin when mapping n balls into q
bins, except with probability 2−λ. In the following description we treat the first
OKVS (indexed by 0) as the center node, and the following q OKVS’s, indexed 1
to q, as the leaf nodes.

– Encode∗H({(ki, vi)}): Interpret H = (h̃,H0, . . . ,Hq).

• Map the set {(ki, vi)} to q subsets: A1, . . . , Aq where Aj = {(ki, vi) |
h̃(ki) = j}.

• For j = 1, . . . , q compute Sj ← EncodeHj (Aj)
• No failure. (∀j∈[q] : Sj 6= ⊥) In this case, set random values to the

central node and adjust the values of other nodes accordingly.

∗ Sample a random S0 from Fsize(n′).
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∗ For j ∈ [q] compute the new set A′j = {(k, v′) | (k, v) ∈ Aj} where
v′ = v − DecodeH0

(S0, k); then, compute Sj ← EncodeHj (A
′).

• One failure. (∃j∗ : Sj∗ = ⊥ ∧ ∀j∈[q]\{j∗} : Sj 6= ⊥) In this case, set the
central node to ensure the correct decoding of the values mapped to the
failed node, and adjust the values of other nodes accordingly.

∗ Sample a random Sj∗ from Fsize(n′).
∗ Compute a new set A′0 = {(k, v′) | (k, v) ∈ Aj∗} where v′ = v −
DecodeHj∗ (Sj∗ , k) and then S0 ← EncodeH0

(A′0). If S0 = ⊥ then
output S = ⊥ and halt.

∗ For j ∈ [q] \ {j∗} compute the new set A′j = {(k, v′) | (k, v) ∈ Aj}
where v′ = v − DecodeH0

(S0, k); then, compute Sj ← EncodeHj (A
′).

• Two or more failures. If Sj = ⊥ for more than one OKVS j then
output S = ⊥ and halt.

• Output S0, . . . , Sq.
– Decode∗H(S, x): Interpret H = (h̃,H0, . . . ,Hq) and S = (S0, . . . , Sq). Com-

pute j = h̃(x) and output y = DecodeHj (Sj , x) + DecodeH0
(S0, x).

Failure probability The construction can tolerate a failure in any one of the
q + 1 components (either a leaf or the center node). In other words, the new
construction fails only when two of the q + 1 components fail. So if each of the
underlying OKVS instances fails with probability ε, then the new construction
fails with probability

Pr[S = ⊥] =

q+1∑
i=2

(
q + 1

i

)
εi(1− ε)q+1−i (3)

= 1− (1− ε)q+1 − (q + 1)ε(1− ε)q (4)

Looking at equation 3 and ignoring high order terms, we observe that if the
failure probability of the underlying OKVS scheme is ε = 2−ρ then the failure

probability of the star architecture is ≈
(
q+1
2

)
ε2 = 2log (q+1

2 )−2ρ. Thus, in order

for the star architecture to fail with probability 2−λ we need log
(
q+1
2

)
− 2ρ = −λ

and thus ρ =
λ+log (q+1

2 )
2 ≈ λ+2 log(q)−log 2

2 ≈ λ/2 + log(q).

OKVS size and encoding/decoding time The size of the new OKVS is (q + 1)×
size(n′) where n′ is the upper bound on the maximum load when mapping n
balls to q bins, that is,

n′ = min
ñ

: Pr[“there exists bin with ≥ ñ elements”] ≤ 2−λ (5)

where

Pr[“there exists bin with ≥ ñ elements”] ≤
q∑
i=1

Pr[“bin i has ≥ ñ elements”]

= q ·
n∑
i=ñ

(
n

i

)(
1

q

)i(
1− 1

q

)n−i
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These equations enable to easily compute the maximal size ñ of the bins.
Note that since the number of bins q is typically very small compared to n, then
ñ is not much greater than the expected size of a bin which is n/q. Section 5.4
shows a concrete size analysis for a specific choice of parameters.

The new encoding requires at most 2q + 1 invocations of the underlying
encoding algorithm. Decoding works exactly as in the replication architecture,
with 2 calls to the underlying decoding algorithm.

5.3 Generalized Star Architecture

In this section we improve the amplification method to achieve a failure probability
of O(εd) for an arbitrary d. This enables to weaken the requirement from the
underlying scheme, and only require that it fails with probability of at most
ε = O(2−λ/d) instead of ε = O(2−λ/2). This is an important step if we wish to
use an underlying OKVS scheme for which the failure probability is empirically
proven, like our 3-hash garbled cuckoo table scheme presented in Section 4.1.
The larger d is, the less experiments we have to conduct in order to empirically
prove a failure probability of ε for the overall scheme.

The generalized idea is exactly the same as the star architecture, except that
the center OKVS can tolerate up to d − 1 failures of the OKVS instances in
the leaves. The new OKVS is composed of two components: (1) q leaf nodes as
before, each of size size(n′), and (2) a center node of size d · size(n′) (whereas in
the simple star architecture the center is of size only size(n′)). The center node
uses the replicated scheme (Encode∗d,Decode∗d) described in Section 5.1. We
require that both components fail with negligible probability in λ. Specifically, in
order for the entire scheme to fail with probability 2−λ each component has to
fail with probability 2−(λ+1).

The formal description of the new OKVS scheme is as follows:

– Encode∗H({(ki, vi)}): Interpret H = (h̃, Ĥ,H1, . . . ,Hq) , then,

• Map the set {(ki, vi)} to q subsets: A1, . . . , Aq where Aj = {(ki, vi) |
h̃(ki) = j}.

• For j = 1, . . . , q compute Sj ← EncodeHj (Aj) and record the set F =
{j | Sj = ⊥} (the indices of leaf nodes for which encoding failed).

• Too many failures. If |F | ≥ d: output S = ⊥ and halt.
• Otherwise. If |F | < d:

∗ For all j ∈ F sample a random Sj from Fsize(n′). (This procedure sets
random values for all failed OKVS nodes.)

∗ Define the set Â =
⋃
j∈F Aj of all items in the failed OKVS nodes.

Compute a new set A′0 = {(k, v′)} which contains for each k ∈ Â the
pair (k, v′) where v′ = v − DecodeHj (Sj , k) where j = h̃(k). (This
ensures that the central node corrects the value assigend for the key
in the node OKVS.)
Set Ŝ ← EncodeĤ(A′). If Ŝ = ⊥ then output S = ⊥ and halt.
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∗ For j ∈ [q]\F , define the set A′j = {(k, v′) | (k, v) ∈ Aj} where

v′ = v − DecodeĤ(Ŝ, k) and compute Sj ← EncodeHj (A
′
j).

∗ Output S = (S1, . . . , Sq, Ŝ).

– Decode∗H(S, x): Interpret H = (h̃,H1, . . . ,Hq, Ĥ) and S = (S1, . . . , Sq, Ŝ).

Compute j = h̃(x) and output y = DecodeHj (Sj , x) + Decode∗d
Ĥ

(Ŝ, x).

In the description used above we denoted the central node’s OKVS by Ŝ
instead of S0 as in the simple star architecture, to emphasize the fact that the
central node is encoded using a stronger OKVS, namely a replicated OKVS
scheme (Encode∗d,Decode∗d).

Failure probability The generalized star architecture fails if either the leaf nodes
OKVS constructions or the central OKVS fail. Thus, we require that each
component fails with probability 2−(λ+1).

Let ε be the failure probability of the underlying OKVS scheme
(Encode,Decode). The first component, with q leaf nodes, fails when |F | ≥ d,
which happens with probability

∑q
i=d

(
q
i

)
εi(1− ε)q−i = O(εd). The second com-

ponent, which is a scheme with d replicas, fails with probability εd, corresponding
to the event where all replicas fail.

OKVS size and encoding/decoding time The size of the new OKVS is q · size(n′) +
size∗d(n′) where size(n′) and size∗d(n′) are the sizes of the resulting OKVS for
the (Encode,Decode) and (Encode∗d,Decode∗d) schemes, respectively. The value
n′ is the upper bound on the maximum load when mapping n balls to q bins, as
presented in Eq. (5).

The new encoding requires 2q invocations of Encode algorithm for the leaf
nodes and a single invocation of Encode∗d. The new decoding requires one
invocation of Decode and one invocation of Decode∗d.

5.4 A Concrete Instantiation

The underlying scheme (EncodeH ,DecodeH) is instantiated using the scheme of
Section 4.1 where the resulting OKVS, when encoded using n′ items, is S = L‖R
where |L| = 1.3n and |R| = λ+ 0.5 log n (i.e. size(n′) = 1.3n′ + λ+ 0.5 log n′). In
this scheme an encoding ‘failure’ happens when the 2-core which remains after
peeling is of size larger than 0.5 log n′.

We conducted 233 runs of such a scheme with n′ = 6600, using different sets
of hash functions in each run. There was only a single run in which the 2-core
was greater than 0.5 log n′. By the Clopper-Pearson method [10], we get that for
a random set of hash function H

ε = Pr[EncodeH({(ki, vi)}) = ⊥] = 2−29.355

with confidence level of 0.9999.
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We can use that result in order to construct a new scheme (Encode∗H ,Decode
∗
H)

using the star architecture (Section 5.2, replication factor is d = 1, i.e., no
replication):

– n = 216. We use q = 10 bins. Then, the maximum load according to Eq. (5)
is n′ = 7117, for which the above experiment applies13. Thus, the failure
probability of the new scheme, according to equation (3), is 2−52.9.

– n = 220. We use q = 160 bins. Then, the maximum load according to Eq. (5)
is n′ = 7163. Thus, the failure probability of the new scheme, according to
equation (3), is 2−45.05.

In both cases, the space usage is (q + 1) · (1.3n/q + λ+ 0.5 log(n/q)) ≈ 1.3n.

6 Applications of OKVS

In this section we discuss how OKVS can be used as a drop-in replacement for
polynomials in many protocols.

6.1 Sparse OT Extension

Pinkas et al. (SpOT-light [33]) proposed a semi-honest PSI protocol with very
low communication, based on oblivious transfer techniques. Suppose the PSI
input sets are of size n, and hold items from the universe [N ]. There is a natural
protocol for PSI that uses N OTs, where the receiver uses choice bit 1 in only n
of them and choice bit 0 in the rest. This protocol will have cost proportional
to N because communication is required for each OT, making it unsuitable
for exponential N . The work in [33] introduces a technique called sparse OT
extension, which reduces this cost.

Suppose the N OTs are generated with IKNP OT extension [20]. In IKNP,
the receiver sends a large matrix with N rows. The parties perform the ith OT
by referencing only the ith row of this matrix. Consider the mapping i 7→ [ith
row of IKNP matrix]. In the PSI protocol, the receiver only cares about n out
of the N values of this mapping. So instead of sending the entire mapping (i.e.,
the entire IKNP matrix), the receiver sends a polynomial P that satisfies P (i) =
[ith row of matrix], for the i-values of interest. Crucially, the communication has
been reduced from N rows’ worth of information to only n.

When the IKNP matrix is encoded in this way, the result is the spot-low PSI
protocol of [33]. Any OKVS may replace the use of a polynomial in spot-low.14

13 We assume that if Pr[EncodeH({(ki, vi)}) = ⊥] = ε for encoding n′ items then the
same probability ε applies also to n′′ > n′.

14 [33] describe another protocol, spot-fast, which also uses polynomials. Instead of
using one polynomial of large degree n, spot-fast uses many polynomials of very small
degree (and by this incurs a larger communication overhead). Due to the low degree,
replacing these polynomials with an OKVS would have minimal effect.
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6.2 Oblivious Programmable PRF and its Applications

Kolesnikov et al. [25] introduced a primitive called oblivious programmable
PRF (OPPRF). In an OPPRF, the sender has a collection of n pairs of the
form xi 7→ yi, and the receiver has a list of x′i values. The functionality chooses
a pseudo-random function R, conditioned on R(xi) = yi for all i. It gives (a
description of) R to the sender and it gives R(x′i) to the receiver, for each i. In [25]
a natural OPPRF protocol is described, based on polynomials. The parties invoke
a (plain) oblivious PRF protocol, where the sender learns a PRF seed s and the
receiver learns PRF (s, x′i) for each i. Then the sender interpolates a polynomial
P containing “corrections” of the form P (xi) = PRF (s, xi)⊕ yi, and sends it to

the receiver. Now both parties define the function R(x)
def
= PRF (s, x) ⊕ P (x),

which indeed agrees with the xi 7→ yi mappings of the receiver but is otherwise
pseudo-random. In this application it is of course crucial that P hides the points
which were used for interpolating it. Naturally, any OKVS can replace the
polynomial in the OPPRF construction.15

Applications. [25] used an OPPRF to construct the first concretely efficient
multi-party PSI. They described two protocols: The first protocol is fully secure
against semi-honest adversaries. The second is more efficient but proven secure in
a weaker augmented semi-honest model, where the corrupt parties are assumed
to run the protocol honestly, but the simulator in the ideal world is allowed to
change the inputs of corrupt parties. Intuitively, the protocol leaks no more to a
semi-honest party than what can be learned by using some input (not necessarily
the one they executed the protocol on) in the ideal model. We discuss this latter
protocol in more detail in Section 7.2, where we show that, surprisingly, the
protocol is secure against malicious adversaries despite not being secure in the
semi-honest model.

OPPRF is also used in the PSI protocol in [35] for circuit PSI – computing
arbitrary functions of the intersection rather than the intersection itself. It is
also used in the recent multi-party PSI protocols of Chandran et al. [6,5].

In a private set union protocol [26], a variant of OPPRF is used to perform
a functionality of reverse private membership test. The functionality allows a
party holding the set X to learn whether an input y of another party is in X,
and nothing else. [26] also rely on simple hashing to improve the computation of
the polynomial-based OKVS.

Finally, [42] proposes a new OPRF-based PSI protocol. Their construction
combines a vector OLE with the PaXoS construction. We observe that it is

15 Besides encoding these “corrections” as a polynomial, [25] actually propose two other
methods. One method is a garbled Bloom filter [11], which is indeed an OKVS (with
expansion λ). Another method that they refer to as the “table” construction is not a
true OKVS, as it only is oblivious when the mapping ki 7→ vi is such that all of the
ki (not just the vi) are uniformly distributed except possibly one ki which can be
known to the distinguisher. As such, this “table” construction is suitable only when
the receiver learns one output from the underling OPRF/OPPRF.
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possible to replace their use of PaXoS with any abstract OKVS, and with our
new OKVS constructions in particular.

6.3 PaXoS PSI

The leading malicious 2-party PSI protocol is due to [34], and is known as PaXoS-
PSI. The underlying data structure, a probe and XOR of strings (PaXoS),
is what we call a binary OKVS in this work. Their protocol and proofs are written
in terms of an arbitrary PaXoS data structure, with definitions that are identical
to the ones we require of a binary OKVS. Hence, the improved constructions of
binary OKVS that we present in this work automatically give an improvement to
the PaXoS-PSI protocol. We have implemented these improvements to PaXoS-PSI,
and report on their concrete performance in Section 8.2.

In Section 7 we discuss more details of the PaXoS PSI protocol, and also
introduce a new generalization that can take advantage of a non-binary OKVS.

6.4 Covert Computation

Covert computation is an enhanced form of MPC (not to be confused with the
definition of covert security) which ensures that participating parties cannot
distinguish protocol execution from a random noise, until the protocol ends with
a desired output. The constructions in [27,9] enable two parties to run multiple
such computations in linear time, while keeping the covertness property. The
challenge is identifying the correspondence between the protocol invocation sets
of both parties. This is solved using a primitive called Index-Hiding Message
Encoding (IHME). The constructions in [27,9] convert a protocol for single-input
functionality into a secure protocol for multi-input functionality, by encoding
as value P (x) of a polynomial P the protocol message for input x. (Here, the
polynomial P implements the IHME primitive.) The usage of a polynomial can
be replaced by any OKVS, to result in improved performance.

7 Other PSI Improvements

We present several improvements to leading PSI schemes which use OKVS.

7.1 Generalizing PaXoS-PSI to Linear OKVS

The PaXoS-PSI protocol [34] uses any binary OKVS data structure. We now
present a generalization that can support any linear (not necessarily binary)
OKVS. First, we review the protocol to understand its restriction to binary
OKVS: The PaXoS-PSI protocol starts with the parties invoking the malicious
OT-extension protocol of Orrú, Orsini & Scholl [32]. The receiver chooses a
vector of strings D = (d1, . . . , dm), and learns an output vector R = (r1, . . . , rm).
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The sender chooses a random string s and learns output Q = (q1, . . . , qm). The
important correlation among these values is:

ri = qi ⊕ C(di) ∧ s (6)

where C is a binary, linear error correcting code with minimum distance κ, and
∧ denotes bitwise-AND.

If we view D, R, and Q as OKVS data structures, we will see that equation
(6) is compatible with the homomorphic properties of a binary OKVS (see
Section 2.3). Hence:

Decode(R, k) = Decode(Q, k)⊕ C
(
Decode(D, k)

)
∧ s

Now, suppose the receiver has chosen their input D (an OKVS) so that
Decode(D, y) = H(y), for each y in their PSI input set, where H is a random
oracle. Suppose that for each x in their set, the sender computes

mx = H ′
(
Decode(Q, x)⊕ C(Decode(D,x)) ∧ s

)
,

where H ′ is a random oracle. If that x is in the intersection, then the receiver can
also compute/recognize mx, since it is equal to H ′(Decode(R, x)). If x is not in
the intersection, then Decode(D,x) = H(x)⊕ δ for some nonzero string δ. Then
through some simple substitutions, we get mx = H ′(Decode(R, k)⊕ C(δ) ∧ s).

When H ′ is a correlation-robust hash function, values of the form H ′(ai⊕bi∧s)
are indistinguishable from random, when each bi has hamming weight at least κ
(as is guaranteed by the code) and s is uniform. In other words, when the sender
has an item x and computes mx, this value looks random to the receiver.

Binary OKVS and the generalization. Revisiting equation (6), we see that the
relation ri = qi ⊕ C(di) ∧ s is homomorphic with respect to xor:

ri ⊕ rj = (qi ⊕ qj)⊕ C(di ⊕ dj) ∧ s.

This is what makes these correlated values compatible with a binary OKVS.
However, if we view all strings as elements of a binary field, we see that more
general linear combinations of ri’s do not work because the ∧ operation is bit-wise,
i.e. it is not compatible with the field operation.

The fact that ∧ is not a field operation is also the reason for the error-
correcting code C in the expression ri = qi ⊕ C(di) ∧ s. For any nonzero di, we
use the fact that C(di) ∧ s is an expression with at least κ bits of uncertainty
(i.e., we are bitmasking at least κ bits of s).

Now suppose that the parties had values that were not correlated according
to equation (6), but instead used a field operation · in place of ∧:

ri = qi ⊕ di · s (7)
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Then we could view D, R, and Q each as OKVS data structures, and if they
were linear OKVS we would have:

Decode(R, k) = Decode(Q, k)⊕ Decode(D, k) · s.
Additionally, for any ai, bi pairs with nonzero bi, a value of the form H(ai⊕ bi · s)
would look random to the receiver.

Indeed, replacing the correlation of equation (6) with that of (7) and using
any linear (not necessarily binary) OKVS will lead to a secure PSI protocol whose
proof follows closely to PaXoS-PSI. Additionally, since an error-correcting code
is not needed, communication is reduced relative to PaXoS-PSI. A protocol that
generates correlations that follow equation (7) is called a vector oblivious linear
evaluation (vOLE) protocol [3,4,43]. Our protocol would require a malicious-
secure vOLE protocol, but to date no such vOLE has been implemented. We
leave it to future work to determine whether a vOLE-based approach will be
competitive with the original PaXoS (OT-extension) approach.

Parameters:

– Computational and statistical security parameters κ and λ
– Sender with set X ⊆ {0, 1}∗ of size n
– Receiver with set Y ⊆ {0, 1}∗ of size n
– Linear OKVS scheme (Encode,Decode) mapping n items to m slots
– Random oracles H1 : {0, 1}∗ → {0, 1}`1 and H2 : {0, 1}∗ → {0, 1}`2

Protocol:

1. The parties invoke the vOLE functionality where the sender’s input is
random string s← {0, 1}`1 and the receiver’s input is:

D = (d1, . . . , dm) = Encode({(y,H1(y)) | y ∈ Y }).

As a result, the sender obtains output Q = (q1, . . . , qm) and the receiver
obtains output R = (r1, . . . , rm) satisfying qi = ri ⊕ di · s, with · denoting
the field operation in GF (2`1).

2. The sender computes and sends a random permutation of the set

M =
{
H2

(
x,Decode(Q, x)⊕H1(x) · s

) ∣∣∣ x ∈ X}.
3. The receiver coutputs {y ∈ Y | H2(y,Decode(R, y)) ∈M}.

Fig. 3: Our generalized PaXoS-PSI protocol, adapted from [34]

Theorem 7. If (Encode,Decode) is a linear OKVS, and other parameters `1, `2
are as in [34], then the protocol in Figure 3 securely realizes 2-party PSI against
malicious adversaries.

7.2 Malicious Multi-Party PSI

Multi-party Private Set Intersection(Fm-psi) allows a set of parties, each with
a private set of items (Pi owns a set Xi), to learn the intersection of their sets
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X0 ∩X1 ∩ · · · ∩Xn and nothing beyond that. The work of Kolesnikov et al. in
[25] presents generic transformations from any 2-party oblivious PRF to a multi-
party PSI protocol. One of these transformations is secure in the semi-honest
model, and a more efficient transformation is secure in the weaker “augmented
semi-honest” model, in which the ideal-world simulator is allowed to change the
inputs of the corrupt parties. Here we observe that this more efficient protocol can
actually be made secure in the malicious model with only a minor modification
(post-processing of the OPRF outputs with a random oracle).

Malicious-secure but not Semi-honest secure? Here, we briefly address this
apparent paradoxical situation of a protocol being malicious-secure but not semi-
honest secure. For a semi-honest secure protocol the simulator cannot change
the inputs of the corrupt parties; that is, it should be able to explain any well-
defined input provided by the environment on behalf of the corrupt parties. We
can interpret the “augmented semi-honest” secure protocol as “the protocol
is semi-honest secure apart from the issue of simulators changing inputs”. In
contrast, simulators changing a corrupt party’s inputs is no issue while proving
malicious-security. It just so happens, that without the issue of “simulators
changing inputs” the protocol in [25] is malicious-secure.

We discuss the protocol in detail in the full version, as well as its cost analysis,
proof of security and possible extensions. We also discuss there the interesting
interaction between semi-honest and malicious security.

To the best of our knowledge, [46,1] are the only other works that study
concretely efficient malicious multi-party PSI. Their constructions rely heavily
on BF/GBF, which is the most communication-expensive construction amongst
the three PSI constructions presented in [25]. While our protocol achieves almost
the same cost as that of the most efficient construction in [25], with only a minor
(inexpensive) modification, the protocols of [46] and [1] are about 10× and 2×
slower than [25]. We present a more detailed qualitative comparison with the
recent work of [1] in the full version.

8 Concrete Performance

We now benchmark different OKVS constructions and our PSI schemes. We also
present a comparison based on implementations of state-of-the-art semi-honest
and malicious PSI protocols. We used the implementation of semi-honest protocols
(KKRT [24], SpOT-low and SpOT-fast [33], CM [7]) and malicious protocols
(RR [41], PaXos [34]) from the open source-code provided by the authors, and
perform a series of benchmarks on the range of set size n = {212, 216, 220}. All
cuckoo hash functions are public parameters of the protocols, and can be simply
implemented as one party chooses the hash functions and broadcasts them to
other parties.

We assume there is an authenticated secure channel between each pair of
participants (e.g., with TLS). We evaluated the PSI protocols over three different
network settings (so-called fast, medium, slow networks). The LAN setting (i.e,
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fast network) has two machines in the same region (N.Virginia) with bandwidth
4.6 Gib/s; The WAN1 (i.e, medium network) has one machine in Ohio and the
other in Oregon with bandwidth 260 Mib/s; and the WAN2 (i.e, slow network)
has one machine in Sao Paolo and the other in Sydney with bandwidth 33 Mib/s.
While our protocol can be parallelized at the level of bins, all experiments,
however, are performed with a single thread (with an additional thread used for
communication). In all tables and figures of this section,“SH” and “M” stand for
semi-honest and malicious, respectively. We describe detailed microbenchmarking
results for OKVS in the full version.

8.1 Parameters for OKVS and PSI

n 212 216 220

Simple #bins (m) 10 100 2000
hashing bin size (µ) 555 854 714

GBF
# hash functions 40
table size 60n

2hf Cuckoo expansion 2.4n

3hf Cuckoo expansion 1.3n

codeword length (SH) 448 473 495

codeword length (M) 627 616 605

`2 (SH) (see [34]) 64 72 80

`2 (M) (see [34]) 256

λ 40

Fig. 4: Parameters for OKVS and PSI.

Some OKVS schemes rely on a simple
hashing which maps n pairs into m
bins. The number of items assigned of
any bin leaks a distribution about in-
put set. Therefore, all bins must be
padded to some maximum possible
size. Using a standard ball-and-bin
analysis based on the input size and
number of bins, one can deduce an
upper bound bin size m such that no
bin contains more than m items with
high probability 1−2−λ. When n balls
are mapped at random to m bins, the
probability that the most occupied bin
has µ or more balls is m

(
n
µ

)
1
mµ [38,36].

We provide our choices of µ for which the probability of a bin overflow is most
1 − 2−λ, as well as other relevant parameters for the OKVS schemes and PSI
protocols in Figure 4.

A garbled Bloom filter (GBF) [11] fails if a false-positive even occurs. Using
λ hash functions and a vector of size 1.44λn results in a failure probability of
1/2λ [28]. Therefore, we use λ hash functions and an OKVS table size of 60n. We
use m = 2.4n and m = 1.3n bins as the acceptable heuristic for the PaXoS and
3H-GCT OKVS constructions, respectively, and the PSI protocols that use them.
We use the concrete parameters for the star architecture based OKVS that are
described in Section 5.4.

8.2 Improving PSI Protocols

A detailed benchmark and comparison of different PSI protocols is given in
Table 1. Note that the SpOT-low [34] and RR [41] protocols run out of memory
for set size n = 220, and are not included in the comparison for this case.

Communication improvement. The overall communication of our 3H-GCT
and star-arch. based malicious PSI is 1.61× and 1.43×, respectively, less than
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Protocol Sett.
comm (MB) 4.6 Gbits/sec 260 Mbits/sec 33 Mbits/sec

212 216 220 212 216 220 212 216 220 212 216 220

KKRT [24]

SH

0.48 7.73 128.49 201 368 4512 665 2390 12568 4352 10220 146067
SpOT-low [33] 0.25 3.9 63.18 495 10035 220525 894 11154 — 3406 20337.7 —
SpOT-fast [33] 0.3 4.61 76.46 173 1795 24676 678 7455 26050 4364 17923 38737
PaXoS-2hf (2-core) [34] 0.59 9.9 169.67 217 410 4680 443 1395 11935 1974 8448 60159
CM∗ [7] 0.36 5.34 87.6 149 518 7251 807 2816 7966 4395 10303 85476
Ours: 3H-GCT (§4.1) 0.34 5.63 96.71 216 416 5831 300 1890 10604 1264 7248 38349
Ours: Star arch. (§5.4) 0.39 6.09 104.04 227 483 4938 355 1343 9504 1373 9491 34870

RR (EC-ROM variant) [41]

M

4.54 75.52 1260.82 122 951 16240 3505 9127 45962 19220 24867 271442
RR (SM variant, σ = 64) [41] 48.66 815.43 — 534 7694 — 4506 33236 — 35959 187801 —
PaXoS (2-core) [34] 0.92 14.23 223.89 221 418 4779 392 2119 12042 2531 8152 60771
Ours: 3H-GCT (§4.1+§6.3) 0.57 8.68 136.66 219 420 5855 300 2929 10417 1365 6981 37695
Ours: Star arch. (§5.4+§6.3) 0.64 9.27 145.42 227 496 4987 308 1350 9631 1375 7654 36871

Table 1: Communication in MB and run time in milliseconds. All protocols run
with inputs of length σ = 128 except RR (SM) that supports 64 bits at most.
The upper part of the table refers to semi-honest (SH) protocols whereas the
lower part refers to malicious (M) protocols. Missing entries refer to experiments
that failed due to lack of memory or took too much time. Reported results are
by running over AWS c5d.2xlarge.
Note that we found an issue with the implementation of [24,33,7,41], which use
network connection library [39]. Specifically, over a real network their protocols
take more time than over a simulated network with similar bandwidth and latency.
The difference is noticeable in CM [7].

the previous state of the art, PaXoS. This is greatly due to the fact that our
protocols invoke 1.3n and 1.41n OTs, respectively, compared to 2.4n in PaXoS.

Computation improvement. Over fast networks (4.6Gbits/sec) and n = 220,
our protocol is only 1.05×–1.1× slower than the fastest PSI protocols (KKRT
and PaXoS), where the running time is dominated by computation. Over slower
networks our protocols are almost always the fastest in the semi-honest setting
and always fastest in the malicious setting. For example, over a 33 Mbits/sec
network, our malicious star architecture-based construction is almost 2× faster
than PaXoS.
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