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Abstract. Suppose that n players want to elect a random leader and
they communicate by posting messages to a common broadcast channel.
This problem is called leader election, and it is fundamental to the dis-
tributed systems and cryptography literature. Recently, it has attracted
renewed interests due to its promised applications in decentralized envi-
ronments. In a game theoretically fair leader election protocol, roughly
speaking, we want that even a majority coalition cannot increase its own
chance of getting elected, nor hurt the chance of any honest individual.
The folklore tournament-tree protocol, which completes in logarithmi-
cally many rounds, can easily be shown to satisfy game theoretic secu-
rity. To the best of our knowledge, no sub-logarithmic round protocol
was known in the setting that we consider.
We show that by adopting an appropriate notion of approximate game-
theoretic fairness, and under standard cryptographic assumption, we can
achieve (1−1/2Θ(r))-fairness in r rounds for Θ(log logn) ≤ r ≤ Θ(logn),
where n denotes the number of players. In particular, this means that we
can approximately match the fairness of the tournament tree protocol
using as few as O(log logn) rounds. We also prove a lower bound showing
that logarithmically many rounds are necessary if we restrict ourselves
to “perfect” game-theoretic fairness and protocols that are “very similar
in structure” to the tournament-tree protocol.
Although leader election is a well-studied problem in other contexts in
distributed computing, our work is the first exploration of the round
complexity of game-theoretically fair leader election in the presence of
a possibly majority coalition. As a by-product of our exploration, we
suggest a new, approximate game-theoretic fairness notion, called “ap-
proximate sequential fairness”, which provides a more desirable solution
concept than some previously studied approximate fairness notions.

1 Introduction

Suppose that Murphy and Moody simultaneously solve a long-standing open
problem in cryptography and they each submit a paper with identical result

? Author ordering is randomized. See our online full version [15] for full details and
proofs.
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to CRYPTO’21. The amazing CRYPTO’21 program committee recommends a
hard merge of the two papers. Murphy and Moody decide to flip a random coin
over the Internet to decide who gets to present the result at the prestigious
CRYPTO’21 conference, to be held on the beautiful virtual beaches of Santa
Barbara. Murphy and Moody both want to make sure that the outcome of the
coin toss is fair, even when the other player may be behaving selfishly. There
is good news and bad news. The bad news is that a famous lower bound by
Cleve [16] proved that a strong notion of fairness, henceforth called unbiasabil-
ity, is impossible in any n-player coin toss protocol in the presence of corrupt
majority. Specifically, for any r-round protocol, a coalition controlling half or
more of the players can implement an efficient attack that biases the outcome
by Ω( 1

r ). This impossibility result also holds in the two-party setting where one
of the parties can be corrupt. This strong unbiasability notion is also the de
facto notion in the long line of work on multi-party computation [8,13,26]. The
good news is that Cleve’s lower bound is not a deal-breaker for Murphy and
Moody. In fact, they can simply run Blum’s celebrated coin toss protocol [10]:
each player picks a random bit and posts a commitment of the bit to a public
bulletin board (e.g., a broadcast channel, a blockchain); then both parties open
their committed bits and the XOR of the two bits is used to decide the winner.
If either player ever aborts from the protocol or opens the commitment wrongly,
it automatically forfeits and the other is declared the winner. Blum’s protocol is
not unbiasable, i.e., a player can indeed misbehave and bias the coin — however,
the bias will simply benefit the other player and hurt itself. Although not ex-
plicitly stated in Blum’s original paper, in fact, his celebrated protocol achieves
a game-theoretic notion of fairness which is strictly weaker than the de facto un-
biasability notion. Specifically, no player can benefit itself or hurt the other by
deviating from the protocol, and thus the honest protocol is a Nash equilibrium
in which no player would be incentivized to deviate.

The above example shows that in the two-party setting, adopting a game the-
oretic notion of fairness allows us to circumvent the impossibility of fairness in
the corrupt majority setting [16]. Therefore, a natural question is whether such
game theoretic notions can also help us in the multi-party setting. Surprisingly,
this very natural question has traditionally been overlooked in the long line of
work on multi-party protocols. Only very recently, an elegant work by Chung
et al. [14] initiated the study of game-theoretic fairness in a multi-party setting.
Unfortunately, Chung et al. [14] proved broad impossibility results (in the cor-
rupt majority setting) for a particular formulation of the multi-party coin toss
problem for natural game-theoretic fairness notions. Specifically, suppose that n
parties want to toss a binary coin, and each player has preference for either the
bit 0 or 1. If the outcome agrees with a player’s preference, it obtains a utility
1; otherwise, it obtains a utility of 0. Chung et al. [14] showed that roughly
speaking, unless all players but one prefer the same coin, the following natural
fairness notions can be ruled out in the corrupt majority setting: 1) maximin
fairness, which requires that no coalition can harm any honest individual; and 2)
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cooperative strategy proofness (also called CSP-fairness for short), which requires
that no coalition can benefit itself.

Philosophically, if a protocol satisfies maximin fairness and CSP fairness,
then no individual should be incentivized to deviate from this equilibrium, no
matter whether the coalition/individual is greedy and profit-seeking, malicious
and aiming to harm others, or paranoid and aiming to defend itself in the worst-
possible scenario. Such protocols are also said to be incentive compatible.

1.1 Leader Election: Another Formulation of Multi-Party Coin Toss

In this paper, we revisit the question of game-theoretically fair multi-party coin
toss. Specifically, we consider an alternative formulation. Instead of tossing a
binary coin, we consider the problem of leader election which can be viewed as
tossing an n-way coin among n parties. Suppose that all parties prefer to be
elected: the elected leader gains a utility of 1 (or equivalently, a utility of an
arbitrary positive value), whereas everyone else gains a utility of 0. This natural
utility notion is often encountered in practical applications as we mention in
Section 1.3. Intriguingly, for this formulation, the theoretical landscape appears
starkly different from the binary-coin case4. The broad impossiblity results of
Chung et al. [14] for the binary case no longer apply. A folklore approach hence-
forth called the tournament-tree protocol [6, 31] establishes the feasilibity of a
logarithmic round, game-theoretically fair leader election protocol, even in the
presence of majority coalitions:

– Each pair of players duels with each other to select a winner using Blum’s
coin toss [10]; again, aborting is treated as forfeiting.

– Now the n
2 winners of the previous iteration form pairs and run the same

protocol to elect n
4 winners.

– After logarithmically many rounds, the final winner is called the leader.

Like Blum’s protocol, the tournament-tree protocol also does not satisfy unbi-
asability, since anyone can abort and bias the outcome in a direction that harms
itself. However, one can show that it indeed satisfies the aforemnetioned maximin
fairness and CSP fairness notions, i.e., no coalition can harm an honest individ-
ual or benefit itself. In light of this folklore protocol, one important and natural
open question is to understand the round complexity of game-theoretically fair,
multi-party leader election in the corrupt majority setting. Specifically, can we
have an n-party, game-theoretically fair leader election protocol that tolerates
majority coalitions, and completes in o(log n) number of rounds? A näıve idea
is to directly collapse the tournament-tree protocol to two rounds — in the first
round, all players commit all random coins they ever need to use in the proto-
col; and in the second round, they open all random coins. It turns out that this
näıve approach completely fails in the sense that a majority coalition can have
a definitive winning strategy (see the online full version [15]).

4 Game theoretically fair leader election and binary coin toss are different in nature
partly due to the different utility functions.
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Throughout this paper, we shall consider the plain setting without trusted
setup, and allowing standard cryptographic assumptions. This rules out näıve so-
lutions such as having the trusted setup choose the coin toss outcome, or using
Verifiable Delay Functions [11, 12]. Also, recall that in the honest majority set-
ting, the standared multi-party computation literature gives us constant-round
solutions [7,18] that achieves the stronger notion of unbiasability. Therefore, we
will focus on the corrupt majority setting. We also stress that the game-theoretic
fairness notions we consider are stronger than in some previous contexts. For ex-
ample, a strictly weaker notion is called resilience, which requires that an honest
player is elected with constant probability [19, 20, 35, 36]. The resilience notion
may be sufficient in certain contexts, however, it does not provide incentive
compatibility like our notions.

1.2 Our Results and Contributions

We initiate the study of the round complexity of game-theoretically fair, multi-
party leader election. Below, we first describe our new upper bound result and
techniques informally, and then we will discuss the interesting definitional sub-
tleties we encountered and our definitional contributions — it turns out that even
defining an approximate notion of (game-theoretic) fairness is rather non-trivial,
and the notions that existed in the literature appear somewhat lacking.

New upper bounds and techniques. Roughly speaking, we prove that one can
approximately match the fairness of the tournament-tree protocol, in as small as
O(log log n) rounds. Specifically, we give the following parametrized result that
allows one to trade off the round complexity and approximation factor.

Theorem 1 (Informal: round-efficient, game theoretically fair leader
election). For r ∈ [C0 log log n,C1 log n] where C0 and C1 are suitable con-
stants, r-round protocols exist that achieve

(
1− 1

2Θ(r)

)
-approximate fairness in

the presence of a coalition of size at most
(
1− 1

2Θ(r)

)
· n.

In the above, roughly speaking, 1-fairness means perfect fairness and 0-
fairness means no fairness. Observe that if we plug in r = Θ(log log n), we
can achieve (1 − o(1))-fairness against coalitions of size n − o(n). It is also in-
teresting to contrast our result with the classical notion of approximate unbi-
asability — it is well-known that r-round protocols cannot achieve better than
O(1/r)-unbiasability in the presence of a majority coalition [16]. In contrast,
our approximation factor, i.e., 1

2Θ(r) , is exponentially sharper than the case of
approximate unbiasability. We review more related work on ε-unbiasability in
the online full version [15].

The techniques for achieving our upper bound are intriguing and somewhat
surprising at first sight. We describe a novel approach that combines combina-
torial techniques such as extractors, as well as cryptographic multiparty com-
putation (MPC). Intriguingly, for designing game theoretically secure protocols,
some of our classical insights in the standard MPC literature do not apply.
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Several aspects of our protocol design are counter-intuitive at first sight. For
example, jumping ahead, we defend against “a large coalition benefitting itself”
using (non-trivial) combinatorial techniques; but these combinatorial techniques
provide no meaningful defense against a small coalition benefitting itself — it is
initially surprising that small coalitions turn out to be more challenging to defend
against. To defend against a small coalition, we employ a special honest-majority
MPC protocol as part of our final construction. The fact that an honest-majority
MPC can provide meaningful guarantees in a corrupt majority setting is initially
surprising too. Of course, weaving together the combinatorial and the crypto-
graphic techniques also has various subtleties as we elaborate on in subsequent
sections. We believe our design paradigm can potentially lend to the design of
other game-theoretically fair protocols.

New definition of approximate fairness. It turns out that how to define a good
approximate fairness notion requires careful thought. The most natural (but
somewhat flawed) way to define (1−ε)-fairness is to require that even a majority
coalition cannot increase its own chances by more than an ε factor, or reduce an
honest individual’s chance by more than ε. Throughout the paper, we allow the
coalition’s action space to include arbitrary deviations from the prescribed pro-
tocol, as long as the coalition is subject to probabilistic polynomial-time (p.p.t.)
computations. We consider a multiplicative notion of error, i.e., we want that a

coalition A’s expected utility is at most |A|
(1−ε)·n where |A|n is the coalition’s fair

share had it played honestly; moreover, we want that any honest individual’s
expected utility is at least (1− ε)/n where 1/n is its utility if everyone partici-
pated honestly. We prefer a multiplicative notion to an additive notion, because
in practical settings, the game may be repeated many times and the absolute
value of the utility may not be as informative or meaningful. The relative gain
or loss often matters more.

Indeed, some earlier works considered such an approximate fairness notion
— for example, Pass and Shi [33] considered such a notion in the context of
consensus protocols; they want that a (minority) coalition cannot act selfishly
to increase its own gains by more than ε5. We realize, however, that such an
approximate notion is somewhat flawed and may fail to rule out some undesirable
protocols. Specifically, consider a protocol in which some bad event happens with
small but non-negligible probability, and if the bad event happens, it makes sense
for the coalition to deviate. For example, consider a contrived example.

Example. Suppose that Alice and Bob run Blum’s coin toss except that with ε
probability, Bob sends all his random coins for the commitment to Alice in the
first round. If this small-probability bad event happens, Alice should choose a
coin that lets her win. This is not a desirable protocol because with small but
non-negligible probability, it strongly incentivizes Alice to deviate.

However, the above protocol is not ruled out by the aforementioned notion of
approximate fairness: since the probability of the bad event is small, the a-

5 Pass and Shi [33] do not consider the threat of a coalition targeting an individual.

5



priori motivation for Alice or Bob to deviate is indeed small. In the online full
version [15], we give another (arguably less contrived) counter-example that also
violates sequential fairness.

We propose a new approximate fairness notion called sequential approximate
fairness that avoids this drawback, and characterizes a more desirable space of
solution concepts. At a very high level, our new notion says, it is not enough for
a coalition to not have a-priori noticeable incentives to deviate, rather, we want
the following stronger guarantee: except with negligible probability, at no point
during the protocol execution should a coalition have noticeable (i.e., ε) incentive
to deviate, even after having observed the history of the execution so far.

Remark 1. In the online full version [15], we show that the non-sequential ap-
proximate fairness notion is in fact equivalent to a multiplicative approximate
variant of the Rational Protocol Design (RPD) notion proposed by Garay et
al. [22–24]. However, as mentioned, we believe that our new sequential approxi-
mate notion provides a better solution concept.

Lower bound. The tournament-tree protocol achieves perfect fairness (i.e., ε = 0)
in an ideal “commit-and-immediately-open” model. That is, the protocol pro-
ceeds in log n iterations where each iteration consists of a commitment and a
subsequent opening for every player. In the online full version [15], we prove a
lower bound showing that in the operational model of the tournament-tree proto-
col, i.e., if we insist on perfect fairness (assuming idealized commitments) as well
as immediate opening of committed values, unfortunately Θ(log n) rounds is op-
timal. This lower bound provides a useful sanity check and guideline for protocol
design. In comparison, our protocol achieves sub-logarithmic round complexity
by introducing the approximate fairness relaxation and general cryptographic
techniques. It is an open direction to precisely characterize the minimal condi-
tions/assumptions under which sub-logarithmic rounds become possible.

Theorem 2 (Informal: some relaxations in our design are necessary).
Assume the ideal commitment model. If commitments must be opened immedi-
ately in the next round and perfect fairness is required, then Ω(log n) rounds is
necessary.

Our work complements the recent prior work of Chung et al. [14] and makes
a new step forward at understanding the mathematical landscape of game-
theoretically fair, multi-party coin toss. Unlike the de facto unbiasability notion,
however, our understanding of game-theoretic fairness in multi-party protocols
is only just beginning, and there are numerous open questions. We describe some
open questions in the online full version [15].

1.3 Motivating Applications and Scope of Our Work

Our work should be viewed as an initial theoretical exploration of the round com-
plexity of game-theoretically fair leader-election. We do not claim practicality;
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however, it is indeed an exciting future direction to design practical variants of
our ideas.

Having said this, interestingly, the original inspiration that led the formula-
tion of this problem as well as our game theoretic notions comes from emerg-
ing decentralized applications [5, 6, 9, 31]. In a decentralized environment, often
pseudonyms or public keys are cheap to create, and thus it may well be that many
pseudonyms are controlled by the same entity, i.e., the classical honest major-
ity assumption is not reasonable. Some works orthogonal and complementary to
our paper [30] aim to make it more costly to establish identities in decentral-
ized applications, nonetheless, even with such DoS-defense mechanisms, honest
majority may not be a reasonable assumption.

A line of work [5, 9] considered how to achieve a “financially fair” n-party
lottery over cryptocurrencies such as Bitcoin and Ethereum. These works adopt
game-theoretic fairness notions similar in spirit to ours, but they rely on collat-
eral and penalty mechanisms to achieve fairness. In comparison, in our model,
we aim to achieve fairness without having to rely on additional assumptions such
as collateral and penalty. A couple recent works [6, 31] also pointed out that
collateral and penalty mechanism can be undesirable and should be minimized
in mechanism design in decentralized blockchain environments.

Leader election is also needed in decentralized smart contracts where one may
want to select a service provider among a pool to provide some service, e.g., act
as the block proposer, generate a verifiable random beacon, or verifiably perform
some computational task, in exchange for rewards. In this case, providers may
wish to get elected to earn a profit. A coalition may also wish to monopolize
the eco-system by harming and driving away smaller players (potentially even
at the cost of near-term loss). Conversely, a small player may be concerned
about protecting itself in worst-possible scenarios. Our game-theoretic notion
guarantees that no matter which of objectives a player or coalition has, it has
no noticeable incentive to deviate from the honest protocol. In such blockchain
settings, typically the blockchain itself can serve as a broadcast channel, and a
round can be a confirmation delay of the blockchain6.

2 Technical Overview

In this section, we will go through a few stepping stones to derive an O(log log n)-
round protocol achieving (1 − o(1))-approximate fairness. We defer the fully
parametrized version to the subsequent formal sections.

6 Why and how blockchain can formally realize/approximate a broadcast channel is
outside the scope of our paper, and has been extensively studied in a line of works on
distributed consensus. We simply assume broadcast as given, a modeling approach
that has been adopted in the long line of work on multi-party computation. In fact,
our protocol execution model is no different from the standard literature on multi-
party computation — see Section 2.1.
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2.1 Leader Election Protocol

A leader election protocol (also called lottery) involves n players which exchange
messages over pairwise private channels as well as a common broadcast channel.
The protocol execution proceeds in synchronous rounds: in every round, players
first receive new messages, then they perform some local computation, and send
new messages. We assume a synchronous network where messages posted by
honest players can be received by honest recipients in the immediate next round.
At the end of the final round, everyone can apply an a-priori fixed function f
over all messages on the broadcast channel to determine a unique leader from [n],
i.e., the result is publicly verifiable. For correctness, we require that in an honest
execution where all players faithfully follow the protocol, the elected leader be
chosen uniformly at random from [n].

A subset of the players (often called a coalition) may decide to deviate from
the honest strategy. Such a coalition can perform a rushing attack: during a
round, players in the coalition (also called corrupt players) can wait to read all
messages sent by honest players in this round, then decide what messages they
should send in the same round.

Throughout the paper, we assume that an execution of the protocol is parametrized
with a security parameter κ, since the protocol may adopt cryptographic primi-
tives. We assume that the number of players n is a polynomially bounded func-
tion in κ; without loss of generality we assume that n ≥ κ.

2.2 Non-Sequential Approximate Fairness

For simplicity, we first present an overview of our upper bound using the non-
sequential notion of approximate fairness. However, in subsequent formal sec-
tions, we will actually define a better solution concept called sequential approxi-
mate fairness, and prove our protocols secure under this better solution concept.

Chung et al. [14] considered game theoretic fairness in a setting where n
parties wish to toss a binary coin. They considered perfect fairness notions and
coined them cooperative-strategy-proofness and maximin fairness, respectively.
Below we give the natural approximate versions of these notions:

– CSP-fairness: we say that a leader election protocol achieves (1−ε)-cooperative-
strategy-proofness against a (non-uniform p.p.t.) coalition A ⊂ [n], iff no
matter what (non-uniform p.p.t.) strategy A adopts, its expected utility is at

most |A|
(1−ε)n . We often write CSP-fairness in place of “cooperative strategy

proofness” for short.

– Maximin fairness: we say that a leader election protocol achieves (1 − ε)-
maximin-fairness against a (non-uniform p.p.t.) coalition A ⊂ [n], iff no
matter what (non-uniform p.p.t.) strategy A adopts, any honest individual’s
expected utility is at least (1− ε)/n.

Approximate maximin-fairness and approximate CSP-fairness are not equiv-
alent — we give more explanations in the online full version [15].
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Remark 2 (Coalition-resistant notions of equilibrium). In our definitions, we
consider the deviation of a single coalition. This definitional approach is stan-
dard in game theory [1–4,19–21,25,29,36,38], since the philosophy is to capture
the notion of an approximate equilibrium in the sense that no coalition has no-
ticeable incentives to deviate. Our equilibrium notion is coalition-resistant. In
comparison, the standard notion of (approximate) Nash equilibrium typically
considers deviation of a single player, and therefore is weaker than our notions
in this sense.

Remark 3 (Choice of ε). In our formal results later, we will use ε = o(1) — in
fact, our result will be parametrized. For simplicity, in the informal roadmap, it
helps to think of ε = 1%.

2.3 A Strawman Scheme

Although in our final scheme we do NOT use random oracles (RO), it is instruc-
tive to think about a strawman scheme with an RO. Interestingly, this approach
is inspired by recent proof-of-stake consensus protocols [17,28].

Strawman: RO-based committee election + tournament tree

1. Every player i ∈ [n] broadcasts a bit xi ∈ {0, 1}, and we use RO(x1, . . . , xn)
to elect committee of size log9 n. If a player i fails to post a bit, we treat
xi := 0.

2. The committee runs the tournament-tree protocol to elect a final leader.

One can easily show that this approach achieves (1− ε)-CSP-fairness against
any coalition A containing at least ε/2 fraction of the players — we call a coalition
at least ε/2 fraction in size a large coalition. The argument is as follows. Since
the second step, i.e., tournament tree, is in some sense “ideal”, to increase its
expected utility, the coalition A ⊂ [n] must include as many of its own members
in the committee as possible. Suppose that ε = 1%. For a fixed RO query, the

probability that it selects a bad committee, i.e., one with more than |A|
(1−ε)·n

fraction of coalition players, is negligibly small by the Chernoff bound. Since the
coalition is computationally bounded and can make at most polynomially many
queries to RO, by the union bound, except with negligible probability, all of its
RO queries select a good committee.

Unfortunately, this scheme suffers from a couple serious flaws:

– Drawback 1: NOT approximately maximin-fair: a coalition A can harm an
individual i /∈ A as follows: wait till everyone not in A broadcasts their bits,
and then try different combinations of bits for those in A to find a combination
that excludes the player i from the committee. This attack can succeed with
1− o(1) probability if |A| = Θ(log n).

– Drawback 2: NOT approximately CSP-fair against a small coalition: a profit-
seeking individual i is incentivized to deviate in the following manner: i can
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wait for everyone else to post bits before posting its own bit denoted xi. In
this way it can increase its advantage roughly by a factor of 2 since it can try
two choices of xi. This attack can be extended to work for small coalitions too.

The second drawback is somewhat surprising at first sight, since we proved
the strawman scheme to be CSP-fair against large coalitions (i.e., at least ε/2
fraction in size). The reason is because the Chernoff bound proof gives only sta-
tistical guarantees about a population, but does not give meaningful guarantees
about an individual or a very small group of players.

Remark 4. In the above strawman, one can also replace the committee election
with a single iteration of Feige’s lightest bin protocol [20]. The resulting pro-
tocol would still be (1 − ε)-CSP-fair, although it suffers from exactly the same
drawbacks as the RO-based strawman. The upgrade techniques described in Sec-
tion 2.4, however, is compatible only with the RO-based approach — and this is
why we start with the RO-based approach. However, intriguingly, we will indeed
make use of the lightest bin protocol later in Section 2.5 where we show how to
get rid of the RO.

2.4 Warmup: A Game Theoretically Fair, RO-Based Protocol

We now discuss how to fix the two drawbacks in the previous strawman scheme.
We will still have an RO in the resulting warmup scheme; however, in the im-
mediate next subsection, we will discuss techniques for removing the RO, and
obtain our final construction.

The first drawback is due to a potentially large coalition A choosing its coins
(after examining honest coins) to exclude some individual i /∈ A from the com-
mittee. The second drawback is due to a small coalition A containing less than
ε fraction of the players choosing its coins to help its members get included.
To tackle these drawbacks, our idea is to introduce virtual identities henceforth
called v-ids for short. Basically, we will use the RO to select a committee con-
sisting of v-ids. When the RO’s inputs are being jointly selected, we make sure
that 1) a potentially large coalition A has no idea what each honest individual’s
v-id is and thus A has no idea which v-id to target; and 2) a small coalition has
no idea what its own v-ids are, and thus it has no idea which v-ids to help.

To achieve this, each player i’s final v-id will be the xor of two shares: a
share chosen by the player itself henceforth called the unmasked v-id, and a
share jointly chosen by a special, honest-majority protocol, henceforth called
the mask. In the beginning, the player itself commits to its own unmasked v-id,
and the MPC protocol jointly commits to each player’s mask. Next, the players
jointly choose the inputs to the RO. Finally, each player reveals its own unmasked
v-id, and then the MPC protocol reconstructs all players’ masks.

Special honest-majority MPC. Instantiating these ideas correctly, however, turns
out to be rather subtle. A generic honest-majority MPC protocol does not guar-
antee anything when there is a large coalition. In our case, when the coalition is
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large, it can fully control the mask value. However, we do need that even with
(1 − ε)n-sized coalitions, the mask value must be uniquely determined at the
end of the sharing phase, and reconstruction is guaranteed. More specifically, we
want our special, honest-majority MPC to satisfy the following properties for
some small η ∈ (0, 1) (think of η = ε/2):

– If |A| ≤ ηn, we want that at the end of this sharing phase, A has no idea
what its own masks are;

– As long as |A| < (1− 2η)n, at the end of the sharing phase, the mask value
to be reconstructed is uniquely determined, and moreover, reconstruction is
guaranteed to be successful.

The following Fηmpc ideal functionality describes what we need from the
honest-majority MPC. For simplicity, in our informal overview, we will describe
our protocols assuming the existence of this Fηmpc ideal functionality. Later in
Section 4.2, we will instantiate it with an actual, constant-round cryptographic
protocol using bounded concurrent MPC techniques [32]. Technically, the real-
world cryptographic instantiation does not securely emulate Fmpc by a standard
simulation-based notion; nonetheless, we prove in the online full version [15] that
the fairness properties we care about in the ideal-world protocol (using idealized
cryptography) extend to the real-world protocol (using actual cryptography).

Fηmpc: special, honest-majority MPC functionality

Sharing phase. Upon receiving share from all honest players, choose a
random string coins. If the coalition size |A| ≥ ηn, the adversary is asked
to overwrite the the variable coins to any value of its choice. Send ok to all
honest players.

Reconstruction phase. Upon receiving recons from all honest players: if
|A| ≥ (1− 2η)n, the adversary may, at this point, overwrite the string coins
to its choice. Afterwards, in any case, send coins to all honest players.

Our warmup RO-based protocol. Now, it helps to describe our protocol first, then
we explain the additional subtleties. We describe our warmup protocol using an
idealized commitment scheme, as well as the Fmpc functionality described earlier.

Our warmup RO-based protocol

1. Every player i ∈ [n] commits to a randomly selected unmasked v-id
yi ∈ {0, 1}v where 2v = n · poly log n.

2. Send share to Fε/2mpc and receive ok from Fmpc.
3. Every player i ∈ [n] broadcasts a bit xi. Let x be the concatenation of

all of {xi}i∈[n] in increasing order of the players’ indices — here for any
player j who has aborted, its xj is treated as 0.

4. Every player i ∈ [n] now opens its committed unmasked v-id yi ∈ {0, 1}v.
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5. All honest players send recons to Fε/2mpc, and they each receive a mask

vector z from Fε/2mpc.
6. Parse z := (z1, . . . , zn) where each zj ∈ {0, 1}v for j ∈ [n]. We now view
yi ⊕ zi player i’s final v-id. A player i is a member of the committee C
iff 1) it correctly committed and opened its unmasked v-id yi; 2) its final
v-id yi⊕zi is chosen by RO(x); and 3) its final v-id yi⊕zi does not collide
with anyone else’s final v-id— we may assume that anyone who aborted
has the final v-id ⊥.

7. The committe C runs the tournament-tree protocol to elect a leader.

Additional subtleties. At this moment, it helps to point out a few additional
subtleties.

1. Unique reconstruction even under a majority coalition. First, recall that even
in the presence of a (1−ε)-coalition, we wanted our Fmpc to guarantee unique-
ness of the reconstructed mask z at the end of the sharing phase. This is
important because we do not want the coalition to see the RO’s outputs and
then choose the mask vector z a-posteriori to exclude some honest individual
from the final committee or to include all of the coalition members.

2. The need for collision detection. Second, notice that the protocol prevents
colliding final v-ids from being elected into the final committee. Such a col-
lision detection mechanism is necessary since otherwise, the following attack
would be possible7: a 99% coalition can make all of its members choose the
same final v-id— it can do that because it controls its members’ unmasked
v-ids as well as the mask value. Now, the 99% coalition can choose its in-
put bits to the RO to help this particular final v-id. In this way, with high
probability, all coalition members can be elected into the final committee.

3. Proving sequential approximate fairness. Last but not the least, so far we
have only focused on the non-sequential notion of fairness, and it turns out
that proving the sequential notion is much more subtle. In our formal proofs
later (see Sections 5 and the online full version [15]), we will do a round-by-
round argument to show that except with negligible probability, in no round
of the protocol would the coalition have noticeable incentive to deviate.

Since this warmup construction is not our final scheme, we will not formally
prove the warmup construction. Instead, we now explain how to get rid of the
RO to get our final scheme.

2.5 Final Construction: Removing the Random Oracle

To remove the RO, our idea is to replace the committee election with a two-
phase approach, where the first phase uses a single iteration of Feige’s lightest-
bin protocol [20] and the second phase uses a combinatorial object called a

7 We describe this attack for illustration purposes to help understanding. Of course,
we will later prove our final construction secure against all possible p.p.t. coalition
strategies.
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sampler [37] in place of the RO. We briefly describe the intuition below. The
actual scheme, calculations, and proofs are more involved especially for getting
the more general, parametrized result, and we defer the full description to the
subsequent formal sections.

Background. We will rely on a combinatorial object called a sampler which is
known to be equivalent to a seeded extractor [37]8. A sampler, denoted as Samp,
is a combinatorial object with the following syntax and properties: given an input
x ∈ {0, 1}u, Samp(x) returns d sample points z1, . . . , zd ∈ {0, 1}v from its output
space. A sampler is supposed to have good, random-sampling-like properties.
Consider a predicate function f : {0, 1}v → {0, 1}. The population mean of f
over its inputs is defined as is 1

2v

∑
z∈{0,1}v f(z). The d sample points define

a sample mean 1
d

∑d
j=1 f(zj), which ideally should be close to the population

mean. An (εs, δs)-averaging sampler Samp guarantees that for any f , at least a
1 − δs fraction of the inputs will lead to a sample mean that differs from the
population mean by at most εs additively.

Intuition. A flawed idea is to directly replace the RO in the warmup scheme with
a sampler. To do so, the nature of our proof for this specific step will have to
change: in the warmup scheme, we relied on the fact that the coalition can make
only polynomially many queries to RO in our fairness proof. With a sampler,
however, we must make a combinatorial argument here that does not depend
on the adversary’s computional bounds (although to reason about other parts
of the scheme involving the commitment and the MPC, we still need to make
computational assumptions on the adversarial coalition). Specifically, we want
to argue that no matter which subset of players form a coalition, as long as the
coalition’s size is, say, between 0.01n and 0.99n, then almost all honest inputs
xH resist even the worst-case attack, in the sense that there does not exist a
xA such that x = (xH , xA) would form a bad input to Samp9. Here x is said to
be a bad input to Samp if Samp(x) selects a committee in which the fraction of
coalition players is noticeably higher than |A|/n.

Suppose that we want to select a log9 n-sized committee, and the final v-id
space is of size n log3 n. In this case, we would need the sampler to select roughly
d = log12 n output points. A calculation using the probabilistic method suggests
that in this case, we cannot start with n players who jointly select the input to the
sampler — if so, there would simply be too many combinations the adversarial
coalition could try for its own input bits; and the number of bad inputs to the
sampler simply is not sparse enough to defeat so many adversarial combinations.

The parameters would work out, however, if we start out with, say, log3 n
players who jointly choose the input to the sampler. In our subsequent formal
sections, we will select parameters that work with the best known explicit sam-
pler construction [27,34,37].

8 We stress that our construction does not need a common reference string as the seed.
9 Throughout the paper, for S ⊆ [n], we use xS := {xi}i∈S to denote the coordinates

of the vector x corresponding to all players in S.
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Our idea. Given the above intuition, our idea is to adopt a two-phase committee
election approach. We first down-select to a preliminary committee of size log3 n,
and then the preliminary committee jointly choose input bits to a sampler to
select a final committee among all players, and the final committee runs the
tournament tree protocol to elect a leader among the final committee. We sketch
the protocol below while deferring a more formal description to Section 4:

– Commitment phase. As before, players commit to their unmasked v-ids and
use an honest-majority MPC to jointly commit to a mask first.

– Preliminary committee election. First, we elect a log3 n-sized preliminary
committee such that the fraction of honest players on the preliminary com-
mittee approximately matches the fraction of honest players in the overall
population. Here we do not care about the threat where a potentially large
coalition seek to exclude a specific individual or a small coalition or individual
try to include itself. It turns out that this can be accomplished by running a
single iteration of Feige’s elegant lightest bin protocol [20] in the plain model.

– Final committee election. Next, the preliminary committee jointly selects an
input to the sampler, which is used to select log9 n final v-ids among the
space of all possible v-ids— these final v-ids would form the final committee.
At this moment, the players open their unmasked v-ids, and reconstruct the
mask that was secret shared earlier by the MPC. The players’ final v-ids are
now revealed, and the final committee determined.

– Leader election. Finally, the elected, poly-logarithmically sized final commit-
tee runs the tournament-tree protocol to elect a final leader.

3 Defining Sequential Approximate Fairness

3.1 Sequential Approximate Fairness

The non-sequential fairness notions mentioned in Section 2.2 does not rule out
some undesirable protocols that may offer incentives for a coalition to deviate
with non-negligible probability. Recall the example given in Section 1 where
two parties run Blum’s coin toss except that with some small ε probability,
Bob broadcasts all its private coins in the first round. If the small (but non-
negligible) probability bad event happens, Alice should deviate and choose her
coins to definitively win. However, a-priori Alice does not have much incentive
to deviate: since the bad event happens with only ε probability, her a-priori
probability if winning is at most ε · 1 + (1− ε) · 12 = (1 + ε) · 12 , and this is only
an ε fraction more than her fair share. Nonetheless, we do want to rule out such
bad protocols since such a protocol has a non-negligible probability ε of creating
incentives for Alice to deviate.

We propose a better solution concept called sequential approximate fairness.
Roughly speaking, we require that even if the coalition is allowed to re-evaluate
whether to deviate at the beginning of every round in the protocol, except with
negligible probability, no p.p.t. coalition (of size at most (1− ε)n) should have ε
incentive to deviate at any time.
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When we try to formalize this notion of sequential rationality, we encounter
another subtlety: since our protocols will rely on cryptographic commitment
schemes, our definitions should capture the fact that the coalition is polynomi-
ally bounded. For example, it could be that there exists a set of execution prefixes
that account for non-negligible probability mass, such that if A deviated condi-
tioned on having observed those prefixes, it would have gained noticeably. How-
ever, it might be that these prefixes are computationally infeasible to recognize,
since recognizing them might involve, say, breaking cryptographic commitments.
As a result, our definitions actually stipulate that, for any polynomially bounded
coalition strategy that wants to deviate with non-negligible probability at some
point in the execution, deviating will not conditionally improve the coalition’s
utility by more than a noticeable amount.

To formally define our sequentially approximately fair notions, we first intro-
duce some probability notations.

Probability notation. In this paper, we use the acronym p.p.t. to mean expected
probabilistic polynomial-time. Let Π denote the original honest protocol. How-
ever, a non-uniform p.p.t. coalition A ⊂ [n] might deviate from the original
protocol and we use S to denote the strategy of A. As a special case, we use the
notation A(Π) to mean that the coalition A simply follows the honest protocol
and does not deviate. Let κ be the security parameter. We use the notation
tr ← ExecA(S) to denote a random sample of the protocol execution, where the
honest players [n]\A, interact with the coalition A which adopts the strategy

S. The random experiment ExecA(S) produces an execution trace tr (also called
a trace for short), which consists of all the messages and the internal states of
all players throughout the entire execution. Once the coalition A’s strategy S is
fixed, all players’ internal states and messages in all rounds would be uniquely
determined by all players’ randomness in all rounds — thus one can also equiv-
alently think of tr as the sequence of all players’ random coins in all rounds.

An event Evt(tr) is identified with its indicator function that takes a trace
tr and returns either 1 (meaning the event happens) or 0. For example, we use
WA(tr) = 1 to indicate that one player in A is elected as the leader in the end.

We use Pr[ExecA(S)(1κ) : Evt] := Pr[tr ← ExecΠ,A(S)(1κ) : Evt(tr)] to
denote the probability that when the coalition A adopts strategy S, the event
Evt happens. Similarly, given events Evt1 and Evt2, we use Pr[ExecA(S)(1κ) :
Evt1 | Evt2] to denote the conditional probability that when the coalition A
adopts strategy S and conditioning on the event Evt2, event Evt1 also happens.
The same notation extends to expectation E[·].

Deviation event. Given a strategy S of the coalition A, we define the deviation
event DevA(S)(tr) as follows:

– for each round r = 1, 2, . . .: replay the trace tr (which contains all players’
random coins) till the beginning of round r, immedately after the coalition
A has observed all honest nodes’ round-r messages; at this moment, check
whether the strategy S adopted by A would deviate from the honest protocol
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Π in round r (i.e., whether S would send a message that differs from what
the honest strategy would have sent, suppose that the random coins of S
have been fixed by the trace tr); if yes, return 1;

– return 0 if the strategy S adopted by A does not actually deviate from Π till
the end.

Intuitively, we say that a protocol satisfies sequential CSP-fairness against
the coalition A iff either A never wants to deviate except with negligible proba-
bility (condition 1 in Definition 1); or conditioned on deviating, A does not do
noticeably better (condition 2 in Definition 1).

Definition 1 (Sequential CSP-fairness). Let ε ∈ (0, 1). We say that a leader
election protocol Π achieves (1 − ε)-sequential-CSP-fairness against a (non-
uniform p.p.t.) coalition A ⊆ [n] iff for any strategy S by A, there exist a
negligible function negl(·), such that and for all κ, at least one of the follow-
ing holds — recall that WA is the event that one of the coalition members in A
is elected leader:

1. Pr
[
ExecA(S)(1κ) : DevA(S)

]
≤ negl(κ),

2. Pr
[
ExecA(S)(1κ) : WA

∣∣ DevA(S)
]
≤ 1

1−ε ·Pr
[
ExecA(Π)(1κ) : WA

∣∣ DevA(S)
]
+

negl(κ).

In the above, the left-hand-side Pr
[
ExecA(S)(1κ) : WA

∣∣ DevA(S)
]

means the

conditional probability that A(S), i.e., a coalition A adopting strategy S, is

elected leader, conditioned on DevA(S), i.e., that A(S) decided to deviate from

honest behavior. The right-hand-side Pr
[
ExecA(Π)(1κ) : WA

∣∣ DevA(S)
]

means

the conditional probability for A to win, had A continued to adopt the honest
strategy throughout, even though A(S) had wanted to deviate at some point in
the protocol — the conditional probability is calculated when conditioning on
traces where A(S) would have deviated10. Intuitively, Condition 2 above says
that conditioned on the strategy S deciding to deviate, the coalition A cannot
benefit itself noticeably in comparison with just executing honestly to the end.

We can similarly define the sequential approximate maximin fairness.

Definition 2 (Sequential maximin fairness). Let ε ∈ (0, 1). We say that a
leader election protocol Π achieves (1− ε)-sequential-maximin-fairness against a
(non-uniform p.p.t.) coalition A ⊆ [n] iff for any strategy S by A, there exist a
negligible function negl(·), such that for all κ, at least one of the following holds:

10 Note that the event DevA(S)(tr) is well-defined, even if tr is sampled from ExecA(Π),
i.e., an execution in which A adopts the honest strategy. In this case, DevA(S)(tr)
means the following: had A instead adopted the strategy S rather than the honest
strategy Π, is there a round in which S would have started to deviate from the honest
protocol, given that all players’ randomness in all rounds is fixed by tr .
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1. Pr
[
ExecA(S)(1κ) : DevA(S)

]
≤ negl(κ),

2. for any i /∈ A, let W i be the event that player i is elected as the leader, it
holds that

Pr
[
ExecA(S)(1κ) : W i

∣∣ DevA(S)
]
≥ (1−ε)·Pr

[
ExecA(Π)(1κ) : W i

∣∣ DevA(S)
]
−negl(κ).

The following fact says that the sequentially rational notions implies the
corresponding non-sequential counterparts defined earlier in Section 2.2.

Fact 1 (Sequential notions are stronger) Let ε(n, κ) ∈ (0, 1) be a non-negligible
function. If a leader election protocol satisfies (1 − ε)-sequential-CSP-fairness
(or (1− ε)-sequential-maximin-fairness resp.) against the coalition A ⊆ [n], then
for ε′(n, κ) = ε(n, κ) + negl(κ) where negl(·) is some negligible function, then,
the same protocol also satisfies non-sequential (1 − ε′)-CSP-fairness (or non-
sequential (1− ε′)-maximin-fairness resp.) against A.

Proof. Deferred to the online full version [15].

We show that if the slack ε is constrained to being negligibly small, then in
fact the non-sequential notions imply the sequential notions too. However, this
direction is not true when the slack ε may be non-negligible.

Fact 2 If a protocol Π satisfies (1 − negl(κ))-CSP-fairness (or (1 − negl(κ))-
maximin-fairness resp.) against the coalition A ⊂ [n] for some negligible func-
tion negl(·), then Π satisfies (1 − negl′(κ))-sequential-CSP-fairness (or (1 −
negl(κ))-sequential-maximin-fairness resp.) against A for some negligible func-
tion negl′(·).

Proof. Deferred to the online full version [15].

3.2 Fairness of the Tournament Tree Protocol

Instantiated with a suitable cryptographic commitment protocol (described in
the online full version [15]), the folklore tournament-tree protocol satisfies (1−
negl(κ))-sequential-CSP-fairness and (1 − negl(κ))-sequential-maximin-fairness
against coalitions of arbitrarily sizes, as stated below:

Theorem 3 (Tournament-tree protocol). Suppose that n is the number of
players and κ is the security parameter. Then, the tournament-tree protocol,
when instantiated with a suitable publicly verifiable, non-malleable commitment
scheme as defined in the online full version [15], satisfies (1−negl(κ))-sequential-
CSP-fairness and (1−negl(κ))-sequential-maximin-fairness against coalitions of
arbitrarily sizes. Moreover, the number of rounds is O(log n).

Proof. Deferred to the online full version [15].
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4 Formal Description of Our Scheme

4.1 Description of Our Scheme Assuming Idealized Cryptography

Our scheme makes use of an (εs, δs)-averaging sampler which we define in the
online full version [15]. We will first describe our scheme assuming idealized
commitments Fcomm and an ideal MPC functionality Fmpc described earlier
in Section 2.4. Later in Section 4.2, we will instantiate the ideal cryptographic
primitives with actual cryptography. In the scheme below, committing to a value
is performed by sending it to Fcomm, and opening is performed by instructing
Fcomm to send the opening to everyone.

Our leader election protocol (assuming idealized cryptography)

Parameters. For some r := r(n), suppose that we would like to achieve
round complexity O(r) satisfying C0 log log n < r(n) < C1 log n, where C0

and C1 are suitable constants. We set the parameters as follows:

– LetB := n
29r such that the expected number of players in a bin (assuming

honest behavior) is n
B = 29r in the preliminary committee election.

– The parameters of the sampler are chosen as below: v is chosen such

that 2v

n = 20.5r. Let εs := 2−6r, and δs := 2−(1−
ψ
2 )|U|, where ψ denotes a

lower bound on the fraction of honest players, we shall assume ψ ≥ 1
2Θ(r) ,

which means that |A| ≤ (1 − 1
2Θ(r) )n. Let d = (|U|/εs)c̃, where c̃ is the

universal constant specificied in the online full version [15].

– Let η := 1/20.2r.

Our protocol.

1. Elect the preliminary committee U using lightest bin. Everyone i ∈ [n]
broadcasts a random index βi ∈ [B] indicating its choice of bin where
B denotes the number of bins. The bin with the lightest load is selected
as the preliminary committee U . Break ties with lexicographically the
smallest bin.

2. Elect the final committee C. Let Samp : {0, 1}|U| → {{0, 1}v}d denote
an explicit (εs, δs)-averaging sampler. If it is not the case that |U| ≥
log 1

δs
+ c · v (see the online full version [15]), simply abort with the

exception param error and output player 1 as the leader.

(a) Every player sends share to Fηmpc, and receives ok from Fηmpc.
(b) Every player i ∈ [n] commits to a randomly selected unmasked v-id

henceforth denoted yi ∈ {0, 1}v.
(c) Every player in the preliminary committee i ∈ U broadcasts a bit xi.

Let x be the concatenation of all of {xi}i∈U in increasing order of the
players’ indices — here for any player j who has aborted, its xj is
treated as 0.

(d) Every player i ∈ [n] now opens the committed string yi ∈ {0, 1}v.
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(e) Input recons to Fηmpc, and receive a mask vector z from Fηmpc.
(f) Parse z := (z1, . . . , zn) where each zj ∈ {0, 1}v for j ∈ [n]. We now

view yi ⊕ zi as player i’s finalized v-id, which corresponds to a point
in the output range of the sampler Samp. The final committee C is
defined as a multiset constructed as follows: for j ∈ [d], if there is
exactly one player i ∈ [n] who opened yi and whose final v-id yi⊕zi =
Sampj(x), then add i to C.

3. Elect leader among final committee. The final committee run the tournament-
tree protocol to elect a final leader.a In case the final committee is empty,
simply output player 1 as the leader.

a When the ideal Fcomm and Fηmpc are instantiated with actual cryptography
later in Section 4.2, the opening/reconstruction messages will be posted to the
broadcast channel such that the elected leader can be determined from the
collection of messages posted to the broadcast channel.

4.2 Instantiating the Scheme with Real-World Cryptography

Our final protocol replaces the ideal commitment and Fmpc with actual cryptog-
raphy. To achieve this, we take an intermediate step and consider an IdealZK-
hybrid protocol where IdealZK is an idealized zero-knowledge proof function-
ality which we formally define in the online full version [15]. We first instantiate
the ideal commitment and Fmpc using a protocol in the IdealZK-hybrid world,
and then we use the elegant techniques of Pass [32] to instantiate the protocol
with actual cryptography with only O(1) round blowup, while allowing bounded
concurrent composition without any common reference string or trusted setup. In
our case, the total number of concurrent sessions of the cryptographic protocols
is a-priori known given n.

Instantiating the ideal commitments with non-malleable commitments. We will
instantiate the ideal commitments using a publicly verifiable, non-malleable com-
mitment (NMC) scheme which is defined in the online full version [15]. Basically,
to commit to a string, a player invokes n instances of NMC, one for each of the
n recipients. To open a previously committed string, post the openings corre-
sponding to all n instances, and the opening is successful iff all n instances open
to the same string. We may assume that messages are posted to the broadcast
channel and it can be publicly checked what a commitment opens to. An honest
committer’s commitment will always successfully open even when the receiver is
malicious.

Instantiating the Fmpc with bounded concurrent zero-knowledge proofs. To in-
stantiate Fmpc with actual cryptography, we first instantiate it in IdealZK-
hybrid world. Then, we use the bounded concurrent zero-knowledge proofs of
Pass [32] to replace the IdealZK instances with actual zero-knowledge proofs.

Therefore, it suffices to describe how to replace Fmpc with a protocol Πmpc

in the IdealZK-hybrid world. This protocol actually does not realize Fmpc with
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full simulation security11. Yet, we can later prove that when we replace Fmpc

with this protocol, the game theoretic fairness properties we care about extend
to the real-world protocol.

Πmpc: instantiating Fηmpc in the IdealZK-hybrid world

Let comm be a perfectly binding and computationally hiding (non-interactive)
commitment scheme. We assume that committing to a string is accom-
plished by committing to each individual bit. Let η ∈ (0, 1) be a parameter.

Sharing phase.

1. Every player i chooses a random string coinsi ∈ {0, 1}vn. It splits coinsi
into a dη · ne-out-of-n Shamir secret shares, and let coinsi,j be the j-
th share. Next, for each j ∈ [n], player i computes the commitment
coinsi,j := comm(coinsi,j , ρi,j) where ρi,j denotes some fresh randomess
consumed by the commitment scheme, and it posts the commitment
message {coinsi,j}j∈[n] to the broadcast channel.

2. Player i does the following for each j ∈ [n]:
– invokes an IdealZK instance denoted IdealZKi,j to prove that the

commitment message {coinsi,k}k∈[n] it has posted is computed cor-

rectly, by supplying to IdealZKi,j 1) the statement {coinsi,k}k∈[n]
and 2) all the random coins used in computing the commitment mes-
sage. IdealZKi,j checks the following NP relation: all the commit-
ments are computed correctly, and moreover, the openings form a
valid dηne-out-of-n secret sharing.

– gives player j the opening (coinsi,j , ρi,j).

3. A player i ∈ [n] does the following: for every j ∈ [n], if player i
– has seen a message {coinsj,k}k∈[n] posted by j;

– has received the message ({coinsj,k}k∈[n], 1) from IdealZKj,i where
the statement must match the message posted by j; and

– has received a correct opening (coinsj,i, ρj,i) w.r.t. the i-th coordinate
of j’s posted message {coinsj,k}k∈[n], that is, coinsj,i.

then, it posts the tuple (ok, j) to the broadcast channel.

4. Every player i does the following: for every j ∈ [n] who has obtained an
approval message ok from at least (1− η)n players, add j to the set S.
If |S| ≥ ηn, then let succ := 1; else let succ := 0. Output ok.

Reconstruction phase. If succ = 0, simply output the 0 vector. Else continue
with the following.

11 The reason we do not fully simulate Fmpc is due to technicalities arising from the
requirement that the outcome of the leader election be publicly computable from all
the messages posted to the broadcast channel.
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1. For every player j ∈ S, if the current player i posted (ok, j) during
the sharing phase, then let (coinsj,i, ρj,i) be the correct opening received
from j during the sharing phase, post (j, coinsj,i, ρj,i) to the broadcast
channel.

2. For every tuple (j, coinsj,k, ρj,k) received from some player k ∈ [n], if
j ∈ S and (coinsj,k, ρj,k) is a valid opening w.r.t. the k-th coordinate of
j’s commitment message posted during the sharing phase, then accept
this share (k, coinsj,k) of coinsj .
For every j ∈ S, use all accepted shares to reconstruct coinsj . Output
z := ⊕j∈Scoinsj if the reconstruction of every coinsj for j ∈ S is success-
ful; else output the vector 0.

Theorem 4 (Main theorem). Assume the existence of enhanced trapdoor per-
mutations and collision resistant hash functions. Then, there exists an O(r)-
round leader election protocol that achieves (1 − 2−Θ(r))-sequential-maximin-
fairness against a non-uniform p.p.t. coalition of size at most (1 − 2−Θ(r)) · n,
and (1− 2−Θ(r))-sequential-CSP-fairness against a non-uniform p.p.t. coalition
of arbitrary size.

Proof. The theorem results from the construction presented in this section. The
detailed proofs are presented in Sections 5 and the online full version [15].

5 Proofs for the Ideal-World Protocol

5.1 Bounding the Preliminary Committee’s Size

Since the preliminary committee U is chosen from a lightest bin, it is immediate
that |U| ≤

⌊
n
B

⌋
. The next lemma states that there is a sufficient number of

honest players in U with high probability.

Lemma 1 (Sufficient honest players in the preliminary committee).
Suppose for some ψ ∈ (0, 0.5), there are at least ψ · n honest players. Let |UH |
denote the number of honest players in the preliminary committee U . Then, for
γ ∈ (0, 1), the following holds:

Pr

[
|UH | ≤ (1− γ) · ψn

B

]
≤ B · exp

(
−γ2 · ψn

2B

)
.

In particular, if n
B = 29r and C0 log log n ≤ r ≤ C1 log log n for appropriate

constants C0 and C1, and ψ ≥ 2−r, then the number of honest players in the
preliminary committee is at least 0.9ψn/B, except with exp(−27r) probability.

Proof. By the Chernoff bound, except with probability exp
(
−γ2 · ψn2B

)
, the num-

ber of honest players in any particular bin is greater than (1−γ) · ψnB . The union
bound over all the B bins gives the required result.
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The following fact makes sure that the sampler needed by our protocol exists
except with doubly-exponentially small in r probability as long as at least a
ψ(n) ≥ 1/2r fraction of the players are honest.

Fact 3 Suppose that the honest fraction ψ ≥ 1
2r and that our protocol uses the

aforementioned parameters. We have that |U| ≥ log(1/δs) + c · v except with
exp(−Ω(27r)) probability.

Proof. Since we choose δs := 2−(1−
ψ
2 )|U|, the expression to verify can be rewritten

as |U| ≥ (1− ψ/2)|U|+ c · v, which is equivalent to:

0.5ψ · |U| ≥ c · v = c · (log n+ 0.5r).

Due to Lemma 1, the size of the preliminary committee is at least 0.9ψn
B , except

exp(−Ω(27r)) probability. Therefore, it suffices to show that

0.5ψ · 0.9ψn/B ≥ 0.45 · 2−2r · 29r ≥ c · (log n+ 0.5r),

where the last inequality holds as long as r ≥ C0 log log n for a sufficiently large
constant C0.

5.2 Terminology and Notations

We first present proofs for our protocol in Section 4 assuming idealized Fcomm

and Fmpc. However, we shall assume that the tournament-tree protocol is instan-
tiated with real cryptography as explained in the online full version [15], since
we will use the tournament-tree protocol’s fairness properties as a blackbox in
our proofs. In the online full version [15], we prove that the relevant security
properties extend to the real-world protocol when the idealized cryptographic
primitives are instantiated with actual cryptography.

Recall that A denotes the coalition; we often refer to players in A as corrupt
and players outside A as honest. Further, we often use the notationH := [n]\A to
denote the set of honest players. For S ⊆ [n], we use the notation xS := {xi}i∈S
and yS is also similarly defined.

5.3 Composition of the Final Committee

Lemma 2 (Final committee composition). Suppose that the honest fraction
ψ ≥ 2η = 2 · 1

20.2r and that our protocol uses the aforementioned parameters.
Fix N to be an arbitrary set of (distinct) final v-ids in the sampler’s output
range {0, 1}v where |N | ≤ n. Let CN be the (multi-)set of final v-ids in N
chosen by Samp(x). Let12 ε0 = εs · 2v

|N | . Then, conditioned on no param error and

|UH | ≥ 0.9ψ · n/B, with probability at least 1− exp(−Ω(27r)) over the choice of

xH , CN has size in the range [1− ε0, 1 + ε0] · d · |N |2v .

12 Note that ε0 would be very large if N is too tiny, but our usage later will guarantee
that N is not too tiny.
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Alternatively, suppose there is some upper bound |N | ≤ N , and we set ε0 =
εs · 2

v

N . Then, with conditional probability at least 1 − exp(−Ω(27r)) under the

events, CN has size at most (1 + ε0) · d · N2v .

Proof. Let the final committee CN be the multi-set of v-ids in N chosen by
the Samp(x). We shall show that, using the sampler theorem in the online full
version [15], except with probability p := exp(−Ω(26r)) over the choice of xH ,

|CN | ∈ [1− ε0, 1 + ε0] · d · |N |
2v

. (1)

Observing that εs = ε0 · |N |2v , by the property of the (εs, δs)-averaging sampler,

except for at most 2|U| · δs = 20.5ψ|U| number of bad inputs to the sampler, the
size of CN satisfies (1).

We say that some choice of xH∩U is bad if there exists a corrupt choice of
xA∩U such that the combination of xH∩U and xA∩U (arranged in the right order)
will lead to CN such that (1) is violated. Otherwise, we say that xH∩U is good.
Note that if xH∩U is good, it means that no matter how the adversary chooses
xA∩U , it cannot make CN violate (1).

Since honest players choose their xH∩U at random, we next claim that the
fraction of bad xH∩U is bounded by 2−0.3ψ|U| ≤ 2−0.27ψ

2·n/B ≤ 2−Ω(27r). The
claim is true; otherwise, the number of bad inputs to the sampler is at least
2−0.3ψ|U| · 20.9ψ|U| = 20.6ψ|U| and thus we have reached a contradiction. Finally,
a union bound over all the above bad events shows that except with probability
at most exp(−Ω(27r)), CN respects the range in (1).

The alternative case when there is an upper bound |N | ≤ N uses the same
argument, but we just need one direction of the inequality from the sampler.

The above Lemma 2 immediately implies the following bound on the final
committee size.

Lemma 3 (Final committee not too large). Suppose that the honest frac-
tion ψ > 2η = 2· 1

20.2r and that our protocol uses the aforementioned parameters.

Let ε0 = εs · 2
v

n = 2−5.5r. Then, with probability at least 1 − exp(−Ω(26r)), the

final committee C has size at most (1 + ε0) · d · n2v ≤ 2O(r), and the protocol does
not throw param error. In particular, with probability at least 1− exp(−Ω(26r)),
the protocol has round complexity at most O(r).

Proof. Due to Lemma 1, except with exp(−Ω(27r)) probability, |UH | ≥ 0.9ψ ·
n/B ≥ 0.9ψ · |U|. Further, due to Fact 3, param error does not happen except
with exp(−Ω(27r)) probability. Conditioned on these bad events not happening,
we now use Lemma 2. In this case, the n players can choose at most n final v-ids,
i.e., |N | ≤ n. The range in (1) implies that except with exp(−Ω(26r)) over the
choice of xH , the final committee C has size at most:

d(
n

2v
+εs) = (1+ε0)·d· n

2v
≤ d·(2−0.5r+2−6r) = (1+2−5.5r)·(|U|/εs)c̃·2−0.5r ≤ (1+2−5.5r)·215rc̃·2−0.5r.
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We shall consider the following bad events in our proofs. Recall that condi-
tioned on any coin used in the lightest-bin protocol for the preliminary committee
election, the protocol still has independent randomness x chosen by the prelimi-
nary committee as input for the averaging sampler, the unmasked v-ids y chosen
by all players, as well as the mask vector z.

– Event param error. Recall that this happens when the preliminary comittee
selected does not have the desirable properties; by Lemma 1 and Fact 3, this
bad event happens with probability at most exp(−Ω(27r)).

– Event bad1: out of the d samples from the (εs, δs)-sampler, at least (1 +
ε0) · d · n2v number of them correspond to corrupt players’ final v-ids, where
ε0 := 2−6r · 20.5r is defined as in Lemma 3. Assuming the honest fraction
ψ ≥ 2η, by Lemma 3, Pr[bad1] ≤ exp(−Ω(26r)). Moreover, observe that bad1
is determined by x, yA, and zA, and is independent of yH and zH .

– Event bad2: the final committee C has size greater than (1 + ε0) ·d · n2v . Again
assuming ψ ≥ 2η, Lemma 3 implies that Pr[bad2] ≤ exp(−Ω(26r)). Observe
that bad2 depends on x, y, and z.

Lemma 4 (Influence of an honest player in the final committee). Sup-
pose that |A| < (1 − 2η)n, i.e., h

n = ψ > 2η ≥ 1
2r . For an honest player i /∈ A,

let Mi be its multiplicity in the final committee C. Define a random variable Υi
that equals Mi

|C| , if none of the bad events bad events param error or bad1 or bad2
happens; otherwise, Υi equals 0.

Then, E[Υi] ≥ 1
n

(
1− 2−0.48r

)
, where the expectation is taken over the ran-

domness used in the entire execution.

Proof. For ease of notation, the rest of the proof conditions on the event that
during the preliminary committee election, param error does not happen; ob-
serve that this bad event happens with probability at most exp(−Ω(27r)), by
Lemma 1 and Fact 3. Hence, at the end, we just need to multiply any conditional
expectation by a factor of 1 − exp(−Ω(27r)). Recall that we identify an event
with its {0, 1}-indicator random variable.

We next give a lower bound on E[Mi|bad1]. Since yH is opened in the last
but second step and as long as |A| < (1− 2η)n, the reconstruction of z is fully
determined before selecting input to the sampler, we may equivalently imagine
that yH is chosen at the end, independently of x, yA, and z. Since the event bad1
does not happen, there are at least d− (1+ ε0) ·d · n2v = d(1− (1+ ε0) n2v ) ≥ d(1−
2−0.49r) available slots for the honest players’ final v-ids, where the inequality
follows from 1 + ε0 ≤ 20.01r.

For each such slot, player i can get it if it chooses this slot and none of the
other honest players choose it; this happens with probability 1

2v · (1−
1
2v )h−1 ≥

1
2v (1 − n

2v ) = 1
2v (1 − 2−0.5r). Therefore, conditioned on any choice of x, yA, z,

by just using the randomness of yH , we can conclude that EyH [Mi|bad1] ≥
d
2v · (1− 2−0.49r)(1− 2−0.5r) ≥ d

2v (1− 2−0.485r), where the last inequality holds
for large enough r = Ω(1).

Since this holds conditioned any any choice of x, yA, z, we have the desired
lower bound on E[Mi|bad1].
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We next give a lower bound for the following quantity:

E[Mi·bad1·bad2] = E[Mi|bad1]·Pr[bad1]−E[Mi·bad1·bad2] ≥ d

2v
(1−2−0.485r)·Pr[bad1]−dPr[bad2]

We use E[Mi · bad1 · bad2] ≤ dPr[bad2] ≤ d · Pr[bad2] ≤ d · exp(−Ω(26r)) ≤
d
2v · exp(−Ω(25r)) where the last inequality holds because 2v = n · 20.5r and
we assume that r ≥ C0 log logn for some suitably large constant C0. There-
fore, we have E[Mi · bad1 · bad2] ≥ d

2v

(
1− 2−0.485r

)
·
(
1− exp(−Ω(26r))

)
− d

2v ·
exp(−Ω(25r)) ≥ d

2v (1− 2−0.483r). Finally, we have

E[Υi|bad1 · bad2] = E

[
Mi

|C|
|bad1 · bad2

]
≥ E[Mi|bad1 · bad2]

(1 + ε0) · d · n2v

≥ 1

n
(1− 2−0.483r)(1− ε0) · Pr[bad1 · bad2]−1

≥ 1

n
(1− 2−0.481r) · Pr[bad1 · bad2]−1.

Hence, we have the lower bound E[Υi] ≥ E[Υi ·bad1 ·bad2] ≥ 1
n (1− 2−0.481r).

Finally, recalling so far we have assume that param error does not happen.
Therefore, multiplying the above by (1 − Pr[param error]) = 1 − exp(−Ω(27r))
gives the desired lower bound for the expectation of Υi.

Lemma 5 (Sufficient honest players without collision). Suppose n = g+
t < V . There are V bins, of which t bins are bad and the rest are good. Suppose
each of g balls is thrown into a bin uniformly at random independently. Let Z be
the number of good bins containing exactly one ball. For any 0 < α < 1, except
with probability exp(−Θ(α2g(1− n

V ))), we have Z ≥ g(1− 2n
V − 2α).

Proof. Consider throwing the g balls one by one independently into the bins.
For 1 ≤ i ≤ g, let Xi ∈ {0, 1} be the indicator random variable for the event
that when the i-th ball is thrown, it goes to an empty good bin. Observe that
no matter what happens to the first i− 1 balls, the event Xi = 1 happens with
probability at least 1 − n

V . Hence, S :=
∑g
i=1Xi stochastically dominates the

binomial distribution Binom(g, 1− n
V ) with g trials and success rate 1− n

V . By
stochastic dominance and the Chernoff bound,

Pr
[
S ≤ (1− α) · g(1− n

V
)
]
≤ exp

(
−Θ(α2g(1− n

V
))
)

Hence, except with probability exp(−Θ(α2g(1 − n
V ))), we have that S ≥ (1 −

α) · g(1− n
V ) ≥ g(1− n

V − α).
Finally, observe what happens to the number Z of good bins having exactly

one ball as the g balls are thrown one by one. When Xi = 1, Z increases by 1;
when Xi = 0, Z either remains the same or decreases by 1. Hence, at the end, the
number Z of good bins having exactly one ball satisfies Z ≥ S−(g−S) = 2S−g.
The result follows.
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Lemma 6 (Sufficient honest players in the final committee). Suppose
that |A| < (1 − 2η)n. Let G ⊆ H denote an arbitrary subset of honest players
with g = |G|, where g

n ≥ 1/2r. Except with probability exp(−Ω(2r)), the number

of players from G that are in the final committee13 is at least g · d2v ·(1−2−0.48r).

As a direct corollary, no matter how large A is, as long as the coalition A
adopts the honest strategy, then, for any subset G ⊆ [n] of at least n/2r players,
except with probability exp(−Ω(2r)), the number of players from G that are in
the final committee is at least g · d2v · (1− 2−0.48r).

Proof. Let V = 2v, and so n
V = 1

20.5r . Since |A| < (1 − 2η)n, the mask z
to be reconstructed later is fully determined before selecting input x to the
sampler — in this case, we can imagine that yG is chosen and revealed at the
end, independent of x, y[n]\G, and z. Setting α := 1

2r in Lemma 5, we have,

except with probability p ≤ exp
(
−Ω( 1

22r · g · (1− 2−0.5r))
)
≤ exp

(
−Ω( n

23r )
)
,

the number of players in G whose final v-id has no collision is at least Z :=
g(1−2·2−0.5r−2·2−r) ≥ g

2 . Recall that r ≤ C1 log n, and, as long as the constant
C1 is sufficiently small, we have that n > 24r, and thus p ≤ exp(−Ω(2r)).

Setting ε0 := εs · 2v

|Z| ≤ 2 · 2−6r · 21.5r, and using Lemma 2, we can show that

except with probability exp(−Ω(2r)), the number of players from G in the final
committee is at least (1− ε0) · d · Z2v ≥ g ·

d
2v · (1− 2−0.48r).

5.4 Maximin Fairness

In this section, we will prove the following lemma.

Lemma 7 (Ideal-world protocol: maximin fairness). The ideal-world pro-
tocol (i.e., instantiated with Fcomm and Fmpc) satisfies (1−2−0.4r) = (1−2−Θ(r))-
sequential-maximin-fairness against any non-uniform p.p.t. coalition14 of size at
most (1− 2η)n = (1− 2−Θ(r))n.

Proof. Due to a lemma proven in the online full version [15], we can do a round-
by-round analysis. Let r∗ be the first round in which the coalition deviates. Let r̃
be the round in which all players reconstruct the mask vector z. Throughout, we
may assume that A < (1−2η)n. Further, for each round r∗, we may assume that

Pr[Devr
∗
] is non-negligible where Devr

∗
denotes the event that A deviates first in

round r∗. We want to show that conditioned on this non-negligible probability
event Devr

∗
, A cannot conditionally harm an honest individual noticeably, or

conditionally increase its own winning probability noticeably.

Easy case: r∗ > r̃. This means the coalition A will deviate only in the tourna-
ment tree protocol, whose sequential maximin fairness holds according to The-
orem 3. This means each honest player can only be hurt negligibly more.

13 Throughout, a player with multiplicity µ in the final committee is counted µ times.
14 Recall that the tournament-tree protocol is still instantiated with real cryptography.
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Easy case: r∗ = r̃. As mentioned earlier, as long as |A| < (1−2η)n, in this round,
no matter what A does, reconstruction of z is guaranteed and the reconstructed
value is unique.

Slightly more complicated case: r∗ = r̃ − 1. This is the case when the coalition
A deviates in the round in which the unmasked v-ids y are opened. Since we are
using an ideal Fcomm, the only possible deviation in round r∗ = r̃ − 1 is if some
member of the coalition i ∈ A fails to open its committed its yi value.

We consider two cases.

– First, suppose that |A| ≥ ηn. This means that the adversarial coalition already
knows the committed mask z at the end of the sharing phase. In this case, the
z mask to be reconstructed is uniquely determined at the end of the sharing
phase. In the round r∗ = r̃ − 1, to harm any specific honest individual, A’s
best strategy is the following: for every final v-id in the space {0, 1}v, if one
or more player(s) in A happen(s) to have that final v-id, make exactly one
of them open its yi value, such that there is no internal collision among the
coalition A. Due to the sequential fairness of the tournament-tree protocol
(i.e., Theorem 3), conditioned on the history of the protocol till the end of
round r̃, every honest final committee member’s winning probability is at least
1
|C|−negl(κ), no matter how A behaves in any round greater than r̃. Therefore,

avoiding internal collision but otherwise opening every final v-id is A’s best
strategy for harming any specific honest player.
Note that opening the coalition members’ unmasked v-ids in an internal-
collision-avoiding manner like above does not change whether any honest in-
dividual is included in the final committee, but it may increase the final com-
mittee size (in comparison with the case when A continues to play honestly).
Due to Lemma 6, and since A has acted honestly so far, except with negligible
probability, the final committee size is at least nd

2v (1− 2−0.48r).
Now, suppose A excludes its members from the final committee due to internal
collision. Observe that actually this decision could have been made before the
input x to the Samp is chosen. Since there are at most n finalized v-ids with no
collision, by Lemma 3, except with exp(−2Ω(r)) probability (which is negligible
if r ≥ C0 log log n for a sufficiently large C0), the final committee has size at
most nd

2v (1 + 2−5.5r).
Therefore, except with negligible probability, for any honest i, the coalition A
can only reduce Υi by a 1− 2−Θ(r) factor.

– Second, suppose that |A| < ηn. In this case, A has no information about

the mask z, and Devr
∗

is independent of z. Further, z is guaranteed to be
reconstructed later. In this case, we can reprove Lemma 4 almost identically
except that instead of using the randomness yH , we now use the randomness
zH ; further, notice that bad1 is independent of zH , and even when conditioning
on the non-negligible probability event Devr

∗
, the probabilities of bad1 and

bad2 are still negligible. Therefore, we get that even when conditioning on
Devr

∗
, for any honest i, the expectation of Υi is at least 1

n · (1 − 2−0.48r) no
matter how A behaves during round r̃ and after. Had A continued to play
honestly, using the randomness of z, we know that even when conditioning on
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Devr
∗
, the expectation of Υi is at least 1/n − negl(κ) where the negl(κ) term

is due to the negligibly small probability of bad1 and bad2 in which case Υi is
defined to be 0. (see Lemma 4).
Therefore, deviating in round r̃ will not reduce any honest individual’s condi-
tional winning probability by a 1− 2−Θ(r) multiplicative factor.

Remaining case: r∗ < r̃−1. The rest of the proof focuses on this remaining case.
Recall that we assume Pr[Devr

∗
] ≥ 1

poly(n) . Let LEIdeal denote a randomized

execution of our ideal-world leader-election protocol described in Section 4.1.
Conditioning on the event Devr

∗
, we prove maximin fairness assuming that

the coalition A contains no more than a 1− 2η fraction of the players. Fix any
i /∈ A. Now, observe the following:

1. Recall that we may assume Devr
∗

happens with non-negligible probability.
Following the proof of Lemma 4, and observing that before round r̃, the
randomness yH remains hidden and is independent of whatever that has
happened so far, we have:

E
[
tr ← LEIdeal : Υi|Devr

∗
(tr)

]
≥ 1

n
·
(
1− 2−0.48r

)
. (2)

The only difference in the argument is that both the probabilities Pr[bad1|Devr
∗
]

and Pr[bad2|Devr
∗
] are at most poly(n) · exp(−Ω(26r)), which is is still neg-

ligible, because we assume that r = Ω(log log n) is sufficiently large. Indeed,
for sufficiently large n, poly(n) · exp(−Ω(26r)) ≤ exp(−Ω(25.99r)), and the
proof works as before.

2. We next consider the proof of Lemma 6, but now we conditioned on Devr
∗

(which has non-negligible probability). Suppose all players in A actually play
honestly. Define bad3 to be the event that the final committee has size less
than nd

2v · (1− 2−0.48r). Lemma 6 states that Pr[bad3] ≤ exp(−Ω(2r)). Since

Devr
∗

has non-negligible probability, we have Pr[bad3|Devr
∗
] ≤ poly(n) ·

exp(−Ω(2r)) ≤ exp(−Ω(20.99r)) ≤ negl(κ), where the last inequalities hold
for large enough n ≥ κ because r ≥ Ω(log log n).
This implies that an honest continuation of the execution would lead to a
conditional expectation of Υi of at most

d/2v

n · d2v · (1− 2−0.48r)
+negl(κ) ≤ 1

n
· (1 + 2−0.47r) +negl(κ) ≤ 1

n
· (1 + 2−0.46r)

Summarizing the above, the ideal protocol is (1−2−0.4r)-sequential-maximin-
fair for any coalition that is at most (1− 2η)n = (1− 2−Θ(r))n in size.

Deferred materials. We defer to the online full version [15] 1) proofs of CSP
fairness for the ideal-world protocol, 2) proofs for the real-world protocol, and
3) our full lower bound proof. The online full version [15] also contain addi-
tional preliminaries, additional proofs for our sequential approximate fairness
notion, relationship to the RPD notion [22–24], as well as proofs for the folklore
tournament-tree protocol.
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