
Silver: Silent VOLE and Oblivious Transfer from
Hardness of Decoding Structured LDPC Codes

Geoffroy Couteau, Peter Rindal, Srinivasan Raghuraman

Abstract. We put forth new protocols for oblivious transfer extension
and vector OLE, called Silver, for SILent Vole and oblivious transfER.
Silver offers extremely high performances: generating 10 million random
OTs on one core of a standard laptop requires only 300ms of computation
and 122KB of communication. This represents 37% less computation and
∼ 1300× less communication than the standard IKNP protocol, as well
as ∼ 4× less computation and ∼ 14× less communication than the recent
protocol of Yang et al. (CCS 2020). Silver is silent : after a one-time cheap
interaction, two parties can store small seeds, from which they can later
locally generate a large number of OTs while remaining offline. Neither
IKNP nor Yang et al. enjoys this feature; compared to the best known
silent OT extension protocol of Boyle et al. (CCS 2019), upon which we
build up, Silver has 19× less computation, and the same communication.
Due to its attractive efficiency features, Silver yields major efficiency
improvements in numerous MPC protocols.
Our approach is a radical departure from the standard paradigm for
building MPC protocols, in that we do not attempt to base our con-
structions on a well-studied assumption. Rather, we follow an approach
closer in spirit to the standard paradigm in the design of symmetric prim-
itives: we identify a set of fundamental structural properties that allow
us to withstand all known attacks, and put forth a candidate design,
guided by our analysis. We also rely on extensive experimentations to
analyze our candidate and experimentally validate their properties. In
essence, our approach boils down to constructing new families of linear
codes with (plausibly) high minimum distance and extremely low encod-
ing time. While further analysis is of course welcomed in order to gain
total confidence in the security of Silver, we hope and believe that initi-
ating this approach to the design of MPC primitives will pave the way
to new secure primitives with extremely attractive efficiency features.

1 Introduction
Secure multiparty computation (MPC) allows n parties to jointly evaluate a
function f , while leaking no information on their own input beyond the output
of the function. It is a fundamental problem in cryptography, which has received
considerable attention since its introduction in the seminal works of Yao [Yao86],
and Goldreich, Micali, and Wigderson [GMW87b, GMW87a]. While early feasi-
bility results for MPC were mainly of theoretical interest, MPC protocols have
enjoyed tremendous improvements in the past decade.

Oblivious transfers (OT) are perhaps the most fundamental building block
for MPC protocols. In a random OT, two parties receive respectively (s0, s1) and

2 Geoffroy Couteau, Peter Rindal, Srinivasan Raghuraman

(sb, b), where (s0, s1) are two random strings, and b is a random selection bit.
Random OT is a complete primitive for secure computation [Kil88] , and modern
MPC protocols rely on it. Efficiency improvements in protocols for generating
OTs directly translate into improvements for a plethora of MPC protocols.

OT Extension. A long line of work, initiated with the breakthrough work
of [IKNP03], has therefore sought to develop increasingly efficient protocols for
generating a large number of random OTs. At a high level, OT extension proto-
cols [IKNP03, KOS15, KKRT16, OOS17] turns a small number of base OTs into a
near-arbitrary number of OTs, using only cheap operations. The latest generation
of these protocols, initiated in [BCG+17], leverages the notion of pseudorandom
correlation generators (PCGs) [BCGI18, BCG+19b] to enable the construction
of extremely efficient OT extension protocols. This line of work recently culmi-
nated with the protocols of [BCG+19a, SGRR19, WYKW20, YWL+20].

Silent OT Extension.While PCGs allow for very efficient constructions of OT
extension, this is not their main claim to fame: perhaps their most remarkable
feature is that they allow the construction of silent OT extension protocols. A
silent protocol has the property that: after a short interaction, with communi-
cation and computation essentially independent of the target number of OTs,
the parties can locally store small correlated seeds. Then, the parties can later
retrieve these seeds, and without any further interaction stretch them into a
very large number of OTs. Unfortunately, while the protocols of [BCG+19a] en-
joy the silent feature, the running time improvements in [SGRR19, WYKW20,
YWL+20] were achieved at the cost of sacrificing this crucial property.

1.1 Our Results

In this work, we design new protocols for silent oblivious transfer extension
and silent vector oblivious linear evaluation (VOLE). The latter is defined over
a field F and allows a receiver with input x ∈ F to obtain x · a + b from a
sender with input vectors (a,b) over F. VOLE is another important building
block in some of the most prominent secure computation tasks; e.g. the current
most efficient private set intersection [RS21]. We call our (family of) protocols
Silver, which stands for SILent Vole and oblivious transfER. In addition its silent
feature, Silver exhibits extremely good performances, significantly outperforming
the most efficient OT extension protocols [IKNP03, YWL+20] on all fronts.

At the heart of our results is a radical departure from previous works on
secure computation. To put it bluntly, we decidedly give up on provable security
reductions to any well-studied assumption. Instead, our protocols are based on
the conjectured hardness of decoding new, heuristically designed linear codes (or,
equivalently, the hardness of a new learning parity with noise (LPN) variant).
Our approach for building these new linear codes is much closer in spirit to the
de facto standard approach for building efficient block ciphers and hash func-
tions in symmetric cryptography: using a general framework that encompasses
essentially all known attacks on LPN and syndrome decoding, we identify the
core properties that guarantee resistance of our new assumptions against existing
attacks. Then, we extract a number of fundamental design criteria which guide

Silver: Silent VOLE and OT from Structured LDPC Codes 3

the design of codes with these properties. Eventually, we rely on these design
criteria together with extensive simulations to experimentally identify, with good
confidence, the codes that exhibit the best properties for our constructions, while
plausibly leading to very hard instances of the syndrome decoding problem.
1.2 Philosophy of our Approach
The construction of a cryptographic primitive or protocol can follow two com-
plementary design strategies: a top-down approach, which starts from well-
established cryptographic assumptions and aims at finding the most efficient
construction whose security provably reduces to these assumptions, or a bottom-
up approach, which tries to find the minimal construction that resists all known
attacks, and relies on heuristic design criteria to build an intuition about the
concrete security. Traditionally, secure computation has focused on the former,
while symmetric cryptography (e.g. block cipher design) followed the latter.

The top-down approach has many attractive features – it deepens our the-
oretical understanding of the feasibility of cryptographic primitives, enlightens
their relation to other primitives, and allows us to spend cryptanalytic efforts
on a small set of assumptions. However, this sometimes comes at a huge cost in
terms of efficiency: there is often a large gap between the best efficiency which can
be achieved from well-established assumptions, and the efficiency which can be
achieved with heuristic designs (consider the efficiency gap between SHA-256 and
discrete-logarithm-based hash functions). When (our theoretical understanding
of) a cryptographic primitive reaches a sufficient level of maturity, it is natural
to envision the alternative bottom-up approach, in order to achieve real-world
efficiency. This is the position that we advocate for in this work.

In the same way that symmetric cryptography has identified core families
of attacks (e.g. linear and differential) and extracted a set of design princi-
ples for constructing primitives which plausibly resists them (e.g. substitution-
permutation networks), our aim is to initiate the study of the most fundamental
MPC primitives, oblivious transfer and its variants, under this angle. Pursuing
this approach has the potential of yielding considerable efficiency improvements
for MPC and strikes us as a natural next step for putting the efficiency of MPC
primitives on par with that of symmetric primitives.

Our work being the first (to our knowledge) to study OT under the lens of
heuristic cryptographic design, our constructions should of course be treated with
the necessary caution. We invested a considerable effort in developing a rigorous
understanding of which design criteria are likely to yield secure and efficient
constructions, and relied on extensive experimental simulations to validate that
our candidates satisfy these criteria; however, further study is welcomed in order
to gain total confidence in their security. Given that Silver withstands the test
of time, it will allow for significant improvements for numerous MPC protocols.
And if not, we are confident that our analysis will motivate further constructions
and analyses from which secure and efficient candidates will emerge.
1.3 Overview of our Methodology
Our starting point is the recent line of work on pseudorandom correlation gen-
erators (PCG) [BCG+17, BCGI18, BCG+19b]. PCGs allow to securely generate

4 Geoffroy Couteau, Peter Rindal, Srinivasan Raghuraman

long, pseudorandom correlated strings, using minimal communication. Among
the most remarkable achievements of this line of work is silent oblivious trans-
fer extensions (SOT extension)[BCG+19a, SGRR19]. These protocols have two
phases: (1) the two parties interact to distributively generate short correlated
seeds with communication/computation essentially independent of the target
number of OTs; (2) the parties locally expand the seeds, without any inter-
action, into a large number of pseudorandom OTs. Afterwards, these OTs can
be converted into chosen-input OTs using standard methods. Very recently, ef-
ficiency improvements were obtained by [YWL+20, WYKW20]. However, this
came at the cost of sacrificing the silent feature. In practice, the ability to confine
the bulk of the computation to an entirely offline phase, is a crucial efficiency
feature.

The SOT Protocol of [BCG+19a]. Our approach builds upon the protocol
of [BCG+19a]. Let us briefly recall its high level intuition:

1. the parties generate additive shares of x · e, where x ∈ F is known to the
sender, and e ∈ Fn is a random sparse vector, known to the receiver.

2. they multiply the shares of x · e with a public matrix G, obtaining shares of
x · a, for a = e ·Gᵀ. Given a uniform G, a is pseudorandom under LPN.

3. Optionally, the shares can be hashed to generate pseudorandom OTs.

Generating additive shares of x · e is extremely efficient, requiring merely
two calls to AES for each entry of the vector. The matrix-vector multiplication,
however, is the bulk of the computation: in [BCG+19a], G is a matrix over
Fk×n
2 , where k is the target number of OTs and n = c ·k for some small constant
c > 1. MPC protocols commonly require a number of OTs in the millions (if not
more), making this step impractical unless G has some structure that allows for
fast matrix-vector multiplication. This leads to a tradeoff between efficiency and
confidence in the security: when H is a truly random matrix, the multiplication
is impractical, but security reduces to the standard syndrome decoding/LPN
assumption. Structured matrices give better efficiency, but security reduces to
syndrome decoding variants which are less well-understood.

[BCG+19a] settled for a reasonable middle ground, by letting G be a random
matrix with a quasi-cyclic structure. On the one hand, this structure allows for
matrix-vector multiplication in quasilinear time using fast Fourier transform; on
the other hand, the underlying assumption (hardness of decoding quasi-cyclic
linear codes) has been used in candidate post-quantum code-based cryptographic
primitives submitted to the NIST competition, and are therefore relatively well
studied. While this choice leads to a reasonably efficient construction, it remains
somewhat unsatisfying: it seems very likely that there exists alternative choices
for G which have significantly better efficiency, yet still are secure.

However, the particular set of constraints of silent OT extension is very dif-
ferent from all previous coding theory primitives: typically the dimension of the
code is minimized, allow high noise rate, and rely on codes with a hidden struc-
ture to enable efficient decoding given a secret. In contrast, in the SOT applica-
tion, the code dimension scales with the target number of OTs (hence typically

Silver: Silent VOLE and OT from Structured LDPC Codes 5

millions), the noise rate must remain very low, and no hidden structure or effi-
cient decoding property is required. As a result, there exists no well-established
assumption regarding codes tailored for our unusual set of constraints.

Our Approach: a Design Methodology for Constructing G. In this work,
we choose to approach the problem differently. Let us call a public matrix G ∈
Fk×n
2 SOT-friendly if it satisfies the following two properties:

– Security: it is infeasible to distinguish e ·Gᵀ from uniform (for sparse e).
– Efficiency: the mapping x→ x ·Gᵀ can be computed in strict linear time.

We develop a methodology for constructing SOT-friendly matrices by directly
identifying some core structural properties of G which guarantee that distin-
guishing e ·Gᵀ from random cannot be done using essentially all known attacks
on LPN and code-based cryptographic primitives. Yet the mapping x→ x ·Gᵀ

can be computed in strict linear time. Our methodology does not “start from
zero”: it builds upon well-known results related to breaking these assumptions.

1.4 Our Design Criteria

The first property can be stated in one sentence: G should generate a code with
large minimum distance. For the second property, we focus on the following
sufficient condition: we restrict our attention to matrices G which have a sparse
parity-check matrix H (i.e., H is a sparse matrix in Fm×n

2 such that HᵀG = 0)
such that H are in approximate lower triangular form.

Large minimum distance and security. Given a matrix G, the problem of
distinguishing e·Gᵀ from random (for a random sparse vector e) is the decisional
syndrome decoding problem with respect toGᵀ. The name LPN is commonly used
to denote the syndrome decoding assumption in the cryptographic community.
As such, we will use both terms interchangeably. It is well-known that distin-
guishing e · Gᵀ reduces to the following problem: given a parity-check matrix
H of G, distinguish the distribution {b = x · H + e} (where x is a uniformly
random vector over Fm

2 and e is a random length-n sparse vector) from the
uniform distribution (indeed, if b is indistinguishable from random, then so is
b ·Gᵀ = (x ·H+e) ·Gᵀ = e ·Gᵀ), which is the learning parity with noise assump-
tion, with dimension n and number of samples m, for the code matrix H. Both
LPN and the syndrome decoding problem have been heavily studied in the past
decades, and many attacks have been developed. A core observation (which is
folklore, and was made explicitly e.g. in [BCG+20]) is that essentially all known
attacks share a common high level structure: the distinguisher computes a linear
function in the samples b (but can depend arbitrarily on the matrix H). But if
the code generated by G has large minimum distance d, the distribution H · x
for random x must be d-wise independent, which implies that no weight-t ≤ d
linear function vᵀ · b of b = x ·H + e can possibly distinguish it from random.
However, if v has high weight, then the distribution of vᵀ ·e for a random sparse
vector e is close to uniform, and so is vᵀ · b. In this work, we formalize this
folklore observation, and use it to derive a concrete heuristic for choosing the
parameters of an SOT-friendly matrix. Our concrete heuristic is the following:

6 Geoffroy Couteau, Peter Rindal, Srinivasan Raghuraman

If two codes have the same minimum distance & dimensions, their decision
syndrome decoding problems likely have the same level of security.

Therefore, when choosing concrete parameters, we will use as a baseline the codes
underlying well-studied syndrome decoding variants (e.g. random linear codes in
syndrome decoding, or LDPC codes in Alekhnovich’s assumption [Ale03]) and
set parameters to achieve the same minimum distance that these codes exhibit.
We make two additional comments before moving on to the second property:

– In practice, it is generally very hard to compute the minimum distance of
a family of codes. We will provide some efficient concrete choices where
provable bounds exists. However, in our most efficient instantiations, we will
instead rely on extensive simulations to analyze the minimum distance of the
code family using an optimized minimum distance estimator, from which we
will heuristically derive the minimum distance on large dimensions.

– In existing attacks against LPN/syndrome decoding, the number of noisy
coordinates plays a crucial role. However, it has a small impact on the overall
efficiency of the SOT: scaling the noise by some factor increases the (very
small) amount of communication and computation in the first phase, but
has no impact on the second phase. Therefore, even if our hypothesis turns
out to be too aggressive, we can actually significantly increase the security
level, by increasing the number of coordinates, at a minor cost.

Linear-time encodable LDPC codes. Low-density parity-check codes (LDPC)
have a sparse parity-check H, were introduced in the seminal work of Gal-
lagher [Gal62], and are among the most well-studied objects in coding the-
ory. Certain random LDPC codes are known to exhibit a good minimum dis-
tance [Gal62] and can be decoded efficiently. On the other hand, their encoding
time (i.e., the time to evaluate the mapping x → x · G) grows quadratically
with the dimension in general. Due to the transposition principle (Section 4),
our linear map x→ x ·Gᵀ is efficient if and only if LDPC encoding x→ x ·G is.
Hence, finding LDPC codes whose generating matrix is SOT-friendly boils down
to finding linear-time LDPC codes with large distance.

Achieving Fast Encoding and High Minimum Distance. Guided by the
above, we therefore seek to construct new families of structured LDPC codes
which simultaneously appear to achieve high minimum distance, yet can be en-
coded extremely efficiently with (our optimized variant of) the g-ALT encoder
of Richardson and Urbanke [RU01] as presented in Section 4. Here, we use as
a starting point the Tillich-Zémor (TZ) family of codes [TZ06]. TZ codes have
appealing features in our setting: they provably achieve almost linear minimum
distance, and can be encoded in linear time. However, their structure is also sub-
optimal in our specific setting: their code is not cache friendly and has sublinear
distance due to degree-2 variable nodes. In [TZ06], the presence of these degree-
2 variable nodes is motivated by the fact that they allow for high performance
iterative decoding. In contrast, our application does not require any decoding
property whatsoever. Hence, in Section 6 we refine the TZ codes to tailor them
to our setting, improving the concrete minimum distance and encoding time.

Silver: Silent VOLE and OT from Structured LDPC Codes 7

We achieve this by iteratively refining our design, using extensive simulations
to track the presence of bad local structures which, when they show up, lead to
worse minimum distance guarantees. We fine-tune the structure of the matrix to
minimize the number of cache misses in the encoding algorithm, which have a
significant performance impact. To fine-tune the best possible choices of param-
eters in the low cache-misses setting, we compute, for many randomly generated
choices of parameters, the average minimum distance and worst-case minimum
distance over 10,000+ random samples of the code matrix.

1.5 Efficiency

After performing this iterative sequence of refinements, we end up with a variety
of candidate new LDPC codes, which we call Silver codes. We use our Silver codes
to instantiate the code matrix in the silent OT extension protocol of [BCG+19a],
which we also generalize to the setting of VOLE. We implemented Silver, our
protocol for SILent Vole and oblivious transfER, using our most optimized code;
our implementation is available at libOTe[Rin]. We compare Silver to the best
existing OT extension protocols: the standard IKNP protocol [IKNP03], which
remains to date the most efficient protocol in the “unlimited bandwidth” setting,
the recent protocol of Yang et al. [YWL+20], which provides the best concrete
performance in natural bandwidth settings (from 10Mbps to 5Gbps), and the
silent OT extension protocol of Boyle et al. [BCG+19a], which is the most effi-
cient protocol that enjoys the silent feature. When generating 107 OTs on one
core of a standard laptop, our protocol requires only 300ms of computation and
122KB of communication. In comparison, IKNP requires 58% more computa-
tion and ∼ 1300× more communication, [YWL+20] requires ∼ 4× more com-
putation and ∼ 14× more communication, and [BCG+19a] requires 19× more
computation (since our protocol is essentially their SOT with a Silver code, the
communication is identical). In a setting with 100Mbps of bandwidth, Silver is
at least 50 times more efficient than IKNP even when ignoring all costs beyond
those of communication, and at least 4× and 19× more efficient than [YWL+20]
and [BCG+19a] respectively, even when ignoring all communication costs.

2 Preliminaries
Throughout the work we will using [a, b] to denote the set {a, ..., b}. [n] is short-
hand for [1, n]. = will denote mathematical equality while x := y denotes defining
x to be equal to y. |v| denotes the Hamming weight of vector v. Matrix and vector
horizontal concatenation is denoted as [X|Y]. Due to space restriction, we defer
preliminaries on the silent OT extension protocol of [BCG+19a] to Appendix ??
of the Supplementary Material.

2.1 Preliminaries on Bias

Definition 1 (Bias of a Distribution). Given a distribution D over Fn and
a vector u ∈ Fn, the bias of D with respect to u, denoted biasu(D), is equal to

biasu(D) = |Ex∼D[u
ᵀ · x]− Ex∼Un [u

ᵀ · x]| =
∣∣∣∣Ex∼D[u

ᵀ · x]− 1

|F|

∣∣∣∣ ,

https://github.com/osu-crypto/libOTe

8 Geoffroy Couteau, Peter Rindal, Srinivasan Raghuraman

where Un denotes the uniform distribution over Fn. The bias of D, denoted
bias(D), is the maximum bias of D with respect to any nonzero vector u.

Given t distributions (D1, · · · ,Dt) over Fn
2 , we denote by

⊕
i≤tDi the distri-

bution obtained by independently sampling vi
$← Di for i = 1 to t and outputting

v← v1⊕· · ·⊕vt. We will use the following bias of the exclusive-or (cf. [Shp09]).

Lemma 2. Let t ∈ N be an integer, and let (D1, · · · ,Dt) be t independent dis-
tributions over Fn

2 . Then bias(
⊕

i≤tDi) ≤ 2t−1 ·
∏t

i=1 bias(Di) ≤ mini≤tbias(Di).

Eventually, let Berr(F2) denote the Bernoulli distribution that outputs 1
with probability r, and 0 otherwise. More generally, we denote by Berr(F) the
distribution that outputs a uniformly random element of F with probability r,
and 0 otherwise. We will use a standard simple lemma for computing the bias
of a XOR of Bernoulli samples:

Lemma 3 (Piling-up lemma). For any 0 < r < 1/2 and any integer n, given
n random variables X1, · · · , Xn i.i.d. to Berr(F2), it holds that Pr[

⊕n
i=1Xi =

0] = 1/2 + (1− 2r)n/2.

2.2 Syndrome Decoding and Learning Parity with Noise

Our constructions will rely on new variants of the learning parity with noise
(LPN) assumption (more accurately, a variant of the syndrome decoding assump-
tion). The LPN assumption over a field F states, informally, that no adversary
can distinguish (A,A · s + e) from (A,b), where A is sampled from the set of
generating matrices of some linear code ensemble, s is a uniform secret vector
over F, e is a noise vector sampled from some distribution over F-vectors and
typically sparse. b is a uniform vector over F. More formally, we define the LPN
assumption over a ring R with dimension k, number of samples n, w.r.t. a code
generation algorithm C, and a noise distribution D:

Definition 4 (Primal LPN). Let D(R) = {Dk,n(R)}k,n∈N denote a family of
efficiently sampleable distributions over a ring R, such that for any k, n ∈ N,
Im(Dk,n(R)) ⊆ Rn. Let C be a probabilistic code generation algorithm such
that C(k, n,R) outputs a matrix A ∈ Rn×k. For dimension k = k(λ), num-
ber of samples (or block length) n = n(λ), and ring R = R(λ), the (primal)
(D,C,R)-LPN(k, n) assumption states that

{(A,b) | A $← C(k, n,R), e $← Dk,n(R), s $← Fk,b← A · s+ e}
c
≈ {(A,b) | A $← C(k, n,R),b $← Rn}.

The above definition is very general, and captures in particular not only the
standard LPN assumption and its variants, but also assumptions such as LWE
or the multivariate quadratic assumption. However, we will typically restrict our
attention to assumptions where the noise distribution outputs sparse vectors
with high probability. The standard LPN assumption with dimension k, noise

Silver: Silent VOLE and OT from Structured LDPC Codes 9

rate r, and n samples is obtained by setting A to be a uniformly random matrix
over Fn×k

2 , and the noise distribution to be the Bernoulli distribution Bernr (F2),
where each coordinate of e is independently set to 1 with probability r and
to 0 with probability 1 − r. The term “primal” in the above definition comes
from the fact that the assumption can come in two equivalent form: the primal
form as above, but also a dual form: viewing A as the transpose of the parity
check matrix H of a linear code generated by G a matrix, i.e. A = Hᵀ, the
hardness of distinguishing Hᵀ · x+ e from random is equivalent to the hardness
of distinguishing G · (Hᵀ ·x+e) = G ·e = e ·Gᵀ from random (since Gᵀ ·H = 0).

3 On the Hardness of LPN for Structured LDPC Codes

The learning parity with noise assumption is one of the most fundamental as-
sumptions of cryptography, introduced in the work of [BFKL94]; related prob-
lems were used even earlier [McE78]. The hardness of syndrome decoding and
its variants (which is equivalent to LPN under our definition – see above) has
also been intensely studied in coding theory, starting with the seminal work of
Prange [Pra62] (under the name the of syndrome decoding), in learning theory
(see e.g. [FGKP09] and references therein), and in random CSP theory (starting
with the seminal work of Feige [Fei02]) – all with many follow ups.

Over the past few decades, a tremendous number of attacks against LPN have
been proposed. These attacks include, but are not limited to, attacks based on
Gaussian elimination and the BKW algorithm [BKW00, Lyu05, LF06, EKM17]
and variants based on covering codes [ZJW16, BV16, BTV16, GJL20], infor-
mation set decoding attacks [Pra62, Ste88, FS09, BLP11, MMT11, BJMM12,
MO15, EKM17, BM18], statistical decoding attacks [AJ01, FKI06, Ove06, DAT17],
generalized birthday attacks [Wag02, Kir11], linearization attacks [BM97, Saa07],
attacks based on finding low weight code vectors [Zic17], or on finding correla-
tions with low-degree polynomials [ABG+14, BR17].

A Unified Framework for Attacks against LPN. In light of this situation,
it would be excessively cumbersome, when introducing a new variant of LPN, to
go over the entire literature of existing attacks and analyze their potential impact
on the new variant. The crucial observation, however, is that this is not necessary,
as all the above attacks (and more generally, essentially all known attacks against
LPN and its variants) fit in a common framework, usually denoted the linear test
framework. Furthermore, the asymptotic resistance of any LPN variant against
any attack from the linear test framework can be deduced from two simple
properties of the underlying code ensemble and noise distribution. Informally, if

– the code generated by G has high minimum distance, and
– for any large enough subset S of coordinates, with high probability over the

choice of e← D, at least one of the coordinates in S of e will be nonzero,

then the LPN assumption with code matrix G and noise distribution D cannot
be broken by any attack from the linear test framework. We will formalize this
and build on it to analyze the asymptotic security of our new LPN variants.

10 Geoffroy Couteau, Peter Rindal, Srinivasan Raghuraman

We stress that this crucial observation is not new to our work: a similar
observation was explicitly made in previous works [ADI+17, BCG+20], where
it was also used to analyze the security of new LPN variants. Even long before
these works, distributions whose outputs look random to linear tests, called low-
bias sample spaces, have been the subject of a rich and fruitful line of work which
was initiated in the seminal work of Naor and Naor [NN90], and the relevance
of linear tests to the security analysis LPN assumptions seems to have been at
least somewhat folklore. Still, we believe that it will be beneficial and instructive
to the reader to present this argument in a unified way with explicit bounds.
3.1 The Linear Test Framework
The common feature of essentially all known attacks against LPN and its variants
is that the distinguisher can be implemented as a (nonzero) linear function of
the samples (the linear test), where the coefficients of the linear combination
can depend arbitrarily on the code matrix. Therefore, all these attacks can be
formulated as distinguishing LPN samples from random samples by checking
whether the output of some linear test (with coefficients depending arbitrarily
on the code matrix) is biased away from the uniform distribution. Formally,

Definition 5 (Security against Linear Test). Let F be an arbitrary finite
field, and let D = {Dm,n}m,n∈N denote a family of noise distributions over Fn.
Let C be a probabilistic code generation algorithm such that C(m,n) outputs
a matrix A ∈ Fn×m. Let ε, δ : N 7→ [0, 1] be two functions. We say that the
(D,C,F)-LPN(m,n) assumption with dimension m = m(λ) and n = n(λ) sam-
ples is (ε, δ)-secure against linear tests if for any (possibly inefficient) adversary
A which, on input a matrix A ∈ Fn×m, outputs a nonzero v ∈ Fn, it holds that

Pr[A
$← C(m,n),v

$← A(A) : biasv(DA) ≥ ε(λ)] ≤ δ(λ),

where DA denotes the distribution induced by sampling s
$← Fm

2 , e ← Dm,n,
and outputting the LPN samples A · s+ e.

The following observation is folklore, and was made explicitly e.g. in [BCG+20]:

Observation 1 Existing attacks against LPN (as listed above) can be cast as in-
stances of the linear test framework. Therefore, none of these attacks can provide
a polynomial-time distinguisher against any LPN assumption that is provably
(ε, δ)-secure against linear tests, for any negligible functions (ε, δ).

[ADI+17] went even further and explicitly conjectured that for any LPN
variant with a sparse code matrix, the runtime of the best possible attack against
LPN is essentially poly(1/ε), i.e., the number of times a linear test attack must
be repeated until the bias becomes noticeable. See Assumption 1.
3.2 Dual Distance and Security against Linear Tests
Following [ADI+17], we call dual distance of a matrix M , and write dd(M), the
largest integer d such that every subset of d rows of M is linearly independent.
The name “dual distance” stems from the fact that the dd(M) is also the mini-
mum distance of the dual of the code generated by M (i.e., the code generated
by the left null space of M). The following lemma is folklore:

Silver: Silent VOLE and OT from Structured LDPC Codes 11

Lemma 6. Let D = {Dm,n}m,n∈N denote a family of noise distributions over
Fn. Let C be a probabilistic code generation algorithm s.t. C(m,n)→ A ∈ Fn×m.
Then for any d ∈ N, the (D,C,F)-LPN(m,n) assumption with dimension m =
m(λ) and n = n(λ) samples is (εd, δd)-secure against linear tests, where

εd = max
|v|>d

biasv(Dm,n), and δd = Pr
A

$←C(m,n)

[dd(A) ≥ d].

Proof. The proof is straightforward: fix any integer d. Then with probability at
least δd, dd(A) ≥ d. Consider any (possibly unbounded) adversary A outputting
v. Two cases can occur:

– Either |v| ≤ d ≤ dd(A). In this case, the bias with respect to v of the distri-
bution {A · s | s $← Fm} is 0 (since this distribution is d-wise independent).
Since the bias of the XOR of two distribution is at most the smallest bias
among them (see Lemma 2; the same holds for the bias with respect to any
fixed v), we get bias(DA) = 0.

– Or |v| > d; in which case, applying Lemma 2 again, bias(DA) ≤ bias(Dm,n).

Security of LPN with random codes. An instructive example is to consider
the case of LPN with a uniformly random code matrix over F2, and a Bernoulli
noise distribution Dm,n = Bernr (F2), for some noise rate r. The probability that
d random vectors over Fm

2 are linearly independent is at least

d−1∏
i=0

2m − 2i

2m
≥ (1− 2d−1−m)d ≥ 1− 22d−m.

Therefore, by a union bound, the probability that a random matrix A $← Fn×m
2

satisfies dd(A) ≥ d is at least 1−
(
n
d

)
· 22d−m ≥ 1− 2(2+logn)d−m. On the other

hand, for any d and any v with |v| > d, we have by Lemma 3:

Pr[e← Bernr (F2) : vᵀ · e = 1] =
1− (1− 2r)d

2
,

hence biasv(Bernr (F2)) = (1−2r)d ≤ e−2rd. In particular, setting d = O(m/ log n)
suffices to guarantee that with probability at least δd = 1 − 2−O(m), the LPN
samples will have bias (with respect to any possible nonzero vector v) εd at most
e−O(rm/ logn). Hence, any attack that fits in the linear test framework against
the standard LPN assumption with dimension m and noise rate r requires of
the order of eO(rm/ logn) iterations. Note that this lower bound still leaves a gap
with respect to the best known linear attacks, which require time of the order
of eO(rm), eO(rm/ log logm), and eO(rm/ logm) when n = O(m), n = poly(m), and
n = 2O(m/ logm) respectively [BKW00, Lyu05, EKM17].

3.3 SOT from Asymptotically Good Linear-Time Encodable Codes

Abstracting out the unnecessary details, recall that the construction of silent
oblivious transfer extension introduced in [BCG+19b, BCG+19a] and recalled

12 Geoffroy Couteau, Peter Rindal, Srinivasan Raghuraman

in Appendix ??, relies on the following assumption: given a large public matrix
G ∈ F k×n

2 , is such that n = c · k for some small constant c > 1 (e.g. c = 2), it
should be infeasible to distinguish e · Gᵀ from random, where e is a uniformly
random weight-t vector. This corresponds to the dual-LPN assumption, which
is equivalent to the primal-LPN assumption with matrix H ∈ Fm×n

2 , where H
is the parity check for generator G; i.e., Gᵀ ·H = 0.

A selection principle for LPN with structured code. Based on the previ-
ous discussions, for any linear code ensemble C which outputs matrices H $← C
having a large distance w.h.p., it is reasonable to conjecture that the corre-
sponding primal-LPN assumption will hold (since a contradiction would imply a
fundamentally different type of attack than existing ones). This conjecture was
formally stated in [ADI+17] for the case of all sparse code ensembles:

Assumption 1 (Assumption 6 in [ADI+17]) For every prime-order field F,
every polynomial m(λ), n(λ), every constant t, every real r ∈ (0, 1/2), and ev-
ery t-sparse matrix A ∈ Fn×m, the following holds: Any circuit of size T =
exp(Ωr(dd(A))) cannot distinguish (A · s + e) for s

$← Fm
2 , e ← Berr(F) from

the uniform distribution with advantage better than 1/T (Ωr(x) denotes Ω(x),
where the hidden constant may depend on the noise rate r).

Noise weight versus minimum distance. The above discussions allows to
make a simple, yet powerful observation: for typical noise distributions, including
the Bernoulli distribution with parameter t/n, the regular noise distribution
(concatenations of t length-n/t unit vectors), and the exact noise distribution
(random t-sparse vectors), the running time of linear attacks is lower bounded
by a term of the form ec·rd for some constant c, where r = t/n is the noise rate
and d is the minimum distance. This suggests the following safeguard : if a SOT
code exhibits a much worse typical minimum distance behavior than estimated
(which in our case would be very surprising but theoretically possible), say, the
true distance d is v times shorter than estimated, then same conjectured security
level as before can be obtained by scaling the number of noisy coordinates t by a
factor v. Crucially, in our SOT construction, the impact of this scaling vanishes
when the number of OTs is large: it only impacts the complexity of distributing
the seed (which increases by a factor v), but has no influence whatsoever, neither
on the matrix multiplication part (which is the bulk of the computation) nor on
the sparse vector expansion (which is the only other component whose cost scales
with the target number of OTs).

Our approach: structured LDPC codes. Asymptotically good families of
linear-time encodable codes have been studied in the literature, with probabilis-
tic constructions given in [GDP73, Spi96]. However, these works only targeted
asymptotic efficiency. Our aim, on the other hand, is to focus on concrete effi-
ciency, and to find codes with a large concrete minimum distance, and extremely
efficient encoding. We choose to focus on structured families of LDPC codes (i.e.,
codes whose parity-check matrix is sparse), which have been widely studied in
the coding theory literature. Our rationale is based on the following observations:

Silver: Silent VOLE and OT from Structured LDPC Codes 13

– Most LDPC codes have linear minimum distance;
– Some structured families of LDPC codes admit efficient encoding algorithms;
– Some structured families of LDPC codes provably achieve both fast linear

time encoding and almost linear minimum distance;
– Structured families of LDPC codes in the literature which do not exhibit lin-

ear or close-to-linear minimum distance typically satisfy a specific constraint:
their Tanner graph contains a large number of degree-2 variable nodes. In
contrast, we suggest candidates which admit extremely fast encoding, but
do not exhibit this structural weakness, and can be experimentally verified
to exhibit a very good minimum distance growth.

– For random LDPC codes, the corresponding assumption (primal LPN with
a random sparse code matrix) is the Alekhnovich assumption [Ale03], an
important and well-studied assumption.

3.4 Most Sparse Matrices Have Linear Dual Distance

In this section, we show that for any integer t > 2, most matrices in Fn×m
2 with

rows of Hamming weight t have dual distance linear in m; more precisely, the
fraction of such matrices with dual distance at least γ ·k (for some constant γ) is
at least 1−m2.1−t. In coding-theoretic terms, it says that most column-regular
LDPC codes have linear minimum distance, where the parity check matrix has
fixed column weight. Let Wt(Fm

2) denote the set of all vectors in Fm
2 with Ham-

ming weight exactly t; we also denote by Wt(Fn×m
2) the set of all matrices in

Fn×m
2 with exactly t ones per column.

Theorem 7 (Most sparse matrices have dual distance O(m)). For any
constant c > 1 and integer t > 2, there is a constant γ = γ(c, t) such that for
any large enough m, denoting n = c ·m,

Pr

[
A

$←Wt(Fn×m
2) :

dd(A)

m
< γ

]
≤ 1−m2.1−t.

For completeness, we provide the proof in Appendix ?? of the Supplementary
Material; the proof is a direct adaptation to our setting of the analysis of [MST03,
Section 5.3]. Building upon our analysis, we also make a key observation: random
LDPC codes over large fields have linear minimum distance with high probability,
even when their parity-check matrix is randomly sampled with {0, 1} entries. We
discuss the implications of this observation for one of our applications, as well
as its relation to previous assumptions from the literature, in Appendix ??.

4 Fast LDPC Encoding
We begin with an overview of how to perform fast encoding of LDPC codes by
leveraging the sparsity/structure of H. Let us first review the naive encoding
method. Recall H defines the code C = {c | Hcᵀ = 0}. As such, define the
systematic form H ′ for the same code by performing elementary row operations
on H to obtain H ′ = [−PT |In−k]. Since elementary row operations do not
change the null-space, we have C = {c | Hcᵀ = 0} = {c | H ′cᵀ = 0}. Although

14 Geoffroy Couteau, Peter Rindal, Srinivasan Raghuraman

H is sparse, P ∈ Fk×m is likely dense. Let G := [Ik|P] be the symmetric form
generator and then encoding can be achieved by computing c := xG for x ∈ Fk.
The cost of this is O(n3) time to compute P and O(n2) time to compute xP .

However, we can also use the fact that Hcᵀ = 0 to encode x into c. Recall
that c = xG = [x|c′] for c′ := xP . Therefore we can rewrite this as

0 = Hcᵀ = H[x|c′]ᵀ = Txᵀ + Sc′ᵀ ⇐⇒ −Txᵀ = Sc′ᵀ

where H = [T |S] and T ∈ Fm×k, S ∈ Fm×m. Given x, we can compute y :=
−Txᵀ in O(k) time since T is sparse. We then solve the sparse system y = Sc′ᵀ.
Using Gaussian elimination, this would naively require O(m3) = O(n3) time.
However, we can try to leverage the sparsity of H to achieve better efficiency.

Our starting point is the somewhat standard LDPC solving technique known
as g-Approximate Lower Triangularization (g-ALT) [RU01, DP15, KS12]. The
basic intuition is that this system can be solved in linear time if S is a lower
triangular matrix. In particular, the entries along the diagonal should all be set
to one. Later we will discuss how to ensure this is the case. The system can
be solved by solving each row “independently” starting with row 1 and working
down. This idea can be generalized to allow all but the last g rows of H to be
triangular (see Figure ?? in Appendix ??). The last g rows are said to be part
of the gap. As discussed in Appendix ??, a parity check matrix with this form
allows for encoding x as c = xG in O(n+g2) time. Therefore, this remains linear
so long as g = O(

√
n). Additionally, we present an optimization in Appendix ??

which reduces this to O(n) at the expense of O(g) communication in the protocol.
Recall that in dual LPN we wish to compute u := e ·Gᵀ which is equivalent

to primal LPN where u := x · H + e. Yet, the encoding algorithm described
above is for computing x ·G. By the transposition principle [Bor57, IKOS08], we
can achieve our goal at effectively the same cost. Roughly, the transformation
works by first expressing the circuit which computes x ·G as a series of matrix
multiplication, s1 :=M1 ·x, s2 :=M2 ·s1, ..., e :=Mn ·sn−1 such that e is the final
output. Any circuit can be expressed in this way. Then e ·Gᵀ can be computed
as sn−1 := Mᵀ

n · e, sn−2 := Mᵀ
n−1 · sn−1, ...,x := Mᵀ

1 · s1. Refer to Appendix ??
for a detailed description of all the algorithms discussed in this section.

5 Estimating the Minimum Distance Empirically
Crucial to our construction is the ability to accurately determine the minimum
distance of the LDPCmatrixH that is employed. Computing the exact minimum
distance is known to be NP-Complete [Var97] and typically infeasible for our
parameter region, e.g. n = 220. For some LDPC distributions, it is possible to
derive an asymptotic bound on the minimum distance; however, many of these
have drawbacks in efficiency or distance.

To overcome this, we resort to computational approaches for estimating the
minimum distance of an LDPC code ensemble. For relatively small values of n,
say less than 200, we compute the exact minimum distance using the approach
presented in [HIQO19]. For larger n, say less than 4000, we fall back to a stan-
dard heuristic, the noisy impulse method of [BVJD02], for upper bounding the

Silver: Silent VOLE and OT from Structured LDPC Codes 15

minimum distance (which we have verified does in fact closely agree with exact
minimum distance for smaller values of n). We then extrapolate the asymptotic
behavior of the minimum distance for larger values of n.

5.1 Exact Minimum Distance

For computing the exact minimum distance we make use of the so-called Brouwer-
Zimmerman algorithm as described in [Gra06], and implemented in [HIQO19].
Loosely speaking, this approach iteratively refines a lower and upper bound un-
til they are equal. First, the generator matrix G is placed in systematic form
G′ = [Ik|P]. Recall that for all x ∈ Fk \ {0}, the corresponding codeword is
c = [x|xP] and therefore clearly |c| ≥ |x|. Using this observation, the algorithm
proceeds by initializing the lower bound ` = 1 and upper bound u = m+ 1. All
x with |x| = ` are encoded as c = xG and the upper bound u is replaced as the
minimum weight over all codewords considered. While u 6= `, ` is incremented
and the process is repeated. See [Gra06, HIQO19] for details.

The running time remains exponential in the size of the code. With care-
ful optimizations, the implementation of [HIQO19] is capable of computing the
minimum distance up to about n = 160. Since this is relatively small compared
to the codes our protocol employs, this approach is primarily used to validate
the accuracy of the so-called noisy impulse method which we describe next.

5.2 Upper Bounding the Minimum Distance

Our second approach for evaluating the minimum distance of a LDPC family
is known as the noise impulse method [BVJD02]. Very roughly speaking, this
approach tries to decode the zero codeword when one or more of the bits have
been flipped. The intuition is that if the right bits are flipped, then the next
closest codeword will correspond to a close-to-minimum weight codeword.

In more details, and including improvements from [XFE04], this approach
considers all vectors c ∈ {0, 1}n with |c| ≤ w for some small constant w, e.g.
1 or 2. Each c is input into a belief propagation decoder, typically Min-Sum,
which output the decoders estimates on the likelihood that each bit of c should
be error corrected to zero or one. Since at most w bits in c are one and the
actually minimum distance d is almost certainly more than twice w, the most
likely codeword will in fact be the original all zero codeword.

However, the likelihood information contained in the decoder output can be
leveraged to aid in the search of nearby non-zero codewords. Loosely speaking,
belief propagation (BP) decoders work by assigning each bit of c a likelihood
of being zero or one and updating these likelihoods in an iterative process. The
initial likelihood values could be that the decoder is 95% certain that each bit
is as specified by c, i.e. an error rate of 0.05. Intuitively, at each iteration the
likelihood information for each bit of c is updated based on how many of the
corresponding parity checks pass or fail. An interpretation of this is that it
reduces the likelihood values for the zero positions of c when they are closely
related to the positions of c which were set to one.

The idea is then to sort the positions of c such that the positions which are
most confidently zero are to the right. The same permutation is applied to the

16 Geoffroy Couteau, Peter Rindal, Srinivasan Raghuraman

columns of G. Partial Gaussian elimination is applied to G s.t. the left k × k
submatrix is lower triangular with ones along the diagonal. Some of the first
k columns are likely linearly dependent, preventing us from making the left k
columns of G lower diagonal. In this case, the dependent columns are permuted
right and replaced with the next left most column of G. We then consider all
(permuted) codewords with the form c∗ = [c1|c2|0n−k−t] where c2 ∈ {0, 1}t
has some maximum weight u, e.g. t = 50, u = 10. For each choice of c2, it is
possible to compute c1 ∈ {0, 1}k via the left lower diagonal submatrix of G. The
estimated upper bound the distance as the minimum weight over all c∗.

Table 1: The minimum dmin, average davg and maximum dmax minimum distance
obtained over 100 trials for weight 5 uniform LDPC codes.

m method w dmin davg dmax

20 impulse 1 2 5 6
exact - 2 5 6

40 impulse 1 4 8.3 10
exact - 4 8.3 10

60
impulse 1 8 11.44 14
impulse 2 8 11.38 14
exact - 8 11.38 14

80
impulse 1 12 16.48 20
impulse 2 12 14.86 18
exact - 12 14.86 18

100 impulse 1 16 22.28 26
impulse 2 14 18.2 20

6 Code Design
Designing an efficient LDPC code for large dimension LPN offers many unique
challenges. Our primary two design goals are to achieve large minimum distance,
ideally linear in n, and linear time encoding. However, unlike many existing codes
from the coding community, we do not care about its decoding performance or
other error correcting properties. All our codes have rate 1/2, i.e. n/2 = m = k.

In this section we review two existing LDPC codes, namely uniform and
Tillich-Zémor Codes. After describing various benefits and drawbacks of each,
we design a new highly efficient LDPC code which achieves an extremely fast
linear encoding time and plausibly linear minimum distance.

6.1 Uniform LDPC

As described in Section 3.4, the family Wt(Fn×m
2) of uniform LDPC codes with

fixed column weight t are known to have linear minimum distance with good
probability. We consider the family of codes parameters by t ∈ {5, 11}. While the
theoretical bound applies to all t > 2, we observe that t = 3 experiences very poor
concrete minimum distance performance and often do not correspond to a code
that can be made systematic. For t = 5 we observe a concrete linear minimum
distance growth rate of davg = 0.28m, dmin = 0.19m over 100 trials. These growth
rates were obtained for n ∈ [200, 800]. Since we are interested in the worse case

Silver: Silent VOLE and OT from Structured LDPC Codes 17

performance, we are mostly interested in dmin. By increasing the weight to t = 11
we obtain a minimum distance growth rate of davg = 0.38m, dmin = 0.36m.

The hardness of syndrome decoding for uniform LDPC codes was the basis
of recent proposals [BCGI18, YWL+20], and corresponds to the well-established
Alekhnovich assumption [Ale03]. While these codes turn out to be inappropriate
efficiency-wise in our setting (see below), we will rely on the following heuris-
tic to select the concrete parameters of our new codes: when we experimentally
observe, with high confidence, that a distribution over codes achieves a similar
average minimum distance, with a similar variance, compared to uniform LDPC
codes, we heuristically estimate that the corresponding assumptions should pro-
vide a comparable level of hardness. We note that, if it turns out that this
heuristic is too optimistic (which would intuitively require finding new attacks
radically different from all known attacks), increasing the noise (as described
in Section 3.3, Noise weight versus minimum distance) can be used to adjust
the hardness level of the underlying assumption without significantly harming
efficiency.

Shortcoming of uniform LDPC codes. The choice of basing security on the
hardness of decoding uniform LDPC codes was motivated in previous works [BCGI18,
YWL+20] by the fact that they correspond to the relatively well-established
Alekhnovich assumption. However, they turn out to be a relatively poor choice
in our setting. At a high level, the reason is that for distributions over random
LDPC codes which do not enforce any particular structure beyond guaranteeing
some conditions on the number of ones per row and column (i.e., which sample
the parity-check matrix uniformly conditioned on constraints on the fractions of
variable and check nodes from the Tanner graph which must have a given degree),
having a high minimum distance with good probability, and being linear-time
encodable with the g-approximate lower triangularization algorithm, appear to
be at odd, according to a conjecture of Richardson and Urbanke [RU01] (we
will discuss this conjecture in more details in Section 6.2). This effectively jus-
tifies moving towards structured ensembles of LDPC codes, which also enforce
some structure on the shape of the parity-check matrix. A prime example of
codes achieving a sweet spot between having high minimum distance with good
probability, and very fast encoding, is given by the Tillich-Zémor code ensemble.
6.2 Tillich-Zémor Codes
As discussed before, in order to design codes that have efficient encoders as well
as good minimum distance, one must move away from random codes and con-
sider more structured codes. As such, structured codes would offer an immediate
handle on efficient encoding purely by design. On the other hand, this approaches
leaves much for the desire of a more rigorous theoretical understanding of the
minimum distance of such structured codes. Such questions have been posed in
the past amongst the members of the coding theory and communications com-
munities. One such work is that of Tillich and Zémor [TZ06]. They investigate
the minimum distance of structured LDPC codes with two variable nodes of
degree-2 per parity-check equation. In the design of LDPC codes with high iter-
ative decoding performance the variable nodes of degree-2 play a very important

18 Geoffroy Couteau, Peter Rindal, Srinivasan Raghuraman

role, and this is their motivation for investigating the minimum distance of such
codes. Concretely, they investigate codes with m × n parity check matrices of
the form H = [L|R], where R is the m×m matrix defined by

R =

1 1

1 1
. . .

. . .
1 1

1 1

and L is an m×k matrix such that all of its columns/rows have weight constant
t. As such, H is in g-ALT form for g = 1. Tillich and Zémor prove that if
H was generated at random subject to these structural constraints, then the
minimum distance of the corresponding code is at most αn1−

2
t with probability

O(n 2
t−1) +O(α t

2) for even t, and O(n 2
t−1) +O(αt) for odd t. In fact, they also

show that for any H that has the aforementioned structure, the corresponding
code will have minimum distance upper bounded by a quantity of orderO(n1− 1

t).
Thus, such codes always have sub-linear distance.

Looking at the structure of H, there are a few observations we can make.
Let n2 denote the number of variable nodes of degree 2. A principal quantity of
interest is the ratio n2/m. It can be shown that if n2/m > 1, then the minimum
distance of the corresponding LDPC code cannot be larger than a logarithmic
function of n. If n2/m < 1, then it is possible for the minimum distance to
be a linear function of n. The codes considered by Tillich and Zémor achieve
n2/m = 1 (for t 6= 2) and offer readily a simple linear-time encoding algorithm
for the corresponding code. Yet, as mentioned before, these codes always have
sub-linear (albiet, close to linear) minimum distance. In the next section we will
empirically verify that the sub-linear growth is in fact the case.

Other works, e.g. [OTA07, DRU06], have looked at the the sub-graph G2 of
the Tanner graph formed by only the degree-2 variable nodes (columns of H with
weight 2) and certain structural properties can lead to poor minimum distance.
For example, it is a common practice to ensure that there are no cycles in the
Tanner graph involving only variable nodes of degree 2. Also, Otmani, Tillich
and Andriyanova [OTA07] proved that if G2 is slightly dense (has average degree
greater than 2), then the minimum distance is only at most logarithmic in n.
They also consider several other conditions for ensuring sub-linear distance.

Another work regarding G2 is that of Di, Richardson and Urbanke [RU01,
DRU06] and regard the quantity Q = λ′(0)ρ′(1) (λ and ρ are polynomials de-
scribing specific weight distributions of the rows/columns respectively) and how
it impacts the minimum distance. λ′(0) is the fraction of edges in the Tanner
graph connecting to degree-2 variable nodes. They show that if Q > 1, then the
minimum distance grows sub-linearly with n and linear time encoding. A ques-
tion that is left open and remains to be answered is whether a linear encoding
complexity necessarily implies sub-linear minimal distance.

We end this section with a few concluding remarks regarding our new codes
and how they compare against the several techniques laid out in this section.
Firstly, our codes have designed to ensure fast/linear encoding complexity while
also having high (potentially linear) minimum distance. However, the approach

Silver: Silent VOLE and OT from Structured LDPC Codes 19

to ensure linear encoding complexity is different from the works described in
this section, since we actually have zero columns with weight 2. Thus, none the
sufficient conditions for sub-linear minimal distance described above are satisfied
by our codes. Based on these observations, we conclude that our codes do not
provably have sub-linear minimal distance. We leave open the task of formally
proving claims regarding the minimum distance of our codes.
6.3 LDPC Silver Codes
We now present our new LDPC constructions, which we dub Silver Codes (codes
for SILent Vole and oblivious transfER). The goal of these codes is to obtain
(plausible) linear minimum distance and extremely efficient encoding. Unlike in
the traditional setting, our codes need to perform well (encoding-wise) when n
is on the order of millions (but do not need to admit efficient decoding algo-
rithms). Ideally our code would have a very compact representation. If a large
preprocessing/sampling procedure must be performed, then the codes will likely
need to be stored in memory, possibly requiring more memory than the rest of
the protocol. Therefore we aim to design codes with a very succinct description.

Our second goal is to have a very efficient memory access structure. Re-
call that the encoding algorithm will have to access “memory locations” j and
i whenever there is a 1 located at Hj,i. Therefore we would ideally like H to
have some additional structure which maintains some memory locality. For ex-
ample, having a bounded distance between sequential memory accesses. In the
case of TZ codes, for example, the left matrix is uniformly distributed, which
significantly harms the performances in terms of memory access. When n is on
the order of millions, performing random access into an array of length n can
quickly dominate the running time as we will see in Section 7.

Despite this shortcoming, we take TZ as our starting point and iteratively im-
prove it (sacrificing decoding performance, but trying to optimize minimum dis-
tance and encoding time) with the (heuristic) guidance of our minimum distance
estimators. It will be useful to partition H into left and right halves [L|R] := H
which are each of sizem×m. For TZ, L is therefore a uniform column/row weight
t matrix while R has column/row weight 2 where all ones are effectively on a
diagonal band. Recall that we only consider rate 1/2 codes where k = m = n/2.

It is also a well known phenomenon that odd column weight t LDPC codes
achieve better minimum distance performance (for examples, the bounds on the
minimum distance achieved in [TZ06] are much better for odd t). Hence, we
restrict ourselves to odd values of t. In particular, we focus on t ∈ {5, 11}.
Slv1. Our first observations is that the structure of R in TZ plays a crucial role
in the proof of sub-linear distance. For TZ, this structure was desirable as it
enables a very efficient linear time encoder. However, using the more general
g-ALT encoder we are still able to have linear time encoding for any g = O(

√
n).

Our first alteration is then to increase the gap g and ensure all columns of R have
weight t. There are several possible values for g and we experimentally settle on
g ∈ {24, 32} as they will provide good concrete performance.

The next question is how should the ones be distributed in R. Our g-ALT
encoder require ones along the diagonal which leaves t − 1 degrees of freedom

20 Geoffroy Couteau, Peter Rindal, Srinivasan Raghuraman

per column. While one could distribute these uniformly over the lower half of R,
we opt to place them uniformly in the g positions below the main diagonal. An
example of g = 2, t = 2 is shown in Figure 1a. We consider two choices of these
parameters, (g, t) ∈ {(24, 5), (32, 11)}, which are respectively used in our weight
5 and 11 codes. We note that other parameter choices are possible and that we
settled on these as a good trade off between efficiency and distance.

1 1 1
0 1 1

. . .
. . .

. . .
0 0 1

1 1 1
0 1 0

(a) Sample R matrix
for Slv1 with g = t = 2.

20 60 100 150 200 300 400
0

10

20

30

40

50

60

70

80

m

d
a
vg

TZ-5
Slv1-5

Uniform-5

(b) Average minimum distance of weight t = 5 codes.

Fig. 1: Example of R and distance of Slv1, uniform, TZ for weight t = 5.

We denote this code family as Slv1-t. Slv1 immediately gives a significant
improvement over TZ as shown in Figure 1b. Consider the structure of minimum
codewords in TZ: They are often composed of several columns from L which
when added together result in small distances between the non-zero elements,
e.g. 1001000...000100010 which has distances 3,4 between the ones. The small
distances can then be “bridged” by including the corresponding columns of R,
e.g. 7 columns in the case above. However, this strategy does not work for our
codes due to R having larger column weight which are randomly distributed.

Moreover, this code performs remarkably similar to uniform of the same
column weight t = 5. With m = n/2 = 200 rows, the average (estimated)
minimum distance over 100 trials of this code is 35 while uniform is 45.

Although this code represents a significant improvement over TZ for our
particular application, we observe that some samples of the Slv1 code have sig-
nificantly lower distance that others. In particular, the variance in this code can
result in samples with as low as dmin ≈ 0.55davg while uniform has a much smaller
variance, with dmin ≈ 0.95davg over 100 samples.

Slv2. Through experimentation and inspecting the Slv1 instances which perform
unusually poorly, we identified that key contributors are bad local structures in
the main diagonal of R which can at times result in low weight codewords. To
prevent this, we observed that adding additional weight one diagonals below the
main diagonal prevents these structures. Intuitively they work by increasing the
expanding property of each column by guaranteeing they span more than g rows.
Moreover, these structures add almost no computational overhead.

Additionally, we remove the first g columns of R such that its a m×m− g
matrix and the portion of the band which wraps around is removed. In Ap-
pendix ?? we will use a different technique to restore R to being square. An

Silver: Silent VOLE and OT from Structured LDPC Codes 21

example of the Slv2 distribution of R is in Figure 2a with g = t = 2 and a single
diagonal.

1
0 1
1 1 1

. . .
. . .

. . .
1 0 1 1

. . . 0 0 1
1 1 1

1 0

(a) Sample R matrix for Slv2
with t = 2.

20 60 100 150 200 300 400
0

20

40

60

80

100

120

m

d
a
vg

Slv2-5
Uniform-5

(b) davg of column weight 5 codes.

Fig. 2: The alterations in Slv2 along with the minimum distance performance.

Through experimentation we observe that adding two weight 1 diagonal
bands at distances 5 and 31 below the main diagonal significantly reduces the
variance and improves the average distance. As shown in Figure 2b the perfor-
mance of the second code which we denote as Slv2. We note that the uniform
code also had the n dimension reduced by g in order to maintain a fair com-
parison. Remarkably, the Slv2 code has average performance almost identical to
that of uniform codes. Moreover, the variance of Slv2 is significantly reduced,
with dmin = 0.88davg compared to dmin = 0.91davg for uniform over 100 trials.

Slv3. Next we turn our attention to the distribution of L after which we will
further optimize R. While the current distribution of L gives good minimum
distance, its memory locality properties are extremely poor since it is uniform.
For each non-zero Li,j , the g-ALT encoder must access two arrays at i, j respec-
tively. This effectively means one of them is always a cache miss and can quickly
dominate the running time as see in Figure 5 of Section 7.

We investigated numerous methods of improving the memory locality of L.
For instances, an L consisting of random non-zero submatrixes with various
dimensions. However, for the most part this line of thinking was ineffective. Core
to a high performing L is an expanding property. In particular, each column of
L should have non-zero locations which are somewhat unique and spread out.
This is particularly important since the distribution of R is more or less a single
band along the diagonal. If both L and R consists of clumps of ones, then it is
more likely that cancellation can occur.

However, we identified a surprisingly simple and highly efficient structure
which can possess the exact properties we desire. In particular, we will distribute
L such that each column is a cyclic shift of exactly one over the previous. This
effectively results in t weight one diagonals wrapping around L.

We observe that the exact distribution of the diagonal plays a very cru-
cial role in the minimum distance performance of L. For instance, if they are
sampled uniformly, then with some noticeable probability the diagonals can be
clumped together. In these cases the code can perform extremely poorly due to

22 Geoffroy Couteau, Peter Rindal, Srinivasan Raghuraman

L and R being too similarly distributed. One also might think that to achieve
a good expanding property that distributing the diagonals evenly over L would
be optimal. However, in this case it is possible for two columns of L to equal.

We have experimentally identified that a compromise between these two ex-
tremes achieves very good minimum distance performance (both in terms of
average distance and variance). In particular, the diagonals should be somewhat
evenly distributed while still being irregularly spaced. To identify such distri-
butions we sampled many L at random and evaluate the resulting minimum
distance over hundreds of trials and various values of n. An instances of a well
performing L with weight t = 5 is to distribute the ones of the first column
as {0m, 0.049m, 0.43m, 0.60m, 0.73m}. Other well performing instances have a
similar distribution where some diagonals are relatively close while overall they
are evenly distributed over the range.

Our methodology for selecting the exact parameters was to evaluate 10,000
random choices at m ∈ {40, 60, 80, 100, 150, 200, 300, 400} and select the top 100
best performing. Out of these, we then ran 100 trials for each m ∈ [40, 400]
with independently sampled R and selected the parameters which maximized
dmin/davg for each m. As such, our selection didn’t achieve the highest average
distance davg but instead was “consistently well performing.” We note that one
has to be careful with the selection of L as a poorly chosen one can result in
bad/erratic minimum distance performance. That being said, we observed that
most randomly sampled chooses performed well.

The minimum distance performance of this code is depicted in Figure 3a.
Interestingly, this code out performs uniform with an average (estimated) min-
imum distance of davg = 94 at m = 400 compared to davg = 91 for uniform.
Moreover, the variance of this code is quite low, with dmin = 0.94davg at m = 400
compared to dmin = 0.91davg for uniform over 100 trials.

20 60 100 150 200 300 400
0

20

40

60

80

100

m

d
a
vg

Slv2-5
Slv3-5

Uniform-5

(a) Average minimum distance of Slv2,
Slv5 vs uniform with t = 5.

20 60 100 150 200 300 400
0

20

40

60

80

100

m

d
a
vg

Slv4-p1-5
Slv4-p2-5
Slv4-p3-5
Uniform-5

(b) The negative effect on average min-
imum distance of having repeats of p ∈
{1, 2} vs p ≥ 3.

Fig. 3: Performance of Slv3 and Slv4 with p ∈ {1, 2, 3} vs uniform.

Slv4.We now return our attention to improving the distribution ofR. Generating
R is effectively sampling O(m) random sets of

(
g
t

)
, which correspond to the

location of the ones on the main diagonal. While linear time, this sampling can

Silver: Silent VOLE and OT from Structured LDPC Codes 23

be quite expensive. We therefore experiment with the idea of letting the diagonal
repeat ever p columns. While one has to be careful with repeated structures
in a code, for a sufficiently large p we conjecture and experimentally confirm
that it should not harm the minimum distance. We consider a repeat of p ∈
{1, 2, 3, ..., g} and observe the repeating structure only introduces a weakness for
p ∈ {1, 2}. The case of of p = 1 is clearly problematic due to R now effectively
being t + 2 diagonal lines of width one which structurally is too similar to L.
Our experiments reflect this with minimum distances being effectively upper
bounded by 12 as seen in Figure 4. For p = 2 we observe a similar trend with the
distance being upper bounded by 40. However, for p ≥ 3 we observe no negative
effects over all of the trials. To be slightly conservative, we opt to set p = g
which for our weight 5 code results in p = 24.

We further propose selecting a concrete instance of the diagonal, and vali-
dating its performance on the range of experimentally testable values of n. This
can in turn give us confidence that the repeating structure does not happen to
correspond to a weak instances, e.g. a p = 1 instance. Moreover, by selecting a
concrete instance, it is possible to hardcode the indices into the program and
get a very significant performance improvement.

Slv5. This leads us to our final modification. For the case of p = g we restrict our
selection of R such that each row1 and column has fixed weight t−1 with respect
to these random indices. The reason for this alteration is purely to improve
the computational efficiency of computing xGᵀ via the transposed circuit. In
particular, the encoding algorithm will process R in a row by row manner. This
alteration allows the weight of each row to be not be hard coded improved the
performance of the branch predictor, etc. We observe that restricting R to be
row regular does not decrease the minimum distance performs. See Appendix ??
for a detailed description.

Eventually, we further consider a variant of Slv5, called Slv5’. This variant
is entirely identical, with the sole exception that the parity-check matrix is now
viewed as the parity-check matrix over a field F which might not be equal to
F2 – while the parity-check matrix still has {0, 1} entries. We do not use this
variant in our main application to silent OT, but it can be used to provide strong
efficiency improvements for VOLE over larger fields. We provide support for this
modification in Appendix ?? of the Supplementary Material.

20 60 100 150 200 300 400
0

20

40

60

80

100

120

140

160

m

d
a
vg

TZ-5
TZ-11
Slv5-5
Slv5-11

Uniform-5
Uniform-11

Fig. 4: Average minimum distance of uniform, Slv5 and TZ for weight t ∈ {5, 11}.
1 Excluding edge cases for the first and last set of g rows.

24 Geoffroy Couteau, Peter Rindal, Srinivasan Raghuraman

7 Performance Evaluation
We now evaluate the concrete running times of our LDPC codes along with our
Silent OT and Vole implementations (available at [Rin]). With respect to our OT
protocol we compare with [IKNP03, BCG+19a, YWL+20]. We also compare our
Vole implementation (a direct generalization of [BCG+19a] with our LDPC code)
with the implementation of [WYKW20]. All implementations target κ = 128 bits
of computational security and λ = 40 bits of statistical security.

All performance evaluations were perform on a single consumer laptop with
an i7 9750H CPU and 16GB of RAM. Networking is performed via localhost.
Each party is restricted to a single thread. We note that due to silent property of
our protocol, it is very conducive to a multi-threaded implementation but that
we only consider single thread performing for simplicity. All numbers reported
exclude a setup phase where 128 base OTs are perform.
LDPC Encoding Performance. In previous protocols for silent OT and
Vole, the running time was dominated by the compression of the noisy vectors
generated in the setup. We now compare our new algorithms with the bit poly-
nomial multiplication encoding used in [BCG+19a].

For n = 220, our most optimized code is 31× faster than [BCG+19a, CCK+18].
This improved running time is not merely due to using an LDPC code as demon-
strate by the running time of TZ, which is only between 1.1 and 2× faster than
[BCG+19a, CCK+18]. Moreover, the initial strengthening of the TZ minimum
distance by the Slv1 code results in a significant running time increase of 1.5×.

The first major performance improvement is achieved by the Slv3 code which
changes the distribution of L to have an extremely efficient memory access struc-
ture. This change reduces the running time of the L encoding by around 25×.
The Slv5 code then optimizes the distribution of R to have a repeating struc-
ture along with ensuring that it is row regular. These changes allow for very
significant memory and system level optimization.

Encoder weight t n
216 220 224

[BCG+19a] - 10.2 194.2 4180

TZ 5 4.5 77.4 1943
11 4.9 145.2 3971

Slv1 5 7.3 153.2 3632
11 7.9 241.7 5414

Slv3 5 5.8 88.2 1688
11 6.1 97 1792

Slv5 5 0.2 6.3 134
11 0.5 11.3 234

Fig. 5: Running times (ms) of encoding algorithms for LPN with n length vector.

Oblivious Transfer Performance.We now turn our attention to analysing the
concrete performance of our OT protocol in comparison to [BCG+19a, YWL+20,

Silver: Silent VOLE and OT from Structured LDPC Codes 25

IKNP03] as shown in Figure 7. All protocols output m instances of correlated
OT where the receiver obtains a per instance bit b and message mb ∈ {0, 1}128
while the sender obtains a global ∆ ∈ {0, 1}128 and a per instance message
m0 ∈ {0, 1}128 such that mb = m0 + b∆. Random and chosen message OTs
can then be obtained via standard techniques. Our protocol is based on that of
[BCG+19a] and we inherit their O(logm) communication overhead.

We observe that both our weight 5 and 11 Slv5 codes out perform all existing
protocol in terms of computational overhead while matching the best commu-
nication overhead of [BCG+19a]. In particular, our protocol is as much as 1.5×
faster than the highly optimized [IKNP03, Rin] protocol which has stood as
the most computationally efficient protocol for almost two decades. All this is
achieved while communicating exponentially less data. We argue that this is a
landmark achievement given the central role OT plays in countless protocols.

The next most efficient protocol is that of Yang et al. [YWL+20] which also
achieves a sub-linear (but not logarithmic) communication overhead. This proto-
col is based on Primal LPN and therefore requires a one time setup sub-protocol
in which correlated randomness is constructed. Given this, their protocol can
then generate correlated OTs on demand. In Figure 7 we distinguish their setup
and online protocols as x+y respectively. However, even if only the online proto-
col is considered, our protocol is more than 4× more efficient in terms of running
time and communication. If their setup phase is included then our protocol re-
quires 13× less communication for m = 107. What is more, their setup phase
requires a relatively complicated parameter select procedure which limited us to
only performing m = 107 OTs with their implementation. One reason their only
implement this size is that their setup phase has a relatively fixed cost regardless
of m. On the other hand, our protocol can easily be executed with any value of
m with running times that scales proportionally.

Time (ms) Comm (KB)
m m

Protocol: weight t: 216 220 107 224 216 220 107 224

[BCG+19a] - 25 510 5,121 1,0432
75 94 122 126

This 5 1 29 268 488
11 2 33 324 591

[YWL+20] 10 - - 44+1, 134 - - - 1,130+550 -

[IKNP03] - 4 45 423 692 1,048 16,777 160,038 268,435

Fig. 6: Single thread running time (ms) and communication (KB) to perform m
correlated oblivious transfers in the LAN setting.

Vole Performance. We implement the generalization of [BCG+19a] for per-
forming vole. The protocol is largely the same as the OT variant except that f
more OTs on strings of length O(κf) need to be performed where f is the log of
the field size, i.e. f = 128. For our protocol we use the binary Slv5 code while the
noise vector is distributed over the while field. The security of this optimization
is discussed in Section ??. We compare with the vole protocol of [WYKW20]
(a generalization of [YWL+20]) which is based on Primal LPN and therefore

26 Geoffroy Couteau, Peter Rindal, Srinivasan Raghuraman

requires a one time setup sub-protocol. We also compare to the 1-out-of-N OT
protocol of [OOS17] due to vole also supporting this functionality via hashing.

We observe that our protocol significantly out performs both of these works.
Moreover, [WYKW20] performs a vole over a field of size 261 − 1 while our im-
plementation is for the Galois field of size 2128. As such, this effectively halves
their communication. Similarly, [OOS17] has an analogous field size of 279. De-
spite working over a larger field, the running time of our protocol 4× faster
than [WYKW20] at m = 4 × 107 and 22× faster than [OOS17]. Similarly, at
m = 4 × 107 our protocols requires between 5 to 8× less communication than
[WYKW20] depending on if their setup is include and 6200× less than [OOS17].

Time (ms) Comm (KB)
m m

Protocol: weight t: log |F| 216 220 224 4 · 107 216 220 224 4 · 107

This 5 128 10 50 616 1,390 339 373 405 40911 128 11 53 750 1,660

[WYKW20] 10 61 - - - 260+5,699 - - - 1,130+2,101

[OOS17] - 79 15 218 3,499 31,219 4,219 67,137 1,073,832 2,561,551

Fig. 7: Single thread running time (ms) and communication (KB) to perform m
voles (or 1-out-of-N OTs for [OOS17]) in the LAN setting.

Applications. The applications of our new protocol are extremely broad.
Two of the most compelling are binary triple generation for the GMW[GMW87b]
protocol and private set intersection. The former allows generic secure compu-
tation of binary circuit at the expense of performing 2|C| OTs and sending 2|C|
bits where |C| is the number of AND gates in the circuit. Due to the extreme ef-
ficiency of our protocol, the cost of the OTs is like dominated by the other costs
in the GMW protocol, i.e. simply sending the bits. More generally, since our
OT protocol is faster than all prior works in effectively all metrics, our protocol
should be the de facto choice for generating OTs and binary triples.

The recent semi-hones/malicious secure PSI protocol of [RS21] directly builds
on vole and achieved the lowest communication and very fast running times
compared to all prior works. This protocol performs a vole of size 2.4n where
the sets are of size n. Their implementation makes use of the vole protocol of
[SGRR19] along with optimizations of [WYKW20]. As such, integrating our vole
protocol gives a good example of the speed ups that can be obtained.

For sets of size n = 216 to n = 224 we observe that our vole protocol improves
the running time of [RS21] by between 40 and 45 percent and 25 to 1 percent
reduction in communication. Concretely, the semi-honest variant of their PSI
protocol for n = 220 with our vole implementation would require 3.1 seconds
compared to 2.4 seconds of [KKRT16] while at the same time sending 2.5× less
data than [KKRT16]. As such, in effectively all real world situation the PSI
protocol of [RS21] with our vole is the optimal protocol to use. Moreover, the
malicious variant of [RS21] with our vole achieves the fastest running time and
lowest communication by a factor of 1.7× and 4× respectively compared to then
next most efficient protocol[PRTY20].

Silver: Silent VOLE and OT from Structured LDPC Codes 27

References
ABG+14. Adi Akavia, Andrej Bogdanov, Siyao Guo, Akshay Kamath, and Alon

Rosen. Candidate weak pseudorandom functions in AC0 o MOD2. pages
251–260, 2014.

ADI+17. Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen, and Lior
Zichron. Secure arithmetic computation with constant computational over-
head. pages 223–254, 2017.

AJ01. Abdulrahman Al Jabri. A statistical decoding algorithm for general linear
block codes. 2001.

Ale03. Michael Alekhnovich. More on average case vs approximation complexity.
pages 298–307, 2003.

BCG+17. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, and Michele
Orrù. Homomorphic secret sharing: Optimizations and applications. pages
2105–2122, 2017.

BCG+19a. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter
Rindal, and Peter Scholl. Efficient two-round OT extension and silent
non-interactive secure computation. pages 291–308, 2019.

BCG+19b. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators: Silent OT
extension and more. pages 489–518, 2019.

BCG+20. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Correlated pseudorandom functions from variable-density
LPN. pages 1069–1080, 2020.

BCGI18. Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing
vector OLE. pages 896–912, 2018.

BFKL94. Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton.
Cryptographic primitives based on hard learning problems. pages 278–291,
1994.

BJMM12. Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. De-
coding random binary linear codes in 2n/20: How 1 + 1 = 0 improves
information set decoding. pages 520–536, 2012.

BKW00. Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning,
the parity problem, and the statistical query model. pages 435–440, 2000.

BLP11. Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Smaller decoding
exponents: Ball-collision decoding. pages 743–760, 2011.

BM97. Mihir Bellare and Daniele Micciancio. A new paradigm for collision-free
hashing: Incrementality at reduced cost. pages 163–192, 1997.

BM18. Leif Both and Alexander May. Decoding linear codes with high error rate
and its impact for LPN security. pages 25–46, 2018.

Bor57. Jan Lourens Bordewijk. Inter-reciprocity applied to electrical networks.
1957.

BR17. Andrej Bogdanov and Alon Rosen. Pseudorandom functions: Three
decades later. Cryptology ePrint Archive, Report 2017/652, 2017. http:
//eprint.iacr.org/2017/652.

BTV16. Sonia Bogos, Florian Tramer, and Serge Vaudenay. On solving lpn using
bkw and variants. 2016.

BV16. Sonia Bogos and Serge Vaudenay. Optimization of LPN solving algorithms.
pages 703–728, 2016.

BVJD02. C. Berrou, S. Vaton, M. Jezequel, and C. Douillard. Computing the min-
imum distance of linear codes by the error impulse method. 2002.

http://eprint.iacr.org/2017/652
http://eprint.iacr.org/2017/652

28 Geoffroy Couteau, Peter Rindal, Srinivasan Raghuraman

CCK+18. Ming-Shing Chen, Chen-Mou Cheng, Po-Chun Kuo, Wen-Ding Li, and
Bo-Yin Yang. Multiplying boolean polynomials with frobenius partitions
in additive fast fourier transform, 2018.

DAT17. Thomas Debris-Alazard and Jean-Pierre Tillich. Statistical decoding.
2017.

DP15. A. Dutta and A. Pramanik. Modified approximate lower triangular encod-
ing of ldpc codes. 2015.

DRU06. Changyan Di, Thomas J. Richardson, and Rüdiger L. Urbanke. Weight
distribution of low-density parity-check codes. 2006.

EKM17. Andre Esser, Robert Kübler, and Alexander May. LPN decoded. pages
486–514, 2017.

Fei02. Uriel Feige. Relations between average case complexity and approximation
complexity. pages 534–543, 2002.

FGKP09. Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar
Ponnuswami. On agnostic learning of parities, monomials, and halfspaces.
2009.

FKI06. Marc PC Fossorier, Kazukuni Kobara, and Hideki Imai. Modeling bit
flipping decoding based on nonorthogonal check sums with application to
iterative decoding attack of mceliece cryptosystem. 2006.

FS09. Matthieu Finiasz and Nicolas Sendrier. Security bounds for the design of
code-based cryptosystems. pages 88–105, 2009.

Gal62. Robert Gallager. Low-density parity-check codes. IRE Transactions on
information theory, 8(1):21–28, 1962.

GDP73. S. I. Gelfand, R. L. Dobrushin, and M. S. Pinsker. On the complexity of
coding. 1973.

GJL20. Qian Guo, Thomas Johansson, and Carl Löndahl. Solving LPN using
covering codes. 33(1):1–33, January 2020.

GMW87a. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. pages
218–229, 1987.

GMW87b. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all NP-
statements in zero-knowledge, and a methodology of cryptographic proto-
col design. pages 171–185, 1987.

Gra06. Markus Grassl. Searching for linear codes with large minimum distance.
2006.

HIQO19. Fernando Hernando, Francisco D. Igual, and Gregorio Quintana-Ortí. Al-
gorithm 994: Fast implementations of the brouwer-zimmermann algorithm
for the computation of the minimum distance of a random linear code.
2019.

IKNP03. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending obliv-
ious transfers efficiently. pages 145–161, 2003.

IKOS08. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryp-
tography with constant computational overhead. pages 433–442, 2008.

Kil88. Joe Kilian. Founding crytpography on oblivious transfer. 1988.
Kir11. Paul Kirchner. Improved generalized birthday attack. Cryptology ePrint

Archive, Report 2011/377, 2011. http://eprint.iacr.org/2011/377.
KKRT16. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Ef-

ficient batched oblivious PRF with applications to private set intersection.
pages 818–829, 2016.

KOS15. Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT
extension with optimal overhead. pages 724–741, 2015.

http://eprint.iacr.org/2011/377

Silver: Silent VOLE and OT from Structured LDPC Codes 29

KS12. K. Kobayashi and T. Shibuya. Generalization of lu’s linear time encoding
algorithm for ldpc codes. 2012.

LF06. Éric Levieil and Pierre-Alain Fouque. An improved LPN algorithm. pages
348–359, 2006.

Lyu05. Vadim Lyubashevsky. The parity problem in the presence of noise, decod-
ing random linear codes, and the subset sum problem. 2005.

McE78. Robert J McEliece. A public-key cryptosystem based on algebraic. 1978.
MMT11. Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random

linear codes in Õ(20.054n). pages 107–124, 2011.
MO15. Alexander May and Ilya Ozerov. On computing nearest neighbors with

applications to decoding of binary linear codes. pages 203–228, 2015.
MST03. Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased generators

in NC0. pages 136–145, 2003.
NN90. Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient con-

structions and applications. pages 213–223, 1990.
OOS17. Michele Orrù, Emmanuela Orsini, and Peter Scholl. Actively secure 1-

out-of-N OT extension with application to private set intersection. pages
381–396, 2017.

OTA07. Ayoub Otmani, Jean-Pierre Tillich, and Iryna Andriyanova. On the mini-
mum distance of generalized LDPC codes. 2007.

Ove06. Raphael Overbeck. Statistical decoding revisited. pages 283–294, 2006.
Pra62. Eugene Prange. The use of information sets in decoding cyclic codes. 1962.
PRTY20. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from

PaXoS: Fast, malicious private set intersection. pages 739–767, 2020.
Rin. Peter Rindal. libOTe: an efficient, portable, and easy to use Oblivious

Transfer Library. https://github.com/osu-crypto/libOTe.
RS21. Peter Rindal and Phillipp SChoppmann. VOLE-PSI: Fast OPRF and

circuit-PSI from vector-OLE. In Eurocrypt, 2021.
RU01. Thomas J. Richardson and Rüdiger L. Urbanke. Efficient encoding of

low-density parity-check codes. 2001.
Saa07. Markku-Juhani Olavi Saarinen. Linearization attacks against syndrome

based hashes. pages 1–9, 2007.
SGRR19. Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana

Raykova. Distributed vector-OLE: Improved constructions and implemen-
tation. pages 1055–1072, 2019.

Shp09. Amir Shpilka. Constructions of low-degree and error-correcting ε-biased
generators. 2009.

Spi96. Daniel A Spielman. Linear-time encodable and decodable error-correcting
codes. 1996.

Ste88. Jacques Stern. A method for finding codewords of small weight. 1988.
TZ06. Jean-Pierre Tillich and Gilles Zémor. On the minimum distance of struc-

tured LDPC codes with two variable nodes of degree 2 per parity-check
equation. 2006.

Var97. A. Vardy. The intractability of computing the minimum distance of a
code. 1997.

Wag02. David Wagner. A generalized birthday problem. pages 288–303, 2002.
WYKW20. Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolver-

ine: Fast, scalable, and communication-efficient zero-knowledge proofs for
boolean and arithmetic circuits, 2020.

XFE04. Xiao-Yu Hu, M. P. C. Fossorier, and E. Eleftheriou. On the computation
of the minimum distance of low-density parity-check codes. 2004.

https://github.com/osu-crypto/libOTe

30 Geoffroy Couteau, Peter Rindal, Srinivasan Raghuraman

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). pages 162–167, 1986.

YWL+20. Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. Fer-
ret: Fast extension for correlated OT with small communication. pages
1607–1626, 2020.

Zic17. Lior Zichron. Locally computable arithmetic pseudorandom generators,
2017.

ZJW16. Bin Zhang, Lin Jiao, and Mingsheng Wang. Faster algorithms for solving
LPN. pages 168–195, 2016.

	Silver: Silent VOLE and Oblivious Transfer from Hardness of Decoding Structured LDPC Codes

