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Abstract. Recent exciting breakthroughs have achieved the first two-
source extractors that operate in the low min-entropy regime. Unfortu-
nately, these constructions suffer from non-negligible error, and reducing
the error to negligible remains an important open problem. In recent
work, Garg, Kalai, and Khurana (GKK, Eurocrypt 2020) investigated a
meaningful relaxation of this problem to the computational setting, in
the presence of a common random string (CRS). In this relaxed model,
their work built explicit two-source extractors for a restricted class of
unbalanced sources with min-entropy nγ (for some constant γ) and neg-
ligible error, under the sub-exponential DDH assumption.

In this work, we investigate whether computational extractors in the
CRS model be applied to more challenging environments. Specifically,
we study network extractor protocols (Kalai et al., FOCS 2008) and
extractors for adversarial sources (Chattopadhyay et al., STOC 2020) in
the CRS model. We observe that these settings require extractors that
work well for balanced sources, making the GKK results inapplicable.

We remedy this situation by obtaining the following results, all of which
are in the CRS model and assume the sub-exponential hardness of DDH.

– We obtain “optimal” computational two-source and non-malleable
extractors for balanced sources: requiring both sources to have only
poly-logarithmic min-entropy, and achieving negligible error. To ob-
tain this result, we perform a tighter and arguably simpler analysis
of the GKK extractor.

– We obtain a single-round network extractor protocol for poly-logarithmic
min-entropy sources that tolerates an optimal number of adversarial
corruptions. Prior work in the information-theoretic setting required
sources with high min-entropy rates, and in the computational set-
ting had round complexity that grew with the number of parties,
required sources with linear min-entropy, and relied on exponential
hardness (albeit without a CRS).

– We obtain an “optimal” adversarial source extractor for poly-logarithmic
min-entropy sources, where the number of honest sources is only 2
and each corrupted source can depend on either one of the hon-
est sources. Prior work in the information-theoretic setting had to
assume a large number of honest sources.



1 Introduction

Randomness is fundamental in the design of algorithms and cryptographic sys-
tems. For many problems (such as Polynomial Identity Testing), the fastest
known algorithms use randomness. The role of randomness is more pronounced
in the design of cryptographic systems such as bit commitment, encryption, etc.,
as one needs unbiased random bits to achieve security [DOPS04].

Most sources of randomness found in nature are not perfect. The amount of
randomness in a source is usually formalized via the notion of min-entropy. The
min-entropy of a random sourceX is defined as the maxx∈Supp(X) log 1/Pr[X = x].
A natural, fundamental question is: Can we extract uniform random bits out of
these weak sources? The answer is: Yes, and this is achieved by a tool called
as randomness extractors. However, it is well-known that it is impossible to ex-
tract uniform random bits given only a single weak source. To side step this
impossibility, two notions have been considered. One is the seeded setting where
you assume the existence of a uniform short seed that is independent of the
weak source. The other setting is the independence source setting. The inde-
pendence setting is weaker than the seeded setting as it only needs indpendent
sources X1, . . . , Xp such that each have sufficient min-entropy. In this work, we
are interested in the independent source setting.

Indpendent Source Extractor. Starting with the seminal work of Chor and Gol-
dreich [CG88], there has been a long line of work on constructing better in-
dependent source extractors.3 A recent breakthrough work of Chattopadhyay
and Zuckerman [CZ16] gave a construction of two-source extractor for poly log-
arithmic min-entropy sources. However, the error of the extractor was inverse
polynomial. Even though the subsequent works [Li16, Coh16a, Coh16b, Coh16c,
Coh16d, Li17, BADTS16] improved the min-entropy of the sources to nearly
logarithmic, none of these works achieved negligible error (which is important
for cryptographic applications).

A recent work of Garg, Kalai, and Khurana [GKK20] considered the problem
of constructing two-source computational extractors with negligible error. They
additionally assumed the existence of a common random string that is sampled
once and for all, and the weak sources can depend on the CRS. This precludes
constructions where the common random string can be used as a seed to extract
uniform random bits from these weak sources. They provided a construction of
a computational two-source extractor with negligible error in the CRS model
for sources with min-entropy Ω(nγ) (for some constant γ ∈ (0, 1)) under the
sub-exponential hardness of the DDH assumption.

Challenges. The independent source setting makes two crucial assumptions.
First, it assumes that each of the sources X1, . . . , Xp are independently gener-

3 The quality of an independent source extractor is determined by three parameters,
(i) the number of independent sources, (ii) the min-entropy of these sources, and
(iii) the error which is the statistical distance between the output of the extractor
and the uniform distribution.
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ated. Second, it assumes that each of these sources have sufficient min-entropy.
However, neither of these assumptions may be true in general for many sources
found in nature. For instance, it could be possible that one or more of these
weak sources are biased and have little or no min-entropy. It could also be the
case that some of these sources are adversarially corrupted so as to introduce
an artificial dependence between them. Hence, it is only safe to assume that
some of these sources have sufficient min-entropy and are independent whereas
other sources might have low min-entropy and might also depend on these hon-
est sources. The main challenge is that we do not know a-priori which sources
are honest and which ones are corrupted.

Can we nevertheless construct an extractor that outputs uniform random bits
given a sample from such sources?

This question is not new and has already been previously investigated in two
types of contexts: network extractor protocols [DO03, GSV05, KLRZ08, KLR09]
and extractors for adversarial sources [CGGL20].

Network Extractor Protocols. Consider a setting where there are multiple par-
ties and each party has an independent weak random source. The parties want
to communicate with each other over a public channel and at the end of the
protocol, each party outputs uniform random bits. These random bits could be
used to run a distributed computation protocol or for securely computing a mul-
tiparty functionality. The challenge, however, is that some of these parties may
be corrupted by a malicious adversary that may instruct them to deviate arbi-
trarily from the protocol. Can honest parties still end up with uniform random
bits under such an adversarial attack? This is precisely what is achieved by a
network extractor protocol [DO03, GSV05, KLRZ08, KLR09].

Here, the key barrier is that adversarial messages may be derived from sources
that have little or no min-entropy and furthermore, these messages may depend
on the messages from the honest parties. In the information-theoretic setting,
the work of Kalai et al. [KLRZ08] provided constructions of network extractor

protocol for sources that have min-entropy of 2log
β n (for some constant β < 1).

However, the main drawback is that they could guarantee that only a fraction
of the honest parties end up with uniform random bits. In a recent work, Goyal
et al. [GSZ21] gave a protocol that did not have this limitation, but their pro-
tocol only works in a setting where the min-entropy of the sources was very
high. Specifically, they required that for any p number of parties, there exists a
constant γ such that min-entropy was n(1 − γ). In the computational setting,
the work of Kalai et al. [KLR09] gave a protocol for sources with min-entropy
Ω(n) but relied on exponential hardness of one-way permutations and the round
complexity of the protocol grew with the number of parties.

Extractors for Adversarial Sources. In this setting, we consider a distribution
of p sources (X1, . . . , Xp) where some them are guaranteed to be independent
and have sufficient min-entropy (called as honest sources) and the others are
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adversarially generated and could depend on the honest sources in some limited
ways (called as corrupt sources). Given a sample from this distribution, we need
to extract bits that are close to the uniform distribution. Of course, the main
challenge here is that we do not know apriori which sources are honest and which
sources are corrupt and how the corrupt sources depend on the honest sources.
The work of Chattopadhyay et al. [CGGL20] formally studied this primitive4

and gave constructions (in the information-theoretic setting) where the number
of honest sources K is at least p1−γ (for some contant γ), their min-entropy is
poly logarithmic and each corrupted source could depend on at most Kγ honest
sources.

Our Work. We continue the line of work initiated by Garg et al. [GKK20]
on constructing computational extractors in the CRS model and provide new
constructions that extract uniform bits in the setting of network extractors and
from adversarial sources.

1.1 Our Results

The key technical tool that allows us to obtain the above applications is a better
construction of computational two-source extractor in the CRS model.

The construction from [GKK20] had two drawbacks: first, it required sources
that have min-entropy of Ω(nγ) (for some constant γ ∈ (0, 1)) and second, it
worked only for sources that were heavily imbalanced: requiring that one of the
sources have entropy equal to the size of the other source.

Our first result is a much cleaner analysis of this construction. Our im-
proved analysis essentially shows, somewhat surprisingly, that the extractor from
[GKK20] actually does not suffer from either of the limitations stated above.
That is, it works for balanced sources that are each only required to have poly
logarithmic min-entropy, and achieves negligible error.

Informal Theorem 1 Let λ denote the security parameter. Assuming the sub-
exponential hardness of DDH, there exists a constant c > 1 such that for any
λ ≤ n1, n2 ≤ poly(λ), there exists a construction of a negligible error, two-
source computational extractor in the CRS model where sources have lengths
n1, n2 respectively and min-entropy O(logc n).

Our tighter analysis is also arguably simpler than the one in [GKK20]. As a
corollary, we use the transformation from [GKK20] to obtain a construction of
a negligible-error, non-malleable two-source extractor for balanced sources with

4 In a work that is concurrent and independent to Chattopadhyay et al., Aggarwal
et al. [AOR+20b] studied another model of adversarial sources called as SHELA
sources. They showed that it is impossible to extract uniform random bits from
SHELA sources and gave constructions of extractors whose output is somewhere
random. In another work, Dodis et al. [DVW20] studied a notion of extractor de-
pendent sources which arise in the setting where the source sampler could depend
on the output of the previous invocations of the extractor using the same seed.
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polylogarithmic min-entropy, where one source can be tampered an arbitrary
polynomial number of times (this is called a one-sided non-malleable extractor).
Specifically, in the one-sided setting, the adversary gets access to a tampering
oracle and can specify any efficiently computable tampering function on one of
the sources. The oracle responds with the output of the extractor computed on
the first source and the tampered second source.

Informal Theorem 2 Let λ denote the security parameter. Assuming the sub-
exponential hardness of the DDH assumption, there exists a constant c > 1 such
that for any λ ≤ n1, n2 ≤ poly(λ), there exists a construction of a negligible
error, two-source, one-sided computational non-malleable extractor in the CRS
model where both sources have lengths n1, n2 respectively and have min-entropy
O(logc n).

We then use the above non-malleable extractor as the main building block
and give a construction of network extractor protocol that has a single round
of communication, works with poly logarithmic min-entropy sources and can
tolerate an optimum number of malicious corruptions.

Informal Theorem 3 Let λ be the security parameter. Assuming sub-exponential
hardness of the DDH assumption, there exists a constant c > 1 s.t. for any
λ ≤ n ≤ poly(λ), there exists a construction of a single round, negligible error,
computational network extractor protocol in the CRS model for any p (which is a
polynomial in the security parameter) number of parties each having an indepen-
dent source of length n and min-entropy O(logc n). The protocol tolerates p− 2
corruptions by a malicious adversary (which is optimum). Furthermore, all the
honest parties end up with an output that is computationally indistinguishable to
the uniform distribution given the view of the adversary.

We also give a construction of an adversarial source extractor that works in
the extreme setting where there are only two honest sources and every corrupted
source can depend on either one of the honest sources. This construction uses
our computational two-source extractor as the main building block.

Informal Theorem 4 Let p ∈ N be fixed and let λ be the security parameter.
Assuming that sub-exponential hardness of DDH assumption, there exists some
constant c > 1 s.t. for Ω(λ) ≤ n ≤ poly(λ), there exists a construction of
negligible error adversarial source extractor in the CRS model that works for an
arbitrary adversarial p-source distribution where (i) each source has length n,
(ii) there are two honest independent sources with min-entropy O(logc λ), and
(iii) every other source is the output of an (efficient) function of either one of
the two honest sources.

Comparison with [AOR+20a]. We now compare our results with the prior work
of Aggarwal et al. [AOR+20a]. While both papers build on [GKK20] and obtain
new types of computational non-malleable extractors, there are some impor-
tant differences in the results. In the setting where only one of the sources is
tamperable and the number of tamperings is unbounded,
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– Techniques in [AOR+20a] give non-malleable extractors for linear min-entropy
(min-entropy greater than 0.46n) based on quasi-polynomial DDH. To achieve
poly-logarithmic min-entropy, they additionally assume the existence of near
optimal (exponentially hard) collision-resistant hash functions.

– Our work gives a construction for poly-logarithmic min-entropy based on
sub-exponential DDH.

We remark that [AOR+20a] also (primarily) considers a setting where both
sources can be tampered but the number of tamperings is bounded. Among
other results, they provide new constructions in this setting for linear min-
entropy (min-entropy greater than 0.46n) based on quasi-polynomial DDH and
for poly-logarithmic min-entropy based on near-optimal (exponential) hardness
of collision-resistant hash functions.

An important objective of our work is to achieve new applications: these ap-
plications require a setting where the number of tamperings is unbounded, with
only one source being tampered. For this setting, as discussed above, our work
shows that the [GKK20] construction achieves poly-logarithmic min-entropy for
balanced sources from sub-exponential DDH.

2 Technical Overview

In this section, we provide an overview of our results.

2.1 Improved Two-Source and Non-Malleable Extractors

We start with an overview of our improved two-source and non-malleable extrac-
tors. The key technical bulk of this part of our work is an improved two-source
extractor, and plugging in the resulting extractor into the work of [GKK20]
also immediately yields an improved non-malleable extractor, as we will discuss
below.

Background: The Blueprints of [BHK11, BACD+17, GKK20]. As
a first step, we recall the construction of two-source extractors in [GKK20],
which itself combines the blueprint of [BHK11] with that of [BACD+17]. As
discussed above, we will show that essentially the same construction serves as a
strong computational extractor even for balanced sources, and even in settings
where sources have only polylogarithmic min-entropy. In contrast, the techniques
in [GKK20] limited them to highly unbalanced sources and required λε min-
entropy

At a high level, [GKK20] obtain two-source extractors with low error via two
steps.

Step 1. Following a blueprint suggested in [BHK11], [GKK20] build a computa-
tional non-malleable extractor in the CRS model, in a setting where one of the
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sources has min entropy rate larger than 1/2. We use the same blueprint in this
work also, and therefore we describe it below.

First, start with any 2-source extractor

2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m,

with negligible error (eg., [Bou05, Raz05]), min-entropy (poly log n1) for one of
the sources and min-entropy rate of about 1/2 for the other.

The construction makes use of the following cryptographic primitives, which
can be obtained based on the (sub-exponential) hardness of DDH.

1. A collision resistant function family H, where for each h ∈ H, h : {0, 1}n2 →
{0, 1}k, where k is significantly smaller than the min-entropy of the second
source of 2Ext.

2. A family of lossy functions F , where for each f ∈ F , f : {0, 1}n1 → {0, 1}n1 .
A lossy function family consist of two types of functions: injective and lossy.
Each lossy function loses most of the information about the input (i.e., image
size is very small). It is hard to distinguish between a random injective and
a random lossy function in the family.

The actual construction is as follows. The CRS consists of a random func-
tion h ← H from the collision-resistant hash family, and consists of 2k random
family F , denoted by

f1,0, f2,0, . . . , fk,0
f1,1, f2,1, . . . , fk,1

where for a randomly sampled b← {0, 1}k, for all i ∈ [k], fi,bi are injective, and
fi,1−bi are lossy.

The computational non-malleable extractor (in the CRS model) is defined
by

cnm-Ext(x, y, crs) := 2Ext(fcrs,h(y)(x), y),

where
fcrs,s(x) := f1,s1 ◦ . . . ◦ fk,sk(x)

Consider any polynomial size adversaryA that obtains either (cnm-Ext(x, y), y, crs)
or (U, y, crs), together with an oracle O that has (x, y, crs) hardwired, and on
input y′ outputs ⊥ if y′ = y, and otherwise outputs nm-Ext(x, y′, crs). By the col-
lision resistance property of h, A queries the oracle on input y′ s.t. h(y′) = h(y)
only with negligible probability. Therefore, the oracle O can be replaced by a
different oracle, that only hardwires (crs, h(y), x) and on input y′ outputs ⊥ if
h(y′) = h(y), and otherwise outputs cnm-Ext(x, y′).

It is observed in [BHK11, GKK20] that access to this oracle can be sim-
ulated entirely given only crs, h(y) and (Z1, . . . Zk), where for every i, Zi =
f1,1−h(y)1(f2,1−h(y)2(. . . fi,h(y)i , (. . . fk,h(y)k(x))). Now suppose that the functions
{fi,1−h(y)i}i∈[k] were all lossy – then it is easy to see that (for small enough k),
Y has high min-entropy conditioned on h(y) and Z = (Z1, . . . , Zk). At the
same time, as long as the functions {fi,h(y)i}i∈[k] are all injective, the output
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fcrs,h(y)(x) continues to have high entropy conditioned on h(y) and Z. Then one
could use the fact that 2Ext is a (strong) 2-source extractor, to argue that the
output of our non-malleable extractor is close to uniform.

Moreover, since the adversary A cannot distinguish between random injec-
tive functions and random lossy ones, it should be possible to (indistinguish-
ably) change the CRS to ensure that functions f1,h(y)1 , . . . , fk,h(y)k are injective,
whereas the functions f1,1−h(y)1 , . . . , fk,1−h(y)k are all lossy.

This intuition is converted into a formal proof by [BHK11, GKK20]. In sum-
mary, these works show that the resulting non-malleable extractor (very roughly)
inherits the entropy requirements of the underlying two-source extractor. More-
over, the resulting extractor is non-malleable w.r.t. arbitrarily many tampering
functions (this is impossible to achieve information theoretically).

Looking ahead, this transformation appears to be fairly tight, and is not
why [GKK20] are limited to unbalanced sources and λε min-entropy. These re-
strictions appear to be a result of the next transformation, which converts non-
malleable extractors with high entropy for one source, to two-source extractos
with low min-entropy for both sources. We describe this next.

Step 2. Next, [GKK20] convert the resulting non-malleable extractor (for a set-
ting where one source has high min-entropy rate) to a two-source extractor for
a setting where both sources have low min-entropy, by following a blueprint
of [BACD+17].

An important difference between [BACD+17] and [GKK20] is that the reduc-
tion in [BACD+17] is not efficient: specifically, even given an efficient adversary
that contradicts the security of the 2-source extractor, [BACD+17] obtain an in-
efficient adversary that contradicts the security of the underlying non-malleable
extractor.

To better understand this issue, we briefly summarize the transformation
of [BACD+17]. Their transformation uses a disperser as a building block.

A (K,K ′) disperser is a function

Γ : {0, 1}n2 × [t]→ {0, 1}d

such that for every subset A of {0, 1}n2 that is of size ≥ K, it holds that the size
of the set of neighbors of A under Γ is at least K ′.

The [BACD+17]-transformation starts with a seeded non-malleable extractor
nm-Ext : {0, 1}n1×{0, 1}d → {0, 1}m and a disperser Γ : {0, 1}n2×[t]→ {0, 1}d,
and constructs the following 2-source extractor 2Ext : {0, 1}n1 × {0, 1}n2 →
{0, 1}m, defined by

2Ext(x1, x2) =
⊕

y:∃i s.t. Γ (x2,i)=y

nm-Ext(x1, y)

Intuitively, by the definition of an (information-theoretic) t-non-malleable
extractor nm-Ext, for a random y ∈ {0, 1}d, for all y′1, . . . , y

′
t that are distinct

from y, it holds that

(nm-Ext(X1, y),nm-Ext(X1, y
′
1), . . . ,nm-Ext(X1, y

′
t)) ≡
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(U,nm-Ext(X1, y
′
1), . . . ,nm-Ext(X1, y

′
t)) .

This means that for “most” y, nm-Ext(X1, y) is stastistically close to uniform,
even given nm-Ext(X1, Γ (x2, j)) for every j ∈ [t] \ {i} such that Γ (x2, j) 6= y,
which in turn implies that the XOR of these (distinct) values is close to uniform,
which implies that 2Ext(X1, x2) is close to uniform.

But to formally prove that the resulting extractor is a strong (information-
theoretic) non-malleable extractor, one would need to construct a reduction R
that breaks the non-malleable extractor, given any adversary A that breaks the
two-source extractor. In the computational setting, R is required to be efficient,
which causes the bulk of the technical difficulty in [GKK20].

In more detail, R obtains input (α, ŷ), where ŷ is a random seed for the non-
malleable extractor and where α is either chosen according to cnm-Ext(X1, ŷ) or
is chosen uniformly at random. In addition, R obtains an oracle that outputs
cnm-Ext(X1, y

′) on input y′ 6= ŷ. R must efficiently distinguish between the case
where α← cnm-Ext(X1, ŷ) and the case where α is chosen uniformly at random.
In order to use the (two-source extractor adversary) A, R needs to generate a
challenge for A that corresponds either to the output of the 2-source extractor
(if α was the output of cnm-Ext) or uniform (if α was uniform). In addition, the
reduction R must generate a corresponding x2 for A, that is sampled according
to X2. This is easy to do in unbounded time by simply sampling x2 ← X2

conditioned on the existence of i such that Γ (x2, i) = y.
To enable a reduction in the computational setting, [GKK20] view the ineffi-

cient computation involved; i.e. sampling x2 ← X2 conditioned on the existence
of i such that Γ (x2, i) = y; as the output of a leakage function. They simulate
this leakage by running in time exponential in the length of the leakage. Unfor-
tunately, this means that the running time of the reduction grows as 2|x2|, which
restricts |x2| to being extremely small, in fact much smaller than the size of the
first source. This also restricts the sources in such a way that the min-entropy
in the first source is required to be larger than the size of the second source. As
discussed above, the highly asymmetric state of affairs does not bode well for
many natural applications of two-source and non-malleable extractors.

Our Key Ideas. To remedy this situation, we develop a completely different
analysis for essentially the same construction. In contrast with [GKK20], our
analysis is arguably simpler, does not impose any artificial restrictions on the
size of each source, and leads to significantly improved min-entropy parameters.

First, we do not split the analysis of the resulting two-source extractor into
two steps as described above. In other words, unlike [GKK20], we do not attempt
to prove that the [BACD+17] template as described in Step 2, when applied to
any computational non-malleable extractor, yields a good two-source extractor
with low min-entropy and low error.

Instead, we apply the [BHK11] transform to an information-theoretic two-
source extractor with low error but min-entropy rate of 1/2 for one of the sources
(eg., [Bou05, Raz05]). Next, we consider the [BACD+17] transform applied to
the result of this extractor. We then give a monolithic proof that the result
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of applying these transformations one after the other, results in a two-source
extractor for balanced sources, polylogarithmic min-entropy and negligible error.

At a very high level, this monolithic approach enables us to strip off all
computational components one by one, to eventually end up with a purely in-
formation theoretic experiment. This allows us to sidestep the need to invert the
disperser in any of our computational reductions; limiting our use of inefficient
reductions to the information-theoretic step in the proof.

We now discuss our proof strategy in additional detail. We will start with
an experiment where the adversary obtains either the output of the (final) two-
source extractor, which we will denote by c2Ext(x1, x2) or a uniformly random
value (in each case the adversary also obtains the sample x2). As discussed
above, we will modify this experiment in steps, slowly stripping off computa-
tional assumptions until we end up in an experiment that does not require any
assumptions.

Discarding Hash Collisions. Recall that the [BHK11] blueprint uses z = h(y)
to choose a subset of functions fi,zi to apply to the first source. As a first
step, we will modify the experiment so that if in the process of computing
c2Ext(x1, x2), a hash collision is encountered, then we simply outputs a uni-
formly random sample instead of c2Ext(x1, x2). In more detail, the output of the
two-source extractor c2Ext is replaced by a slightly modified c2Ext′. The replace-
ment c2Ext′(x1, x2) first checks if ∃(i1, i2) such that Γ (x2, i1) 6= Γ (x2, i2) but
h(Γ (x2, i1)) = h(Γ (x2, i2)). If such (i1, i2) exist, then c2Ext′ outputs a uniformly
random value.

At the same time, the oracle O is replaced with O′ that is identical to O,
except that on input any y′ such that h(y′) = h(y), O′ outputs ⊥.

We rely on the collision resistance of the hash function family to argue that
as long as the sources are efficiently sampleable, this experiment is statistically
indistinguishable from the previous one. This argument will allow us to simply
discard hash collisions throughout the rest of this overview. The other remaining
assumption is that of the lossy function family.

Working around Lossy Functions. Recall that the approach in [GKK20] is to (in-
distinguishably) switch the crs so that the functions {fi,1−h(y)i}i∈[k] are all lossy,
and the rest are injective. This ‘nicely distributed’ CRS allows them to efficiently
“simulate” the output of the oracle O, and prove that the resulting construction
is a non-malleable extractor5 But this approach runs into the barriers described
above, as the eventual two-source extractors do not support balanced sources or
poly-logarithmic min-entropy.

In this work, as a first stab, we attempt to make statistical arguments about
the sources in an (imagined) experiment where the CRS is assumed to be ‘nicely

5 There are many other subtleties involved, most importantly, a circularity: the CRS
must be programmed according to h(y), but y is sampled as a function of the CRS.
The work of [GKK20] develops techniques to avoid these subtleties, but we do not
discuss them here as they are less relevant to the current approach.
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distributed’. In more detail, we say that the random variable y takes a “bad”
value if it becomes possible for an oracle-aided unbounded adversary to distin-
guish the output of the [BHK11] non-malleable extractor from uniform, when
conditioned on the CRS being ‘nicely distributed’ for y. That is, for a function
ε = ε(λ), we define the set BAD-seedε (roughly) as the set of y, for which the
following holds: conditioned on the CRS being such that functions at positions
indexed by h(y) are injective and the others are lossy, the output of the non-
malleable extractor is at least ε-statistically distinguishable from a uniformly
random value in presence of the oracle O′.

Bounding BAD-seedε. We prove that for large enough (but still negligible) ε, the
size of the set BAD-seedε is negligibly small. Fortunately, since the definition of
BAD-seedε already conditions on the CRS being nicely distributed, this argument
does not involve any computational assumptions, and follows by a reduction to
the underlying information-theoretic two-source extractor of [Bou05, Raz05], as
long as the number of tampering queries is polynomially bounded. Intuitively,
conditioned on the CRS being nice, we can establish that the sources (for the non-
malleable extractor) retain high entropy even in the presence of the oracle O′,
and therefore, the output of the two-source extractor, applied to (fcrs,h(y)(x), y) is
statistically indistinguishable from uniform. Then a simple averaging argument
allows us to prove that BAD-seedε is small.

From non-malleable to two-source extractors. Next, we aim to use the definition
of BAD-seedε to derive a meaningful (statistical) conclusion about the final two-
source extractor. Specifically, we fix a (large enough, but still negligible) ε.

We consider a game that samples sources (x1, x2) for the final two-source
extractor, and samples i ← [t], conditioned on y = Γ (x2, i) lying outside the
set BAD-seedε. By definition of the set BAD-seedε, for any y outside this set,
the output of the non-malleable extractor is statistically indistinguishable from
uniform, even given (polynomial-query) access to the tampering oracle. Recall
that the output of the two-source extractor is

2Ext(x1, x2) =
⊕

y:∃i s.t. Γ (x2,i)=y

nm-Ext(x1, y)

This means that for y 6∈ BAD-seedε, for all y′1, . . . , y
′
t that are distinct from

y, it holds that

(nm-Ext(X1, y),nm-Ext(X1, y
′
1), . . . ,nm-Ext(X1, y

′
t)) and

(U,nm-Ext(X1, y
′
1), . . . ,nm-Ext(X1, y

′
t))

are at most ε-statistically distinguishable.
This means that for such y, nm-Ext(X1, y) is statistically close to uniform,

even given nm-Ext(X1, Γ (x2, j)) for every j ∈ [t] \ {i} such that Γ (x2, j) 6= y,
which in turn implies that the XOR of these (distinct) values is close to uniform,
which implies that 2Ext(X1, x2) statistically is close to uniform.
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Because we carefully conditioned on y = Γ (x2, i) 6∈ BAD-seedε, we are able
to (again, statistically) argue that the output of the two-source extractor in this
game will be statistically indistinguishable from uniform, even given x2.

At this point, we have argued that in an idealized game where the CRS is
conditioned on being nicely distributed, the output of the (strong) two-source
extractor will be indistinguishable from uniform. But the in the actual construc-
tion, the CRS is distributed in such a way that for a random b ← {0, 1}k the
functions fi,1−bi are lossy, and the others are injective. This only very rarely
matches the idealized game (where we essentially condition on b = h(y)). At
this point, we would like to use the fact that lossy functions are indistinguish-
able from injective ones, to argue that the adversary cannot distinguish an actual
game from the idealized game. Formalizing this intuition runs into a few subtle
issues, that we briefly describe next.

The Computational Argument. Note that in the idealized game described above,
(x2, i) are sampled conditioned on:

– The crs being such that functions indexed by Γ (x2, i) are injective and the
others are lossy.

– Γ (x2, i) 6∈ BAD-seed, and

We begin by removing the first requirement, and moving to a game where we
only condition on Γ (x2, i) 6∈ BAD-seed. We prove that removing the first condi-
tioning does not (significantly) affect a PPT distinguisher’s ability to distinguish
between the output of the extractor and uniform. The proof of this makes careful
use of Chernoff bounds and the leakage lemma [GW11, JP14, CLP15], to show
that if the two games are different, then one can guess which functions in the
CRS are injective and which ones are lossy, with advantage better than what is
allowed by the security of the lossy function family.

At this point, we have moved to a game where (x2, i) are sampled only subject
to the restriction that Γ (x2, i) 6∈ BAD-seed. Next, we prove that this restriction
can also be removed without (significantly) affect an unbounded distinguisher’s
ability to distinguish between the output of the extractor and uniform. Intu-
itively, this follows because of the disperser and because the set BAD− seedε is
small. Recall that the disperser maps every “large enough” set of x2’s to a “large
enough” set of y’s. This implies that if the set of y’s for which y ∈ BAD−seedε is
small, their inverses (under the disperser) are also small. We show that as long
as the source x2 has polylogarithmic min-entropy, the probability that x2 is such
that Γ (x2, i) 6∈ BAD-seed for any i will be negligibly small.

This allows us to argue that the output of the strong two-source extractor is
indistinguishable from uniform. A careful separation of the information-theoretic
and computational components allows us to set parameters so that the entropy
loss from the first source is only polylogarithmic. As discussed above, existing
dispersers (eg., from [GUV09]) already suffice in a setting where the second
source also has polylogarithmic min-entropy.

Here, we clarify that the exact min-entropy loss depends on our compu-
tational assumptions. In more detail, we assume that there exists a constant
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0 < ε < 1 such that DDH with security parameter λ is hard against poly(2λ
ε

)-size
machines. The exact polylogarithmic min-entropy requirement on our sources
then depends on ε.

This completes a high-level picture of our new proof strategy. For the sake of
conceptual simplicity, we swept a few details under the rug. We refer the reader
to the full version for a detailed formal proof.

From Two-Source to Non-Malleable Extractors. Once we obtain two-
source extractors as discussed above, we directly invoke a theorem from [GKK20]
(that builds on the [BHK11] blueprint) to bootstrap our low entropy, low er-
ror two-source extractors to low entropy, low error non-malleable extractors.
Since this follows almost immediately from prior work (modulo a few parameter
choices), we omit details in this overview.

2.2 Network Extractor Protocol

In the network extractor setting, there are p parties and each party Pi for i ∈ [p]
has an independent weak random sourceXi. There is a centralized adversary that
controls an arbitrary subset M ⊂ [p] of the parties. This adversary is malicious,
which means that it can instruct the corrupted parties to deviate arbitrarily
from the protocol specification and is rushing which means that in each round of
the protocol, it can wait until it receives all the messages from the honest parties
before sending its own message on behalf of the corrupted parties. We consider
the parties to be connected via public channels and the adversary can view all
the communication sent by honest parties. At the end of the protocol, we want
all the honest parties to output uniform random bits that are independent of
the view of the adversary.

In the computational setting, we restrict the adversary to be computationally
bounded and independence mentioned above is required to hold in the compu-
tational sense. The quality of the network extractor protocol is determined by
three parameters, (i) the number of corrupted parties |M |, (ii) the min-entropy
of the weak random source available with the parties H∞(Xi), and (iii) the num-
ber of rounds of the protocol. It is easy to observer that if |M | = p− 1, then we
cannot construct a network extractor protocol as this task amounts to extract-
ing uniform random bits from a single weak random source. So, the best we can
hope for is the case where |M | ≤ p − 2. In this work, we give a construction
of network extractor protocol in the computational setting in the CRS model
that tolerates |M | ≤ p − 2 corruptions, runs in a single round, and works with
polylogarithmic min-entropy for each i ∈ [p].

Key Challenge. To understand the key challenge, let us first weaken the require-
ments from the network extractor protocol. Let us assume for now that the first
party P1 is never corrupted but the identity of the other honest party is not
known at the beginning of the protocol. Furthermore, we only require the out-
put of honest P1 to be uniform and independent of the view of the adversary.
Can we construct a single round protocol for this weaker setting?
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We observe that the techniques developed in the work of Goyal et al. [GSZ21]
gives such a protocol based on any two-source non-malleable extractor. Specif-
ically, we ask every party to send its source in the clear to the first party P1.
For every j 6= 1, P1 applies the two-source non-malleable extractor on its source
and the source received from Pj and outputs the XOR of all such computations.
We now argue that the output of P1 is uniform and independent of the view of
the adversary if the non-malleable extractor is strong and is multi-tamperable.
Let us assume that Pi for some i 6= 1 is the other honest party. Now, the mes-
sages sent by the adversarial parties are an efficiently computable function of
Pi’s source. Thus, one can view the messages from the adversarial parties as
a tampering of the honest source. The security of the non-malleable extractor
guarantees that the output of the extractor on the good source is close to uni-
form even conditioned on its output on the tampered sources. This allows us to
argue that the output of P1 is close to uniform given the view of the adversary
(which includes the other honest source and that is why we require the extractor
to be strong).

However, we quickly run into trouble if we want to extend this to the setting
where we require the outputs of two honest parties to be uniform and indepen-
dent of the view of the adversary. Indeed, if P1 were to send its source in the
clear, then we cannot use the security of the non-malleable extractor to argue
that the output of P1 is close to uniform. In the “very high” min-entropy setting,
the work of [GSZ21] gave a method to overcome this barrier. Specifically, party
Pi divides its source into p slices, retains the i-th slice with itself and broad-
casts the rest of the slices. It now uses the i-th slice received from the other
parties along with its own slice to compute the output as mentioned above. It
was argued in their work that if the min-entropy source was “very high”, then
the outputs of the all honest parties are close to uniform and independent of the
view of the adversary. However, we cannot extend their argument to the setting
where the min-entropy of each weak source δ · n for some universal constant δ.

Our Approach. In order to overcome this barrier, we rely on computational tools
(namely, lossy functions) to artificially create independence between the mes-
sages transmitted by each party and the sources used to compute their outputs.
We now elaborate on this.

For each i ∈ [p] and b ∈ {0, 1}, we sample fi,b uniformly in the injective
mode and include the descriptions of these functions as part of the CRS. In the
protocol, party Pi first computes fi,b(Xi) for each b ∈ {0, 1} and broadcasts
fi,1(Xi) and retains fi,0(Xi) with itself. To compute the output, it evaluates
the non-malleable extractor with one source as fi,0(Xi) and the other source as
fj,1(Xj) for each j 6= i. It then outputs the XOR of these evaluations. We now
show how to use the security of lossy functions to argue that the joint distribution
of the outputs of the honest parties are close to uniform conditioned on the view
of the adversary.

We consider a sequence of hybrids where the first hybrid in the sequence
consists of the outputs of the honest parties as computed in the protocol along
with the view of the adversary and last hybrid is the distribution where the
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outputs of all the honest parties are replaced with uniform and independent bits.
In the i-th intermediate hybrid, we replace the outputs of the first i uncorrupted
parties with uniform. By a standard averaging argument, it is sufficient to show
that the i-th hybrid in this sequence is computationally indistinguishable to the
(i− 1)-th hybrid. Let us assume that the i-th honest party is ki and the identity
of the other honest party is k′i.

We first consider an intermediate distribution where we sample fki,1 and fk′i,0
in the CRS using the lossy mode instead of the injective mode. It follows from the
computational indistinguishability of the injective and the lossy modes that this
intermediate distribution is indistinguishable to the (i−1)-th hybrid. Since fki,1
and fk′i,0 are sampled in the lossy mode, we can view these as bounded leakages
from the source Xki and Xk′i

. Now, conditioned on these leakages, we can argue
that fki,0(Xki) and fk′i,1(Xk′i)

are independent and have sufficient min-entropy
(since fki,0 and fk′i,1 are sampled in the injective mode). Now, we can rely on
the argument sketched above and view the adversarial messages as tamperings of
the honest source fk′i,1(Xk′i

) and use the security of the non-malleable extractor
to replace the output of Pki with uniform bits independent of the view of the
adversary. To show this distribution is indistinguishable to the i-th hybrid, we
again rely on the indistinguihability of the lossy and injective modes and switch
sampling fki,1 and fk′i,0 in the CRS to the injective mode. This allows us to
show that the (i− 1)-th hybrid is computationally indistinguishable to the i-th
hybrid.

2.3 Extractors for Adversarial Sources

An adversarial source distribution [CGGL20] is a sequence of p random variables
(X1, . . . , Xp) such that a subset of them are independent and have sufficient min-
entropy (called as the honest sources) and the rest can depend on the honest
sources in a limited way (called as the corrupt sources). The goal is to construct
an extractor such that given a sample from the adversarial source distribution,
it outputs a string that is close to random. Here, the parameters of interest are
the (i) number of honest sources in the distribution, and (ii) the min-entropy of
the honest sources. We are interested in constructing extractors that work in the
extreme setting where the number of honest sources is only 2 and every corrupted
source is an (efficiently computable) function of either one of the honest sources.

Challenge with the Prior Approaches. The works of Chattopadhyay et al. [CGGL20]
and Goyal et al. [GSZ21] gave a method of constructing such an extractor using
a non-malleable extractor that satisfies an additional security property. Specifi-
cally, the adversary is allowed to specify a set of tampering functions {(fi, gi)}i∈[t]
as well as a sequence of bits {bi}i∈[t]. If bi = 0, then the adversary receives the
output of the non-malleable extractor applied on fi(X) and gi(Y ). Otherwise,
it receives the output of the extractor on gi(Y ) and fi(X). Unfortunately, we
do not know how to show that the non-malleable extractor constructions in the
works of [GKK20, AOR+20a] satisfy this additional property. Hence, in this
work, we take new approach towards this problem that is partly inspired by our
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network extractor construction and relies only on a computational two-source
extractor (rather than a non-malleable extractor).

Our Construction. We first explain why a network extractor protocol doesn’t
directly give rise to an extractor for adversarial source distribution. In the case
of a network extractor protocol, only the messages sent by the corrupted parties
depend on the honest party’s messages whereas in the case of the adversarial
sources, the corrupted source could depend on the honest source. This difference
precludes a direct construction. However, we use the techniques developed for the
network extractor construction to construct an extractor for adversarial sources.

Our extractor for adversarial sources is similar to our network extractor con-
struction except that we replace the non-malleable extractor with a computa-
tional two-source extractor. Specifically, we consider p parties and provide the
i-th source Xi to party Pi and run the network extractor construction described
above using a two-source extractor. Once we have obtained the outputs of each
of the parties, we XOR them together to output a single string. We now argue
that the distribution of the output string is close to the uniform distribution.

To show this, it is sufficient to show that the output of one of the honest
parties is close to uniform and is independent of the outputs of every other
party. Let us assume that Xi and Xj are honest sources. We first consider an
intermediate distribution where we sample fk,b for every (k, b) 6∈ {(i, 0), (j, 1)} in
the lossy mode. It again follows from the indistinguishability of the injective and
the lossy modes that this distribution is computationally close to the original
output. Now, for every corrupted source k that is derived from Xi, we can
view {fk,b(Xk)}b∈{0,1} as bounded leakage from the honest source Xi. Similarly,
for every source k that is derived from Xj , we can view {fk,b(Xk)}b∈{0,1} as
bounded leakage from the honest source Xj . We can additionally leak fi,1(Xi)
and fj,0(Xj). This allows us to argue that conditioned on these leakages, the
sources fi,0(Xi) and fj,1(Xj) are independent and have sufficient min-entropy.
We can now invoke the two-source extractor security to argue that the output
of the i-th party is close to uniform even conditioned on the outputs of every
other party.6

This completes an overview of our techniques.

Roadmap We list some preliminaries in Section 3, and defer standard definitions
of collision-resistant hash functions, lossy functions, the leakage lemma and dis-
persers, as well as their standard instantiations, to the full version. We recall
definitions of computational extractors in Section 3.1. In Section 4 we derive
theorems and corollaries for improved two-source and non-malleable extractors.
Due to space constraints, we defer their proofs to the full version. Finally, in
Sections 5 and 6, we describe improved constructions of network and adversarial

6 The reason why two-source extractor is sufficient in this case but non-malleable
extractor was needed in the previous case is that the parties here can be thought of
as following the protocol whereas in the previous case, they could deviate arbitrarily
from the protocol specification.
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source extractors respectively. The proofs of these constructions are deferred to
the full version.

3 Preliminaries

In this section, we discuss some preliminaries needed for the later sections. This
includes facts about min-entropy, lossy functions and dispersers. Many parts of
this section are taken from [GKK20].

Definition 5 A distribution X over a domain D is said to have min-entropy k,
denoted by H∞(X) = k, if for every z ∈ D,

Pr
x←X

[x = z] ≤ 2−k.

In this paper, we consider sources with average conditional min entropy, as
defined in [DORS08] (and also in the quantum information literature). This
notion is less restrictive than worst case conditional min-entropy (and therefore
this strengthens our results), and is sometimes more suitable for cryptographic
applications.

Definition 6 [DORS08] Let X and Y be two distributions. The average con-
ditional min-entropy of X conditioned on Y , denoted by H∞(X|Y )7 is

H∞(X|Y ) = − logEy←Y max
x

Pr[X = x|Y = y] = − log(Ey←Y [2−H∞(X|Y=y)])

Note that 2−H∞(X|Y ) is the highest probability of guessing the value of the random
variable X given the value of Y .

We will rely on the following useful claims about average conditional min-
entropy.

Claim 1. [DORS08] Let X,Y and Z be three distributions, where 2b is the
number of elements in the support of Y . Then,

H∞(X|Y,Z) ≥ H∞(X,Y |Z)− b

Claim 2 ([GKK20]). Let X, Y and Z be three (arbitrary) distributions, then

H∞(X|Y ) ≥ H∞(X|Y,Z)

We defer the standard definitions of collision-resistant hash functions, lossy
functions, the leakage lemma and dispersers, as well as their standard instanti-
ations, to the full version.

7 This is often denoted by H̃∞(X|Y ) in the literature.
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3.1 Computational Extractors: Definitions

In this section, we recall definitions of extractors in the computational setting
with a CRS. We define both a 2-source extractor and a non-malleable extractor
in this setting.

Like [GKK20], in both defintions, we allow the min-entropy sources to depend
on the CRS, but require that they are efficiently sampleable conditioned on
the CRS (where the efficiency is specified by a parameter T ). We also allow
each source to partially leak, as long as the source has sufficient min-entropy
conditioned on the CRS and the leakage.

As discussed in [GKK20], it may seem that there is no need to consider
leakage explicitly. However, in general a source conditioned on fixed leakage
may not be efficiently sampleable. Therefore, in the definions below we consider
leakage explicitly. More specifically, for two sources X and Y we allow leakage
on Y , which we will denote by Linit; and then allow leakage on X (that can also
depend on Linit), which we will denote by Lfinal. Moreover, both Linit and Lfinal

can depend on the CRS.
For technical reasons, and specifically to enable a proof of security for their

two-source extractor, [GKK20] included an additional source of auxiliary in-
formation, AUX, that could be sampled jointly with Y . We do not require this
auxiliary source in any of our applications or proofs. The following definitions are
essentially identical to [GKK20], except we omit AUX for notational convenience.

Definition 7 (T -Admissible Leaky (n1, n2, k1, k2) Source Distribution) A
T -admissible leaky (n1, n2, k1, k2) source distribution with respect to a CRS dis-
tribution {CRSλ}λ∈N consists of an ensemble of sources X = {Xλ}λ∈N, Y =
{Yλ}λ∈N, and leakage L = {Lλ}λ∈N, such that ∀λ ∈ N, the following holds:

– For every crs ∈ Supp(CRSλ), Supp(Xλ|crs) ⊆ {0, 1}n1(λ) and Supp(Yλ|crs) ⊆
{0, 1}n2(λ).

– The leakage Lλ consists of two parts, Linit and Lfinal, such that for every
crs ∈ Supp(CRS), (Y,Linit|crs) is sampleable in time poly(T ), and for every
`init ∈ Supp(Linit|crs), (X,Lfinal|crs, `init) is sampleable in time poly(T ).

– H∞(Xλ|CRSλ, Lλ) ≥ k1 and H∞(Yλ|CRSλ, Lλ) ≥ k2.
– For every crs ∈ CRSλ and ` ∈ Supp(Lλ|crs), the distributions (Xλ|crs, `) and

(Yλ|crs, `) are independent.8

Definition 8 (Computational Strong 2-source Extractors) For functions
n1 = n1(λ), n2 = n2(λ), c = c(λ), and m = m(λ), a function ensemble
2Ext = {2Extλ}λ∈N, where

2Extλ : {0, 1}n1(λ) × {0, 1}n2(λ) × {0, 1}c(λ) → {0, 1}m(λ),

is said to be a (n1, n2, k1, k2) strong T -computational 2-source extractor in the
CRS model if there is an ensemble {CRSλ}λ∈N where CRSλ ∈ {0, 1}c(λ), such

8 This condition follows from the way X and Y are sampled, and like [GKK20], we
add it only for the sake of being explicit.
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that the following holds:

For every T -admissible leaky (n1, n2, k1, k2) source distribution (X,Y, L) with
respect to CRS, for every polynomial p, there exists a negligible function ν(·) s.t.
for every λ and every p(T (λ))-size adversary A,∣∣∣∣Pr

[
A (2Extλ(x, y, crs), y, crs, `) = 1

]
−

Pr

[
A (U, y, crs, `) = 1

]∣∣∣∣ = ν(T (λ)),

where the probabilities are over the randomness of sampling (crs, x, y, `)← (CRSλ, Xλ, Yλ, Lλ),
and over U which is uniformly distributed over {0, 1}m(λ) independent of every-
thing else.

Definition 9 (Computational Strong Non-malleable Extractors) For func-
tions n1 = n1(λ), n2 = n2(λ), c = c(λ), and m = m(λ), a function ensemble
cnm-Ext = (cnm-Extλ)λ∈N, where

cnm-Extλ : {0, 1}n1(λ) × {0, 1}n2(λ) × {0, 1}c(λ) → {0, 1}m(λ)

is said to be a (n1, n2, k1, k2) strong T -computational non-malleable extractor
in the CRS model if there is an ensemble {CRSλ}λ∈N, where CRSλ ∈ {0, 1}c(λ),
such that the following holds:

For every T -admissible leaky (n1, n2, k1, k2) source distribution (X,Y, L) with
respect to CRS, for every polynomial p, there exists a negligible function ν(·)
such that for every λ and every p(T (λ))-size adversary A,∣∣∣∣Pr

[
AO

y
x,crs (cnm-Ext(x, y, crs), y, crs, `) = 1

]
−

Pr
[
AO

y
x,crs (U, y, crs, `) = 1

] ∣∣∣∣ = ν(T (λ)),

where the oracle Oyx,crs on input y′ 6= y outputs cnm-Ext(x, y, crs), and other-
wise outputs ⊥; and where the probabilities are over the randomness of sampling
(crs, x, y, `) ← (CRSλ, Xλ, Yλ, Lλ), and over U which is uniformly distributed
over {0, 1}m(λ) independent of everything else.

We will occasionally need to impose a different requirement on the error
distribution. In such cases we specify the error requirement explicitly. Specifi-
cally, we say that a (n1, n2, k1, k2) strong T -computational two source (or non-
malleable) extractor has error neg(γ(λ)) if it satisfies Definition 8 (or Definition
9), where the adversary’s distinguishing advantage is required to be at most
negligible in γ(λ).

We will also rely on the following theorem from [Raz05] (simplified to our
setting). This is a statistical 2-source extractor; i.e., one that considers sources
that are sampled in unbounded time, and fools adversaries with unbounded
running time.
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Theorem 10 [Raz05] There exists a (n1, n2, k1, k2) strong statistical 2-source
extractor with output length O(k2) according to Definition 8 where n2 = ω(log n1),
k1 ≥ log n1, and k2 ≥ αn2 for any constant α > 1

2 , and error exp−Θ(min{k1,k2}).

Finally, we recall the following result from [GKK20] that transforms any
two-source extractor in the CRS model to a non-malleable extractor.

Theorem 11 ([GKK20]) Let T, T ′, n1, n2, k1, k2, k3, w : N → N be functions
of the security parameter where T ≥ 2k3 , such that the following primitives exist.

– A (n1, n2, k1, k2) strong T -computational 2-source extractor in the CRS model.
– A (T, n1, n1, w)-lossy function family.
– T ′-secure collision resistant hash functions mapping {0, 1}n2 → {0, 1}k3 .

Then, there exists a (n1, n2,K1,K2) strong T ′-computational non-malleable ex-
tractor satisfying definition 9 where K1 = k1 + k3(n1 − w + 1) + 1 and K2 =
k2 + k3 + 1.

4 Computational Strong Two-Source Extractors in the
CRS Model

In this section, we describe our construction of computational two-source extrac-
tors in the CRS model. We have the following theorem.

Theorem 12 Let T, T ′, n1, n2, k1, k2, k3, d, t, w,K1,K2 : N→ N be functions of
the security parameter, where T ≥ 2k3 , and such that the following primitives
exist.

– A (n1, d, k1, d − k3 − 1) strong information-theoretic 2-source extractor de-
noted by:

2Extλ : {0, 1}n1(λ) × {0, 1}d(λ) × {0, 1}c(λ) → {0, 1}m(λ)

– A (T, n1, n1, w)-lossy function family F = {Fλ}λ∈N, where w = n1 − nγ1 for
some constant γ ∈ (0, 1).

– A T ′-secure family of collision resistant hash functions H = {Hλ}λ∈N with
h : {0, 1}d → {0, 1}k3 .

– A
(

2K2/2

T ′ log T ′
, 2d−1

)
disperser

Γ : {0, 1}n2 × [t]→ {0, 1}d

Then there exists a (n1, n2,K1,K2) strong T ′-computational two-source ex-
tractor, satisfying Definition 9, where K1 = k1 + k3(n− w) + k3 + 1.

Corollary 13 Assuming the sub-exponential hardness of DDH, there exists con-
stants c0 > 1 and c′ such that for all c > c0, for every Ω(λ) ≤ n1 ≤ poly(λ), Ω(log λ) ≤
n2 ≤ poly(λ), there exists an (n1, n2,K1,K2) λ-computational strong two-source
extractor in the CRS model, with K1 = O(log λ)c, K2 = O(log λ)c and output
length O(log λ)c

′
.
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Proof. The sub-exponential hardness of DDH implies that there exists a constant
0 < ε < 1 such that DDH with security parameter λ is hard against poly(2λ

ε

)-
sized adversaries.

– This implies that for all c1 ≥ 1
ε , there exist lossy functions with equal domain

and co-domain, where w = n1− (log λ)c1 , and where no T = poly(2log λ
c1·ε

)-
sized adversary can distinguish the lossy mode from the injective mode. This
follows by setting, eg., log q = (log λ)c1 in the construction of lossy functions
from DDH in [BHK11].

– This also implies that for all c2 ≥ 1
ε , there exist collision-resistant hash

functions with range k3 = (log λ)c2 , and where no T ′ = poly(2log λ
c2·ε

)-sized
adversary can find collisions.

Setting c2 = 1
ε , c1 = 1

ε2 , we get T ′ = λ, k3 = (log λ)
1
ε and T = (2log λ

1
ε ).

By the disperser construction in [GUV09], there exists a polynomial t =

poly(λ) for which there exists a
(

2K2/2

T ′(log T ′)
, 2d−1

)
disperser

Γ : {0, 1}n1 × [t]→ {0, 1}d

for any d, k2, T
′ that satisfy

K2 ≥ 4d+ 2 log2 T ′ (1)

Set d = (log λ)
1
ε2 . By Theorem 10, there exists a (n1, d, k1, d− k3− 1) strong

statistical 2-source extractor for k1 = (log λ)
1
ε2 , with error exp−Θ(min(k1,d−k3−1)) =

neg(2k3). In particular, this extractor is a (n1, d, k1, d−k3−1) strong T -computational
2-source extractor in the CRS model (where the CRS is empty), with error
neg(2k3).

Setting d = (log λ)
1
ε2 and T ′ = λ in Equation (2), we have K2 ≥ 4(log λ)

1
ε2 +

2 log2 λ. Fixing K2 to be 5(log λ)
1
ε2 satisfies this inequality. From Theorem 12,

we have K1 ≥ k1+k3(n−w)+k3+1 ≥ (log λ)
1
ε2 +(log λ)

1
ε ·(log λ)

1
ε2 +(log λ)

1
ε +1.

Fixing K1 ≥ 2(log λ)
1
ε3 satisfies this inequality.

This completes the proof.

Corollary 14 Assuming the sub-exponential hardness of DDH, there exists con-
stants c0 > 1 and c′ such that for all c > c0, for every Ω(λ) ≤ n1 ≤ poly(λ), Ω(log λ) ≤
n2 ≤ poly(λ), there exists an (n1, n2,K1,K2) λ-computational non-malleable
extractor in the CRS model, with K1 = O(log λ)c, K2 = O(log λ)c and output
length O(log λ)c

′
.

Proof. This corollary can be obtained by combining Theorem 12 with 11, as
follows.

– First, we apply Theorem 12 but with somewhat scaled-up parameters than
in the previous corollary, to obtain an (n1, n2, k1, k2) T -computational non-
malleable extractor in the CRS model, with error neg(2k3). This extractor
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will be parameterized by a (small enough) constant 0 < ε < 1. It will have

T = 2(log λ
1/ε), and k3 = log λ1/ε.

The sub-exponential hardness of DDH implies that there exists a constant
0 < ε < 1 such that DDH with security parameter λ is hard against
poly(2λ

ε

)-sized adversaries.
• This implies that for all c1 ≥ 1

ε , there exist (T, n1, n1, w)-lossy func-
tions with equal domain and co-domain, where w = n1 − (log λ)c1 ,
and where no poly(T ) for T = (2log λ

c1·ε
) sized adversary can distin-

guish the lossy mode from the injective mode. This follows by setting,
eg., log q = (log λ)c1 in the construction of lossy functions from DDH
in [BHK11].

• This also implies that for all c2 ≥ 1
ε , there exist collision-resistant hash

functions with range k3 = (log λ)c2 , and where no poly(T ′) for T ′ =
2log λ

c2·ε
-sized adversary can find collisions.

Setting c2 = 1
ε2 , c1 = 1

ε3 , we get T ′ = 2log λ
1
ε , k3 = (log λ)

1
ε2 and T =

(2log λ
1
ε2 ).

By the disperser construction in [GUV09], there exists a polynomial t =

poly(λ) for which there exists a
(

2K2/2

T ′(log T ′)
, 2d−1

)
disperser

Γ : {0, 1}n1 × [t]→ {0, 1}d

for any d, k2, T
′ that satisfy

K2 ≥ 4d+ 2 log2 T ′ (2)

Set d = (log λ)
1
ε3 . By Theorem 10, there exists a (n1, d, k1, d−k3−1) strong

statistical 2-source extractor for k1 = (log λ)
1
ε3 , with error exp−Θ(min(k1,d−k3−1)) =

neg(2k3). In particular, this extractor is a (n1, d, k1, d − k3 − 1) strong T -
computational 2-source extractor in the CRS model (where the CRS is
empty), with error neg(2k3).

Setting d = (log λ)
1
ε3 and T ′ = 2log λ

1
ε in Equation (2), we can set K2 ≥

4(log λ)
1
ε3 + 2(log λ)

2
ε . Fixing K2 ≥ 5(log λ)

1
ε3 satisfies the above inequality.

From Theorem 12, we can set K1 ≥ k1 + k3(n − w) + k3 + 1 or K1 ≥
(log λ)

1
ε3 +(log λ)

1
ε ·(log λ)

1
ε3 +(log λ)

1
ε2 +1. Fixing K1 ≥ 2(log λ)

1
ε4 satisfies

the above inequality.
– Re-defining some variables, we say that previous step results in a T -strong

computational (n1, n2, k1, k2) non-malleable extractor in the CRS model,

with Ω(λ) ≤ n1 ≤ poly(λ), Ω(log λ) ≤ n2 ≤ poly(λ), T = 2log λ
1/ε

, k1 =

2(log λ)
1
ε4 , k2 ≥ 5(log λ)

1
ε3 , and error neg(T ) = neg(2(log λ)

1
ε ). Next, we apply

Theorem 11 to this extractor.
As before, the subexponential hardness of DDH implies that for all c′1 ≥ 1

ε ,
there exist (T, n1, n1, w)-lossy functions with equal domain and co-domain,

where w = n1 − (log λ)c
′
1 , and where no poly(T ) for T = (2log λ

c′1·ε) sized
adversary can distinguish the lossy mode from the injective mode. We will set
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c′1 = 1
ε2 . We also set k3 = (log λ)

1
ε , and by subexponential DDH, there exists

a T ′-secure family of collision resistant hash functions mapping {0, 1}n2 →
{0, 1}k3 for T ′ = λ.

Then, by Theorem 11, there exists an (n1, n2,K1,K2) strong T ′-computational
non-malleable extractor satisfying definition 9 where K1 = k1 + k3(n1 −
w + 1) + 1 = 2(log λ)

1
ε4 + (log λ)

1
ε · (log λ)

1
ε2 + 1, or K1 ≥ 3(log λ)

1
ε4 and

K2 = k2 + k3 + 1 = 5(log λ)
1
ε3 + (log λ)

1
ε + 1, or K2 ≥ 6(log λ)

1
ε3 .

This completes the proof.

4.1 Construction

As discussed above, we will prove that the construction of two-source extrac-
tors in [GKK20] is a strong non-malleable extractor for balanced sources, and
additionally only requires polylogarithmic min-entropy. We first recall the con-
struction in [GKK20], and begin by defining the CRS distribution.

Generating the common reference string (CRS). For a given security parameter
λ ∈ N, the common reference string is generated as follows.

1. Sample h← Hλ.

2. Sample b = (b1, . . . , bk3)← {0, 1}k3 .

3. Sample independently k3 pairs of random injective functions from Fλ,

f1,b1 , f2,b2 , . . . , fk3,bk3 ← Geninj(1
λ).

4. Sample independently k3 pairs of random lossy functions from Fλ,

f1,1−b1 , f2,1−b2 , . . . , fk3,b1−k3 ← Genloss(1
λ).

Output

crs =

(
h,
f1,0, f2,0, . . . , fk3,0
f1,1, f2,1, . . . , fk3,1

)

The (Computational) Two-Source Extractor: Construction.
The computational two-source extractor c2Ext = {c2Extλ}λ∈N is defined as

follows.
For any λ ∈ N, denote by c = c(λ) = |crs|, then

c2Extλ : {0, 1}c × {0, 1}n1 × {0, 1}n2 → {0, 1}m,

where ∀(crs, x1, x2) ∈ {0, 1}c × {0, 1}n1 × {0, 1}n2 ,

c2Extλ(crs, x1, x2) =
⊕

y:∃i s.t. Γ (x2,i)=y

cnm-Extλ(crs, x1, y)
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where Γ : {0, 1}n2 × [t]→ {0, 1}d is a ( 2k2

T ′ log T ′
, 2d−1) disperser, and

∀(crs, x1, y) ∈ {0, 1}c×{0, 1}n1×{0, 1}d, and crs parsed as

(
h,
f1,0, f2,0, . . . , fk3,0
f1,1, f2,1, . . . , fk3,1

)
,

cnm-Extλ(crs, x1, y) = 2Extλ

(
f1,h(y)1 ◦ f2,h(y)2 ◦ . . . ◦ fk3,h(y)k3 (x1), y

)
Due to space constraints, we defer the proof to the full version.

5 Network Extractor Protocol in the CRS Model

We start with the definition of the T -admissible leaky (p, n, k)-source distribu-
tion.

Definition 15 (T -Admissible Leaky (p, n, k) Source Distribution) A
T -admissible leaky (p, n, k) source distribution with respect to a CRS distribution
{CRSλ}λ∈N consists of an ensemble of sources X = {Xi,λ}i∈[p],λ∈N, and leakage
L = {Li,λ}i∈[p],λ∈N such that for every λ ∈ N, the following holds:

– For every crs ∈ Supp(CRSλ), Supp(Xi,λ|crs) ⊆ {0, 1}n(λ) for every i ∈ [p].

– For every crs ∈ Supp(CRSλ), (Xi,λ, Li,λ|crs) is sampleable in time poly(T (λ))
for every i ∈ [p].

– For every i ∈ [p], H∞(Xi,λ|CRSλ, Lλ) ≥ k(λ) where Lλ = {Li,λ}i∈[p].
– For every crs ∈ CRSλ, ` ∈ Supp(Lλ|crs) and for every distinct i, j ∈ [p], the

distributions (Xi,λ|crs, `) and (Xj,λ|crs, `) are independent.9

We now provide the definition of network extractor protocol in the CRS
model adapting the definitions from [KLRZ08, KLR09].

Definition 16 A protocol for p processors is a (T, t, g) network extractor with
respect to CRS distribution {CRSλ}λ∈N with source length n(λ), min-entropy
k(λ) and output length m(λ) if for any T -admissible leaky (p, n, k) source distri-
bution (X,L) w.r.t. {CRSλ}λ∈N (see Definition 15) and any choice M of t faulty
processors, after running the protocol, there exists a set G ∈ [p] \ T of size at
least g such that

|CRS, B, {Xi}i 6∈G, {Li}i∈[p], {Zi}i∈G−CRS, B, {Xi}i 6∈G, {Li}i∈[p], Ugm| < negl(λ)

Here, (CRS, {Xi, Li}i∈[p])← (CRSλ, {Xi,λ, Li,λ}i∈[p]), B is the transcript of the
protocol and Zi denote the output of the i-th party in the protocol, Ugm is the
uniform distribution on gm bits independent of B, {Xi}i6∈G and {Li}i∈[p].
9 This condition follows from the way X and Y are sampled, and we add it only for

the sake of being explicit.
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5.1 Building Blocks

We use the following building blocks in the construction.

1. A (n, n1, w)-lossy function family F = {Fλ : {0, 1}n(λ) → {0, 1}n1(λ)}λ∈N.
2. A (n1, k1) T -strong computational non-malleable extractor in the CRS model

denoted by

NMExtλ : {0, 1}n1(λ) × {0, 1}n1(λ) × {0, 1}c(λ) → {0, 1}m(λ)

5.2 Construction

We give the construction of the network extractor protocol in Figure 1.

– CRSGen(1λ):
1. Sample CRSNMExt for the non-malleable extractor NMExt.
2. For each i ∈ [p] and b ∈ {0, 1}, sample fi,b ← Geninj(1

λ).
3. Output CRS := (CRSNMExt, {fi,b}i∈[p],b∈{0,1}).

– Description of the Protocol. Party Pi on input xi ∈ {0, 1}n does the
following:
1. For each b ∈ {0, 1}, it computes fi,b(xi) and broadcasts fi,1(xi).
2. It receives {fj,1(xj)}j 6=i from the other parties.
3. It outputs

⊕
j 6=i NMExt(fi,0(xi) ◦ i, fj,1(xj) ◦ j,CRSNMExt).

Fig. 1. Network Extractor Protocol in the CRS Model

Theorem 17 Let γ ∈ (0, 1) be a fixed constant and let k(λ) be an arbitrary
polynomial larger than n1(λ) − w(λ). Assuming the existence of the following
primitives:

– A (n, n1, w)-lossy function family F = {Fλ : {0, 1}n(λ) → {0, 1}n1(λ)}λ∈N,
where w(λ) = n1(λ)− (n1(λ))γ .

– A (n1, k1) T -strong computational non-malleable extractor in the CRS model
denoted by

NMExtλ : {0, 1}n1(λ) × {0, 1}n1(λ) × {0, 1}c(λ) → {0, 1}m(λ)

where k1(λ) ≥ k(λ)− (n1(λ)− w(λ)).

Then, the construction given in Figure 1 is a (T, p−2, 2, negl) network extractor
with respect to the CRS distribution in Figure 1 and min-entropy k(λ).

Due to space constraints, we defer the proof of Theorem 17 to the full version.
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5.3 Instantiation

We instantiate the non-malleable extractor from Corollary 14 and the lossy
functions from [PW08, BHK11] Specifically, we set the constant c of the non-
malleable extractor to be max(c0, c1) (where c1 is the parameter for the lossy
functions). Thus, we obtain the following corollary.

Corollary 18 Assuming the sub-exponential hardness of the DDH assumption,
there exist constants c > 1 and c′ such that for any p number of players, there
exists a construction of (λ, p−2, 2) network extractor protocol in the CRS model
with sources of length Ω(λ) ≤ n(λ) ≤ poly(λ), min-entropy O(log λ)c and output
length O(log λ)c

′
.

6 Extractor for Adversarial Sources in the CRS Model

We start with the definition of the adversaial source distribution.

Definition 19 A T -admissible leaky (p, n, k) adversarial sources with respect to
CRS distribution {CRSλ}λ is a tuple (i, j, (X,Y, L), I, {xk}k∈I , Ii, Ij , {fk}k∈Ii∪Ij )
where i, j ∈ [p], (X,Y, L) is T -admissible leaky (n, k)-source distribution w.r.t.
{CRSλ}λ∈N, I ∪ Ii ∪ Ij = [p] and fk : {0, 1}n → {0, 1}n are T -time computable
functions.

We now give the definition of the extractor for adversarial sources below.

Definition 20 For any p ∈ N, and functions n = n(λ), c = c(λ) and m = m(λ),
a function ensemble AdvExt = {AdvExtλ}λ∈N, where

AdvExtλ : ({0, 1}n(λ))p × {0, 1}c(λ) → {0, 1}m(λ)

is said to be a (p, n, k) T -computational adversarial source extractor in the CRS
model if there exists an ensemble {CRSλ}λ∈N such that the following holds:

For every T -admissible leaky (p, n, k) adversarial sources (i, j, (X,Y, L), I,
{xk}k∈I , Ii, Ij , {fk}k∈Ii∪Ij ) wrt CRS, the following two distributions are compu-
tationally indistinguishable:

{AdvExtλ((x′1, . . . , x
′
p), crs), crs, `} ≈c {Um, crs, `}

where crs ← CRSλ, (xi, xj , `) ← (X,Y, L|crs), for every k ∈ I, x′k = xk, for
every k ∈ Ii, x′k = fk(xi), and for every k ∈ Ij, x′k = fk(xj).

6.1 Building Blocks

We use the following building blocks in the construction.

1. A (n, n1, w)-lossy trapdoor function family F = {Fλ : {0, 1}n(λ) → {0, 1}n1(λ)}λ∈N.
2. A (n1, k1) T -strong computational 2-source extractor in the CRS model de-

noted by

cExtλ : {0, 1}n1(λ) × {0, 1}n1(λ) × {0, 1}c(λ) → {0, 1}m(λ)
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6.2 Construction

We give the construction of our extractor for adversarial sources in Figure 2.

– CRSGen(1λ):
1. Sample CRScExt for the non-malleable extractor cExt.
2. For each i ∈ [p] and b ∈ {0, 1}, sample fi,b ← Geninj(1

λ).
3. Output CRS := (CRScExt, {fi,b}i∈[p],b∈{0,1}).

– Description of the Extractor. On input (x1, . . . , xp) ∈ ({0, 1}n)p, the
extractor does the following:
1. For each j ∈ [p] and b ∈ {0, 1}, it computes fj,b(xj).
2. For each i ∈ [p], it computes

ri :=
⊕

j 6=i cExt(fi,0(xi) ◦ i, fj,1(xj) ◦ j,CRScExt).
3. It outputs

⊕
i∈[p] ri.

Fig. 2. Extractor for Adversarial Sources

Theorem 21 Let p ∈ N be fixed and let m(·) be an arbitrary polynomial. Let k(·)
be an arbitrary polynomial such that for every λ ∈ N, k(λ) ≥ (2p − 1)(n1(λ) −
w(λ)) + m(λ). Let n(·) be another polynomial such that n(λ) ≥ k(λ) for every
λ ∈ N. Assuming the existence of the following primitives:

– A (n, n1, w)-lossy function family F = {Fλ : {0, 1}n(λ) → {0, 1}n1(λ)}λ∈N.
– A (n1, k1) T -strong computational non-malleable extractor in the CRS model

denoted by

cExtλ : {0, 1}n1(λ) × {0, 1}n1(λ) × {0, 1}c(λ) → {0, 1}m(λ)

where k1(λ) ≥ k(λ)− (2p− 1)(n1(λ)− w(λ))−m(λ).

Then, the construction given in Figure 2 is a (p, n, k) adversarial source extractor
with respect to the CRS distribution described in Figure 2.

Due to space constraints, we defer the proof of this theorem to the full version.

6.3 Instantiation

We instantiate the two-source extractor from Corollary 13 and the lossy functions
from [PW08, BHK11]. Specifically, for any fixed p, we set c for the two-source
extractor to be large enough such that min-entropy of the two source extractor
(2p−1)O(logc1 λ) < logc λ. We set m(λ) < logc λ. We, thus, obtain the following
corollary.
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Corollary 22 Fix any p ∈ N. Assuming the sub-exponential hardness of DDH
assumption, there exists constants c > 1 and c′ < c such that for any Ω(λ) ≤
n(λ) ≤ poly(λ), k(λ) = O(logc λ) and m(λ) ≤ O(k(λ)), there exists a construc-
tion of a (p, n, k) λ-computational adversarial two-source extractor in the CRS
model with output length O(log λ)c

′
.
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