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Abstract. Polynomial commitment schemes (PCS) have recently been
in the spotlight for their key role in building SNARKs. A PCS provides
the ability to commit to a polynomial over a finite field and prove its
evaluation at points. A succinct PCS has commitment and evaluation
proof size sublinear in the degree of the polynomial. An efficient PCS has
sublinear proof verification. Any efficient and succinct PCS can be used
to construct a SNARK with similar security and efficiency characteristics
(in the random oracle model).

Proof-carrying data (PCD) enables a set of parties to carry out an indef-
initely long distributed computation where every step along the way is
accompanied by a proof of correctness. It generalizes incrementally veri-
fiable computation and can even be used to construct SNARKs. Until re-
cently, however, the only known method for constructing PCD required
expensive SNARK recursion. A system called Halo first demonstrated
a new methodology for building PCD without SNARKs, exploiting an
aggregation property of the Bulletproofs inner-product argument. The
construction was heuristic because it makes non-black-box use of a con-
crete instantiation of the Fiat-Shamir transform. We expand upon this
methodology to show that PCD can be (heuristically) built from any
homomorphic polynomial commitment scheme (PCS), even if the PCS
evaluation proofs are neither succinct nor efficient. In fact, the Halo
methodology extends to any PCS that has an even more general prop-
erty, namely the ability to aggregate linear combinations of commitments
into a new succinct commitment that can later be opened to this linear
combination. Our results thus imply new constructions of SNARKs and
PCD that were not previously described in the literature and serve as a
blueprint for future constructions as well.

1 Introduction

A polynomial commitment scheme (PCS) enables a prover to commit to a poly-
nomial f ∈ F[X] of degree at most d. Later, given two public values x, y ∈ F,
the prover can convince a verifier that the committed polynomial f satisfies
y = f(x) and that f has degree at most d. This is done using a public coin
evaluation protocol called Eval. The PCS is said to be efficient if the verifier
runs in time o(d log |F|), and is said to be succinct if the commitment string and
the communication complexity of Eval is o(d log |F|).



This important concept was first introduced by Kate, Zaverucha, and Gold-
berg (KZG) [40], and has emerged as a key tool for building succinct and efficient
non-interactive argument systems called SNARKs [12]. A succinct and efficient
PCS can be used to compile an information theoretic interactive proof system
known as a Polynomial Interactive Oracle Proof [20] (PIOP), or equivalently
Algebraic Holographic Proofs [28]), into a SNARK. There are many examples
of efficient PIOPs for NP languages, where the verifier complexity is logarith-
mic or even constant in the size of the statement being proven. This construc-
tion paradigm led to several recent SNARK systems with improved character-
istics, including very efficient pre-processing SNARKs with a universal trusted
setup [45,28,32] or no trusted setup [20,30,48,41].

The original PCS, called the KZG PCS [40], is both efficient and succinct.
It is based on pairings and requires a linear size reference string generated by a
trusted setup (a recent improvement shrinks the size of the reference string [21]).
Another PCS, called the Bulletproofs PCS [17,19], does not require pairings or a
trusted setup, and is succinct, but is not efficient. Some schemes are both efficient
and succinct and do not require a trusted setup: DARK [20] is based on groups of
unknown order, and very recently Dory [43] uses pairing-based commitments and
generalized inner-product arguments [21]. A post-quantum efficient and succinct
PCS without trusted setup can be built using FRI [50,41,11]. In practice, these
schemes all have very different performance profiles and properties.

A proof-carrying data (PCD) system [31,13] is a powerful primitive that is
more general than a SNARK. Consider a distributed computation that runs
along a path of t ordered nodes. The computation is defined by a function
F : F`1 × F`2 → F`1 in which node i takes two inputs: the output zi−1 ∈ F`1 of
node (i− 1), and a local input loci ∈ F`2 . The node outputs zi = F (zi−1, loci) ∈
F`1 . A PCD system enables each node to provide a proof to the next node which
attests not only to the correctness of its local computation, but also to the cor-
rectness of all prior computations along the path. The work to produce/verify
each local proof is proportional to the size of the local computation and is inde-
pendent of the length of the path. A PCD system can be more generally applied
to any distributed computation over a directed acyclic graph of nodes. An impor-
tant performance metric of a PCD system is its recursion threshold: the minimum
size complexity of F for which recursion is possible. PCD is currently being used
in practice to construct a “constant-size blockchain” system [42,16], where the
latest proof attests to the validity of all state transitions (i.e., transactions) in
the blockchain history.

PCD systems generalize incrementally verifiable computation (IVC), pro-
posed by Valiant [49], where a machine outputs a proof after each step of com-
putation that attests to the correct history of computation steps. This can be
used to construct SNARKs for succinct bounded RAM programs, which captures
many programs in practice that have a small memory footprint relative to their
running time. It is also theoretically sufficient for constructing preprocessing
SNARKs for arithmetic circuits [7].
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1.1 Contributions

We define several abstract properties of a PCS and show that these abstract
properties are sufficient to construct powerful proof systems, including PCD and
IVC. These abstract constructions give a general and unified approach to under-
standing recent PCD constructions. We show that the PCS schemes mentioned
above satisfy some or all of our abstract properties. In some cases, instantiating
our abstract proof systems with these PCS schemes leads to new proof systems
that were not previously known. In fact, we could instantiate the PCS in two
different ways from any collision-resistant linear hash function h : Fd → G, one
that optimizes for the size of proofs passed along nodes of the PCD, and the
other that optimizes for prover time (i.e., the size of the recursive statement).4

We begin by defining an additive PCS as a simple refinement of a PCS,
where the space of commitment strings form a computational group G under
some binary operation add. Group elements must have representation size poly(λ)
in terms of the security parameter λ of the PCS and add must run in time poly(λ).
This means that it is possible to efficiently compute integer linear combinations
of commitments. Moreover, a second requirement is that the prover can efficiently
derive a valid opening string to open the linear combination of commitments to
the same linear combination of the underlying committed polynomials. Because
G is finite, the size of the linearly combined commitments is bounded, indepen-
dent of the number of summands or sizes of the integer coefficients. A trivial way
to impose a group structure on the commitment space of any PCS is to define G
as the group of formal linear combinations of commitment strings, however, this
trivial group is not bounded and therefore does not qualify the PCS as additive.

A useful property of an additive PCS is the ability to aggregate PCS evalua-
tions, akin to signature aggregation. We define two flavors of PCS aggregation
schemes: private and public. First, consider a tuple (C, x, y) ∈ G×F2, where C
is a commitment to some polynomial f ∈ F(<d)[X]. We say that the prover has a
witness for this tuple, if when the prover runs the Eval protocol with the verifier
on input (C, x, y), the verifier accepts with probability one. A (private) aggre-
gation scheme is an interactive protocol between a prover and a verifier where
the public input known to both is ` tuples (C1, x1, y1), . . . , (C`, x`, y`) ∈ G×F2,
and the public output is a single tuple (C∗, x∗, y∗) ∈ G× F2. At the end of the
protocol, the verifier is convinced that if the prover has a witness for (C∗, x∗, y∗),
then it must also have witnesses for (Ci, xi, yi) for all i ∈ [`]. A private aggrega-
tion scheme is non-trivial if it is more efficient than running the Eval protocol
on the ` + 1 tuples. It is efficient if the verifier complexity is sublinear in the
degree of the committed polynomials.

A public aggregation scheme enables a prover who does not know the
witnesses for the ` input tuples to aggregate the non-interactive proofs for these
tuples. This is also a two-party protocol where, for each i ∈ [`], both parties
receive a tuple (Ci, xi, yi) ∈ G×F2 and a corresponding non-interactive proof πi.

4 A homomorphism h : Zd → G that is collision-resistant modulo p suffices, i.e. finding
collisions where x 6= y mod p is intractable.
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The common output is a tuple (C∗, x∗, y∗) ∈ G × F2 for which the prover has
a witness. The prover can subsequently produce a non-interactive proof for this
output tuple. Informally, a valid proof for the output tuple demonstrates the
validity of each input proof for the input tuples. As there is no information
asymmetry between the two parties, the protocol is only interesting if the verifier
does significantly less work than the prover.

A key theorem of this paper is that every additive PCS has an efficient
private aggregation scheme. In fact, the theorem is more general. It is possible
that a PCS is not additive, but there is still an efficient algorithm that takes
as input a list of ` commitments along with ` integer coefficient weights, and
outputs a new poly(λ)-size commitment in G to the linear combination of the
underlying committed input polynomials, along with a proof of correctness. We
call this a linear combination scheme (LCS). The LCS is efficient if the
verifier is sublinear in the degree of the committed polynomials. Moreover, if the
LCS verifier complexity is asymptotically faster than running the Eval verifier `
times, then we call the PCS linearly amortizable because it allows for opening
linear combinations of commitments with amortized efficiency gains. If the PCS
is additive it suffices to compute linear combinations of commitments over G and
no additional proof is required, hence every additive PCS is linearly amortizable.
We prove that:

Theorem 1.1 (informal). Every PCS that has an efficient linear combination
scheme has an efficient private aggregation scheme. Every succinct additive PCS
has an efficient public aggregation scheme.

The formal statement of this result is in Theorem 4.2 and Theorem 5.2. As
a concrete implication, we can take any linear collision-resistant hash function
h : Fd → G and build a trivial PCS where the evaluation proof outputs the
entire polynomial. Although this is not succinct, it is still additive and thus, as
the theorem states, it has an efficient private aggregation scheme. Additionally,
combining this hash function with a succinct protocol for proving pre-images of
h would give a succinct additive PCS, which has an efficient public aggregation
scheme. In fact, there exists a generic succinct protocol for proving pre-images
of h (Section 5).

The first part of the result (private aggregation, Theorem 4.2) is based on
a novel batched evaluation protocol for opening commitments to distinct poly-
nomials at distinct points. Previously, standard batched evaluation techniques
for homomorphic polynomial commitments included: (1) opening distinct com-
mitments at the same point, and (2) opening a single commitment at multiple
points. The first is accomplished by opening a random linear combination of the
original commitments. The second is accomplished by interpolating a degree-n
polynomial t over the n opening points such that the committed polynomial f is
equal to t over the domain H of these points, and proving that f − t is divisible
by the zero polynomial zH over this domain. The prover computes a commit-
ment Cq to the quotient polynomial q := f−t

zH
and proves that q · ZH = (f − t)

by opening Cq and Cf at a random challenge point. Both of these standard
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batch evaluation protocols are single-round. We elegantly compose these two
approaches to get a two-round protocol for batch opening multiple polynomials
at multiple points. While the analysis of the standard batch evaluation protocol
for a multiple commitments at a common point is based on the invertibility of
a Vandermonde matrix, the analysis of our protocol relies on the invertibility of
the Hadamard product of a random Vandermonde matrix with a square matrix
of non-zero field elements (Lemma 4.7). The KZG instantiation of this protocol
was presented in an earlier manuscript of our work [15].

Our result for public aggregation (Theorem 5.2) leverages the generic private
aggregation scheme from Theorem 4.2 combined with a generic succinct proof of
knowledge of the classical homomorphism pre-image problem (Section 5), which
has its roots in the Bulletproofs protocol. Public aggregation is a factor O(log d)
more costly (in communication size) than private aggregation.

Aggregation schemes have a number of important applications to construct-
ing PCS-based SNARKs. First, aggregation schemes can be used for batch eval-
uation of polynomial commitments in order to reduce the work of the verifier
(Section 4). Second, in Section 6 we discuss a fascinating and powerful applica-
tion of PCS aggregation to recursive proof systems. This application generalizes
a construction by Bowe, Grigg, and Hopwood called Halo [18], which was also
formalized and generalized by Bünz et. al. [23].

PCD and IVC from PCS aggregation Suppose F : F` → F` and we wish to
prove the correctness of t iterations of F , i.e. that F (t)(z0) = zt. It turns out that
given any succinct PCS with an efficient aggregation scheme, it is possible to con-
struct an efficient non-interactive proof system for this type of statement whose
proof size and verification complexity is proportional to the size and verification
complexity of the PCS on polynomials of degree |F |, completely independent of t.
As our results have shown, this includes any additive PCS and even non-additive
schemes that have an efficient linear combination scheme. Most significantly, the
PCS itself does not need to have efficient verification.

In fact, a PCS with an efficient aggregation scheme can be used to construct
a PCD system. Not only does this mean that PCD, IVC, and preprocessing
SNARKs can be constructed from any PCS with an efficient linear combina-
tion scheme, but we also expect this should lead to practical improvements over
the prior proof bootstrapping techniques [7,30] whenever the verification com-
plexity of the private aggregation is smaller than the verification complexity of
Eval. We leave concrete performance analysis for future work, although follow
up work [22] has already shown that the instantiation of PCD based on our
private aggregation scheme using a simple Pedersen hash function achieves an
order-of-magnitude reduction in the size of the recursive statement (reducing
the recursion threshold accordingly).

Theorem 1.2 (informal). PCD with proofs linear in the predicate size can be
constructed from any PCS that has an efficient linear combination scheme. PCD
with sublinear proofs can be constructed from any PCS with an efficient public
aggregation scheme.
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In summary, our results pave the way for novel constructions of PCD, IVC,
and SNARKs with new efficiency and security characteristics by directing the
research effort towards PCS constructions that have the simple abstract additiv-
ity properties formalized in this paper. The constructions of PCD/IVC following
this methodology do require a heuristic security assumption because they involve
instantiating random oracles (more specifically, the Fiat-Shamir transform) with
concrete hash functions. All known constructions of PCD/IVC require heuris-
tic security (i.e., knowledge assumptions or concrete instantiations of random
oracles) and there is evidence that this is inherent [29].

1.2 Related work

The construction of general purpose efficient SNARK systems is a hotly pursued
topic. There are many examples of such proof systems that work for any NP
relation [35,44,13,33,46,14,36,37,45,32,28,6,20,30,18,48]. In addition to the PCS
constructions mentioned earlier, there is also a scheme by Bootle et. al. [17]
that achieves

√
n commitment size and Eval complexity based on any additively

homomorphic commitment, and a similar lattice-based construction by Baum
et. al. [3,2]. In Section 5 we describe a construction of a PCS from any collision-
resistant homomorphism based on our succinct proof of homomorphism pre-
images (HPI) that has constant size commitment, logarithmic size proofs and
linear verification time.5 Attema and Cramer [1] described a generalization of
Bulletproofs to proving linear forms of Pedersen committed vectors, which is a
special case of our HPI protocol.

Constructions of IVC/PCD use recursive composition, which enables the
prover to prove knowledge of a proof that the verification algorithm would accept.
Until recently, constructions following this paradigm placed a complete descrip-
tion of the proof verifier inside the recursive statement. Thus, PCD was limited
to proof systems where the verifier description is sublinear in the statement be-
ing proven (i.e., SNARKs) [49,13,10,30]. The Halo protocol [18,23] was the first
construction of PCD from an underlying inefficient proof system (combining the
Sonic PIOP [45] and the Bulletproofs PCS). There were two key ideas. The first
was, in our terminology, a public aggregation scheme for the Bulletproofs PCS.
The second was that the recursive statement can omit the inefficient portion
of the proof system’s verifier, i.e. the Eval verifier. The Eval proof inputs to a
PCD step are aggregated along with the output Eval proofs, and the recursive
statement only checks that aggregation was done correctly. This aggregates all
Eval proofs into a single evaluation proof that is checked once at the end, amor-
tizing the cost of Eval verification over the distributed computation length (i.e.,
recursion depth). Bünz et. al. [23] generalize this proof technique further using a
primitive they call SNARK accumulation schemes. They also define PCS accu-
mulation schemes, which can be combined with PIOP-based SNARKs to get a
5 This can be combined with the technique of Bootle et. al. [17] to get a PCS with√

n commitment size,
√
n verification time, and logarithmic proof size based on any

collision-resistant homomorphism. We do not include the details in this work.
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SNARK accumulation scheme. Our notion of public aggregation coincides with
PCS accumulation. A small tweak to the definition of PCS accumulation we
call private accumulation coincides with private aggregation and can be used to
construct PCD with larger proofs (linear in the predicate size). Our results are
thus perfectly complementary.

2 Preliminaries

Basic notations For an integer n ≥ 1, we write [n] to denote the set of integers
{1, . . . , n}. For any mathematical set S the notation |S| denotes the cardinality
of S. Unless specified otherwise, we use λ to denote the security parameter. We
say a function f(λ) is negligible in λ, denoted by negl(λ), if f(λ) = o(1/λc) for
all c ∈ N. We say an algorithm is efficient if it runs in probabilistic polynomial
time in the length of its input. We use poly(λ) to denote a quantity whose value
is bounded by a fixed polynomial in λ. For a field F, we use F(<d)[X] for the set of
polynomials in F[X] of degree at most d. We use {0, 1}∗ to denote binary strings
of arbitrary length and ε to denote the empty string. We may use the notations
Fp and Zp interchangeably to denote the unique prime field of characteristic
p. For modular arithmetic, we use the notation a ≡ b (mod n) to denote that
integers a, b ∈ Z are equivalent modulo n ∈ Z. The notation a mod n denotes
the unique integer b ∈ [0, n) such that a ≡ b (mod n).

For an abstract group, G denotes the set of elements in the group, and for
any g1, g2 ∈ G the element g1 + g2 is the result of applying the binary operation
to g1 and g2. The inverse of g ∈ G is denoted −g and g1 − g2 := g1 + (−g2).
For any n ∈ N and g ∈ G the element n · g is defined as adding n copies of
g. For n ∈ Z, n < 0, then n · g is defined as −(|n| · g). The group G is called
a computational group if there exist efficient algorithms for implementing the
addition and inversion operations.

Proofs of knowledge An NP relation R is a subset of strings x,w ∈ {0, 1}∗
such that there is a decision algorithm to decide (x,w) ∈ R that runs in time
polynomial in |x| and |w|. The language of R, denoted LR, is the set {x ∈
{0, 1}∗ : ∃w ∈ {0, 1}∗ s.t. (x,w) ∈ R}. The string w is called the witness and
x the instance. An interactive proof of knowledge for an NP relation R
is a special kind of two-party interactive protocol between a prover denoted
P and a verifier denoted V, where P has a private input w and both parties
have a common public input x such that (x,w) ∈ R. Informally, the protocol
is complete if P(w) always causes V(pp, x) to output 1 for any (x,w) ∈ R. The
protocol is knowledge sound if there exists an extraction algorithm E called the
extractor such that for every x and adversarial prover A that causes V(pp, x) to
output 1 with non-negligible probability, E outputs w such that (x,w) ∈ R with
overwhelming probability given access6 to A.
6 The extractor can run A for any specified number of steps, inspect the internal state

of A, and even rewind A to a previous state.
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Definition 2.1 (Interactive Proof with Efficient7 Prover).
Let Setup(λ) denote a non-interactive setup algorithm that outputs public

parameters pp given a security parameter λ. Let Π
(
P(w),V(pp, x)

)
denote a

two-party interactive protocol between P and V, where P has private input w
and V has the common public input (pp, x). Let 〈P(w),V(pp, x)〉 be a random
variables that is the output of V. All algorithms run in time poly(λ, |pp|, |x|, |w|).
The pair (Setup,Π) is called a proof of knowledge for relation R if for all
non-uniform adversaries A the following properties hold:

– Perfect Completeness.

Pr

[
(x,w) 6∈ R or

〈P(w),V(pp, x)〉 = 1
:

pp← Setup(λ)
(x,w)← A(pp)

]
= 1

– Knowledge soundness [4] There exists a probabilistic oracle machine E called
the extractor such that for every adversarial interactive prover algorithm A
that is only given the public inputs (pp, x) and every x ∈ LR the following
holds: if 〈A(·),V(pp, x)〉 = 1 with probability ε(x) > negl(λ) then EA(pp, x)
with oracle access to A runs in time poly(|x|, λ) and outputs w such that
(x,w) ∈ R with probability 1− negl(λ).

Forking lemmas The following “forking lemma” is helpful for proving knowl-
edge soundness of multi-round public coin interactive protocols over an exponen-
tially large challenge space (i.e., where each verifier message is a uniform sample
from a space X that has size at least 2λ). It says that if the adversary succeeds
with non-negligible probability ε = 1/poly(λ), then there is an O(poly(λ))-time
algorithm for generating a tree of accepting transcripts defined as follows. For
an r-round protocol, an (n1, ..., nr)-tree of accepting transcripts for ni ≥ 0
is a tree where (i) every node v of the tree corresponds to a partial transcript trv,
(ii) every level-i node v has ni children nodes that correspond to continuations
of trv with distinct ith round challenges, and (iii) every leaf node corresponds
to a full transcript in which the verifier accepts. More generally, the property
that each pair of challenges on sibling nodes are distinct can be replaced with
any property π : X 2 → {0, 1} which outputs 1 on a random pair of challenges
with overwhelming probability. This forking lemma generalizes a similar lemma
by Bootle et al. [17]. We provide a proof in the full version.

Lemma 2.2 (Forking Lemma). Let (P,V) be an r-round public-coin inter-
active proof system and A an adversary that runs in expected time tA such
that 〈A(·),V(pp, x)〉 = 1 with probability ε on public input x and public pa-
rameters pp. Let {πi}ri=1 be a set of properties πi : X 2 → {0, 1} such that
7 A classical interactive proof does not require the prover to be efficient. However, our

definition of an interactive proof with efficient prover should also not be confused
with an interactive argument, which only requires soundness against efficient adver-
saries. In our definition, the prover is required to be efficient for correctness, but
soundness must hold against adversaries with unbounded running time.
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∀i Pr[π(x1, x2) = 1 : x1, x2 ←$ X ] > 1−negl(λ). If r ∈ O(log λ) then for any con-
stants n1, ..., nr ∈ N there exists an algorithm T that runs in time poly(λ) ·(tA/ε)
and with probability at least 1−negl(λ)/ε2 outputs an (n1, ..., nr)-tree of accepting
transcripts such that for i ∈ [1, r] all pairs of sibling-node challenges x1, x2 ∈ X
at level i satisfy πi(x1, x2) = 1.

Fiat-Shamir tranform The Fiat-Shamir transform preserves knowledge sound-
ness for any constant-round public-coin interactive proof in the random oracle
model, i.e. when the “hash function” is modeled as a random oracle [34,47]. The
interactive protocol must have a negligible soundness error. More generally, Fiat-
Shamir preserves knowledge soundness for multi-round interactive proofs that
satisfy a property called state restoration soundness [9], also equivalent to round-
by-round soundness [24,38]. There are also special classes of constant-round pro-
tocols for which the Fiat-Shamir transform can be instantiated using correlation-
intractable hash functions [39,25,24], or even simpler non-cryptographic hash
functions [26]. In general, the security of the Fiat-Shamir transform applied
to a knowledge-sound interactive proof system using a concrete hash function
is heuristic. There are known examples where the transform fails to preserve
soundness.

Definition 2.3. A knowledge-sound interactive proof system (P,V) is FS com-
patible if there exists a hash family H such that the non-interactive proof system
(PFS,VFS) obtained from applying Fiat-Shamir using an explicit hash sampled
from H is knowledge-sound.

Zero Knowledge An interactive proof satisfies honest verifier zero-knowledge
(HVZK) if there exists a simulator that does not have access to the prover’s pri-
vate witness yet can produce convincing transcripts between the prover and an
honest verifier that are statistically indistinguishable from real transcripts. The
Fiat-Shamir transform compiles public-coin proofs that have HVZK into non-
interactive proofs that have statistical zero-knowledge (for possibly malicious
verifiers).

2.1 Polynomial Commitment Scheme (PCS)

A polynomial commitment scheme, or PCS, is a triple of PPT algorithms,
Setup, Commit, and Verify along with an evaluation protocol Eval, where:

– Setup(λ, d) → pp a deterministic algorithm that outputs public parameters
pp for committing to polynomials of degree d. The parameters pp include a
specification of an abelian commitment group G, as defined below.

– Commit(pp, f)→ (C, open) outputs a commitment C ∈ G to the polynomial
f ∈ F(<d)[X] and an opening “hint” open ∈ {0, 1}∗.

– Verify(pp, f, open,C) checks the validity of an opening hint open for a com-
mitment C ∈ G to the polynomial f ∈ F(<d)[X] and outputs 1 (accept) or 0
(reject).
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– Eval
(
P(f, open),V(pp,C, z, y)

)
→ (⊥, b) is a public-coin interactive protocol

between a prover who has the private input (f, open) for f ∈ F(<d)[X] and
a verifier who has the common public input pp and (C, z, y) ∈ G × F2. The
verifier outputs b ∈ {0, 1} and the prover has no output. The purpose of the
protocol is to convince the verifier that f(z) = y and deg(f) < d.

All the algorithms run in time polynomial in λ and d. Furthermore, a scheme
is correct if for all polynomials f ∈ F(<d)[X] and all points z ∈ F, with proba-
bility 1 the verification Verify(pp, f, open,C) outputs 1 and likewise V outputs 1
in interaction with P in the Eval protocol on valid inputs.

Commitment group A commitment group G is a computational group
accompanied by two PPT algorithms: if openf and openg are opening hints for
commitments Cf and Cg to polynomials f, g ∈ F(<d)[X], then add∗(openf , openg)
outputs an opening for Cf+Cg to the polynomial f+g and invert∗(openf ) outputs
an opening for −Cf to the polynomial −f . This is a non-standard part of the
PCS definition and may appear overly restrictive. However, it does not reduce
the generality of a PCS. The default way to define G is the space of formal linear
combinations of commitments to elements of F(<d)[X]. The default add∗ would
simply be concatenation.

Explicit specification of G, add∗, and invert∗ is convenient for defining the
additivity properties of a PCS discussed in Section 3. This also serves to highlight
how additivity is merely a refinement on G. The existence of G, add∗, and invert∗
is not a distinguished property on its own.

Efficiency/Succinctness If the Eval verifier runs in time o(d), i.e. sublinear in
the degree of the committed polynomial, then the PCS is called efficient. If both
the size of commitments and communication complexity of the Eval protocol are
o(d) then the scheme is called succinct.

A PCS could be succinct and not efficient. One example is a PCS based
on the Bulletproofs system [17,19]. Some PCS applications may have stricter
efficiency/succinctness requirements (e.g., polylog(d) length or run time). A non-
succinct PCS is only interesting if it is hiding, and only distinguished from a
regular hiding commitment scheme if it has a zero-knowledge evaluation protocol
(defined below).

Non-interactive Eval An interactive PCS Eval protocol may be compiled into
a non-interactive Eval proof via the Fiat-Shamir transform. We use the notation
π ← NI-Eval

(
pp, f, open, C, x, y

)
and b← VEval(pp, π, C, x, y). The PCS Eval may

already be non-interactive (e.g., KZG [40]) in which case Fiat-Shamir is not
needed.

Security properties The scheme’s algorithms (Setup,Commit,Verify) must
be binding as a standard commitment scheme. Furthermore, the protocol Eval
should be complete and a proof of knowledge. Informally, this means that any
successful prover in the Eval protocol on common input (C, z, y) must know a
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polynomial f(X) ∈ F(<d)[X] such that f(z) = y and C is a commitment to
f(X). The two of these properties together also imply that the scheme is eval-
uation binding, which means that no efficient adversary can output pp and two
pairs (C, z, y) and (C, z, y′) where y 6= y′, and then succeed in Eval on both
pairs (C, z, y) and (C, z, y′). The requirement that Eval is a proof of knowledge
is stronger than evaluation binding alone, but is necessary for the application to
SNARKs.

Definition 2.4 (Binding PCS). A PCS is binding if for all PPT adversaries
A:

Pr

b0 = b1 = 1 ∧ f0 6= f1 :

pp← Setup(λ, d)
(f0, open0,C0, f1, open1,C1)← A(pp)
b0 ← Verify(pp, f0, open0,C0)
b1 ← Verify(pp, f1, open1,C1)

 ≤ negl(λ)

Definition 2.5 (Knowledge soundness). A PCS has knowledge sound-
ness if for all pp output by Setup(λ, d) and d ∈ N, the interactive public-coin
protocol Eval is a proof of knowledge for the NP relation REval(pp, d) defined as
follows:

REval(pp, d) =
{〈

(C, z, y), (f, open)
〉
:
f ∈ F(<d)[X] ∧ f(z) = y
Verify(pp, f, open,C) = 1

}
Hiding and Zero Knowledge A PCS scheme hiding if it satisfies the standard
definition of a hiding commitment, i.e. commitments to distinct polynomials are
statistically indistinguishable. A PCS scheme is zero-knowledge if its Eval
protocol is a public-coin HVZK interactive proof for the relation REval(pp, d).

Bounded witness ZK Eval The regular definition of a zero-knowledge PCS
scheme requires that the Eval protocol is a zero-knowledge proof for the relation
REval(pp, d). This means that Eval cannot leak any information at all about
the prover’s witness (f, open) for the commitment open, other than the public
statements f(z) = y, f ∈ F(<d)[X], and open is valid. Some schemes, such as
DARK [20], do not satisfy this strongest definition of zero-knowledge, but rather
satisfy a weaker zero-knowledge PCS property that is generally sufficient in
practice. Let H be a set containing all possible opening hints and let N : H→ R
be any non-negative efficiently computable function. Let {Eval(B) : B ∈ R}
denote a family of evaluation protocols that take an extra parameter B ∈ R. A
PCS satisfies bounded witness zero-knowledge for N if Eval(B) is a public-
coin HVZK interactive proof for the modified relation:

REval(pp, d,N , B) =

{〈
(C, z, y), (f, open)

〉
:
f ∈ F(<d)[X] ∧ f(z) = y ∧ N (open) ≤ B
Verify(pp, f, open,C) = 1

}

“Relaxed” PCS openings For any PCS scheme, the Verify function can be
relaxed such that it will accept an opening of the commitment t · Cf to the
polynomial h = t·f for a integer t ∈ Z as a valid opening of Cf to the polynomial
f .
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Lemma 2.6. Let PCS = (Setup,Commit,Verify,Eval) denote a PCS for polyno-
mials over a field F of characteristic p. If the algorithm Verify is replaced with
an algorithm Verify∗ that accepts (f, (t, open),C) if and only if t 6= 0 mod p and
Verify accepts (h, open, t · C) where h = t · f , then the new PCS is still binding.

Proof. Suppose an adversary outputs openings (f1, (t1, open1)) and (f2, (t2, open2))
to a commitment C such that Verify∗ accepts both and f1 6= f2. This implies
that Verify accepts both (h1, open1, t1 ·C) and (h2, open2, t2 ·C) where h1 = t1 ·f1
and h2 = t2 ·f2. Using the add∗ operation, it would be possible to compute valid
openings of t1t2 · C to both t1h2 = t1t2 · f2 and t2h1 = t1t2 · f1. Since f1 6= f2
it follows that t1h2 6= t2h1. Thus, this would contradict the binding property of
the original PCS. �

Lemma 2.7. Given two vectors of commitments C,C∗ ∈ Gn, a system of equa-
tions AC = C∗ for an integer matrix A ∈ Zn×n that is invertible over Fp,
and a vector of openings of C∗ to a vector of polynomials f∗ = (f∗

1 , ..., f
∗
n) ∈

(F(<d)[X])n, there is an efficient algorithm to derive polynomials f = (f1, ..., fn) ∈
(F(<d)[X])n, an integer t ∈ Z such that t 6= 0 mod p, and openings for each t ·Ci

to the polynomial t · fi mod p such that A · f ≡ f∗ (mod p).

Proof. Since det(A) 6= 0, the matrix A is invertible over Q. Let A−1 denote the
inverse of A over Q and let I denote the identity matrix over Z. Set L to be the
matrix obtained by clearing the denominators of A−1, i.e. L = t · A−1 where
t 6= 0 is the least common multiple of all denominators of the rational entries of
A−1. We have t ·C = L ·A ·C = L ·C∗. From each linear combination of C∗, we
use add∗ to derive an opening of t ·Ci to a polynomial gi = 〈Li, f

∗〉 ∈ F[X]. Let
g = (g1, ..., gn). Finally, solve for the vector of polynomials f such that A · f = f∗

by computing A−1 mod p. Note that L ·A · f = t · f = L · f∗. Thus, tfi = gi, for
which we have a valid opening of t ·Ci. �

3 Additive polynomial commitments

This section defines an additive PCS as a simple refinement of a PCS, where
the group of commitments is a computational group of bounded size. Recall that
in our definition from Section 2.1, a PCS includes a specification of a family of
commitment groups indexed by the parameters (λ, d). We remarked that this is
without loss of generality.

Definition 3.1. A PCS is additive if every abelian commitment group Gλ,d

determined by the public parameters pp←$ Setup(λ, d) is a computational group
of size at most 2poly(λ). An additive PCS for polynomials in F(<d)[X] is additively
succinct if the size of Gλ,d is o(|F|d).

There may be a group G that satisfies the size constraints of Definition 3.1
but does not qualify as a commitment group but the add∗ operation only works
for a bounded number of operations. Examples include DARK and lattice-based
schemes [20,2]. We call them bounded additive.
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Definition 3.2. A PCS over a field F is homomorphic if for any λ, d ∈ N the
parameters pp← Setup(λ, d) determine two computational groups (G,H) and two
polynomial time computable homomorphisms φ : H → G and χ : H → F(<d)[X]
such that the algorithm Verify(pp, f,C, open) returns 1 if and only if φ(open) = C
and χ(open) = f .

We call H the “hint” group. For a homomorphic PCS to be binding, the
homomorphism φ : H→ G must be collision resistant over equivalence classes in
H/ker(χ) (i.e., finding x1, x2 ∈ H such that χ(x1) 6= χ(x2) and φ(x1) = φ(x2)
must be hard).

An additive PCS gives a homomorphic PCS. Any additive PCS over a
prime field F = Fp and commitment group G, can be efficiently transformed
into a non-hiding homomorphic PCS with the same commitment group G. The
transformation maintains succinctness if the PCS is additively succinct. The new
commitment algorithm will give a homomorphism φ : Zd → G.

3.1 Linear combination schemes

It is possible that a PCS is not additive, yet there is still an efficient scheme to
linearly combine polynomial commitments into a succinct aggregate commitment
and later open this at points.

Definition 3.3 (Linear Combination Scheme). A linear combination scheme
for a PCS with commitment group G is a public-coin interactive protocol Lin-
Combine defined as follows. Given any f ∈ F(<d)[X]`, α ∈ F`, C ∈ G`, and a
vector of openings open = (open1, ..., open`) such that Verify(pp, fi, openi,Ci) = 1
for all i ∈ [`], the protocol LinCombine does:

LinCombine
(
P(f , open),V(pp,C,α)

)
→ (open∗, (C∗, b)

)
.

The public output is (C∗, b) ∈ G × {0, 1} where b ∈ {0, 1} indicates success
or failure. The private output is an opening open∗ for C∗ to the polynomial∑`

i=1 αi · fi. As for the security, LinCombine composed with Eval on the output
C∗ is a proof of knowledge for the relation:

RLinComb(pp, d) =

〈
(C,C∗,α), (f, open, open∗)

〉
:
(C∗, (f, open∗)) ∈ REval(pp, d)
(C, (f, open)) ∈ REval(pp, d)
C =

∑
i αi · Ci


The trivial linear combination scheme simply returns the linear combination

of the input commitments over the commitment group. This clearly satisfies the
security definition because C∗ = C in this case. When a scheme is additively
succinct then the trivial linear combination scheme is the most natural to use.
The purpose of a non-trivial LinCombine is to return a C∗ that is more succinct
than C. We call the scheme size-optimal if the aggregate commitment size is
bounded by the worst case size of commitments to polynomials of degree d.
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We remark that every PCS has a relatively uninteresting generic size-optimal
linear combination protocol. The prover can simply compute a fresh commitment
C∗ to f =

∑`
i=1 αi · fi and run ` + 1 instances of Eval on C∗ and each Ci at a

common random point ρ selected by the verifier. The verifier can check the linear
relation between the opening value of C∗ at ρ and opening values of the list of Ci

at ρ. This satisfies the security definition simply because the LinCombine protocol
itself is a proof of knowledge of an opening of C∗ to f and each Ci to fi such
that f =

∑
αi · fi. A linear combination scheme is interesting when it is more

efficient than this generic one.
We say that a linear combination scheme is efficient if the verifier complexity

in the protocol LinCombine is sublinear in the maximum degree of the input
polynomials.

3.2 PCS examples and their additive properties

The table below summarizes the properties of several schemes. All major PCS
constructions have efficient linear combination schemes, which beat the generic
one. The linear combination scheme (LCS) amortization ratio (column 3) indi-
cates the ratio of the communication/verification complexity of using the LCS to
prove the evaluation of a linear combination (i.e. run Eval on the output of the
LCS) versus the generic protocol of running ` separate instances of Eval. This
ratio is most relevant for the efficiency of batch evaluation (Section 4). The com-
plexity ratio of the LCS verifier to the Eval verifier (column 5) is most relevant
for the efficiency8 of proof recursion (i.e., IVC/PCD) discussed in Section 6. The
parameter ` is the number of polynomial commitments being linearly combined
and d is their maximum degree.

additive LCS amortization |VLinCombine| |VLinCombine|
|VEval|

Bulletproofs yes 1/` Oλ(`) `/Ω(d)
Dory yes 1/` Oλ(`) `/Ω(log d)
KZG yes 1/` Oλ(`) `/Ω(1)
DARK bounded 1/` Oλ(`) `/Ω(log d)

FRI: a non-additive PCS The Fast Reed-Solomon IOP of Proximity (FRI) [5]
is a protocol for proving that a committed vector in Fn is δ-close (in relative
Hamming distance) to a Reed-Solomon (RS) codeword. FRI can be used to
construct a PCS that is post-quantum.

The FRI PCS is not additive by Definition 3.1, but it does have a protocol for
opening a random linear combination that achieves amortized efficiency ratio of
1
`+

1
Ω(log d) over ` commitments, which can also be extended to achieve amortized

batch evaluation (e.g., Algorithm 8.2 of Aurora [8]).

8 The asymptotic ratio for KZG hides the fact that VEval involves a pairing operation
while VLinCombine has only ` · λ curve additions and thus is cheaper for small `.
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4 Batch Evaluation and Private Aggregation

For the purpose of this section F := Fp, for some prime number p. It may be
possible to generalize our results to work over extension fields, but that is beyond
scope.

The batch evaluation problem Let f1, . . . , f` ∈ F(<d)[X] and let Ci be a
commitment to fi for i ∈ [`]. The verifier has pp and C1, . . . ,C`. For each i ∈ [`]
the verifier also has (zi,1, yi,1), . . . , (zi,`i , yi,`i) ∈ F2. The prover wants to convince
the verifier that fi(zi,j) = yi,j for all i ∈ [`] and j ∈ [`i].

An alternative formulation of the batch evaluation problem is as follows. For
each i ∈ [`]:

– let Ωi = {zi,1, . . . , zi,`i} ⊆ F, and
– let ti be the unique degree-(`i − 1) polynomial that satisfies ti(zi,j) = yi,j

for all j ∈ [`i].

The verifier has (Ci, Ωi, ti) for i ∈ [`]. The batch evaluation problem is for the
prover to convince the verifier that fi(x) = ti(x) for all i ∈ [`] and x ∈ Ωi. We
will use this formulation of the problem from now on.

When all the polynomials ti in the batch evaluation problem are identically
zero (i.e., ti ≡ 0 for all i ∈ [`]) then the problem is called batch zero testing.

Aggregation scheme We define PCS proof aggregation, akin to signature ag-
gregation. The aggregation of tuples (C1, x1, y1), ..., (C`, x`, y`) is a single tuple
(C∗, x∗, y∗) such that running Eval to open C∗ ∈ G at point x∗ ∈ F to y∗ ∈ F
suffices to open each Ci ∈ G at xi ∈ F to yi ∈ F. Aggregation enables batch
evaluation, as shown in Figure 1.

Definition 4.1 (Aggregation). Let PCS = (Setup,Commit,Verify,Eval) de-
note a PCS with commitment group G. An aggregation scheme for PCS is a
public-coin interactive protocol Aggregate with public inputs C = (C1, ..., C`) ∈
G`, x ∈ F`, y ∈ F`, and private inputs f ∈ F(<d)[X]` and open = (open1, ..., open`)
such that Verify(pp, fi, openi,Ci) = 1 for all i ∈ [`]:

Aggregate
(
P(f , open),V(C,x,y)

)
→ ((open∗, f∗), (C∗, x∗, y∗, b))

The public output is a tuple in G×F2×{0, 1} and |C∗| = poly(λ) independent
of `. The security requirement is that the batch evaluation protocol shown in
Figure 1 is a proof of knowledge for the relation:

RBatchEval(pp, d) =
{〈

(C,x,y), (f , open)
〉
: ((Ci, xi, yi), (fi, openi)) ∈ REval(pp, d)

}
As for correctness, if the inputs to P satisfy RBatchEval(pp, d) then V outputs
b = 1 and the private output (open∗, f∗) satisfies Verify(pp, f∗, open∗, C∗) = 1.
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Fig. 1: A batch evaluation protocol for multiple commitments at multiple points
based on a PCS aggregation scheme.

P(C, z,y, open, f) V(C, z,y)

((open∗, f∗), (C∗, z∗, y∗, b1))← Aggregate
(
P(f , open),V(C, z,y)

)
Reject if b1 = 0

(⊥, b2)← Eval
(
P(f∗, open∗),V(pp, C∗, z∗, y∗)

)
Accept if b2 = 1

Theorem 4.2. Any PCS that has a linear combination scheme LinCombine
(Definition 3.3) also has an aggregation scheme Aggregate (Definition 4.1) that
on ` input commitments makes a single call to LinCombine on ` + 2 commit-
ments with λ-bit integer coefficients. Both the prover and verifier do an addi-
tional O(` log `) operations in F, and the prover makes one call to Commit on
a polynomial of degree maxi{deg(fi)}. The additional communication is one G
element and two F elements.

Corollary 4.3. Every additive PCS (Definition 3.1) has an aggregation scheme
with prover complexity O(` log `) operations in F plus one Commit to a polynomial
of degree maxi{deg(fi)}, verifier complexity O(` log `) operations in F plus O(`·λ)
operations in G, and communication of one G element plus two F elements.

We will say that an aggregation scheme is efficient if the verifier complex-
ity of the protocol Aggregate is sublinear in the maximum degree of the input
polynomials. By Corollary 4.3, every additive PCS, and more generally any PCS
with an efficient linear combination scheme, has an efficient aggregation scheme.

Corollary 4.4. If a PCS has an efficient linear combination scheme then it has
an efficient aggregation scheme.

4.1 A Protocol for Batch Zero Testing

We first construct a general protocol for batch zero testing. Batch evaluation
is a simple generalization. The entire protocol is shown in Figure 2. The com-
munication is comprised of one extra commitment and one evaluation protocol,
independent of the number of input polynomials k. In Theorem 4.5 we show that
the protocol is knowledge-sound.

The protocol preserves zero-knowledge. The zero-knowledge simulator for
this protocol samples ρ̃, r̃ ← F, computes an integer representative ẑ ∈ [0, p) for
z(r̃)−1, sets C̃q :=

∑k
i=1 ρ̃

i−1zi(r̃) · ẑ · Ci, and sets C̃g :=
∑k

i=1 ρ̃
i−1zi(r̃) · Ci −

z(r̃) · C̃q. If there exists an opening for each Ci then there exists an opening of
Ci− z(r̃) · (ẑ ·Ci) to the zero-polynomial, and thus there exists an opening of C̃g

to the zero-polynomial. The simulator calls the Eval simulator on public input

16



Fig. 2: A zero test for multiple polynomials on distinct sets:
(Ci, openi) ← Commit(pp, fi) and Ωi is a non-empty subset of F for all i ∈ [k]. The
prover computes openg from ρ, r, open1, . . . , openk (not shown).

P
(
(f1, open1, Ω1), . . . , (fk, openk, Ωk)

)
V
(
(C1, Ω1), . . . , (Ck, Ωk)

)
Ω :=

⋃k
i=1 Ωi Ω :=

⋃k
i=1 Ωi

z(X) :=
∏

ω∈Ω(X − ω) z(X) :=
∏

ω∈Ω(X − ω)
∀i Ω̄i := Ω \Ωi ∀i Ω̄i := Ω \Ωi

∀i zi(X) :=
∏

ω∈Ω̄i
(X − ω) ∀i zi(X) :=

∏
ω∈Ω̄i

(X − ω)

ρ
←−−−−−−−−−−−−−− ρ←$ [0, p)

q(X) :=
∑k

i=1 ρ
i−1zifi/z

(Cq, openq)← Commit(pp, q) Cq−−−−−−−−−−−−−−→

r←−−−−−−−−−−−−−−
r ←$ [0, p)

g(X) :=
∑k

i=1 ρ
i−1zi(r)fi(X)− z(r)q(X) ∀i compute zi(r) ∈ F

(if all is valid then g(r) = 0)
C′ :=

∑k
i=1 ρ

i−1zi(r) · Ci

Cg := C′ − z(r) · Cq

Eval
(
P(g, openg),V(Cg, r, 0)

)
←−−−−−−−−−−−−−−−−−−→

(C̃g, r̃, 0) to get a simulated transcript π̃. It output the final simulated transcript
(ρ̃, C̃q, r̃, π̃).

Theorem 4.5. If Eval is knowledge sound, then the protocol in Figure 2 is a
proof of knowledge for the relation:

RZTest(pp, d) :=

〈
(C,Ω), (f , open)

〉
:
f = (f1, ..., fk) s.t.fi ∈ F(<d)[X]
∀i ∈ [k]∀ω∈Ωifi(ω) = 0
∀i ∈ [k]Verify(pp,Ci, openi, fi) = 1


The proof is included in the full version of this paper.

4.2 Batch evaluation protocol

The protocol for batch evaluation is a small generalization of the zero-testing
protocol in Figure 2. Here, for i ∈ [k], the verifier has (Ci, Ωi, ti) where ti ∈
F(<d)[X], and needs to be convinced that fi(x) = ti(x) for all i ∈ [k] and all
x ∈ Ωi. This is the same as proving that every polynomial f̂i := fi − ti is zero
on all of Ωi. Thus, we can apply the protocol in Figure 2 to f̂1, . . . , f̂k.

Naively, the verifier would need to compute a commitment to each f̂i, which it
can do from Ci and ti. However, we can optimize the verifier by observing that the
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verifier only uses ti(X) to compute ti(r) for some random r ∈ F. Hence, we can
replace the verifier’s computation of C′ in Figure 2 by instead computing C′ :=∑k

i=1 ρ
i−1zi(r) · (Ci− ti(r) ·C(1)) where C(1) is a commitment to the polynomial

f ≡ 1. In doing so, we save the verifier the work to compute commitments to
f̂1, . . . , f̂k.

Theorem 4.6. If Eval is knowledge sound, then the batch evaluation protocol
based on Figure 2 is a proof of knowledge for the relation RBatchEval(pp, d).

The complete proof of Theorem 4.6 is included in the full version of this paper.
The proof applies the forking lemma (Lemma 2.2) to show that it is possible to
generate a depth-2 tree of 2k protocol transcripts where:

1. There are k distinct first-round challenges ρ1 6= · · · 6= ρk 6= 0 mod p
2. For all i ∈ [k], two transcripts share the first-round challenge ρi and have

distinct second-round challenges ri and r′i such that z(ri) 6= z(r′i) 6= 0.
3. Letting V ∈ Zk×k denote the Vandermonde matrix with jth row (1, ρj , ..., ρ

k−1
j )

and letting R ∈ Zk×k be the matrix with (i, j)th coordinate zi(rj), the
Hadamard product of these matrices A := V ◦R is invertible over Fp.

The first two conditions are easy to guarantee because collisions among first
round challenges occur with negligible probability, and similarly z(r) 6= z(r′) 6= 0
with overwhelming probability over r, r′ ←$ F. The third condition is guaranteed
by the fact (proven in Lemma 4.7) that if every entry of R is non-zero over Fp,
then for {ρj} sampled uniformly and independently the matrix A is invertible
with overwhelming probability. For {rj} sampled uniformly and independently,
zi(rj) 6= 0 mod p except with probability k

|F| .
For each of these transcripts, the Eval extractor is invoked to extract an

opening of each C′
j =

∑k
i=1 ρ

i−1
j zi(rj) ·Ci to a polynomial f ′

j . This gives a system
of equations that can be solved to obtain openings of the input commitments
(C1, ...,Ck) to polynomials (f1, ..., fk) = A−1 · (f ′

1, ..., f
′
k).

The protocol is still zero-knowledge if the PCS is hiding and Eval is zero-
knowledge. The description of the simulator is nearly identical to the simulator
for the protocol in Figure 2 so we will not repeat the details.

Lemma 4.7. Let M be an n × n matrix over F×
p . Let V be a random Van-

dermonde matrix over Fp, sampled uniformly and independent of A. Their
Hadamard product V ◦M is invertible with probability at least 1− n2

|F| .

Proof. Let V(X) denote the Vandermonde matrix over formal variables X1, ..., Xn.
Using the Leibnitz formula, det(V(X)) is an n-variate polynomial, which is an
alternating sum of n! distinct monomials. The determinant of the Hadamard
product, det(V(X) ◦M) is also an alternating sum of n! distinct monomials
where the coefficient on each distinct monomial is a distinct summand of the
Leibnitz formula for det(M). All coefficients are non-zero since all entries of
A are non-zero. Therefore, this n-variate polynomial is not identically zero. Let
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p(X1, ..., Xn) denote this polynomial, which has total degree less than n2. A ran-
dom Vandermonde matrix V is a random assignment x = (x1, ..., xn) to the n
variables X1, ..., Xn and thus det(V◦M) = p(x1, ..., xn). By the Schwartz-Zippel
lemma, the probability that p(x1, ..., xn) = 0 is at most n2

|F| . �

4.3 Aggregation scheme (proof of Theorem 4.2)

When the PCS has a linear combination scheme (Definition 3.3), then the proto-
col from Section 4.2 together with the linear aggregation protocol LinCombine re-
sults in an aggregation scheme for the PCS. Concretely, the protocol on public in-
puts C = (C1, ..., Ck) ∈ Gk, x = (x1, ..., xk) ∈ Fk, and y = (y1, ..., yk) ∈ Fk with
prover private inputs f = (f1, ..., fk) ∈ F(<d)[X]k and open = (open1, ..., openk)
operates as follows:

Aggregate
(
P(f , open),V(C,x,y)

)
→ ((open∗, f∗), (C∗, x∗, y∗, b))

1. Let Ωi = {xi} for i ∈ [1, k], and let ti := yi.
2. Run the protocol in Section 4.2 with public inputs {(Ci, Ωi, ti)}i∈[k] and

prover private inputs {(fi, openi)}i∈[k] up until the point that P and V derive
Cg, the prover P has privately derived g(X), and the verifier V has sent
the challenge r ∈ F. Note that Cg is a linear combination of the input
commitments C , the Cq sent during the protocol, and C(1) (the commitment
to 1).

3. The prover and verifier will run LinCombine to produce a succinct commit-
ment C∗ to the same polynomial as Cg:

– Let C′ := (C1, ...,Ck,C
(1),Cq)

– Let f ′ := (f1, ..., fk, 1, q) and let open′ = (open1, ..., openk, open
(1), openq)

– For i ∈ [k] let αi := ρi−1 · zi(r) · fi, let αk+1 := −
∑k

i=1 ρ
i−1 · zi(r) · yi,

and let αk+2 := −z(r). Let α := (α1, ..., αk+2).
– Run the protocol LinCombine

(
P(f ′, open′),V(pp,C′,α)→ (open∗, (C∗, b)

)
.

– The prover’s private output is (open∗, g) and the verifier’s public output
is (C∗, r, 0, b).

In the case that (C∗, open∗) = (Cg, openg), i.e. the PCS is additive, then
composing this protocol with an Eval on Cg is a special case of the batch eval-
uation protocol in Section 4.2, which by Theorem 4.6 is a proof of knowledge
for relation RBatchEval(pp, d). More generally, by the security property of the lin-
ear combination scheme LinCombine, composing the protocol with an Eval on
(C∗, r, 0) is equivalent to running Eval on (Cg, r, 0), i.e. it is a proof of knowledge
of an opening for Cg at the pair (r, 0). Thus, this provides the extractor from
Theorem 4.6 with the same information it needs to extract an RBatchEval(pp, d)
witness.

The prover complexity in the aggregation protocol is O(k log k) operations
in F using FFTs plus the complexity of a single call to Commit on a polynomial
of degree at most d. The verifier complexity is O(k log k) operations in F and
O(k · λ) operations in G.
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5 Homomorphic PCS Public Aggregation

The aggregation scheme in Definition 4.1 requires the aggregator, who plays the
role of a prover, to know openings of all the input commitments. In a public
aggregation scheme, the aggregator isn’t required to know the openings of the
input commitments but performs more work than the verifier. We define public
aggregation only for a PCS with a non-interactive evaluation protocol NI-Eval.

The verifier in the Aggregate protocol receives NI-Eval proofs πi for each
(Ci, xi, yi) input tuple. The prover’s output is (open∗, f∗) and the verifier’s out-
put is (C∗, x∗, y∗, b). If the prover succeeds in the aggregation protocol (i.e., the
verifier outputs b = 1) and the verifier separately verifies the membership of
(C∗, x∗, y∗) in REval(pp, d) then it should be convinced that each input tuple is
also in REval(pp, d) with overwhelming probability.

Definition 5.1 (Public Aggregation). Let PCS = (Setup,Commit,Verify,NI-Eval)
denote a PCS with commitment group G and a non-interactive evaluation pro-
tocol. A public aggregation scheme for PCS is a public-coin interactive protocol
Aggregate that has public inputs C = (C1, ..., C`) ∈ G`, x ∈ F`, y ∈ F`, and
π = (π1, ..., π`):

Aggregate
(
P,V(pp,π,C,x,y)

)
→ ((open∗, f∗), (C∗, x∗, y∗, b))

In a correct scheme, if the inputs satisfy VEval(πi, Ci, xi, yi) = 1 for all i ∈ [`],
then the outputs satisfy b = 1 and Verify(pp, f∗, open∗, C∗) = 1. The soundness
requirement is that the following probability is negligible:

Pr

 b ∧ VEval(π
∗, C∗, x∗, y∗) = 1

∃iVEval(pp, πi, Ci, xi, yi) 6= 1
:

pp← Setup(λ, d)
(C,x,y,π)← A(pp)
((open∗, f∗), (C∗, x∗, y∗, b))← Aggregate

(
P,V(pp,π,C,x,y)

)
π∗ ← NI-Eval

(
pp, f∗, open∗, C∗, x∗, y∗)



A public aggregation scheme is efficient if the verifier complexity of the
protocol Aggregate is sublinear in the maximum degree of the input polynomials.

Theorem 5.2. There is a black-box compilation from any additive PCS over
a prime field F = Fp and commitment group G into a publicly aggregatable
homomorphic PCS with the same commitment group G. The overhead of the
new Eval is:

– Communication: O(log d) additional elements of G× F
– Prover: O((log p+ λ) · n) additional operations in G
– Verifier: O(log d) additional operations in G× F

The public aggregation scheme complexity for ` commitments is:

– Communication: One G element and two F elements.
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– Prover: O(` log `) operations in F, O(log p · n) operations in G, and O(` · n)
multiplications of λ-bit integers

– Verifier: O(` log `) operations in F and O(` · λ) operations in G.

Theorem 5.2 is proven in two parts. First, there is a simple transformation
from any additive PCS into a homomorphic PCS with the same commitment
group and opening group H = Zn. Second, we present a compiler from any homo-
morphic PCS with opening group H = Zn into a new homomorphic PCS together
with a public aggregation scheme that meets the performance requirements of
the theorem. A key ingredient is a protocol for succinct proof of knowledge of
homomorphism pre-image, which we present next.

5.1 A Succinct PoK for Homomorphism Pre-image
Let φ : Zn → G be any homomorphism where G is an abelian computational
group. We will present a succinct public-coin interactive proof of knowledge for
the following relation:

R∗
HPI(φ,G, p) = {((x ∈ Zn, t ∈ Z), y ∈ G) : φ(x) = t · y ∧ t 6= 0 mod p}

In the special case that pZ ⊆ ker(φ), e.g. when G has order p or is an
Fp-vector space, a proof of knowledge for this relation is equivalent to a proof
of knowledge for the standard homomorphism pre-image relation. In this case,
given a witness (x, t) for R∗

HPI it is possible to efficiently compute an integer
vector x′ such that φ(x′) = y by computing t̂ ∈ Z such that t̂ ≡ t−1 mod p and
setting x′ := t̂ · x.

Let {ei}i∈[n] denote the standard basis of Zn and define gi := φ(ei). The
homomorphism φ may be rewritten as the Z-linear map φ(x) = 〈x,g〉 =

∑n
i=1 xi·

gi. We will use [[x]]g as a shorthand notation for 〈x,g〉 give x ∈ Zn and g ∈ Gn.
Note the following two properties of [[·]]:

1. Decomposition If x = (xL,xR) for xL ∈ Zn1 and xR ∈ Zn2 such that
n1 + n2 = n and g = (gL,gR) for gL ∈ Gn1 and gR ∈ Gn2 , then [[x]]g =
[[xL]]gL

+ [[xR]]gR
.

2. Bilinearity If α, β ∈ Z, x ∈ Zn,and g,h ∈ Gn then α[[x]]g + β[[x]]h =
[[αx]]g + [[βx]]h = [[x]]αg+βh

The public coin interactive proof is illustrated in Figure 3. The verifier’s
public-coin challenges are sampled uniformly from the set X := [0, 2λ).

Correctness If the prover follows the protocol honestly, then [[x]]g = [[xL]]gL
+

[[xR]]gR
, and:

y′ = yL + α2yR + αy = [[xL]]gR
+ [[α2xR]]gL

+ [[αxL]]gL
+ [[αxR]]gR

= [[x′]]gR
+ [[αx′]]gL

= [[x′]]gR+αgL

Thus, in each recursive round, if x is a valid witness for (y, n,g) then x′ is a
valid witness for (y′, n′,g′).
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Fig. 3: A succinct interactive protocol for HPI. For simplicity n is a power of 2.

PHPI(n,x ∈ Zn, y ∈ G,g ∈ Gn) VHPI(n, y ∈ G,g ∈ Gn)

If n = 1 send x−−−−−−−−−−−−−−→ [[x]]g
?
= y

If yes accept, else reject

Else n′ ← dn
2
e

x = (xL,xR);g = (gL,gR)
yL ← [[xL]]gR , yR ← [[xR]]gL

yL, yR−−−−−−−−−−−−−−→

α←−−−−−−−−−−−−−−
α←$ [0, 2λ)

x′ ← xL + αxR

y′ ← [[x′]]gR+αgL

y′ ← yL + α2yR + αy
g′ ← gR + αgL

PHPI(n
′,x′, y′,g′)

recurse←−−−−−−−−−−−−−−−−−−→ VHPI(n
′, y′,g′)

Theorem 5.3. The protocol in Figure 3 is a proof of knowledge for the relation
R∗

HPI(φ,G, p).

Proof. Our analysis will show the protocol is a proof of knowledge for the relation
R∗

HPI([[·]],G, p). For simplicity we assume n is a power of 2. We define a knowledge
extractor E that runs with an adversary A who succeeds for public input (x, y,g)
with probability ε = 1/poly(λ). E begins by invoking the forking lemma to
generate a tree of accepting transcripts with the following characteristics:

– The tree has depth log n and branching factor 3. We will index nodes by
v ∈ [0, nlog 3).

– The root is labeled with the verifier’s input (y,g).
– Each non-leaf node v distinct from the root is labeled with a challenge αv

and a prover message (yv,0, yv,1).
– Each non-leaf node v has three children each labeled with three distinct

verifier challenges. αv,1 6= αv,2 6= αv,3.
– Each leaf node v is labeled with a prover message xv ∈ Z.

Since the probability of collision on a pair of challenges sampled uniformly
from X is 1/2λ, by the forking lemma (Lemma 2.2) this tree-finding algorithm
runs for time polynomial in λ and succeeds excepts with negligible probability
in λ.

For any non-leaf node v with parent w and message pair (yv,0, yv,1) and
challenge αv define yv := yw,0 +α2

v · yw,1 +αv · yw. For any leaf node v the value
of yv is already defined by the transcript. For the root node rt define yrt := y,
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where y is the input. We also define a value gv for every node v as follows: if v is
the root then gv := g, else if v has a parent w then gv := gw,0 +αv · gw,1 where
gw = (gw,0,gw,1) is the concatenation of equal length vectors gw,0,gw,1. If v is a
node on the ith level up from the leaves then gv ∈ G2i . Every component of gv

is a linear combination of the elements in g derived from challenges along a path
up the tree. Thus, for each gv the extractor also knows a matrix Uv ∈ Z2i×n

such Uv ·g = gv. By construction, for every root to leaf path of nodes v1, ..., vlogn

the sequence of values (αvi
, yvi,0, yvi,1) form an accepting transcript between the

prover and verifier where (gvi , yvi) are the verifier’s local inputs in the ith round.
Moreover, the leaf node labels satisfy xv · gv = yv.

We will show that given this tree, the extractor can compute (tv,xv) ∈ Z×Zn

for each node v such that [[xv]]g = tv · yv. In particular, this means that the
extractor obtains a witness (trt,xrt) ∈ Z×Zn for y ∈ G such that [[xrt]]g = trt · y.
This is a valid pair for the relation R∗

HPI([[·]],Zn,G). The extractor begins at
the leaves. Every leaf node is already labeled with xv ∈ Z such that xv · gv =
xv ·Uv ·g = yv where Uv ∈ Z1×n. The extractor sets xv := xv ·Uv. Next, suppose
the extractor has already successfully computed an (tv,xv) pair for all children
nodes of a node w. For ease of notation, temporarily let y1, y2, y3 denote the
yv values for the three children and α1, α3, α3 denote their respective challenge
labels. Similarly, let (xi, ti) ∈ Zn × Z for i ∈ [3] denote the extracted labels
for the children nodes. By construction, yi = yw + α2

i yw,0 + αiyw,1 for i ∈ [3].
Defining A ∈ Z3×3 to be the matrix with rows (1, α2

i , αi), T the diagonal matrix
with diagonal entries t1, t2, t3 6= 0 mod p, and X ∈ Z3×n the integer matrix with
rows x1, x2,x3, we can summarize the relations:

A ·

 yw
yw,0

yw,1

 =

y1y2
y3

 T ·

y1y2
y3

 =

[[x1]]g
[[x2]]g
[[x3]]g

 = X · g

T is invertible over F. Since A is Vandermonde it is also invertible over F.
Therefore T·A is invertible over both F and Q. Setting d to be the least common
multiple of the denominators of all entries in (T ·A)−1 over Q, there exists an
integer matrix P such that P · T ·A = d · I, where I is the identity matrix. In
particular, we obtain d · yw = 〈P1,X · g〉. The extractor sets xw := 〈P1,X〉 and
tw := d, which now satisfies [[xw]]g = 〈xw,g〉 = tw · yw. �

5.2 Publicly aggregatable PCS (proof of Theorem 5.2)

The Halo [18] protocol contains a public aggregation protocol for the Bullet-
proofs PCS. Inspired by this idea, we show how the HPI protocol of Figure 3
can be used to compile any homomorphic PCS with opening group H = Zn

and commitment group G into a publicly aggregatable homomorphic PCS with
the same commitment group G. Compared with the commitment size and Eval
complexity of the original PCS, the commitment size of the transformed PCS
is the same, the new Eval communication has an extra O(log d) elements of G,
and the verification overhead is O(log d) operations in G. Running the public
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aggregation protocol on k commitments and evaluation points together with an
Eval on the aggregate commitment achieves an amortized verification complexity
of O(log k + λ + VEval(λ,d)

k ) where VEval(λ, d) is the Eval verifier complexity. Any
additive/homomorphic scheme can first be compiled into a homomorphic PCS
with opening group Zn, using the simple compiler described next.

Compiler 1: From Additive to Homomorphic Given a non-hiding9 additive
PCS (Setup, Commit, Verify, Eval) the new homomorphic non-hiding PCS uses
the same Setup,Verify, and Eval protocols, but commits to polynomials using
the pre-computed “basis” commitments (Ci, openi)← Commit(pp,Xi−1) for i ∈
[1, d]. The commitment to f ∈ F(<d)[X] with coefficient vector representation
f = (f̂0, ..., f̂d−1) ∈ [0, p)d is the group element C :=

∑d−1
i=0 f̂i · Ci. The opening

string open for C is the coefficient vector f .
By definition, C is a valid commitment to the polynomial f under the original

scheme with opening string open′ derived from the “basis” openings openi using
add∗ and the coefficients f . The evaluation protocol runs the original Eval using
open′. For some schemes (e.g., KZG and Bulletproofs) that are already homo-
morphic, the linear combination C would be identical to a fresh commitment to
f and thus open′ = open. In other words, the transformation described above
would have no effect.

The transformed scheme is a homomorphic PCS because C = φ(open) where
φ : Zd → G is the homomorphism that maps v ∈ Zd to

∑d
i=1 vi · Ci and

χ(open) = open mod p is the unique coefficient vector of f ∈ F(<d)[X]. The new
scheme is also binding: given a collision f ′ 6= f mod p such that C = φ(f) = φ(f ′),
the algorithm add∗ could be used to derive openings of C to either f or f ′ from
the openi values, which contradicts the binding property of Commit.

Compiler 2: Homomorphic to publicly aggregatable Denote the input
homomorphic PCS by PCS = (Setup,Commit,Verify,Eval). The output of the
compiler will be a scheme denoted PCS∗ = (Setup∗,Commit∗,Verify∗,Eval∗) that
will support public aggregation. Let H = Zn for some n > d. By definition, there
are efficiently computable homomorphisms φ : Zn → G and χ : Zn → F(<d)[X]
such that the output (C, open) ← Commit(pp, f) for any f ∈ F(<d)[X] satisfies
C = φ(open) and f = χ(open).

For any v ∈ Zn let fv := χ(v). Let Ĝ := G × F. For a point x ∈ F, define
the homomorphism φx : Zn → Ĝ as φx(v) := (φ(v), fv(x)). The new PCS
algorithms (Setup∗,Commit∗) are identical to (Setup,Commit). The algorithm
Verify∗ is the standard “relaxation” of Verify from Section 2.1: it accepts tuples
(f, (t, open)) such that φ(open) = t · C and χ(open) = t · f where t 6= 0 is an
integer. The protocol Eval∗ is transformed as follows:

Eval∗
(
P(f, open),V(C, x, y)

)
:

9 Since the PCS is non-hiding we may assume, without loss of generality, that the
commitment algorithm Commit is a deterministic function.
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1. The prover/verifier run a modification of the HPI protocol from Figure 3 with
PHPI(n, open, (C, y)) and VHPI(n, (C, y)) for the homomorphism φx : Zn →
Ĝ. The verifier stores the output (x′, (C′, y′)) ∈ Z × Ĝ and performs all
verification steps except for deriving g′ ∈ Ĝ or checking x′ · g′ = (C′, y′). The
prover derives the coefficient vector u of the polynomial u(X) =

∏logn
i=1 (αi+

X2i−1

) defined by the verifier challenges, which satisfies φx(u) = g′ and
φx(x

′ · u) = x′ · g′ = (C′, y′).
2. Run Eval

(
P(fx′·u, x

′ ·u),V(C′, x, y′)
)
, where C′ is interpreted as a polynomial

commitment to fx′·u with opening x′ · u.

We provide only a sketch of the knowledge soundness analysis. Recall that
the extractor in the analysis of Theorem 5.3 succeeds assuming it has any labels
(tv,xv, yv) at the leaves of the tree such that [[xv]]g = tv · yv, i.e. φs(xv) = tv · yv
in this case. The knowledge extractor for Eval∗ begins by running the usual
extractor for PHPI, but calls the extractor for Eval to obtain a φx homomorphism
pre-image of (C′, y′). This is passed to the extractor for PHPI, which in turn
outputs a witness (t,v) ∈ Z×Zn such that ((v, t), (C, y)) ∈ R∗

HPI(φx,Zn, Ĝ), i.e.
φx(v) = (t · C, t · y) and t 6= 0. Thus, φ(v) = t · C and fv(x) = t · y, so Verify∗
accepts (t−1fv, (t,v)) and t−1fv(x) = y, i.e. (t−1fv, (t,v)) is an REval witness
for (C, x, y).

The compiled PCS has the same commitment size since the commitment
algorithm is unchanged. The overhead in the Eval∗ communication is O(log d)

elements of Ĝ = G × F and the overhead in verification is O(log d) operations
in Ĝ (from Step 1). The prover overhead is O((λ + logB) · n) operations in Ĝ
assuming ||open||∞ < B (in Step 1) and O(n) integer multiplications to derive u
(also from Step 1). In the case that |G| = p the integer multiplications become
field multiplication modulo p.

If the input PCS Eval protocol is zero-knowledge and the prover/verifier run
the zero-knowledge variation of the HPI protocol between Pinit and Vinit then
Eval∗ is also zero-knowledge. If Eval is already non-interactive (or public-coin and
FS compatible) then Eval∗ is still public-coin and can be made non-interactive
by applying the Fiat-Shamir transform. We conjecture that the transformed
protocol is sound, which is true in the random oracle model for constant n [34].:

Conjecture 5.4. If Eval is FS compatible then protocol Eval∗ is FS compatible.

Comparison to Halo aggregation The Halo aggregation protocol for the
Bulletproofs PCS uses the fact that the expensive part of verification is deriving
g′ = φ(u) and u(X) can be evaluated in time O(log d). The aggregator proves
correctness of g′ (interpreted as a commitment to u) by running the Bulletproofs
Eval to open it to u(s) at a random point s chosen by the verifier. Multiple
instances can be batched using private Eval aggregation. This works only because
u ∈ Zp and φ : Zn

p → G is collision-resistant. In a more general homomorphic
PCS with u ∈ Zn, φ might only be collision-resistant over Zn/ker(χ) and it
may be possible to open g′ to u(X) even when φ(u) 6= g′. The key observation
that allows us to generalize the aggregation protocol for any PCS is our novel
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analysis of the HPI protocol (Theorem 5.3) which shows that the verifier does
not need to compute g′; it only needs a proof of knowledge that y′ is some linear
combination of g.

Public aggregation scheme Each non-interactive proof returned by NI-Eval∗
has the form (πHPI, x

′, y′, πeval) where πHPI is the transcript from the first step,
(x′, y′) = (x′, (C′, t′)) ∈ Z × (G × F) is the verifier’s intermediate output in the
first step, and πEval is the non-interactive Eval proof from the second step for the
commitment C′ to the polynomial fx′·u. The vector x′ ·u can be computed from
the transcript πHPI.

The public aggregation scheme Aggregate takes public inputs C = (C1, ...,Ck) ∈
Gk, s ∈ Fk, t ∈ Fk, and a vector of NI-Eval∗ proofs π = (π1, ..., πk) where
πi = (π

(i)
HPI, x

′
i, y

′
i, π

(i)
eval):

Aggregate
(
P,V(pp,π,C, s, t)

)
→ ((open∗, f∗), (C∗, s∗, t∗, b))

The verifier does not check π
(i)
Eval for each i ∈ [k], and therefore is not yet

convinced that φsi(x
′
i · ui) = y′i. Instead, the aggregation prover/verifier run

the private aggregation protocol from Section 4.3 where the prover has private
inputs {fx′·ui

}ki=1 and opening strings {x′ ·ui}ki=1 for each commitment C′
i such

that fx′·ui
(si) = t′i. The output of this private aggregation protocol determine

the prover’s outputs (open∗, f∗) and the verifier’s outputs (C∗, s∗, t∗, b).
By the soundness definition of the private aggregation scheme, if the prover

can succeed in the Eval protocol on public inputs (C∗, s∗, t∗) with non-negligible
probability then there exists a polynomial time knowledge extractor that ob-
tains an REval witness for each (C′

i, si, t
′
i), which includes a φsi pre-image of

y′i = (C′
i, t

′
i). These witnesses are then used to extract REval witnesses for each

(Ci, si, ti) as described above in the knowledge-soundness analysis for Eval∗.
The public aggregation scheme verification and communication inherits the

same complexity as the private aggregation protocol. From Theorem 4.2, the
generic scheme from Section 4.3 has verifier complexity O(k log k) operations
in F plus O(k · λ) operations in G and communication of one G element plus
two F elements. The prover complexity of the private aggregation subprotocol is
O(k log k) operations in F plus one Commit to a polynomial of degree at most d.
In addition, the prover must derive each integer vector ui, which requires O(k ·n)
integer multiplications. In the case that |G| = p the integer multiplications
become field multiplication modulo p.

6 SNARKs and IVC from PCS Aggregation

Bünz et. al. [23] formally show how a concept they define called PCS accumu-
lation schemes can be used to construct a PCD system, generalizing the Halo
protocol [18]. We show that a PCS public aggregation scheme satisfies the defini-
tion of a PCS accumulation scheme [23]. Our full version contains a detailed and
self-contained exposition of IVC/PCD for path distributed computation directly
from PCS aggregation.
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A PCS accumulation scheme enables PCD from plain-model “predicate-
efficient” SNARKs, defined as a SNARK with a polylogarithmic verifier that
is given an oracle for checking PCS Eval proofs. The PCD transformation does
not work if the SNARK involves calls to a random oracle, as it would require con-
cretely instantiating the random oracle. Unfortunately, we only know how to con-
struct “predicate-efficient” SNARKs in the random oracle model (e.g., [27,32]).
Hence, this result gives a heuristic construction of PCD from PCS accumulation.

PCS accumulation scheme We show that a public aggregation scheme for
a PCS (Definition 5.1) satisfies the definition of an accumulation scheme for a
non-interactive PCS from [23]. We first review the definition of an accumulation
scheme. The definition has small syntactic differences from [23] due to syntactic
differences in our PCS definition.

Definition 6.1 (PCS accumulation). Let PCS = (Setup,Commit,Verify,Eval)
denote a PCS with a non-interactive Eval protocol given by a prover algorithm
PEval and verifier algorithm VEval. An accumulation scheme for PCS has algo-
rithms (G, I, P, V,D) with the syntax:

G(λ)→ ppac
I(ppac, pppc)→ (apk, avk, dk)
D(dk, acc)→ bD

P (apk, [{Xi}ki=1, {acci}`i=1)→ (acc, πV )
V (avk, {Xi}ki=1, {acci}`i=1, acc, πV )→ bV

The scheme is complete if for any pppc and (apk, avk, dk) ← I(ppac, pppc)

and inputs ({Xi}ki=1, [acci]
`
i=1) that satisfy VEval(pppc, Xi) = 1 for i ∈ [k] and

D(dk, acci) = 1 for all i ∈ [`], the accumulation scheme prover P (apk, {Xi}ki=1, {acci}`i=1)
outputs (acc, πV ) such that D(dk, acc) = 1 and V (avk, {Xi}ki=1, {acci}`i=1, acc, πV ) =
1. For soundness, the following probability is negligible in λ:

Pr

V (avk, {Xi}ki=1, {acci}`i=1, acc, πV ) = 1
D(dk, acc) = 1
∃i∈[k]VEval(pppc, Xi) 6= 1 ∨ ∃i∈[`]D(dk, acci) 6= 1

:

pppc ← Setup(λ, d), ppac ← G(λ)
(apk, avk, dk)← I(ppac, pppc)

{Xi}ki=1, {acci}`i=1, acc, πV ← A(ppac, pppc)



The fact that a non-interactive public aggregation scheme gives an accumu-
lation scheme is an immediate consequence of the definitions. The algorithms
G and I are trivial, setting all parameters to pppc. Each acc = (C, x, y, π) is an
Eval tuple. The prover P (pppc, {Xi}ki=1, {acci}`i=1) first sets C ∈ Gk+` so that
Ci = Xi for i ∈ [k] and Ci = acci−k for i > k, sets π so that the ith and
(i + k)th components are the Eval proofs in Xi and acci respectively, and sets
(s, t) ∈ Fk+` × Fk+` so that (si, ti) = (xi, yi) from Xi for i ∈ [k] and from acci
for i > k. It runs Aggregate(pppc,π,C, s, t) to get (open∗, f∗,C∗, s∗, t∗, πagg) and
Eval(open∗, f∗,C∗, s∗, t∗) to get π∗. It returns πV := πagg and acc := (C∗, s∗, t∗, π∗).
D(pppc, acc) calls the Eval verifier. Finally, V (pppc, {Xi}ki=1, {acci}`i=1, acc, πagg)
derives the tuples (π,C, s, t), parses acc = (C∗, s∗, t∗, π∗), and runs the aggre-
gation verifier VAggregate(pppc,π,C, s, t,C∗, s∗, t∗, πagg).
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Private accumulation A small tweak to Definition 6.1 would make it com-
patible with private aggregation. The accumulation prover is additionally given
as inputs a vector of private states {sti}k+`

i=1 and outputs (st, acc, πV ). The other
algorithms and the security definition are unchanged. Constructing this from a
private aggregation scheme, the state st will contain the prover’s private outputs
(open∗, f∗) and each sti contains an (openi, fi) pair.

The PCD compiler of [23] can be adapted to work with private aggregation
schemes as well. This only affects the proof size which has size O(N) because it
includes the “private” states (openings for polynomials of degree N). Intuitively,
the construction of PCD from [23] is not materially affected by using private
accumulation because each prover node in the DAG distributed computation
simply passes its private state to its target nodes as “advice”. The advice does
not impact the size of the recursive statement, which is only dependent on the size
of the accumulation verifier. This variation of the compiler was formally proven
in follow-up work [22]. To do so they formally define a “split-accumulation”
scheme, which coincides with our informal tweak.
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