
Non-Interactive Batch Arguments for NP
from Standard Assumptions

Arka Rai Choudhuri[0000−0003−0452−3426], Abhishek Jain, and Zhengzhong Jin

Johns Hopkins University
{achoud,abhishek,zzjin}@cs.jhu.edu

Abstract. We study the problem of designing non-interactive batch ar-
guments for NP. Such an argument system allows an efficient prover to
prove multiple NP statements, with size smaller than the combined wit-
ness length.

We provide the first construction of such an argument system for NP
in the common reference string model based on standard cryptographic
assumptions. Prior works either require non-standard assumptions (or
the random oracle model) or can only support private verification.

At the heart of our result is a new dual mode interactive batch argu-
ment system for NP. We show how to apply the correlation-intractability
framework for Fiat-Shamir – that has primarily been applied to proof
systems – to such interactive arguments.

1 Introduction

Consider the following scenario: Alice wants to convince Bob of the veracity of k
statements (x1, . . . , xk) in an NP language. A näıve solution is for Alice to send
a witness wi for each of the k instances and for Bob to verify each pair (xi, wi).
This proof is non-interactive (i.e., consists of a single message) as well as publicly
verifiable (i.e., anyone can verify its correctness). However, it is quite expensive,
requiring communication that grows linearly with the combined length of the
witnesses.

Can we do better? That is, can we non-interactively prove k NP statements
with communication much smaller than k ·m, where m = m(|x|) is the witness
length? Addressing this question is the main focus of this work.

Batch Arguments. We study the problem of designing batch arguments (BARG)
for NP in the common reference string (CRS) model. Such an argument system
allows an efficient prover to compute a non-interactive and publicly verifiable
“batch proof” of k NP instances, with size much smaller than k ·m. If any of
the k instances is false, then no polynomial-time cheating prover must be able
to produce an accepting proof.

In the interactive setting, the problem of batch proofs was first studied by
Reingold, Rothblum and Rothblum [48] and more recently in [49,50]. The focus
of these works is on achieving statistical soundness, and we refer the reader to
Section 1.2 for a discussion. In this work, we focus on the (harder) non-interactive
setting but settle for the weaker notion of computational soundness.

Since verifying the membership of k NP instances is itself an NP problem,
BARGs with poly-logarithmic communication can be obtained from succinct
non-interactive arguments (SNARGs) for NP [3,4,18,28,44]. However, SNARGs
for NP are presently only known to exist under strong, non-falsifiable assump-
tions [24, 45] (or the random oracle model). In the designated-verifier setting,
Brakerski, Holmgren and Kalai [6] constructed two-message batch arguments
for NP with communication proportional to the size of a single witness, assum-
ing the existence of a computational private information retrieval scheme [13,41].
The main drawback of their solution is that it requires private verification. Re-
cently, Kalai, Paneth and Yang [34] constructed the first non-interactive publicly
verifiable batch arguments for NP, but rely on a new non-standard (but falsifi-
able) assumption on groups with bilinear maps.

This state of affairs motivates the following basic question:

Do there exist BARGs for NP based on standard assumptions?

1.1 Our Results

We provide the first construction of a publicly verifiable non-interactive batch
argument system for NP in the CRS model from standard computational as-
sumptions. Our scheme achieves non-adaptive computational soundness.

Theorem 1 (Informal). Let C-SAT be the circuit satisfiability language defined
by a boolean circuit C : {0, 1}|x| × {0, 1}|y| 7→ {0, 1}. Assuming standard com-
putational assumptions, there exists a BARG for C-SAT in the CRS model with
non-adaptive soundness. The proof size for k statements is Õ((|C|+

√
k|C|) ·λ),

where λ is the security parameter.

When the number of statements k is smaller than |C|, the size of the proof only
grows with |C|; otherwise, it essentially only grows with k.

On our assumptions. Our construction relies on two essential cryptographic
components:

– Somewhere-Extractable Linearly Homomorphic Commitment. The
first building block for achieving our result is a new notion of somewhere-
extractable linearly homomorphic commitment (SE-LHC) schemes (Section
4). We show an instantiation of SE-LHC assuming the hardness of the quadratic
residuosity (QR) assumption.

– Correlation-Intractable Hash Functions for TC0. Our second crypto-
graphic building block is a correlation-intractable hash function (CIH) [12]
for TC0 circuits. CIH for bounded-depth polynomial-size circuits are known
from the learning with errors (LWE) assumption [10,47]. Very recently, CIH
for TC0 circuits were constructed based on the sub-exponential hardness of
the Decisional Diffie-Hellman (DDH) assumption against polynomial-time
adversaries [31].

2

Putting together the above, Theorem 1 can be instantiated based on QR and
either LWE or sub-exponential DDH.

We refer the reader to Section 2 for an overview of our construction.

On adaptive soundness. Our construction in Theorem 1 achieves non-adaptive
(computational) soundness. This seems inherent, as there are known barriers to
constructing BARGs with adaptive soundness based on falsifiable assumptions.
Specifically, Brakerski, Holmgren and Kalai [6] showed a transformation from
adaptively-sound BARGs (with argument of knowledge property1) to adaptively-
sound SNARGs using RAM delegation schemes. This in turn allows for using
the Gentry-Wichs [24] black-box lower bound for SNARGs. We refer the reader
to the full version of our paper for more details.

1.2 Related Works

Batch verification is an interesting question for various cryptographic primitives,
and can lead to practical benefits in some settings (see, e.g., [9]).

In the setting of interactive proofs, the problem of batch verification of NP
has been recently studied in a sequence of works [48,49,50]. These works consider
the class UP, a subset of NP, where each statement in the language has a unique
witness of membership. To the best of our knowledge, no positive results are
known in this regime for NP. It should be noted that while there are lower
bounds on the communication complexity of interactive proofs for languages in
NP [25, 26], the lower bounds do not appear to directly extend to the NP batch
language L⊗k due to the additional structure inherent to L⊗k. We refer the
reader to [48] for a detailed discussion on this topic.

If we consider computational soundness, where security holds only for com-
putationally bounded cheating provers, Killian’s protocol [39] gives us an inter-
active batch argument based on collision resistance of hash functions. In the
non-interactive setting, Brakerski, Holmgren and Kalai [6] construct privately-
verifiable non-adaptive batch arguments (of knowledge) assuming computational
private information retrieval schemes. Kalai, Paneth and Yang [34] construct a
publicly-verifiable non-adaptive batch argument, but rely on a new (falsifiable)
decisional assumption on groups with bilinear pairings. One can also generically
use SNARGs to construct non-interactive batch arguments, but constructions of
SNARGs are only known based on strong non-falsifiable assumptions (or in the
random oracle mode).

Very recently, there have been works that consider the problem of batch
verification for statistical zero-knowledge (SZK) proofs [37,38]. The specific goals
in these works are orthogonal to the problem we consider: the prover in these
works is no longer required to be efficient, but it is imperative that the resultant
batch protocol is also an SZK proof system.

1 Our construction in Theorem 1 achieves (non-adaptive) argument of knowledge prop-
erty.

3

2 Technical Overview

As established in the introduction, we want to design publicly verifiable non-
interactive batch arguments for NP. To this end, there exists a well-studied
general paradigm one could follow: (i) First, construct an interactive public-
coin proof system (P, V) for NP; (ii) Next, apply the Fiat-Shamir (FS) round-
collapsing transform [22] on (P, V) with respect to some hash function family H
to obtain a non-interactive proof.

Originally, the soundness of the FS transformation was only established when
modeling the hash family as a random oracle. But the transformation has gar-
nered a lot of recent attention with an exciting line of work that demonstrate
the soundness of the transformation when the hash function family is correlation
intractable [12]. In particular, this idea has been used with much success in the
context of non-interactive zero-knowledge arguments [7,10,11,16,17,29,31,35,47],
(publicly verifiable) succinct non-interactive arguments of knowledge for log-
space uniform computation [10, 32, 33, 36] and establishing the hardness of the
complexity class PPAD [14, 32,33,36,42].

Since this paradigm is central to our work as well, we start by describing
the transformation, correlation intractability (CI), and the role it plays in the
soundness of the transformation.

2.1 Background

Fiat-Shamir Transformation and CI. The Fiat-Shamir transform with re-
spect to some hash family H, utilizes a sampled hash function h ← H as the
common reference string (CRS) to convert a public-coin interactive protocol
into a non-interactive proof in the CRS model, where the verfier’s messages are
derived (non-interactively) by the prover applying the hash function h to the
transcript. For instance, consider the following flow of messages between the
prover and the verifier, where the verifier’s message β is a uniformly random
string:

P(x) V(x)

α

β

γ

The prover computes the verifier’s message as β := h(x, α), and the resultant
non-interactive proof is the tuple (α, β, γ) - the verifier can recompute β and
check if the prover did indeed compute it correctly. Unlike soundness in the
interactive setting, where a cheating prover P∗ has no control over the verifier’s
message β, in the transformed non-interactive protocol, P∗ has some control over

4

β. Specifically, P∗ can try different values of α to input into the hash function
until it gets a β that it considers favorable. Let’s formalize what we mean. For
a statement x /∈ L, when the prover evaluates the hash function h on (x, α), it
wants to find an element from the following set of bad challenges,

Bx,α :=
{
β
∣∣ ∃γ s.t. V(x, α, β, γ) = 1

}
. (1)

Can we hope to enforce some restrictions on the hash family H, such that it is
intractable to find an α such that h(x, α) ∈ Bx,α, i.e. the hash evaluation doesn’t
result in a bad challenge? This is exactly where the correlation intractability of
the hash family H helps. Intuitively, H is a correlation intractable hash family
(CIH) for a function f , if the following holds for all probabilistic polynomial time
adversary (PPT) A,

Prh←H[h(x) = f(x) | A(h) = x] ≤ negl(λ).

This yields the following idea - define a function BAD(·), that on input (x, α),
outputs an element in Bx,α. Let us for the moment assume that Bx,α for all α
and x /∈ L has at most a single element. If H is a CIH for f(·) := BAD(·), then
any cheating prover that outputs an accepting transcript (α, β, γ) for x /∈ L must
break the correlation intractability of H since β ∈ Bx,α by definition.

But what about when Bx,α consists of multiple elements? We want to argue
that the cheating prover doesn’t output any element from Bx,α. If |Bx,α| is poly-
nomially bounded, we can argue this via a simple application of the union bound:
modify BAD(·, ·) to additionally take in as input an index i, and output the i-th
element of Bx,α (for some ordering of the elements). Let fi(·) := BAD(·, i), then
by the union bound we have for any PPT adversary A,

Prh←H
[
h(x) ∈ {f1(x), · · · , f|B|(x)} |A(h) = x

]
≤ |B| · negl(λ).2

While our description above is for a protocol with a single verifier message,
this can be extended to multi-round protocols by further constraining the in-
teractive protocol to satisfy additional properties such as round-by-round sound-
ness [10]. We will elaborate on these properties soon, once we discuss our specific
approach.

Clearly, the BAD functions we can support using the above methodology are
constrained by the functions for which we can construct CIH. The known CIH
from standard assumptions are: bounded-depth polynomial size circuits from
LWE [10,47], linear approximable relations from trapdoor hash functions [7,21],
and TC0 circuits from sub-exponential DDH [31]. At the very least, we thus
require BAD to be efficiently computable.

Putting together the above, we obtain the following design principles for con-
structing an interactive protocol which is “compatible” with the CIH framework
for Fiat-Shamir (w.r.t. known constructions of CIH):

1. The BAD function is efficiently computable.

2 For notation convenience, we drop the subscript for B.

5

2. For every x /∈ L and every α, the size of B is polynomially bounded.

In this work, we follow the Fiat-Shamir paradigm as well to obtain our main
result. In the following, we start by discussing potential choices for an interactive
protocol that meets our desired efficiency goals while still being compatible with
the CIH framework.

Considerations for the interactive protocol. Since the Fiat-Shamir trans-
formation does not reduce the communication complexity of the interactive
protocol, our starting point needs to be a protocol where the total commu-
nication between the prover and verifier is much smaller than O(km), where
k denotes the number of instances, and m the length of a single witness. A
natural candidate that satisfies our requirements is Killian’s protocol for lan-
guages in NP [39]. Specifically, it is a public-coin interactive protocol where
the total communication between the prover and verifier is significantly smaller
than the length of the witness. Thus by defining the following NP language,
L⊗k = {(x1, . . . , xk) : ∀i ∈ [k], xi ∈ L}, Killian’s protocol gives us a public
coin interactive argument with total communication significantly smaller than
O(km). Unfortunately, a recent work of [2] established non-trivial barriers to-
wards instantiating the hash function in the Fiat-Shamir transformation applied
to Killian’s protocol.

There is in fact a broader point to consider: Kilian’s protocol is an argu-
ment, i.e. its soundness holds only against computationally bounded cheating
provers. In general, successful applications of the Fiat-Shamir paradigm when
used in conjunction with CIH, have been largely restricted to interactive proofs,
where the soundness holds against computationally unbounded cheating provers.
Intuitively, this is because B, as defined in Equation 1, does not capture the
computational resource bounds of a cheating prover. Specifically, B may contain
exponentially many elements but does not capture the fact that for a compu-
tationally bounded cheating prover, finding the γ corresponding to β ∈ B is
intractable. And as we have already outlined above, we need B to be of polyno-
mial size. In fact, there are examples of certain interactive arguments that are
not sound on the application of the Fiat-Shamir transformation (see e.g. [1,27]).

Given the above state of affairs, the natural approach is to consider public
coin interactive batch proofs for NP that achieve the same succinctness properties
as (non-interactive) BARGs. Presently, however, interactive batch proofs are
only known for the class UP, a subset of NP for which there is exactly one
witness of membership for each statement [48,49,50]. Indeed, constructing such
proofs for NP is an open problem.

2.2 Dual-mode interactive batch arguments

We therefore deviate from the above approach and instead define and construct
a primitive we call dual-mode interactive batch arguments. Intuitively, these are
interactive arguments in the common reference string (CRS) model, where the
CRS can be generated in two computationally indistinguishable modes - (1)
normal mode; and (2) trapdoor mode. We require that in the trapdoor mode, the

6

protocol is sound against all (possibly unbounded) cheating provers; however, in
the normal mode, it only achieves computational soundness.

This gives us the best of both worlds – we bypass the problem of constructing
interactive batch proofs, but still retain the possibility of applying the Fiat-
Shamir transform to the protocol when it is executed in the trapdoor mode
(without running into the issues that arise for arguments). In order to apply the
Fiat-Shamir transform, we require some additional properties from dual mode
interactive batch arguments: specifically, we require such protocols to be Fiat-
Shamir friendly, a notion we will elaborate on shortly.

We present a dual-mode interactive batch argument system for proving mul-
tiple instances of the NP-complete problem R1CS. An R1CS instance x is defined
to be the tuple x := (A,B,C, io,m), where io denotes the public input and out-
put of the instance, and A,B,C ∈ {0, 1}m×m are matrices. We say that a vector
w ∈ {0, 1}m−|io|−1 is a witness for x if (A·z)◦(B ·z) = (C ·z), where z = (io, 1, w),
· is the matrix-vector product, and ◦ is the Hadamard (entry-wise) product.3

Background: Spartan Protocol. Our starting point is the Spartan proto-
col [51] which proves the satisfiability of a single R1CS instance x with total
communication sub-linear in the witness size |w|, i.e. the protocol is succinct.
The Spartan protocol is defined over a field F, such that log |F| ≈ λ, and follows
roughly the structure described below:

1. The prover first computes a commitment c to the witness w, that it sends
to the verifier. In order to achieve communication succinctness, |c| must be
sub-linear in m. (We shall see below that the commitment scheme needs to
satisfy some additional properties.)

2. The verifier then sends a random element element τ ∈ Fs, where s is such
that m = 2s.

3. It was shown in [51] that with probability s/|F| over the choice of τ , any
R1CS instances can then be reduced to the following check:∑

x∈{0,1}s
Gio,w,τ (x) = 0, (2)

where Gio,w,τ : Fs 7→ F is a polynomial with degree 3 in each variable, and
is determined entirely by x, the witness w and τ . For the purpose of our
discussion, the exact form of the polynomial is not immediately relevant.
Note that without the witness w, the verifier does not have a representation
of Gio,w,τ , but we shall see shortly that it doesn’t matter.
The above check is precisely the scenario where the sumcheck protocol [43,52],
an interactive protocol between a prover and verifier, is useful. In the sum-
check protocol, the prover is attempting to convince the verifier of the claim∑
b1,··· ,b`∈{0,1} g(b1, · · · , b`) = v, where g : Fs 7→ F is an s variate polynomial

3 R1CS instances are more generally defined over a field, but for this overview we
will consider them over F2 (or {0, 1}). An instance of Boolean circuit satisfiability
(C-SAT), defined by a circuit C can be transformed to an R1CS instance where
m ≈ |C|. See the full version for details on the transformation.

7

of degree at most d in each variable, and v ∈ F is a publicly known value.
The resultant interactive protocol is an s round public coin proof where the
prover sends O(d · s) field elements. Importantly the verifier is only required
to evaluate g at a single point r∗ ∈ Fs at the end of the protocol, where r∗

determined solely by the verifier’s randomness in sumcheck protocol.
4. The prover and verifier run the sumcheck protocol for Equation 2, at the end

of which verifier needs to evaluate Gio,w,τ (·) at the point r∗ (and compare
against some value determined by the sumcheck protocol). But since the
verifier does not have access to Gio,w,τ (·), it asks the prover to send relevant
information so that it can complete the check. Since the Spartan protocol
requires this message from the prover to be succinct, the prover cannot send
w in the clear.
Fortunately, it turns out that the value that the prover needs to send is
simply a linear combination of the bits of w where the linear coefficients
are determined entirely by A,B,C, τ and r∗ i.e. let

∑
i∈[m] σi · wi be the

corresponding linear combination where the coefficients σi are known to both
the prover and verifier, and are even independent of io.4

5. The prover now opens the commitment c to
∑
i∈[m] σi · wi such that the

opening is succinct. This allows the verifier to complete its check.

Spartan provides various instantiations for the commitment scheme satisfying
the above properties, where the commitment opening is an interactive protocol.
The resulting protocol is computationally sound.

The Spartan protocol does not satisfy our desired properties from a dual-
mode interactive batch argument. However, it serves as a useful starting point
for us. In Spartan, the goal was to have the total communication be sub-linear in
m, while in the batch setting, we are fine with total communication proportional
to a single witness. This in turn means that we can consider commitment schemes
where the commitment size is proportional to a single witness. Let us now see how
we can use this insight to adapt the Spartan protocol to both make it suitable
for batch verification, and achieve the notion of dual-mode batch arguments.

Our Construction. We now discuss the main steps in our interactive protocol,
while highlighting the differences from the above discussion. We want to batch
prove k instances {x(j)}j∈[k] where the matrices A, B and C are the same across
all instances, and only the public input-output io varies across the instances.
The reader may view this as multiple instances with the same relation circuit,
but different statements. The description of the protocol now follows.

1. To commit to a batch of witnesses {w(j)}j∈[k], we follow the batch commit-
ment strategy in [48]: arrange the witnesses as rows of a k ×m matrix, and

commit to the column of each matrix, i.e. ∀i ∈ [m], ci ← Com(w
(1)
i , . . . , w

(k)
i).

If the k-tuple commitment has size O(λ), then the total commitment is of

size Õ(m), ignoring polynomial factors in O(λ).

4 Strictly speaking, the prover needs to send 3 separate linear combinations of the
witness, but we ignore this here for simplicity.

8

This indicates that our commitment scheme must allow us to commit to the
k-tuple succinctly.

2. Given that each instance has a different statement io and witness w, each
of the k instances define a different polynomial, giving rise to the k polyno-

mials {G(j)io,w,τ}j∈[k]. The prover and verifier then run k sumcheck protocols
in parallel with the same verifier randomness. As discussed earlier, at the
end of the sumcheck protocols, the verifier needs to evaluate each of these
polynomials at points r∗(j) determined solely by the verifier’s randomness in
the sumcheck protocol.
Since the verifier uses the same randomness across all instances of the sum-
check protocol execution, the polynomials need to be evaluated at the same
point r∗. Additionally, since the linear coefficients depend only on A,B,C,
τ and r∗, this in turn implies that the linear coefficients for all the witnesses
w(j) are the same: (σ1, · · · , σm).

3. As in Spartan, the prover now needs to send
∑
i∈[m] σiw

(j)
i to the verifier.

For convenience, this can be be re-written as sending the k-tuple,
∑
i∈[m] σi ·

(w
(1)
i , · · · , w(k)

i), where · indicates component-wise multiplication.
If our commitment scheme satisfies linear homomorphism, i.e.

Com(
∑
i∈[m]

σi · (w(1)
i , · · · , w(k)

i)) =
∑
i∈[m]

σiCom(w
(1)
i , . . . , w

(k)
i),

then it suffices for the prover to open to the commitment
∑
i∈[m] σici.

Thus our commitment scheme must satisfy linear homomorphism (as de-
scribed above), with the size of the opening proportional to the size of the
underlying message.

Let us go back to our requirement from dual-mode interactive batch argu-
ments. For the protocol to achieve statistical soundness in the trapdoor mode,
we need at the very least, the commitment to be statistically binding. However,
this seems at odds with our succinctness requirements since we want the to-
tal number of bits sent to be significantly smaller than the size of the message
committed.

Key Tool: Somewhere-Extractable Linearly Homomorphic Commit-
ments. We resolve this issue by utilizing a commitment scheme in the CRS
model, where the CRS is generated in one of two computationally indistinguish-
able ways - (1) normal mode; or (2) extraction mode. In the extraction mode, the
CRS generation algorithm takes as input an index i∗, and additionally outputs
an extraction trapdoor td that is not a part of the CRS. We require that the
commitment of the k-tuple in the extraction mode for index i∗, is statistically
binding at the i∗-th index of the commitment. Further, there is an efficient al-
gorithm Ext such that given the the trapdoor td, Ext extracts the underlying
message at the i∗-th index, and this holds even if the commitment was “mal-
formed”. Additionally, the extraction also satisfies linear homomorphism, i.e.
σ1 ·Ext(c1, td)+σ2 ·Ext(c2, td) = Ext(σ1 ·c1+σ2 ·c2, td). The linear homomorphism

9

property of extraction ensures that once we extract from the commitments, the
opening of the linear homomorphic evaluation can be computed solely from the
linear coefficients - ensuring that the committer is bound to opening of the linear
homomorphism.

If all m commitments are committed via the extraction mode CRS for in-
dex i∗, then the prover is statistically bound to w(i∗). Then intuitively, in the
extraction mode, the security can be reduced to the soundness of the other com-
ponents of the protocol for the i∗-th instance. The reduction to the check for

polynomial G(i
∗)

io,w,τ (via [51]), and the sumcheck protocol are both statistically
sound, thereby satisfying overall statistical soundness. Thus, by setting the trap-
door mode (resp., normal model) CRS to be the extraction mode (resp., normal
mode) CRS of the commitment scheme, we obtain a dual-mode interactive batch
argument. Note the added syntax for the trapdoor mode of the dual-mode inter-
active batch argument - it takes in as input an index i∗, and generates a trapdoor
td (not be included in the CRS).

We now summarize our requirements of the commitment scheme from the
above discussion:

1. Commitment scheme for k-tuples in the CRS model, with indistinguishable
methods of generating the CRS - normal mode or extraction mode such that
the commitment is statistically binding at the i∗-th index when the CRS is
generated in the extraction mode on input i∗.

2. Efficient extraction of the message at i∗-th index in the extraction mode,
given the trapdoor td.

3. The commitment should allow for linear homomorphism (even over the ex-
tracted values).

4. The commitment should be succinct, while the opening should depend only
on the size of the committed message.

We refer to such commitments as somewhere-extractable linearly homomorphic
commitments. Our notion is similar to the notion of somewhere statistically-
binding hash functions [30], but requires some additional properties. Later, in
Section 2.4, we describe our construction of such commitment schemes based on
the quadratic residuosity assumption. For now, we will simply assume that such
commitment schemes exist.

One point of note is that since the CRS of the commitment scheme requires
the index of the statement we want to prove soundness for, we can only achieve
non-adaptive security. We will later show in the technical sections that this is in
some sense the best that one can hope for.

Costs. From the description of the protocol, the communication cost for the
commitment (and its opening) is Õ(m), while the communication cost from k

sumcheck protocols is Õ(ks) = Õ(k logm), giving us a total communication cost

of Õ(m+ k logm).

10

2.3 Fiat-Shamir compatibility

As we have alluded to before, constructing a dual-mode interactive batch argu-
ment is an important first step towards a non-interactive protocol. But by itself,
it is not enough. We need to show that our constructed protocol in Fiat-Shamir
friendly. This has been recently formalized by [32] as the notion of Fiat-Shamir
(FS) compatibility, that extends our earlier discussion in Section 2.1 on the rela-
tionship between CIH and the Fiat-Shamir transform.

Let the prover’s i-th message in the protocol be denoted by αi, while the
corresponding verifier message by βi. The protocol transcript transi is defined to
be transi := (α1, β1, · · · , αi, βi), which collects all messages up to (and including)
the i-th round messages. An interactive proof is said to be FS compatible if it
follows the following two properties:

Round-by-round soundness: There is a function State that takes as in-
put the statement x, and a transcript prefix transi := (α1, β1, · · · , αi, βi),
and outputs Accept or Reject. We require some additional properties from
State: for every x /∈ L, State(x, ∅) = Reject, and for every full transcript
trans the verifier rejects if State(x, trans) = Reject. Perhaps, most importantly,
we require that if State(x, trans) = Reject, then for any prover message α,
State(x, trans|α|β) = Reject with overwhelming probability over the choice of
β.

Efficient BAD function: For every x /∈ L, when State(x, transi) = Reject,
we require an efficiently computable function BAD5 that outputs the “bad”
verifier challenges β that will result in State switching output to Accept, i.e.
if State(x, trans) = Reject, then BAD(x, trans|α) outputs a uniformly random
element from the set B defined as

B :=
{
β
∣∣ State(x, trans|α|β) = Accept

}
.

From our earlier design principles, we require the size of the set B to be polyno-
mially bounded.

Before we proceed, let’s recall our discussion from Section 2.1 on Fiat-Shamir
and CI-hash functions. It is easy to see that the discussion there also applies here
- as long as we can construct a CIH H that is CI for the circuits computing BAD,
then the Fiat-Shamir transformed protocol with respect to H is sound.

We know of the following CI-hash functions based on standard assumptions6:

– CI for all a priori polynomially bounded circuits assuming LWE [47]; and

– CI for all of TC0 assuming sub-exponential security of DDH [31].

5 Unlike the definition in [32], we will require any non-uniform advice to the BAD
function to also be efficiently computable.

6 We note that the CI-hash function constructed in [7] is also based on standard
assumptions, but the class of functions that it supports (i.e. class it is CI for) is very
small, and therefore limits its applicability.

11

We want to be able to leverage both of these constructions for our final non-
interactive batch argument. Since the size (and depth) of the circuit computing
BAD directly corresponds to the functions for which we need CI, to achieve
a result based on sub-exponential security of DDH, we need to show that the
function BAD can be computed in TC0. We call such protocols to be strongly FS
compatible.

Let us now demonstrate that our dual-mode protocol in the trapdoor mode
is FS-compatible. Recall that in the trapdoor mode an index i∗ is specified, and
we shall prove FS compatibility when x

(i∗) /∈ LR1CS. This is sufficient, since for
a batch instance to be false, there is at least one index j such that x(j) /∈ L. In
particular, this allows us to ignore the other sumcheck executions while estab-
lishing FS compatibility. We will further show that BAD can also be computed
in TC0. Since we only focus on a single instance x(i∗), in what follows, we skip
the index i∗ for the instance to simplify notation.

Round-by-Round soundness. The verifier messages can be split into two
cases: (a) τ ∈ Fs; (b) verifer messages inside the sumcheck protocol. We only
sketch here the main ideas and refer the reader to the technical sections for more
details as our primary focus will be on the construction of the BAD function.

For the sumcheck, we rely on [32] that already establishes the sumcheck
protocol to be round-by-round sound. The main difference is that [32] requires
full knowledge of the polynomial over which the sumcheck is computed. In our
setting, however, the polynomial Gio,w,τ is (partially) determined by the witness,
which is sent within the commitment. We resolve this issue by using the trapdoor
td to extract the i∗-th witness and compute the polynomial, since the CRS was
generated in the trapdoor mode for i∗. For the verifier message τ , we can rely
on the Theorem underlying Spartan [51] that shows that any R1CS instance x
can be reduced to the sum

∑
x∈{0,1}s Gio,w,τ (x) = 0 other than with probability

s/|F| over the choice of τ . The actual State computation for τ will be elaborated
upon in the BAD function computation below.

Efficient BAD function. As described above, verifier messages can be split
into two cases. From the definition of the BAD function, it suffices to build two
separate functions, one for each cases. Let’s start with the simpler case of the
sumcheck verifier messages.

Sumcheck BAD function: In the sumcheck protocol, for each round i ∈ [s], the
prover sends a univariate polynomial g∗i : F 7→ F of degree 3 to the verifier. If
computed correctly, it should correspond to the polynomial gi, defined as

gi(x) :=
∑

xi+1,··· ,xs∈{0,1}

Gio,w,τ (β1, · · · , βi−1, x, xi+1, · · · , xs).

The set of bad challenges in the i-th round are the verifier challenges βi such
that both polynomials gi and g∗i evaluate to the same value on βi, i.e. B :=
{βi | gi(βi) = g∗i (βi)}. Alternatively B consists of the roots of the polynomial
gi − g∗i . Since Gio,w,τ is a polynomial that is degree 3 in each variable, |B| ≤ 3.

12

Unlike [32], which demonstrate BAD function for the general sumcheck,
we focus on the setting where the true polynomial gi can be computed in
polynomial time (e.g. s = O(log λ)). Thus on input, (x, transi−1|αi), BAD (i)
parses αi as the polynomial g∗i ; (ii) computes the true polynomial gi, using the
trapdoor first to extract w and determine Gio,w,τ ; and (iii) use a polynomial
time algorithm like Cantor-Zassenhaus to compute the (three) roots of gi− g∗i ,
and output one at random.

τ BAD function: To describe the BAD function corresponding to τ , we need
to look at the polynomial Gio,w,τ implied by [51] (Theorem 2). So far we have
focused on Gio,w,τ (x) as a polynomial over the variables x, with τ ∈ Fs fixed.
Let us now focus on the same polynomial over both x and τ , i.e. for every
τ , Gio,w,τ (x) = G′io,w(x, τ). In fact [51] showed that G′io,w(x, τ) is a polynomial
over x1, · · · , xs and τ1, · · · , τs that has degree 1 in each τi (see full version
for details). Thus, we can rewrite

∑
x∈{0,1}s Gio,w,τ (x) as a polynomial over

τ1, · · · , τs. Specifically, let

Q(τ) :=
∑

x∈{0,1}s
G′io,w(x, τ),

where Q is a polynomial over s variables τ1, · · · , τs, with degree 1 in each τi.
Note that as in the case of Gio,w,τ , Q is determined by the witness w that only
the prover has access to. For x and w such that RR1CS(x, w) = 1, the correctly
computed polynomial Qio,w is the zero polynomial, i.e. Qio,w ≡ 0. The random
τ ∈ Fs, sent by the verifier is to test whether Q(τ) = 0. If Q 6≡ 0, then by the
Schwartz-Zippel lemma, Q(τ) = 0 with probability at most s/|F| over the choice
of τ , which is negligible in λ for our choice of F. This suggests the following
strategy for BAD, when Q 6≡ 0, let B := {τ ∈ Fs | Q(τ) = 0}. BAD then works
as follows: (i) uses the trapdoor td to first extract w and determine Q; and (ii)
solve for τ from B and output a random such τ .

While this appears to work on the surface, on closer inspection it can be
observed that while the Schwartz-Zippel lemma guarantees the probability to
be at most s/|F|, the size of the set B can be exponential (|B| ≈ |Fs−1|). As
indicated by our design goals at the start, this is undesirable and something
we do not know how to work around.

We take an alternate approach. Instead of using a single hash function that
outputs the vector τ ∈ Fs, we consider a sequence of hash functions (h1, · · · , hs)
that each output a single τi. Specifically, for every i, τi := hi(x, τ1, · · · , τi−1).

Let Q|τ∗1 ,··· ,τ∗i−1
be the polynomial Q with the first i − 1 variables fixed to

be values τ∗1 , · · · , τ∗i−1. If Q 6≡ 0, then we want it to continue to be the case
that for the prefix τ∗1 , · · · , τ∗i−1, Q|τ∗1 ,··· ,τ∗i−1

6≡ 0. This then lets us define the

i-th bad set Bi when Q|τ1,··· ,τi−1
6≡ 0,

Bi :=
{
τ ∈ F | Q|τ1,··· ,τi−1,τ

≡ 0
}
.

Before we describe the BAD function, let us take a moment to see how one
determines whether Q|τ1,··· ,τi−1,τ

≡ 0. This corresponds to all coefficients of

13

the said polynomial to be 0. At a high level, from the description of Q, the
coefficients are determined by the sum over m = 2s values, which in turn is
computable in polynomial time as m = poly(λ). Then a bad τ simply corre-
sponds to those elements in F that result in the coefficients becoming 0. Since
the polynomial is linear in each variable, solving for such a τ corresponds to
solving a linear system in F. Correspondingly, for all i, the set Bi is of bounded
polynomial size. We refer the reader to the full version for more details on these
steps.

We are finally in a position to describe the BAD function, which on input
(x, τ1, · · · , τi−1) (note that the prover message is empty) does the following:
(i) use the trapdoor td to first extract w and determine Q, and then cor-
respondingly Q|τ1,··· ,τi−1,τ

; and (ii) solve the linear equation in τ such that

Q|τ1,··· ,τi−1,τ
≡ 0, and output such a τ if it exists.

From our discussions above, BAD is in fact efficiently computable, and thus
satisfies our requirement.

BAD has low depth. To base our non-interactive protocol on CIH for TC0,
we need to demonstrate that the BAD function for both cases can be computed
in TC0. In contrast to when we established that BAD was efficient, here, the
simpler case is the BAD function for τ . But before we proceed, we note that
in both cases, we require trapdoor extraction, and thus we additionally require
low-depth extraction property from our commitment scheme. We proceed with
our discussion assuming this to be the case, and will provide more details when
discussing out construction of the commitment scheme in Section 2.4.

τ BAD function: In the above description, we are only solving linear equations
in F, which can be computed in TC0, thus trivially giving us the required
property.

Sumcheck BAD function: Unfortunately, things are not so simple for the BAD
function in the sumcheck case. The BAD function as described, needs to com-
pute a root of a degree 3 polynomial in F. While we do know how to do this in
polynomial time, for computing roots in low depth, we are only aware of root
finding for degree 2 polynomials in F to be in TC0.

To circumvent this issue, we take a closer look at the polynomial Gio,w,τ 7.
It turns out that Gio,w,τ is of a special form (see full version for details), where
we compute a sumcheck protocol for,

∑
x∈{0,1}s

Gio,w,τ (x) =
∑

x∈{0,1}s
fio,w,τ (x)

 s∏
j=1

hj,τ (xj)

 = 0,

where f is a polynomial with individual degree 2, and each hj,τ is a univariate
polynomial in xj with degree 1. Moreover, the coefficients of hi,τ are determined
only by τ , and therefore known to the verifier once it samples τ . This suggests

7 For simplicity, we focus on a single polynomial here as our explanation extends to
the batch setting too.

14

a slight modification of the sumcheck polynomial, where the prover in the i-th
round sends the degree 2 polynomial g∗

′
to the verifier which it has purportedly

computed as,

g′i(x) =
∑

xi+1,··· ,xs∈{0,1}

fio,w,τ (β1, · · · , βi−1, x, xi+1, · · · , xs)

i−1∏
j=1

hj,τ (βj)

 s∏
j=i+1

hj,τ (xj)

 .

The verifier then locally computes hi,τ , and computes gi, Clearly, the three

roots of the polynomial g∗i − gi consist of the two roots of g∗
′

i − g′i and the root
of hi,τ . Thus, by modifying the sumcheck protocol as suggested above, we can
then reduce the root computation in BAD to computation of roots for a degree
2 polynomial, and a degree 1 polynomial, both of which we can compute in
TC0.

This establishes that our dual-mode protocol in the trapdoor mode is strongly
FS-compatible. [32] demonstrate that the Fiat-Shamir transformation with re-
spect to H for any FS-compatible protocol is sound as long as H is CI for poly-
nomial size functions (larger than BAD). We extend their proof to demonstrate
that if we strengthen FS compatibility to strong FS compatibility, it suffices for
H to be CI for TC0.

Next, we show how to leverage our protocol to construct a non-interactive
batch argument (BARG).

Going from FS-Compatibility to BARGs. In this final step, we finally
construct our non-interactive arguments. We apply the Fiat-Shamir transform
to the dual-mode interactive batch argument to achieve a publicly verifiable non-
adaptive BARG in the CRS model. For soundness of the transform we rely on
(i) mode indistinguishability property of the protocol to switch to the trapdoor
mode; and (ii) then in the trapdoor mode, we rely on the FS-compatibility that
we have discussed above.

Communication sub-linear in k. The above construction has an additive
term that is linear in k (recall that the communication cost is Õ(m+ k logm)).
We describe how one can generically make this sub-linear by using fairly standard
techniques. The idea is to simply batch k1 instances into a larger instance of the
language L⊗k1 := {(x1, . . . , xk1) : ∀i ∈ [k1], xi ∈ L} that has a relation circuit
of size k1|C|+ k1, where |C| is the size of the underlying relation circuit. Then
we apply our dual-mode batch argument for k/k1 instances of L⊗k1 . By setting
k1 ≈ O(

√
k), we get communication that is sub-linear in k. Note that from our

earlier discussion m ≈ k1|C|+ k1.

2.4 Somewhere-Extractable Linearly Homomorphic Commitment

We now finally describe our construction of the somewhere-extractable linearly
homomorphic commitment scheme. Over the course of the above discussion,
we have accumulated various requirements that our commitment scheme must

15

satisfy. We describe a construction that achieves these properties based on the
quadratic residuosity (QR) assumption.

We start by focusing on the simpler goal of constructing a somewhere statis-
tically binding commitment scheme building on ideas from the recent work on
trapdoor hash functions [21].8 We will discuss how to achieve the extraction and
linear homomorphism properties later.

Recall that, for any Blum integer N = p · q, where p, q are primes such
that p (mod 4) = q (mod 4) = 3, we denote Z∗N as the multiplicative group
modulo N , and JN as the subgroup of Z∗N with Jacobi symbol +1, and QRN be
the subgroup of quadratic residues. Let H = {−1,+1} also be a multiplicative
group, then JN = H×QRN . We now describe the commitment scheme:

– The trapdoor mode commitment key for the coordinate i∗ consists of two
arrays of group elements.[

g
h

]
=

[
g1 g2 . . . gi∗ . . . gk
gs1 g

s
2 . . . −gsi∗ . . . gsk

]
,

where s ← b(N − 1)/2e is sampled uniformly at random, and the elements
of the second row are the corresponding first row elements raised to the
exponent s, except that we flip the sign on the i∗-th coordinate.
In the normal mode, we do not flip the sign, i.e. let h = (g)s. The mode
indistinguishability relies on the quadratic residuosity assumption9.

– To commit to a vector x = (x1, x2, . . . , xk) of length k, we compute (cg =∏k
i=1 g

xi
i , ch =

∏k
i=1 h

xi
i). Then ch = csg · (−1)xi∗ . Hence, xi∗ is statistical

binding. Furthermore, the commitment size is compact, since it only contains
two group elements.

Linear Homomorphism and Extraction. We now discuss how to achieve the
desired extraction and the linear homomorphism properties. We observe that the
commitment described above is essentially an encryption of xi∗ . Hence, one can
use the trapdoor td = (p, q, s) to extract xi∗ . The linear homomorphism works
as follows: if we denote the commitment of x under the key (g,h) as (gx,hx),
then for any two commitments (gx,hx), (gy,hy), and any integers a, b ∈ Z, we
can compute(

(gx)a · (gy)b = ga·x+b·y, (hx)a · (hy)b = ha·x+b·y
)
,

which is exactly the commitment for a · x + b · y.
However, if we use the above commitment scheme for our application to batch

arguments, we face the following challenge: the field operation needs modulo 2
computation, but the honest prover can not hope to perform such computation,
since the homomorphic operation is over Z.

8 Similar ideas have also been used in the constructions of somewhere statistically-
binding hash functions [30,40,46] and hash encryption schemes [8, 19,20,23].

9 The mode indistinguishability follows from [5], which relies on the quadratic resid-
uosity assumption.

16

To overcome this issue, we have the honest prover do all the operations over
the polynomial ring Z[α], instead of the field F. Note that this modification
does not affect completeness since the honest prover is essentially proving some
polynomial identities (e.g. the R1CS instance (A · z) ◦ (B · z) = C · z reduced
from circuit satisfiability), and such identities hold regardless of whether the
underlying variables are taken from a field or a ring. For soundness, we make
the following observation: if a proof is accepted over the ring Z[α], then if we
further perform modulo 2 operation, the proof must still be accepted. Hence the
soundness can be reduced to the case when operations are over F. See Section 5
for a more detailed discussion.

(Linearly Homomorphic) Extraction from any Commitment. The afore-
mentioned extraction and linear homomorphism only works for “well-formed”
commitments. In order to prove round-by-round soundness of our dual-mode
interactive batch argument protocol, however, we need the extraction works for
any (possibly not well-formed) commitment. Moreover, the linear homomor-
phism property must also hold over the extracted values.

To achieve such a property, we observe that for any (possibly not well-formed)
commitments c = (cg, ch) ∈ JN × JN , we can still compute ch/c

s
g, which is

also a group element in JN . From the decomposition JN = H × QRN , there
exists a unique m ∈ Z2 and g ∈ QRN such that ch/c

s
g = (−1)m · g. Hence, we

define the extracted message for c as m. Since N is a Blum integer, |QRN | =
(p− 1)/2 · (q− 1)/2 is an odd number. We let n denote |QRN |. Then, we extract
m by computing

(ch/c
s
g)
n = (−1)m · gn = (−1)m.

We show that this extraction can be decomposed to an off-line pre-precompution
phase and an online extraction phase, where the online extraction can be com-
puted in TC0. We allow the off-line pre-precomputation to be deeper than TC0

circuits, since in our protocol, the pre-computation is always performed honestly
by the prover and the verifier.

We now show that the linear homomorphism property also holds for the
above extraction algorithm. For any two commitments c = (cg, ch), d = (dg, dh),
the extraction is a “linear operation” over cg, ch, i.e. if Ext(c, td) = mc, then
(−1)mc = cnhc

−sn
g . Similarly, if Ext(d, td) = md, then (−1)md = dnhd

−sn
g . Now for

any linear combination a, b ∈ Z, when we extract from a · c+ b · d, we compute
(cah ·dbh)n · (cag ·dbg)−sn = (−1)a·m1+b·m2 . Hence, the extracted value for a · c+ b ·d
is a ·m1 + b ·m2 (mod 2), which establishes the linear homomorphism property.

For more details, see Section 4.2.

Full Version. Due to space constraints, preliminaries and details of the proofs
have been omitted from this manuscript, and can be found in the full version of
the paper [15].

3 Preliminaries

We defer most of the preliminaries to the full version, but describe here some
notation that will be used in the rest of the paper.

17

We start with some basic notation: For any n length string a, we denote by
ai the i-th position of the string. Often we will see i represented in the binary
form, i.e. i ∈ {0, 1}d|x|e, in such a scenario we simply convert i to its integer
representation to index into the string a. To concatenate two strings a and b,
we denote it as (a, b). Lastly, we will consider matrices of the form A ∈ Fm×n,
which we shall view as functions A : {0, 1}dlogme×{0, 1}dlogne 7→ F, where A(i, j)
corresponds to the element in A along the i-th row, and j-th column.

3.1 Complexity Problems

We define below the two relevant complexity problems, Boolean circuit satisfi-
ability (C-SAT) and satisfiability of systems of rank-1 quadratic equations over
a finite field F (R1CS). Our starting point will be C-SAT instances, but our
protocol will be designed for R1CS instances.

Definition 1 (Circuit-C-SAT). A circuit satisfiability instance C-SAT is a tu-
ple (C, x), defined by a Boolean circuit C : {0, 1}|x| × {0, 1}|y| 7→ {0, 1} and a
string x ∈ {0, 1}|x|.

A C-SAT instance is said to be satisfiable if there exists a string y ∈ {0, 1}|y|
such that C(x, y) = 1. We denote this as RC-SAT((C, x), y) = 1.

Definition 2 (R1CS). An R1CS instance is a tuple x = (F, A,B,C, io,m, n)
where (a) io denotes the public input and output of the instance; (b) A,B,C ∈
Fm×m with m ≥ |io| + 1; and (c) there are at most n non-zero entries in each
matrix.

An R1CS instance is said to be satisfiable if there exists a witness w ∈
Fm−|io|−1 such that (A · z) ◦ (B · z) = (C · z), where z = (io, 1, w), · is the
matrix-vector product and ◦ is the Hadamard (entry-wise) product. We denote
this as RR1CS(x, w) = 1.

Circuit-SAT to R1CS. As discussed above, while our definition is for gen-
eral R1CS instances, we shall consider instances generated via a reduction from
C-SAT. Given a C-SAT instance, one can convert it into an R1CS instance over
F where A,B,C ∈ Fm×m for m = O(|C|) and n = O(|C|), i.e. the matrices A,B
and C are sparse. Furthermore, io ∈ {0, 1}|x| and the witness w ∈ {0, 1}|C|−|x|.

We will use the following theorem from [51] that shows that any R1CS in-
stance can be represented by sum over the Boolean hypercube (i.e. over {0, 1}`
for some `) of a low degree polynomial.

Theorem 2 ([51]). For any R1CS instance x = (F, A,B,C, io,m, n) there
exists a degree 3, logm-variate polynomial G such that∑

x∈{0,1}logm
G(x) = 0

if and only if there exists a witness w such that, except with soundness error
negligible in λ, RR1CS(x, w) = 1. Here |F| is exponential in λ and m = O(λ).

18

4 Somewhere-Extractable Linearly Homomorphic
Commitments

In this section, we introduce the notion of somewhere-extractable linearly homo-
morphic commitment. In such a commitment scheme, one commits to a vector
of values using a commitment key that can be generated using one of two in-
distinguishable modes: normal mode or extraction mode. Before going into the
details, we give an overview of the desired properties from such a scheme:

Somewhere Extraction: When generating the commitment key K in the ex-
traction mode, a coordinate i∗ is chosen such that any commitment under
the key K binds the least significant bit of the i∗-th coordinate of the com-
mitted message. Further, alongside the commitment key, the key generation
algorithm in the extraction mode also outputs a trapdoor td, which allows
one to extract the least significant bit of the i∗-th coordinate of the message
(i.e. extraction (mod 2)). We denote this extraction algorithm as Ext(·, td).

Linear Homomorphism: Consider two commitments c1 = Com(K,m1; r1)
and c2 = Com(K,m2; r2) under the same commitment key (in any mode)
for messages m1,m2 with corresponding randomness r1, r2. For any integers
a and b, given c1 and c2, there is a way to homomorphically obtain the
commitment Com(K, a ·m1 + b ·m2; a · r1 + b · r2).

Linearly Homomorphic Extraction: The aforementioned linear homomor-
phism only concerns well-formed commitments. However, we also need the
linear homomorphism properties to hold for commitments that may not be
well-formed. To this end, we introduce an extractable space E , such that
for any c ∈ E , as the name suggests, we can use the extraction algorithm
Ext to extract a message. Additionally, we require E to satisfy the following
properties:

Public Verifiability: Given any c, it can be publicly verified if c ∈ E .

Close Under Linear Homomorphism: The linear homomorphic opera-
tion is closed in E , i.e. for any two elements in E , the linear homomorphic
evaluated commitment is also in E .

Extraction is Linear Homomorphic: Most importantly, the extraction
operation is linear homomorphic in E , i.e. for any two elements c1, c2 ∈ E ,
and any two integers a1, a2, we have

Ext(a1 · c1 + a2 · c2, td) = a1 · Ext(c1, td) + a2 · Ext(c2, td) (mod 2)

Low-Depth Extraction: For our applications, we ideally want the extraction
algorithm Ext be computed in low depth, specifically TC0. However, this is
hard to achieve. Hence, we decompose the extraction algorithm to an offline
pre-computation phase PreComp, where PreComp is not allowed to use td but
can be of polynomial depth, and a low-depth online-phase OnlineExt(·, td).
We only require that the online-phase of extraction OnlineExt(·, td) be com-
puted in TC0.

19

In Section 4.1 we formally define such a commitment scheme. In the full
version we also we show an extension of the definition to a more general setting,
where the commitments are over polynomials. Lastly, in Section 4.2, we construct
such a commitment scheme from the quadratic residuosity assumption.

4.1 Definition

A somewhere-extractable linearly homomorphic commitment scheme is a tuple of
algorithms LHC = (Gen,ExtGen,Com,Ext,Samp) described below, where Samp
is a randomness sampling algorithm for the commitment.10

– Gen(1λ, 1k): On input the security parameter λ and input length k, outputs
a commitment key K.

– ExtGen(1λ, 1k, i∗): On input the security parameter λ, input length k and an
index i∗ ∈ [k], outputs an extractable commitment key K, and a trapdoor
td.

– Com(K, (x1, x2 . . . , xk); r): On input a commitment key K, k integers (x1, x2,
. . . , xk) ∈ Zk and randomness r ← Samp(K) as input, outputs a commit-
ment c.

– Ext(c, td): On input a commitment c and a trapdoor td, output a message m.
Further, this can be decomposed into two algorithms PreComp and OnlineExt
described as follows:
• PreComp(1λ, c): On input the security parameter λ and a commitment
c, output a pre-processed value c′ that is to be used for online extraction.

• OnlineExt(c′, td): On input the pre-processed commitment c′ and a trap-
door td, output a message m ∈ F2.

For correctness, we require that Ext(c, td) = OnlineExt(PreComp(1λ, c), td).
We also emphasize that PreComp does not take the trapdoor as input.

We require the algorithms to satisfy the following properties.

Compactness: The size of the commitment is bounded by some fixed polyno-
mial poly(λ) in the security parameter.

Key Indistinguishability: For any integer i∗ ∈ [k], and any non-uniform PPT
adversary D, there exists a negligible function ν(λ) such that

|Pr
[
K ← Gen(1λ, 1k) : D(1λ,K) = 1

]
−

Pr
[
K ← ExtGen(1λ, 1k, i∗) : D(1λ,K) = 1

]
| < ν(λ).

Linear Homomorphism: There exists a binary operation “+” over the com-
mitments such that, for any key K, a, b ∈ Z, and any integers vectors
x,y ∈ Zk, and randomness r, u ∈ Z, we have

a · Com(K,x; r) + b · Com(K,y;u) = Com(K, a · x + b · y; a · r + b · u).

10 We use an explicit randomness sampling algorithm because in our construction from
QR, the randomness is sampled from a space that depends on the commitment key.

20

Extraction: The extraction algorithm Ext satisfies the following properties:
Somewhere F2-Extraction: For any x = (x1, x2, . . . , xk) ∈ Zk, any i∗ ∈

[k], and any randomness r ∈ Z,

Pr[(K, td)← ExtGen(1λ, 1k, i∗), c = Com(K,x; r) :

Ext(c′, td) = xi∗ mod 2] = 1.

Linearly Homomorphic Extraction: There exists an extractable space
E and a polynomial time algorithm EVer such that, for any c ∈ {0, 1}∗,

Pr
[
c ∈ E ⇐⇒ EVer(1λ, c) = 1

]
= 1.

Furthermore, E is closed under linear combination, i.e. for any a1, a2 ∈
Z, c1, c2 ∈ E , we have a1 · c1 + a2 · c2 ∈ E , and

Pr [Ext(a1 · c1 + a2 · c2, td) = a1 · Ext(c1, td) + a2 · Ext(c2, td) (mod 2)] = 1.

In addition, every “well-formed” commitment is in E .i.e. for any key K,
input x ∈ Zk, and randomness r ∈ Z, we have Com(K,x; r) ∈ E .

Low-Depth Online Extraction: The algorithm OnlineExt can be com-
puted by TC0 circuits.

4.2 Construction

We present our construction of somewhere-extractable linearly homomorphic
commitments in Figure 1.

The reader may note that we have not split the extraction algorithm Ext in
Figure 1 as necessitated by the definition. Instead we defer the decomposition
into PreComp and OnlineExt to the full version of the paper. We state below the
theorem and defer the proof to the full version of the paper.

Theorem 3. The construction in Figure 1 is a somewhere-extractable linearly
homomorphic commitment based on the Quadratic Residuosity assumption.

5 Dual Mode Interactive Batch Arguments for NP

In this section, we define and construct dual mode interactive batch arguments
for NP. At a high-level, such an argument system allows for proving multiple
instances of an NP language while incurring roughly the communication (and
verification) cost of proving a single instance. We consider such protocols in
the CRS model that may be executed in one of two modes – normal mode or
trapdoor mode. The former corresponds to normal protocol execution while the
latter mode is used in the security proof. Crucially, in the trapdoor mode, we
require the protocol to satisfy non-adaptive statistical soundness.

Dual Mode Interactive Batch Arguments. We start by providing a formal
definition. We shall denote by OutA〈A(a), B(b)〉 the random variable that cor-
responds to the output of party A on execution of the protocol between A with
input a, and B with input b. Here the probability is taken over the random coins
of both A and B.

21

Somewhere-Extractable Linearly Homomorphic Commitment

– Key Generation Gen(1λ, 1k):
• Uniformly sample a Blum integer N .
• Uniformly sample g ← QRN ,g← QRkN , and s← b(N − 1)/2e.
• Let h = gs,h = (g)s

• Output K = (N, g, h,g,h).
– Extractable Key Generation ExtGen(1λ, 1k, i∗):
• Uniformly sample a Blum integer N = p · q.
• Uniformly sample g ← QRN ,g← QRkN , and s← b(N − 1)/2e.
• Let h = gs and h = (−1)1i∗ · (g)s, where 1i∗ ∈ {0, 1}k is the indicator vector

with 1 on the i∗-th coordinate, and 0 elsewhere.
• Output K = (N, g, h,g,h), and td = (p, q, s).

– Commit Com(K = (N, g, h,g,h),x ∈ Zk; r):
• Parse g = (g1, g2, . . . , gk),h = (h1, h2, . . . , hk).
• Let cg = gr ·

∏k
i=1 g

xi
i , ch = hr ·

∏k
i=1 h

xi
i .

• Output c = (cg, ch).
– Extraction Ext(c = (cg, ch), td = (p, q, s)):
• If (ch/c

s
g)

(p−1)(q−1)/4 = 1 (mod N), then output 0, otherwise output 1.
– Randomness Sampling Samp(K):
• Output an uniformly sampled r ← b(N − 1)/2e.

Fig. 1: Construction of somewhere-extractable linearly homomorphic commit-
ment.

Definition 3 (Dual-Mode Interactive Batch Arguments). A dual-mode
interactive batch argument,denoted by a tuple of PPT algorithms (P,V,Gen,TGen),
is an interactive protocol in the common reference string (CRS) model for an
NP language L defined by relation RL if it satisfies the following properties:

Completeness. For all x = (x1, . . . , xk) and w = (w1, . . . , wk) such that for
each i ∈ [k], RL(xi, wi) = 1, it holds that:

Pr
[
OutV〈P(crs,x,w),V(crs,x)〉 = 1

∣∣ crs← Gen(1λ, 1k)
]

= 1.

Dual Mode Indistinguishability. The two setup modes are computationally
indistinguishable, i.e. ∀k ∈ N,∀i∗ ∈ [k],{

crs : crs← Gen(1λ, 1k)
}
λ∈N ≈c

{
crs : crs← TGen(1λ, 1k, i∗)

}
λ∈N

Non-Adaptive Statistical Soundness in Trapdoor Mode. For every (pos-
sible unbounded) cheating prover P∗ and all x = (x1, . . . , xk) where ∃i s.t.
xi /∈ L, it holds that ∀i∗ ∈ [k] s.t. xi∗ /∈ L:

Pr
[
OutV〈P∗(crs,x,w),V(crs,x)〉 = 1

∣∣ (crs, td)← TGen(1λ, 1k, i∗)
]
≤ negl(λ).

Remark 1. The above definition implies (non-adaptive) soundness against PPT
cheating provers in the normal mode. This is easily observed via a sequence of

22

hybrids: (i) switch the crs being generated in the normal mode to the trapdoor
mode for a randomly chosen index i∗ while relying on the computational indis-
tinguishability. With probability at least 1/k the chosen index i∗ will be such
that xi∗ /∈ L; (ii) rely on the non-adaptive statistical soundness in the trapdoor
mode.

Our Construction. We construct a dual mode interactive batch argument
for R1CS, where the instances are generated from instances of Boolean circuit
satisfiability that all share the circuit C but have different statements x. (We
refer the reader to the full version for the corresponding reduction from Boolean
satisfiability to R1CS.) This results in k instances of R1CS,

{x(j)}j∈[k] = (F, A,B,C, {io(j)}j∈[k],m, n),

where all the ioj are of the same length, and the instances share the same
F, A, B, C, m and n. Furthermore, as a consequence of the reduction, the
witnesses to these instances {w(j)}j∈[k] are all binary values, i.e. ∀j ∈ [k],

w(j) ∈ {0, 1}m−|io|−1. We work with the field F, which is an extension field
of F2 of size 2λ. Specifically, F := F2[α]/(v(α)) for some irreducible polynomial
v(α) in F2 of degree λ.11

Our protocol relies on a single cryptographic component, namely, a somewhere-
extractable linearly homomorphic commitment scheme LHC = (Gen,ExtGen,Com,
Ext,Samp) (Section 4.1) which can be built (see Section 4.2) from the quadratic
residuosity assumption. The dual mode property of our protocol comes exclu-
sively from the use of this commitment scheme.

The formal description of the protocol is presented in Figure 2.

Below, we provide an overview of our protocol, focusing on how we implement
batching. We note that due to the lack of space, we omit some details regarding
the underlying polynomials used in our construction, and refer the reader to the
full version for the details.

1. Given k R1CS instances {x(j)}j∈[k], the prover needs to commit to k wit-

nesses {w(j)}j∈[k], where the witnesses are all of the same size |w|. This is
done by first representing the k witnesses as a matrix W , where each witness
occupies a single row. The prover uses LHC to commit to |w| k-tuples corre-
sponding to each column of the matrix W . From the compactness property
of LHC, the total size of the commitments sent by the prover is proportional
to the size of a single witness |w|.
An observant reader may note that the message space for a k-tuple commit-
ment in LHC is Zk, and not Fk as we would like. Here we utilize the fact that
the prover is committing to the witness whose values are only binary (as
consequence of the reduction from C-SAT to R1CS, see Section 3.1)13, and

11 One can think of the representation to be a λ length vector in F2 corresponding to
the coefficients of the polynomial f ∈ F2[α]/(v(α)).

13 Our protocol does not handle arbitrary R1CS instances where the witness may have
values in F outside of {0, 1}.

23

Protocol: Interactive Batch Argument (P,V,Gen,TGen)

Common Reference String: K ← LHC.Setup1(1λ, 1k)

Common input: input {x(j)}j∈[k] := (F, A,B,C, {io(j)}j∈[k],m, n), security parame-
ter 1λ

P’s auxiliary input: witnesses {w(j)}j∈[k] such that ∀j ∈ [k], RR1CS(x(j), w(j)) = 1

1. Prover commits to the k-tuple of witnesses in a column-wise fashion. Specifically
∀y ∈ {0, 1}s2 , cy := LHC.Com(K, (w

(1)
y , · · · , w(k)

y); ry) where ry ←$ LHC.Samp(K).
Send {cy}y∈{0,1}s2 to the verifier V.

2. Verifier V samples a random vector τ ←$Fs and sends τ to the prover P.
3. Prover P and verifier V run k sumcheck protocols (PSC(Gio(j),τ),VSC(0))12 in parallel

where the verifier uses the same randomness in each sumcheck. The output of the
sumchecks are r∗ ∈ Fs and {ν(j)}j∈[k].

4. The verifier V asks P for values {ν(j)A,2, ν
(j)
B,2, ν

(j)
C,2}j∈[k].

5. Prover P computes ∀j ∈ [k], X ∈ {A,B,C},
– ν

(j)
X,2 :=

∑
y∈{0,1}s2 X̃

′′(r∗, y) · w(j)
y ,

– rX :=
∑
y∈{0,1}s2 X̃

′′(r∗, y) · ry,

sends {ν(j)A,2, ν
(j)
B,2, ν

(j)
C,2}j∈[k] along with the commitment openings rA, rB , rC to the

verifier V.
6. The verifier V does the following

(a) computes ∀X ∈ {A,B,C}, cX :=
∑
y∈{0,1}s2 X̃

′′(r∗, y) · cy
(b) checks commitment opening, ∀X ∈ {A,B,C}, cX

?
=

LHC.Com(K, (ν
(1)
X,2, · · · , ν

(k)
X,2); rX)

(c) computes ∀j ∈ [k], X ∈ {A,B,C}, ν(j)X,1 :=
∑
y∈{0,1}s1 X̃

′(r∗, y) · (io||1)
(j)
y , and

ν
(j)
X = ν

(j)
X,1 + ν

(j)
X,2.

(d) checks ∀j ∈ [k], ν(j) = (ν
(j)
A · ν

(j)
B − ν

(j)
C) · ẽq(r∗, τ), and reject if any of the

checks fail.
Accept if none of the checks have failed.

Fig. 2: Interactive Batch Argument for R1CS.

therefore the message space for the commitment of a k-tuple is {0, 1}k ⊂ Zk.
This also explains why we commit to the witness w rather than its mul-
tilinear extension, since they are equivalent when the witness is a binary
string.

Let {cy}y∈[|w|] denote the commitments.

2. The prover and verifier run sumcheck protocols for polynomials {G(j)τ,io}j∈[k]
- there are k distinct polynomials since the witness (which determines the
polynomial) for each R1CS instance is different. Specifically, the sumcheck

24

protocol is to prove that the following sum∑
x∈{0,1}logm

G(j)τ,io :=
∑

x∈{0,1}logm
F̃io(x) · ẽq(x, τ)

is 0, where F̃io is a polynomial that depends on A,B,C, io and w. The prover
and verifier run all k sumchecks in parallel, where the verifier uses the same
randomness across all the sumcheck protocols.

3. At the end of the sumcheck protocol, the verifier needs to evaluate each

polynomial {G(j)τ,io}j∈[k] at a point r∗ ∈ Flogm determined by the sumcheck
polynomial. Note that since the verifier used the same randomness across
all the sumcheck protocols, it is the same value r∗ for all the polynomials
{G(j)}j∈[k]. Since ẽq(r∗, τ) can be computed locally by the verifier, the check
at the end of the sumcheck reduces to computing, for each j ∈ [k],

F̃
(j)
io (r∗) :=

 ∑
y∈{0,1}s1

Ã′(r∗, y) · (io(j), 1)y +
∑

y∈{0,1}s2

Ã′′(r∗, y) · w(j)
y

 ·
 ∑
y∈{0,1}s1

B̃′(r∗, y) · (io(j), 1)y +
∑

y∈{0,1}s2

B̃′′(r∗, y) · w(j)
y


−

 ∑
y∈{0,1}s1

C̃′(r∗, y) · (io(j), 1)y +
∑

y∈{0,1}s2

C̃′′(r∗, y) · w(j)
y


The terms that depend solely on the instance and common input can be

computed by the verifier locally. The remaining terms that depend on the
witness, highlighted in red above, are terms that the prover needs to send to

the verifier. We denote these terms by {ν(j)A,2, ν
(j)
B,2, ν

(j)
C,2}j∈[k], where for each

j ∈ [k],

ν
(j)
A,2 :=

∑
y∈{0,1}s2

Ã′′(r∗, y) · w(j)
y , ν

(j)
B,2 :=

∑
y∈{0,1}s2

B̃′′(r∗, y) · w(j)
y

ν
(j)
C,2 :=

∑
y∈{0,1}s2

C̃ ′′(r∗, y) · w(j)
y

There are two crucial observations to be made here: (i) for each fixed r∗,
the above values are simply a linear combination of each individual witness
w(j) (with appropriate coefficients); and (ii) the linear coefficients are the
same for each witness, and in fact the linear coefficients depend only on the
index of the witness.

4. The above observations allow the prover to open the commitments to {ν(j)A,2,
ν
(j)
B,2, ν

(j)
C,2}j∈[k] by the linear homomorphism property of LHC since the prop-

erty allows for the same linear coefficient to be applied all values in the
k-tuple within the commitment.
Specifically, the prover sends the values (and randomness) in the clear to
the verifier, who then performs the same linear homomorphism over the

25

committed values {cy}y∈[|w|] to check if the openings sent by the prover are

correct before computing the checks necessitated by the sumcheck.
While we remarked that the values that are inside the commitment are
binary, this is not true of the linear coefficients that are in F. But since
F = F2[α]/(v(α)), by the homomorphism with respect to polynomial property
of LHC and that F2[α]/(v(α)) ⊂ Z[α]/(v(α)), it is fine that coefficents are in
F.
Lastly it should be noted that the homomorphism properties are defined over
Z[α]/(v(α)) and not F2[α]/(v(α)), meaning there is no modular reduction
in the coefficients of the resultant polynomial after the homomorphism op-
eration, i.e. the λ length vector has elements in Z instead of F2. Therefore,
to verify correctness of the commitment, the prover computes the values

{ν(j)A,2, ν
(j)
B,2, ν

(j)
C,2}j∈[k] over Z[α]/(v(α)), i.e. no modular reduction. The veri-

fier does the commitment check over Z[α]/(v(α)), but once the check passes
successfully reduces to F2[α]/(v(α))14. While this increases the number of
bits sent by the prover, we show in the full version of the paper that the
increase is quite small, giving us the following theorem.

Theorem 4. Assuming the existence of somewhere-extractable linearly homo-
morphic commitments, the protocol in Figure 2 is a dual-mode interactive batch
argument for R1CS where

– Total communication cost is O(mλ+ (λ+ k) logm)
– The verifier’s total run time is O(k|io|+ n+m) · poly(λ)

where all instances have the same length |io|.

We defer the proof to the full version of the paper. Since we start with
Boolean circuit satisfiability to generate R1CS instances, we get the following
corollary with costs corresponding to the size the Boolean circuit.

Corollary 1. If we start with C-SAT instances defined by a boolean circuit
C : {0, 1}|x| × {0, 1}|y| 7→ {0, 1}, then the protocol in Figure 2 is a dual-mode
interactive batch argument for C-SAT where

– Total communication cost is O(|C|+ k log |C|)poly(λ)
– The verifier’s total run time is O(k|x|+ |C|) · poly(λ)

6 Non-Interactive Batch Arguments for NP

We now construct a non-interactive batch argument system for NP. We start by
formally defining this notion below.

Definition 4 (Non-Interactive Batch Arguments). A non-interactive batch
argument for an NP language L defined by relation RL is a tuple of algorithms
(Gen,P,V) satisfying the following properties:

14 This is just reducing each element in the λ length vector to F2.

26

– Completeness: For all x = (x1, . . . , xk) and w = (w1, . . . , wk) such that
for each i ∈ [k], RL(xi, wi) = 1, it holds that:

Pr[V(crs,x, π) = 1 | crs← Gen(1λ), π ← P(crs,x,w)] = 1.

– (Non-adaptive) Soundness: For every PPT adversary P∗ and all x =
(x1, . . . , xk) where ∃i s.t. xi /∈ L, it holds that:

Pr[V(crs,x, π) = 1 | crs← Gen(1λ), π ← P∗(crs)] ≤ negl(λ).

In the full version, we show that the Fiat-Shamir transform w.r.t. H when
applied to any strongly FS compatible protocol is sound as long as H is corre-
lation intractable for TC0. Next, we construct a non-interactive batch argument
system for NP by demonstrating that the above transformation remains sound
when applied to our dual-mode interactive batch argument (Section 5), even
though the aforementioned protocol does not satisfy strong FS compatibility.
Finally, we show that we show that although our described protocol has a linear
dependence on k, this can be made sub-linear.

Acknowledgments

Arka Rai Choudhuri, Abhishek Jain and Zhengzhong Jin are supported in part
by NSF CNS-1814919, NSF CAREER 1942789 and Johns Hopkins University
Catalyst award. Arka Rai Choudhuri and Abhishek Jain are also supported in
part by the Office of Naval Research Grant N00014-19-1-2294. Arka Rai Choud-
huri is also supported in part by NSF Grant CNS-1908181. Zhengzhong Jin is
also supported in part by NSF CAREER 1845349.

References

1. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd FOCS.
pp. 106–115. IEEE Computer Society Press (Oct 2001) 6

2. Bartusek, J., Bronfman, L., Holmgren, J., Ma, F., Rothblum, R.D.: On the
(in)security of kilian-based SNARGs. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019,
Part II. LNCS, vol. 11892, pp. 522–551. Springer, Heidelberg (Dec 2019) 6

3. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision re-
sistance to succinct non-interactive arguments of knowledge, and back again. In:
Goldwasser, S. (ed.) ITCS 2012. pp. 326–349. ACM (Jan 2012) 2

4. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In: Boneh, D., Roughgarden, T.,
Feigenbaum, J. (eds.) 45th ACM STOC. pp. 111–120. ACM Press (Jun 2013) 2

5. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability - (or: Quadratic residuosity strikes back). In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg
(Aug 2010) 16

6. Brakerski, Z., Holmgren, J., Kalai, Y.T.: Non-interactive delegation and batch NP
verification from standard computational assumptions. In: Hatami, H., McKenzie,
P., King, V. (eds.) 49th ACM STOC. pp. 474–482. ACM Press (Jun 2017) 2, 3

27

7. Brakerski, Z., Koppula, V., Mour, T.: NIZK from LPN and trapdoor hash via
correlation intractability for approximable relations. In: Micciancio, D., Risten-
part, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 738–767. Springer,
Heidelberg (Aug 2020) 4, 5, 11

8. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE,
leakage resilience and circular security from new assumptions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 535–564.
Springer, Heidelberg (Apr / May 2018) 16

9. Camenisch, J., Hohenberger, S., Pedersen, M.Ø.: Batch verification of short signa-
tures. Journal of Cryptology 25(4), 723–747 (Oct 2012) 3

10. Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum,
R.D., Wichs, D.: Fiat-Shamir: from practice to theory. In: Charikar, M., Cohen,
E. (eds.) 51st ACM STOC. pp. 1082–1090. ACM Press (Jun 2019) 2, 4, 5

11. Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation
intractability from strong KDM-secure encryption. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 91–122. Springer, Hei-
delberg (Apr / May 2018) 4

12. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004) 2, 4

13. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: 36th FOCS. pp. 41–50. IEEE Computer Society Press (Oct 1995) 2

14. Choudhuri, A.R., Hubácek, P., Kamath, C., Pietrzak, K., Rosen, A., Rothblum,
G.N.: Finding a nash equilibrium is no easier than breaking Fiat-Shamir. In:
Charikar, M., Cohen, E. (eds.) 51st ACM STOC. pp. 1103–1114. ACM Press (Jun
2019) 4

15. Choudhuri, A.R., Jain, A., Jin, Z.: Non-interactive batch arguments for np from
standard assumptions. Cryptology ePrint Archive, Report 2021/807 (2021), https:
//eprint.iacr.org/2021/807 17

16. Ciampi, M., Parisella, R., Venturi, D.: On adaptive security of delayed-input sigma
protocols and fiat-shamir NIZKs. In: Galdi, C., Kolesnikov, V. (eds.) SCN 20.
LNCS, vol. 12238, pp. 670–690. Springer, Heidelberg (Sep 2020) 4

17. Couteau, G., Katsumata, S., Ursu, B.: Non-interactive zero-knowledge in pairing-
free groups from weaker assumptions. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020, Part III. LNCS, vol. 12107, pp. 442–471. Springer, Heidelberg (May
2020) 4

18. Damg̊ard, I., Faust, S., Hazay, C.: Secure two-party computation with low com-
munication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54–74. Springer,
Heidelberg (Mar 2012) 2

19. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401,
pp. 537–569. Springer, Heidelberg (Aug 2017) 16

20. Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of identity-
based and key-dependent message secure encryption schemes. In: Abdalla, M., Da-
hab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 3–31. Springer, Heidelberg
(Mar 2018) 16

21. Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.: Trapdoor
hash functions and their applications. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 3–32. Springer, Heidelberg (Aug
2019) 5, 16

28

https://eprint.iacr.org/2021/807
https://eprint.iacr.org/2021/807

22. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (Aug 1987) 4

23. Garg, S., Hajiabadi, M.: Trapdoor functions from the computational Diffie-Hellman
assumption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS,
vol. 10992, pp. 362–391. Springer, Heidelberg (Aug 2018) 16

24. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC. pp.
99–108. ACM Press (Jun 2011) 2, 3

25. Goldreich, O., H̊astad, J.: On the complexity of interactive proofs with bounded
communication. Inf. Process. Lett. 67(4), 205–214 (1998) 3

26. Goldreich, O., Vadhan, S.P., Wigderson, A.: On interactive proofs with a laconic
prover. Comput. Complex. 11(1-2), 1–53 (2002) 3

27. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In:
44th FOCS. pp. 102–115. IEEE Computer Society Press (Oct 2003) 6

28. Goldwasser, S., Lin, H., Rubinstein, A.: Delegation of computation without re-
jection problem from designated verifier CS-Proofs. Cryptology ePrint Archive,
Report 2011/456 (2011), http://eprint.iacr.org/2011/456 2

29. Holmgren, J., Lombardi, A.: Cryptographic hashing from strong one-way functions
(or: One-way product functions and their applications). In: Thorup, M. (ed.) 59th
FOCS. pp. 850–858. IEEE Computer Society Press (Oct 2018) 4

30. Hubacek, P., Wichs, D.: On the communication complexity of secure function eval-
uation with long output. In: Roughgarden, T. (ed.) ITCS 2015. pp. 163–172. ACM
(Jan 2015) 10, 16

31. Jain, A., Jin, Z.: Non-Interactive Zero Knowledge from Sub-exponential DDH. In:
EUROCRYPT. Lecture Notes in Computer Science, Springer (2021) 2, 4, 5, 11

32. Jawale, R., Kalai, Y.T., Khurana, D., Zhang, R.: SNARGs for Bounded Depth
Computations and PPAD Hardness from Sub-Exponential LWE. In: STOC. ACM
(2021) 4, 11, 12, 13, 15

33. Jawale, R., Khurana, D.: Lossy correlation intractability and PPAD hardness from
sub-exponential LWE. Cryptology ePrint Archive, Report 2020/911 (2020), https:
//eprint.iacr.org/2020/911 4

34. Kalai, Y.T., Paneth, O., Yang, L.: How to delegate computations publicly. In:
Charikar, M., Cohen, E. (eds.) 51st ACM STOC. pp. 1115–1124. ACM Press (Jun
2019) 2, 3

35. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the security
of Fiat-Shamir for proofs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II.
LNCS, vol. 10402, pp. 224–251. Springer, Heidelberg (Aug 2017) 4

36. Kalai, Y.T., Zhang, R.: SNARGs for bounded depth computations from sub-
exponential LWE. Cryptology ePrint Archive, Report 2020/860 (2020), https:

//eprint.iacr.org/2020/860 4
37. Kaslasi, I., Rothblum, G.N., Rothblum, R.D., Sealfon, A., Vasudevan, P.N.: Batch

verification for statistical zero knowledge proofs. In: Pass, R., Pietrzak, K. (eds.)
TCC 2020, Part II. LNCS, vol. 12551, pp. 139–167. Springer, Heidelberg (Nov
2020) 3

38. Kaslasi, I., Rothblum, R.D., Vasudevan, P.N.: Public-Coin Statistical Zero-
Knowledge Batch Verification against Malicious Verifiers. In: EUROCRYPT. Lec-
ture Notes in Computer Science, Springer (2021) 3

39. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: 24th ACM STOC. pp. 723–732. ACM Press (May 1992) 3, 6

29

http://eprint.iacr.org/2011/456
https://eprint.iacr.org/2020/911
https://eprint.iacr.org/2020/911
https://eprint.iacr.org/2020/860
https://eprint.iacr.org/2020/860

40. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th
ACM STOC. pp. 419–428. ACM Press (Jun 2015) 16

41. Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In: 38th FOCS. pp. 364–373. IEEE
Computer Society Press (Oct 1997) 2

42. Lombardi, A., Vaikuntanathan, V.: Fiat-shamir for repeated squaring with appli-
cations to PPAD-hardness and VDFs. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 632–651. Springer, Heidelberg
(Aug 2020) 4

43. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM 39(4), 859–868 (1992) 7

44. Micali, S.: CS proofs (extended abstracts). In: 35th FOCS. pp. 436–453. IEEE
Computer Society Press (Nov 1994) 2

45. Naor, M.: On cryptographic assumptions and challenges (invited talk). In: Boneh,
D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (Aug
2003) 2

46. Okamoto, T., Pietrzak, K., Waters, B., Wichs, D.: New realizations of somewhere
statistically binding hashing and positional accumulators. In: Iwata, T., Cheon,
J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 121–145. Springer,
Heidelberg (Nov / Dec 2015) 16

47. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I.
LNCS, vol. 11692, pp. 89–114. Springer, Heidelberg (Aug 2019) 2, 4, 5, 11

48. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs
for delegating computation. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC.
pp. 49–62. ACM Press (Jun 2016) 1, 3, 6, 8

49. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Efficient batch verification for
UP. In: Computational Complexity Conference. LIPIcs, vol. 102, pp. 22:1–22:23.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018) 1, 3, 6

50. Rothblum, G.N., Rothblum, R.D.: Batch verification and proofs of proximity with
polylog overhead. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol.
12551, pp. 108–138. Springer, Heidelberg (Nov 2020) 1, 3, 6

51. Setty, S.: Spartan: Efficient and general-purpose zkSNARKs without trusted setup.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172,
pp. 704–737. Springer, Heidelberg (Aug 2020) 7, 10, 12, 13, 18

52. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992) 7

30

	Non-Interactive Batch Arguments for NP from Standard Assumptions

