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Abstract. Liu and Pass (FOCS’20) recently demonstrated an equiv-
alence between the existence of one-way functions (OWFs) and mild
average-case hardness of the time-bounded Kolmogorov complexity prob-
lem. In this work, we establish a similar equivalence but to a differ-
ent form of time-bounded Kolmogorov Complexity—namely, Levin’s no-
tion of Kolmogorov Complexity—whose hardness is closely related to
the problem of whether EXP 6= BPP. In more detail, let Kt(x) denote
the Levin-Kolmogorov Complexity of the string x; that is, Kt(x) =
minΠ∈{0,1}∗,t∈N{|Π| + dlog te : U(Π, 1t) = x}, where U is a universal
Turing machine, and U(Π, 1t) denotes the output of the program Π af-
ter t steps, and let MKtP denote the language of pairs (x, k) having the
property that Kt(x) ≤ k. We demonstrate that:
– MKtP /∈ HeurnegBPP (i.e., MKtP is infinitely-often two-sided error

mildly average-case hard) iff infinititely-often OWFs exist.
– MKtP /∈ AvgnegBPP (i.e., MKtP is infinitely-often errorless mildly

average-case hard) iff EXP 6= BPP.
Thus, the only “gap” towards getting (infinitely-often) OWFs from the
assumption that EXP 6= BPP is the seemingly “minor” technical gap
between two-sided error and errorless average-case hardness of the MKtP
problem. As a corollary of this result, we additionally demonstrate that
any reduction from errorless to two-sided error average-case hardness for
MKtP implies (unconditionally) that NP 6= P.
We finally consider other alternative notions of Kolmogorov complexity—
including space-bounded Kolmogorov complexity and conditional Kol-
mogorov complexity—and show how average-case hardness of problems
related to them characterize log-space computable OWFs, or OWFs in
NC0.

1 Introduction

A one-way function [DH76] (OWF) is a function f that can be efficiently com-
puted (in polynomial time), yet no probabilistic polynomial-time (PPT) algo-
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rithm can invert f with inverse polynomial probability for infinitely many input
lengths n. Whether one-way functions exist is unequivocally the most impor-
tant open problem in Cryptography (and arguably the most important open
problem in the theory of computation, see e.g., [Lev03]): OWFs are both neces-
sary [IL89] and sufficient for many of the most central cryptographic primitives
and protocols (e.g., pseudorandom generators [BM88,HILL99], pseudorandom
functions [GGM84], private-key encryption [GM84], digital signatures [Rom90],
commitment schemes [Nao91], identification protocols [FS90], coin-flipping pro-
tocols [Blu82], and more). These primitives and protocols are often referred to
as private-key primitives, or “Minicrypt” primitives [Imp95] as they exclude the
notable task of public-key encryption [DH76,RSA83]. Additionally, as observed
by Impagliazzo [Gur89,Imp95], the existence of a OWF is equivalent to the ex-
istence of polynomial-time method for sampling hard solved instances for an NP
language (i.e., hard instances together with their witnesses).

While many candidate constructions of OWFs are known—most notably
based on factoring [RSA83], the discrete logarithm problem [DH76], or the hard-
ness of lattice problems [Ajt96]—the question of whether OWFs can be based on
some “standard” complexity-theoretic assumption is mostly wide open. Indeed,
a central open problem, originating in the seminal work of Diffie and Hellman
[DH76] is whether the existence of OWFs can be based on the assumptions that
NP 6= P or NP 6= BPP. Arguably, this is the most important open problem in
the foundations of Cryptography. So far, however, most results in the litera-
ture have been negative. Notably, starting with the work by Brassard [Bra83]
in 1983, a long sequence of works have shown various types of black-box sepa-
rations between restricted types of OWF (e.g., one-way permutations) and NP-
hardness (see e.g., [Bra83,BT03,AGGM06,GWXY10,Liv10,HMX10,BB15]). We
emphasize, however, that these results only show limited separations: they either
consider restricted types of one-way functions, or restricted classes of black-box
reductions.3

In this work, our goal is to address an even more basic (and ambitious) prob-
lem: can we base Cryptography on the “super-weak” assumption that EXP 6=
BPP:

Can the existence of OWFs be based on the assumption that EXP 6= BPP?

While we (obviously) are not able to provide a full positive answer to this problem
(which as we shall see later on, would imply that NP 6= P), we are able to
show that the task of basing OWFs on the assumption that EXP 6= BPP boils
down to (more precisely, is equivalent to) a seemingly minor technical problem
regarding different notions of average-case w.r.t. Levin’s notion of Kolmogorov
Complexity [Lev73]. Towards explaining our main result, let us first review some
recent connections between Cryptography and Kolmogorov Complexity.

3 We highlight that a recent result by Pass and Venkitasubramaniam [PV20] takes a
step towards a positive results, showing that to prove the existence of OWFs from
average-case hardness of NP, it suffices to prove that average-case hardness of TFNP
(rather than NP) implies the existence of OWFs.
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1.1 Connections Between OWFs and Kolmogorov Complexity

What makes the string 12121212121212121 less random than 60484850668340357492?
The notion of Kolmogorov complexity (K-complexity), introduced by Solomonoff
[Sol64], Kolmogorov [Kol68] and Chaitin [Cha69], provides an elegant method for
measuring the amount of “randomness” in individual strings: The K-complexity
of a string is the length of the shortest program (to be run on some fixed univer-
sal Turing machine U) that outputs the string x. From a computational point of
view, however, this notion is unappealing as there is no efficiency requirement
on the program. The notion of t(·)-time-bounded Kolmogorov Complexity (Kt-
complexity) overcomes this issue: Kt(x) is defined as the length of the shortest
program that outputs the string x within time t(|x|). As surveyed by Trakht-
enbrot [Tra84], the problem of efficiently determining the Kt-complexity for
t(n) = poly(n) predates the theory of NP-completeness and was studied in the
Soviet Union since the 60s as a candidate for a problem that requires “brute-
force search”. The modern complexity-theoretic study of this problem goes back
to Sipser [Sip83], Ko [Ko86] and Hartmanis [Har83].

A very recent result by Liu and Pass [LP20] shows that “mild” average-case
hardness4 of the time-bounded Kolmogorov complexity problem (when the time-
bound is some polynomial) is equivalent to the existence of OWFs. While the
time-bounded Kolmogorov complexity problem is in NP (when the time-bound
is a polynomial), it is not known whether this problem is average-case complete
for NP, thus their result falls short of basing OWFs on the assumption that NP is
average-case hard (i.e., that there exists some problem in NP that is average-case
hard w.r.t. some sampleable distribution over instances).

In this work, we will extend their work to consider other variants of the notion
of “resource-bounded” Kolmogorov complexity [Kol68]. The central advantage of
doing so will be that we will be able to base OWFs on the average-case hardness
of some problem that is average-case complete for EXP! The only reason that this
result falls short of basing OWF on EXP 6= BPP is that the notion of average-case
hardness in the EXP-completeness result is slightly different from the notion of
average-case hardness for the “OWF-completeness” result. However, “morally”,
this result can be interpreted as an indication that the existence of OWFs is
equivalent to EXP 6= BPP.

1.2 Characterizing Average-case Hardness of Levin-Kolmogorov
Complexity

While the definition of time-bounded Kolmogorov complexity, Kt, is simple and
clean, as noted by Leonid Levin [Lev73] in 1973, an annoying aspect of this notion
is that it needs to be parametrized by the time-bound t. To overcome this issue,
Levin proposed an elegant “non-parametrized” version of Kolmogorov complex-
ity that directly incorporates the running time as a cost. To capture the idea

4 By “mild” average-case hardness, we here mean that no PPT algorithm is able to
solve the problem with probability 1− 1

p(n)
on inputs of length n, for all polynomials

p(·)



4 Y. Liu and R. Pass

that polynomial-time computations are “cheap”, Levin’s definition only charges
logarithmically for running time. More precisely, let the Levin-Kolmogorov Com-
plexity of the string, Kt(x), be defined as follows:

Kt(x) = min
Π∈{0,1}∗,t∈N

{|Π|+ dlog te : U(Π, 1t) = x},

where U is a universal Turing machine, and we let U(Π, 1t) denote the output
of the program Π after t steps. Note that, just like the standard notion of
Kolmogorov complexity, Kt(x) is bounded by |x|+O(1)—we can simply consider
a program that has the string x hard-coded and directly halts.

Let MKtP denote the decisional Levin-Kolmogorov complexity problem; namely,
the language of pairs (x, k) where k ∈ {0, 1}dlog |x|e having the property that
Kt(x) ≤ k. MKtP is no longer seems to be in NP, as there may be strings x that
can be described by a short program Π (with description size e.g., n/10) but a
“largish” running time (e.g., 2n/10); the resulting string x thus would have small
Kt-complexity (n/5), yet verifying that the witness program program Π indeed
outputs x would require executing it which would take exponential time. In fact,
Allender et al [ABK+06] show that MKtP actually is EXP-complete w.r.t. P/poly
reductions; in other words, MKtP ∈ P/poly if and only if EXP ⊆ P/poly.

We will be studying (mild) average-case hardness of the MKtP problem, and
consider two standard (see e.g. [BT08]) notions of average-case tractability for
a language L with respect to the uniform distribution over instances:

– 2-sided error average-case heuristics: We say that L ∈ HeurnegBPP if
for every polynomial p(·), there exists some PPT heuristic H that decides L
(w.r.t. uniform n-bit strings) with probability 1− 1

p(n) .

– errorless average-case heuristics: We say that L ∈ AvgnegBPP if for every
polynomial p(·), there exists some PPT heuristic H such that (a) for every
instance x, with probability 0.9, H(x) either outputs L(x) or ⊥, and (b),
H(x) outputs ⊥ with probability at most 1

p(n) given uniform n-bits strings
x.

In other words, the difference between an errorless and a 2-sided error heuris-
tic H is that an errorless heuristic needs to (with probability 0.9 over its own
randomness but not the instance x) output either ⊥ (for “I don’t know”) or the
correct answer L(x), whereas a 2-sided error heuristic may simply make mistakes
without “knowing it”.

To better understand the class AvgnegBPP, it may be useful to compare it to
the class AvgnegP (languages solvable by deterministic errorless heuristics): L ∈
AvgnegP if for every polynomial p(·), there exists some deterministic polynomial-
time heuristic H such that (a) for every input x, H(x) outputs either L(x) or
⊥, and (b) the probability over uniform n-bit inputs x that H outputs ⊥ is
bounded by 1

p(n) . In other words, the only way an errorless heuristic may make

a “mistake” is by saying ⊥ (“I don’t know”); if it ever outputs a non-⊥ response,
this response needs to be correct. (Compare this to a 2-sided error heuristic that
only makes mistakes with a small probability, but we do not know when they
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happen). AvgnegBPP is simply the natural “BPP-analog” of AvgnegP where the
heuristic is allowed to be randomized.

2-sided error average-case hardness of MKtP and OWFs. Our first main
result shows that the characterization of [LP20] can be extended to work also
w.r.t. MKtP. More precisely,

Theorem 1. MKtP /∈ HeurnegBPP iff infinitely-often OWFs exist.

We highlight that whereas [LP20] characterized “standard” OWF, the above
theorem only characterizes infinitely-often OWFs—i.e., functions that are hard
to invert for infinitely many inputs lengths (as opposed to all input lengths).
The reason for this is that [LP20] considered an “almost-everywhere” notion of
average-case hardness of Kt, whereas the statement MKtP /∈ HeurnegBPP only
considers an infinitely-often notion of average-case hardness. (As we demonstrate
in the full paper, we can also obtain a characterization of standard “almost-
everywhere” OWFs by assuming that MKtP is “almost-everywhere” mildly average-
case hard, but for simplicity, in the main body of the paper, we focus our atten-
tion on the more standard complexity-theoretic setting of infinitely-often hard-
ness).

On a high-level, the proof of Theorem 1 follows the same structure as the
characterization of [LP20]. The key obstacle to deal with is that since MKtP is
not known to be in NP, there may not exists some polynomial time-bound that
bounds the running-time of a program Π that “witnesses” the Kt-complexity
of a string x; this is a serious issue as the OWF construction in [LP20] requires
knowing such a running-time bound (and indeed, the running-time of the OWF
depends on it). To overcome this issue, we rely on a new insight about Levin-
Kolmogorov Complexity.

We say that the program Π is a Kt-witness for the string x if Π generates x
within t steps while minimizing |Π|+log t among all other programs (i.e., Π is a
witness for the Kt-complexity of x). The crucial observation (see Fact 31) is that
for every 0 < ε < 1, except for an ε fraction of n-bit strings x, x has a Kt-witness
Π that runs in time O( 1

ε ). That is, “most” strings have a Kt-witness that has
a “short” running time. To see this, recall that as mentionned above, for every
string x, Kt(x) ≤ |x|+O(1); thus, every string x ∈ {0, 1}n with a Kt-witnesses Π
with running time exceeding O( 1

ε ), must satisfy that |Π|+ logO( 1
ε ) ≤ Kt(x) ≤

n+O(1), so |Π| ≤ n+O(1)− log(O(1)
ε ) = n+O(1) + log ε. Since the length of

Π is bounded by n + O(1) + log ε, it follows that we can have at most O(ε)2n

strings x where the Kt-witness for x has a “long” running time.
We can next use this observation to consider a more computationally tractable

version of Kt-complexity where we cut off the machine’s running time after 1
ε

steps (where ε is selected as an appropriate polynomial), and next follow a similar
paradigm as in [LP20].

Errorless average-case hardness of MKtP and EXP 6= BPP. We next show
how to extend the result of Allender et al [ABK+06] to show that MKtP is
not just EXP-complete in the worst-case, but also EXP-average-case complete;
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furthermore, we are able to show completeness w.r.t. BPP (as opposed to P/poly)
reductions. We highlight, however, that completeness is shown in a “non-black-
box” way (whereas [ABK+06] present a P/poly truthtable reduction). By non-
black-box we here mean that we are not able to show how to use any algorithm
that solves MKtP (on average) as an oracle (i.e., as a black-box) to decide EXP
(in probabilistic polynomial time); rather, we directly show that if MKtP ∈
AvgnegBPP, then EXP ⊆ BPP.5

Theorem 2. MKtP /∈ AvgnegBPP iff EXP 6= BPP.

Theorem 2 follows a similar structure as the EXP-completeness results of [ABK+06].
Roughly speaking, Allender et al observe that by the result of Nisan and Wigder-
son [NW94], the assumption that EXP 6⊆ P/poly implies the existence of a
(subexponential-time computable) pseudorandom generator that fools polynomial-
size circuits. But using a Kt-oracle, it is easy to break the PRG (as outputs of
the PRG have small Kt-complexity since its running time is “small”). We first
observe that the same approach can be extended to show that MKtP is (error-
less) average-case hard w.r.t. polynomial-size circuits (under the assumption that
EXP 6⊆ P/poly). We next show that if we instead rely on a PRG construction
of Impagliazzo and Wigderson [IW98], it suffices to rely on the assumption that
EXP 6= BPP to show average-case hardness of MKtP w.r.t. PPT algorithms.

Interpreting the combination of Thm 1 and Thm 2. By combining The-
orem 1 and Theorem 2, we get that the only “gap” towards getting (infinitely-
often) one-way functions from the assumption that EXP 6= BPP is the seemingly
“minor” technical gap between two-sided error and errorless average-case hard-
ness of the MKtP problem (i.e., proving MKtP /∈ AvgnegBPP =⇒ MKtP /∈
HeurnegBPP). Furthermore, note that this “gap” fully characterizes the possibil-
ity of basing (infinitely-often) OWFs on the assumption that EXP 6= BPP: Any
proof that EXP 6= BPP implies infinitely-often OWFs also shows the implication
MKtP /∈ AvgnegBPP =⇒ MKtP /∈ HeurnegBPP.

As a corollary of Theorem 1 and Theorem 2, we next demonstrate that the
implication MKtP /∈ AvgnegBPP =⇒ MKtP /∈ HeurnegBPP implies that NP 6= P
(in fact, even average-case hardness of NP).

Theorem 3. If MKtP /∈ AvgnegBPP =⇒ MKtP /∈ HeurnegBPP, then NP 6= P.

This results can be interpreted in two ways. The pessimistic way is that closing
this gap betwen 2-sided error, and errorless, heuristics will be very hard. The
optimistic way, however, is to view it as a new and algorithmic approach towards
proving that NP 6= P: To demonstrate that NP 6= P, it suffices to demonstrate
that MKtP can be solved by an errorless heuristic, given access to a two-sided
error heuristic for the same problem.

1.3 Space-bounded Notions of Kolmogorov Complexity

We additionally consider other alternative notions of resource-bounded Kol-
mogorov complexity. In more detail, we consider a space-bounded notion of

5 This non-black box aspect of our results stems from its use of [IW98].
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Kolmogorov complexity Ks and a space-bounded notion of conditional Kol-
mogorov complexity, and show that these notions, respectively, characterize log-
space computable one-way functions, or one-way functions in NC0.

Characterizing OWFs in Log-space The s-space bounded Kolmogorov com-
plexity, Ks(x), of a string x ∈ {0, 1}∗ is defined as

Ks(x) = min
Π∈{0,1}∗

{|Π| :∀i ∈ [|x|], U(Π(i), 12
s(|x|)

) = xi

and Π(i) uses at most s(|x|) space}

(Since we will be limiting the amount of space, we consider a notion of Kol-
mogorov complexity where the program Π needs to output just bit xi of the
string x, given the index i as input.) Given some function s(·), define MKSP[s]
analogously to MKtP. We will be interested in the regime where s(n) = O(log n).
Using a proof that closely follows [LP20] (and observing that the components
needed in this proof can be computed in log space), we obtain the following
characterization of log-space computable OWFs.

Theorem 4. Infinitely-often one-way functions in log-space exist if and only if
MKSP[O(log n)] /∈ HeurnegBPP.

(We can also get a characterization of “standard” (i.e., almost-everywhere)
OWFs in log-space if we assume that MKSP[s] is almost-everywhere average-
case hard; see the full paper for more details.)

We remark that by the results of [AIK06], the existence of a log-space com-
putable OWF implies a OWF that is uniform NC0 computable; in fact, as ob-
served by [RS21] (see Remark 31), by a slight tweak of the construction of
[AIK06], one actually gets a OWF that is log-space uniform NC0 computable.
In other words, the existence of log-space computable OWFs is equivalent to
the existence of log-space uniform NC0-computable OWFs. Theorem 4 thus also
characterizes OWFs computable in log-space uniform NC0.6

Characterizing OWF in Uniform NC0. We finally turn to consider the ques-
tion of characterizing OWF in just uniform (as opposed to log-space uniform)
NC0. To do this, we consider generalization of space-bounded Kolmogorov com-
plexity which considers a conditional notion of Kolmogorov complexity.

The conditional Kolmogorov complexity [ZL70,Lev73,Tra84,LM91] of a string
x given the string str is the length of the shortest program Π that given the
“auxiliary input” str outputs x. We here consider a variant of MKSP[s], which
considers conditional Kolmogorov complexity instead of the (unconditional) ver-
sion, and where the “auxiliary input” str is generated by some deterministic
polynomial-time machine F . More precisely, given some Turing machine F , de-
fine the F -conditional s(·)-space bounded Kolmogorov complexity, cKF,s(x), as

6 We remark that this observation was added after becoming aware of [RS21].
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follows:

cKF,s(x) = min
Π∈{0,1}∗

{|Π| :∀i ∈ [|x|], U(Π(i, str), 12
s(|x|)

) = xi

and Π(i, str) uses at most s(|x|) space}

where str = F (1|x|). We next define a decisional version, McKSP[F, s], analo-
gously to MKSP[s], and get the following theorem by appropriately generalizing
the proof of Theorem 4 and leveraging the result of [AIK06]:

Theorem 5. Infinitely-often OWFs in uniform NC0 exist iff there exists some
polynomial-time Turing machine F such that McKSP[F,O(log n)] /∈ HeurnegBPP.

(As before, we can also get a characterization of “standard” (i.e., almost-everywhere)
OWFs in uniform NC0 if we assume that McKSP is almost-everywhere average-
case hard; see the full paper for more details.)

1.4 Concurrent Works

A concurrent and independent work by Hanlin and Santhanam [RS21] presents
related but orthogonal characterizations of MKtP and OWFs in NC0. W.r.t.,
MKtP, both works essentially show an equivalence between mild average-case
hardness of MKtP and the existence of OWFs; we next show that errorless
average-case hardness of MKtP is equivalent to EXP 6= BPP, whereas they
instead consider an incomparable notion of two-sided error hardness with a
“tiny” error and show that such average-case hardness of MKtP w.r.t. non-
uniform polynomial-time adversaries is equivalent to the assumption that EXP /∈
P/poly. W.r.t. OWF in NC0, [RS21] shows that, surprisingly, an alternative no-
tion of time-bounded Kolmogorov complexity, KT , [ABK+06] which charges for
running-time (as opposed to bounding it) characterizes OWFs in log-space uni-
form NC0. In contrast, we present a characterization in terms of space-bounded
Kolmogorov complexity (and also of uniform NC0-computable OWFs).

Resource bounded notions of conditional Kolmogorov complexity are use-
ful also in other (related) contexts. In a companion paper to the current work
[LP21], we rely on a notion of time-bounded conditional Kolmogorov complexity
to characterize OWFs; the advantage of using this notion is that [LP21] shows
that the time-bounded conditional Kolmogorov complexity problem, McKTP, is
NP-complete. Taken together, the current work and [LP21], demonstrate that
the existence of OWFs can be characterized through the average-case hardness
of (essentially) EXP-complete (this work) and NP-complete ([LP21]) languages.

We additionally note the concurrent and independent work of [ACM+21]
which bases OWFs on average-case hardness of different conditional Kolmogorov
complexity style problem. Their conditional Kolmogorov complexity problem—
which they show is NP-complete—instead considers a conditional variant of the
KT notion of [ABK+06]; [ACM+21], however, they only show a one-directional
implication between average-case hardness of their problem and OWFs (and only
a weak converse in the other direction).
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2 Preliminaries

We assume familiarity with basic concepts and computational classes such as
Turing machines, polynomial-time algorithms, probabilistic polynomial-time (PPT)
algorithms, NP, EXP, BPP, log-space (or alternatively L), and P/poly. In this
work, following [AIK06], we mostly consider polynomial-time uniform versions
of NC0 and L/poly: we let uniform NC0 be the class of functions7 that ad-
mit polynomial-time uniform NC0 circuits, and uniform L/poly be the class of
functions computed by log-space Turing machines with a polynomial-time com-
putable advice. A function µ is said to be negligible if for every polynomial p(·)
there exists some n0 such that for all n > n0, µ(n) ≤ 1

p(n) . A probability ensem-

ble is a sequence of random variables A = {An}n∈N. We let Un denote the the
uniform distribution over {0, 1}n. Given a string x, we let [x]j denote the first j
bits of x.

2.1 One-way Functions

We recall the definition of one-way functions [DH76]. Roughly speaking, a func-
tion f is one-way if it is polynomial-time computable, but hard to invert for PPT
attackers. The standard cryptographic definition of a one-way function (see e.g.,
[Gol01]) requires that for every PPT attacker A, there exists some negligible func-
tion µ(·) such that A only succeeds in inverting the function with probability
µ(n) for all input lengths n. (That is, hardness holds “almost-everywhere”.) We
will also consider a weaker notion of an infinitely-often one-way function [OW93],
which only requires that the success probability is bounded by µ(n) for infinitely
many inputs lengths n. (That is, hardness only holds “infinitely-often”.)

Definition 1. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable func-
tion. f is said to be a one-way function (OWF) if for every PPT algorithm A,
there exists a negligible function µ such that for all n ∈ N,

Pr[x← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] ≤ µ(n)

f is said to be an infinitely-often one-way function (ioOWF) if the above condi-
tion holds for infinitely many n ∈ N (as opposed to all).

We may also consider a weaker notion of a weak one-way function [Yao82],
where we only require all PPT attackers to fail with probability noticeably
bounded away from 1:

Definition 2. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable func-
tion. f is said to be a α-weak one-way function (α-weak OWF) if for every PPT
algorithm A, for all sufficiently large n ∈ N ,

Pr[x← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] < 1− α(n)

7 We abuse the notation and say that a function f is in a class C if each bit on the
output of f is computable in C.



10 Y. Liu and R. Pass

We say that f is simply a weak one-way function (weak OWF) if there exists
some polynomial q > 0 such that f is a 1

q(·) -weak OWF. f is said to be an weak

infinitely-often one-way function (weak ioOWF) if the above condition holds for
infinitely many n ∈ N (as opposed to all).

Yao’s hardness amplification theorem [Yao82] shows that any weak (io) OWF
can be turned into a “strong” (io) OWF.

Theorem 6 ([Yao82]). Assume there exists a weak one-way function (resp.
infinitely-often one-way function). Then there exists a one-way functions (resp.
infinitely-often one-way function).

We observe that Yao’s construction remains in log-space (resp uniform L/poly) if
the weak one-way function it takes is in log-space (resp uniform L/poly) [AIK06,Gol01].

2.2 Levin’s Notion of Kolmogorov Complexity

Let U be some fixed Universal Turing machine that can emulate any Turing
machine M with polynomial overhead. Given a description Π ∈ {0, 1}∗ which
encodes a pair (M,w) where M is a (single-tape) Turing machine and w ∈ {0, 1}∗
is an input, let U(Π, 1t) denote the output of M(w) when emulated on U for t
steps. Note that (by assumption that U only has polynomial overhead) U(Π, 1t)
can be computed in time poly(|Π|, t). We turn to defining Levin’s notion of
Kolmogorov complexity [Lev73]:

Kt(x) = min
Π∈{0,1}∗,t∈N

{|Π|+ dlog te : U(Π, 1t) = x}.

Its decisional variant, the Minimum Kt Complexity Problem MKtP, is defined
as follows:

– Input: A string x ∈ {0, 1}n and a size parameter k ∈ {0, 1}dlogne.
– Decide: Does (x, k) satisfy Kt(x) ≤ k?

As is well known, we can always produce a string by hardwiring the string in (the
tape of) a machine that does nothing and just halts, which yields the following
central fact about (Levin)-Kolmogorov complexity.

Fact 21 ([Sip96]) There exists a constant c such that for every x ∈ {0, 1}∗ it
holds that Kt(x) ≤ |x|+ c.

2.3 Average-case Complexity

We will consider average-case complexity of languages L with respect to the
uniform distribution of instances. Let HeurnegBPP denote the class of languages
that can be decided by PPT heuristics that only make mistakes on a inverse
polynomial fraction of instances. More formally:
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Definition 3 (HeurnegBPP). For a decision problem L ⊂ {0, 1}∗, we say that
L ∈ HeurnegBPP if for all polynomial p(·), there exists a probabilistic polynomial-
time heuristic H, such that for all sufficiently large n,

Pr[x← {0, 1}n : H(x) = L(x)] ≥ 1− 1

p(n)
.

We will refer to languages in HeurnegBPP as languages that admit 2-sided error
heuristics. We will also consider a more restrictive type of errorless heuristics
H: for every instance x, with probability 0.9 (over the randomness of only H),
H(x) either outputs L(x) or ⊥ (for ‘I don’t know’). More formally,

Definition 4 (AvgnegBPP). For a decision problem L ⊂ {0, 1}∗, we say that
L ∈ AvgnegBPP if for all polynomial p(·), there exists a probabilistic polynomial-
time heuristic H, such that for all sufficiently large n, for every x ∈ {0, 1}n,8

Pr[H(x) ∈ {L(x),⊥}] ≥ 0.9,

and

Pr[x← {0, 1}n : H(x) = ⊥] ≤ 1

p(n)
.

We will refer to languages in AvgnegBPP as languages that admit errorless heuris-
tics. As explained in the introduction, to better understand the class AvgnegBPP,
it may be useful to compare it to the class AvgnegP (languages solvable by de-
terministic errorless heuristics): L ∈ AvgnegP if for every polynomial p(·), there
exists some deterministic polynomial-time heuristic H such that (a) for every
input x, H(x) outputs either L(x) or ⊥, and (b) the probability over uniform n-
bit inputs x that H outputs ⊥ is bounded by 1

p(n) . In other words, the only way

an errorless heuristic may make a “mistake” is by saying ⊥ (“I don’t know”),
whereas for a 2-sided error heuristic we do not know when mistakes happen.
AvgnegBPP is simply the natural “BPP-analog” of AvgnegP where the heuristic
is allowed to be randomized.

2.4 Computational Indistinguishability

We recall the definition of (computational) indistinguishability [GM84] along
with its infinitely-often variant.

Definition 5. Two ensembles {An}n∈N and {Bn}n∈N are said to be ε(·)-indistinguishable,
if for every PPT machine D (the “distinguisher”) whose running time is poly-
nomial in the length of its first input, there exists some n0 ∈ N so that for every
n ≥ n0:

|Pr[D(1n, An) = 1]− Pr[D(1n, Bn) = 1]| < ε(n)

We say that {An}n∈N and {Bn}n∈N are infintely-often ε(·)-indistinguishable (io-
ε-indistinguishable) if the above condition holds for infinitely many n ∈ N (as
opposed to all sufficiently large ones).
8 We remark that the constant 0.9 can be made arbitrarily small—any constants

bounded away from 2
3

works as we can amplify it using a standard Chernoff-type
argument.
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2.5 Pseudorandom Generators

We recall the standard definition of pseuodrandom generators (PRGs) and its
infinitely-often variant.

Definition 6. Let g : {0, 1}n → {0, 1}m(n) be a polynomial-time computable
function. g is said to be a ε(·)-pseudorandom generator (ε-PRG) if for any PPT
algorithm A (whose running time is polynomial in the length of its first input),
for all sufficiently large n,

|Pr[x← {0, 1}n : A(1n, g(x)) = 1]− Pr[y ← {0, 1}m(n) : A(1n, y) = 1]| < ε(n).

g is said to be an infinitely-often ε(·)-pseudorandom generator (io-ε-PRG) if the
above condition holds for infinitely many n ∈ N (as opposed to all).

Although the standard cryptographic definition of a PRG g requires that g runs
in polynomial time, when used for the other purposes (e.g., for derandomizing
BPP), we allow the PRG g to have an exponential running time [TV02]. We refer
to such PRGs (resp ioPRGs) as inefficient PRGs (resp inefficient ioPRGs).

2.6 Conditionally Entropy-preserving PRGs

Liu and Pass [LP20] introduced variant of a PRG referred to as an entropy-
preserving pseudorandom generator (EP-PRG). Roughly speaking, an EP-PRG
is a pseudorandom generator that expands n-bits to n + O(log n) bits, hav-
ing the property that the output of the PRG is not only pseudorandom, but
also preserves the entropy of the input (i.e., the seed): The Shannon-entropy
of the output is n − O(log n). [LP20] did not manage to construct an EP-
PRG from OWFs, but rather constructed a relaxed form of an EP-PRG, called
a conditionally-secure entropy-preserving PRG (condEP-PRG), which relaxes
both the pseudorandomness, and entropy-preserving properties of the PRG, to
hold only conditioned on some event E. We will here consider also an infinitely-
often variant:

Definition 7. An efficiently computable function G : {0, 1}n → {0, 1}n+γ logn

is a µ(·)-conditionally secure entropy-preserving pseudorandom generator (µ-
condEP-PRG) if there exist a sequence of events = {En}n∈N and a constant α
(referred to as the entropy-loss constant) such that the following conditions hold:

– (pseudorandomness): {G(Un | En)}n∈N and {Un+γ logn}n∈N are µ(n)-
indistinguishable;

– (entropy-preserving): For all sufficiently large n ∈ N, H(G(Un | En)) ≥
n− α log n.

G is referred to as an µ(·)-conditionally secure entropy-preserving infinitely-
often pseudorandom generator (µ-condEP-ioPRG) if it satisfies the above defini-
tion except that we replace µ(n)-indistinguishability with io-µ(n)-indistinguishability.
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We say that G has rate-1 efficiency if its running time on inputs of length n is
bounded by n+ O(nε) for some constant ε < 1. We recall that the existence of
rate-1 efficient condEP-PRGs can be based on the existence of OWFs, and that
the same theorem holds in the infinitely-often setting.

Theorem 7 ([LP20]). Assume that OWFs (resp. ioOWFs) exist. Then, for
every γ > 1, there exists a rate-1 efficient µ-condEP-PRG (resp. µ-condEP-
ioPRG) Gγ : {0, 1}n → {0, 1}n+γ logn, where µ = 1

n2 .

3 2-Sided Error Average-case Hardness of MKtP and
OWFs

In this section, we prove our main characterization of OWFs through 2-sided
error average-case hardness of MKtP.

Theorem 8. MKtP /∈ HeurnegBPP iff infinitely-often OWFs exist.

We remark that, in Appendix of the full paper, we also characterize “stan-
dard” (as opposed to infinitely-often) OWFs through (almost-everywhere) mild
average-case hardness of MKtP.

Theorem 8 follows directly from Theorem 9 (which is proven in Section 3.1)
and Theorem 10 (which is proven in Section 3.2).

3.1 OWFs from Two-sided Error Avg-case Hardness of MKtP

In this section, we show that if weak ioOWFs do not exists, then we can compute
the Kt-complexity of random strings with high probability (and thus MKtP is
in HeurnegBPP). On a high-level, we will be using the same proof approach as
in [LP20]. One immediate obstacle to relying on the proof in [LP20] is that
it relies on the fact that the program Π (which we refer to as the “witness”)
that certifies the time-bounded Kolmogorov complexity Kt of a string x, has
some a-priori polynomial running time, namely t(·); this polynomial bound gets
translated into the running time of the constructed OWF. Unfortunately, this
fact no longer holds when it comes to Kt-complexity: We say that the program Π
is a Kt-witness for the string x if Π generates x within t steps while minimizing
|Π|+ log t among all other programs (i.e., Π is a witness for the Kt-complexity
of x). Note that given a Kt-witness of a string x, there is no a-priori polynomial
time-bound on the running time of Π, since only the logarithm of the running
time gets included in the complexity measure. For instance, it could be that the
Kt-witness is a program Π of length n/10 that requires running time 2n/10, for
a total Kt-complexity of n/5. Nevertheless, the crucial observation we make is
that for most strings x, the running-time of the Kt-witness actually is small: For
every 0 < ε < 1, except for an ε fraction of n-bit strings x, x has a Kt-witness
Π that runs in time O( 1

ε ).
More formally:
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Fact 31 For all n ∈ N, 0 < ε < 1, there exists 1 − ε fraction of strings x ∈
{0, 1}n such that there exist a Turing machine Πx and a running time parameter
tx satisfying U(Πx, 1

tx) = x, |Πx|+ dlog txe = Kt(x), and tx ≤ 2c/ε (where c is
as in Fact 21).

Proof: Consider some n ∈ N, 0 < ε < 1, and some set S ⊂ {0, 1}n such that
|S| > ε2n. For any string x ∈ {0, 1}n, let (Πx, tx) be a pair of strings such that
U(Πx, 1

tx) = x and |Πx| + dlog txe = Kt(x); that is, (Πx, tx) is the optimal
compression for x. Note that for any x ∈ {0, 1}n, such (Πx, tx) always exists due
to Fact 21.9 Let c be the constant from Fact 21.

We assume for contradiction that for any x ∈ S, tx > 2c/ε. Note that
by Fact 21, it holds that Kt(x) ≤ |x| + c. Thus, |Πx| = Kt(x) − dlog txe ≤
n + c − dlog 2c/εe ≤ n − log 1/ε. Consider the set Z = {Πx : x ∈ S} of all
(descriptions of) Turing machines Πx. Since |Πx| ≤ n − log 1/ε, it follows that
|Z| ≤ 2n−log 1/ε = ε2n. However, for each machine Π in Z, it could produce only
a single string in S. So |Z| ≥ |S| > ε2n, which is a contradiction.

We now show how to adapt the proof in [LP20] by relying on the above fact.

Theorem 9. If MKtP /∈ HeurnegBPP, then there exists a weak ioOWF (and thus
also an ioOWF).

Proof: We start with the assumption that MKtP /∈ HeurnegBPP; that is, there
exists a polynomial p(·) such that for all PPT heuristics H′ and infinitely many
n,

Pr[x← {0, 1}n, k ← {0, 1}dlogne : H′(x, k) = MKtP(x, k)] < 1− 1

p(n)
.

Let c be the constant from Fact 21. Consider the function f : {0, 1}n+c+dlog(n+c)e →
{0, 1}∗, which given an input `||Π ′ where |`| = dlog(n + c)e and |Π ′| = n + c,
outputs `+ dlog te||U(Π, 1t) where Π is the `-bit prefix of Π ′, t is the (smallest)
integer ≤ 2c+2p(n) such that Π (when interpreted as a Turing machine) halts
in step t. (If Π does not halt in 2c+2p(n) steps, f picks t = 2c+2p(n).) That is,

f(`||Π ′) = `+ dlog te||U(Π, 1t).

Observe that f is only defined over some input lengths, but by an easy padding
trick, it can be transformed into a function f ′ defined over all input lengths, such
that if f is (weakly) one-way (over the restricted input lengths), then f ′ will be
(weakly) one-way (over all input lengths): f ′(x′) simply truncates its input x′

(as little as possible) so that the (truncated) input x now becomes of length
m = n+ c+ dlog(n+ c)e for some n and outputs f(x).

We now show that f is a 1
q(·) -weak ioOWF where q(n) = 22c+4np(n)2, which

concludes the proof of the theorem. Assume for contradiction that f is not a

9 We note that the choice of (Πx, tx) for some x is not unique. Our argument holds if
any such (Πx, tx) is chosen.
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1
q(·) -weak ioOWF; that is, there exists some PPT attacker A that inverts f with

probability at least 1 − 1
q(n) ≤ 1 − 1

q(m) for all sufficiently large input lengths

m = n+ c+ dlog(n+ c)e. We first claim that we can use A to construct a PPT
heuristic H∗ such that

Pr[x← {0, 1}n : H∗(x) = Kt(x)] ≥ 1− 1

p(n)
.

If this is true, consider the heuristic H which given a string x ∈ {0, 1}n and a
size parameter k ∈ {0, 1}dlogne, outputs 1 if H∗(x) ≤ k, and outputs 0 otherwise.
Note that if H∗ succeeds on some string x, H will also succeed. Thus,

Pr[x← {0, 1}n, k ← {0, 1}dlogne : H(x, k) = MKtP(x, k)] ≥ 1− 1

p(n)
,

which is a contradiction.
It remains to construct the heuristic H∗ that computes Kt(x) with high

probability over random inputs x ∈ {0, 1}n, using A. By an averaging argument,
except for a fraction 1

2p(n) of random tapes r for A, the deterministic machine

Ar (i.e., machine A with randomness fixed to r) fails to invert f with probability

at most 2p(n)
q(n) . Consider some such “good” randomness r for which Ar succeeds

to invert f with probability 1− 2p(n)
q(n) .

On input x ∈ {0, 1}n, our heuristic H∗r runs Ar(i||x) for all i ∈ [n + c]
where i is represented as a dlog(n + c)e-bit string, and outputs the smallest
i where the inversion on (i||x) succeeds. Let ε = 1

4p(n) , and S be the set of

strings x ∈ {0, 1}n for which H∗r(x) fails to compute Kt(x) and x satisfies the
requirements in Fact 31. Note that the probability that a random x ∈ {0, 1}n
does not satisfy the requirements in Fact 31 is at most ε. Thus, H∗r fails with
probability at most (by a union bound)

failr ≤ ε+
|S|
2n
.

Consider any string x ∈ S and let w = Kt(x) be its Kt-complexity. Note that x
satisfies the requirements in Fact 31; that is, there exist a Turing machine Πx and
a running time parameter tx such that U(Πx, 1

tx) = x, |Πx|+ dlog txe = Kt(x),
and tx ≤ 2c/ε = 2c+2p(n). By Fact 21, we have that |Πx| ≤ w ≤ n + c. Thus,
for all strings (`||Π ′) ∈ {0, 1}n+c+dlog(n+c)e such that ` = |Πx|, [Π ′]|`| = Πx,
it holds that f(`||Π ′) = (w||x). Since H∗r(x) fails to compute Kt(x), Ar must
fail to invert (w||x). But, since |Πx| ≤ n+ c, the output (w||x) is sampled with
probability at least

1

n+ c
· 1

2|Πx|
≥ 1

n+ c

1

2n+c
≥ 1

n22c+1
· 1

2n

in the one-way function experiment, so Ar must fail with probability at least

|S| · 1

n22c+1
· 1

2n
=

1

n22c+1
· |S|

2n
≥ failr − ε

n22c+1
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which by assumption (that Ar is a good inverter) is at most that 2p(n)
q(n) . We thus

conclude that

failr ≤
22c+2np(n)

q(n)
+ ε

Finally, by a union bound, we have that H∗ (using a uniform random tape r)
fails in computing Kt with probability at most

1

2p(n)
+

22c+2np(n)

q(n)
+ ε =

1

2p(n)
+

22c+2np(n)

22c+4np(n)2
+

1

4p(n)
=

1

p(n)
.

Thus, H∗ computes Kt with probability 1− 1
p(n) for all sufficiently large n ∈ N,

which is a contradiction.

3.2 Two-sided Error Avg-case Hardness of MKtP from ioOWFs

In this section, we will prove the following theorem:

Theorem 10. If ioOWFs exist, then MKtP 6∈ HeurnegBPP.

Proof: The theorem follows immediately from Theorem 7 and Theorem 11 that
will be stated and proved below.

Recall that Theorem 7 shows that ioOWFs imply the existence of rate-1
efficient condEP-ioPRGs. Theorem 11 below will show that the existence of
rate-1 efficient condEP-ioPRGs implies that MKtP 6∈ HeurnegBPP. We remark
that the proof of this theorem closely follows the proof in [LP20] and relying
with only relatively minor modifications to observe that the properties used of
the time-bounded Kolmogorov complexity function actually also hold for Kt—
namely that random strings have “high” Kt-complexity, whereas outputs of a
PRG have “low” Kt-complexity.10

Theorem 11. Assume that for some γ ≥ 4, there exists a rate-1 efficient µ-
condEP-ioPRG G : {0, 1}n → {0, 1}n+γ logn where µ(n) = 1/n2. Then, MKtP /∈
HeurnegBPP.

Proof: Let G : {0, 1}n → {0, 1}m(n) where m(n) = n + γ log n be a rate-1
efficient 1

n2 -condEP-ioPRG with entropy loss constant α. Let p(n) = 2n2(α+γ+2).
We assume for contradiction that MKtP ∈ HeurnegBPP; that is, there exists some
PPT H that decides MKtP with probability at least 1 − 1

p(m′) where m′(m) =

m+ dlogme (on input length m′) for all sufficiently large n, m(n), and m′(m).
Recall that G is associated with a sequence of events {En}n∈N.

10 There are also some other minor differences due to the fact that the proof in [LP20]
considered the hardness of computing (or approximating) Kt, whereas we here con-
sider a decisional problem with a random threshold k, but the proof in [LP20]
extends in a relatively straightforward way to deal also with decisional problems
with a random threshold k.



On the Possibility of Basing Cryptography on EXP 6= BPP 17

We show that H can be used to break the condEP-ioPRG G. Towards this,
recall that a random string has high Kt-complexity with high probability: for
m = m(n), we have,

Pr
x∈{0,1}m

[Kt(x) > m− γ

2
log n] ≥ 2m − 2m−

γ
2 logn

2m
= 1− 1

nγ/2
, (1)

since the total number of Turing machines with length smaller than m− γ
2 log n

is only 2m−
γ
2 logn. However, any string output by G, must have “low” Kt com-

plexity: For every sufficiently large n,m = m(n), we have that,

Pr
z∈{0,1}n

[Kt(G(z)) > m− γ

2
log n] = 0, (2)

since G(z) can be represented by combining a seed z of length n with the code
of G (of constant length), and the running time of G(z) is bounded by 1.1n for
all sufficiently large n (since G is rate-1 efficient), so Kt(G(z)) = n + O(1) +
dlog(1.1n)e = (m− γ log n) +O(1) + dlog(1.1n)e ≤ m− γ/2 log n for sufficiently
large n (since recall that γ ≥ 4).

Based on these observations, we now construct a PPT distinguisher A break-
ing G. On input 1n, x, where x ∈ {0, 1}m(n), A(1n, x) lets k = m − γ

2 log n and
outputs 1 if H(x, k) outputs 1 and 0 otherwise. Consider some sufficiently large
n, m(n), and m′(n). The following two claims conclude that A distinguishes
Um(n) and G(Un | En) with probability at least 1

n2 .

claim 1 A(1n,Um) outputs 0 with probability at least 1− 2
nγ/2

.

Proof: Note that A(1n, x) will output 0 if x is a string with Kt-complexity
larger than m− γ/2 log n and H succeeds on input (x, k). Thus,

Pr[A(1n, x) = 0]

≥ Pr[Kt(x) > m− γ/2 log n ∧H succeeds on (x, k)]

≥ 1− Pr[Kt(x) ≤ m− γ/2 log n]− Pr[H fails on (x, k)]

≥ 1− 1

nγ/2
− 1

p(m′)

≥ 1− 2

nγ/2
.

where the probability is over a random x← Um, k ← dlogme and the random-
ness of A and H.

claim 2 A(1n, G(Un | En)) outputs 0 with probability at most 1− 1
n + 2

n2

Proof: Recall that by assumption, H(x, k) fails to decide whether (x, k) ∈
MKtP for a random x ∈ {0, 1}m, k ∈ {0, 1}dlogme with probability at most 1

p(m′)

(where m′ = m + dlogme). By an averaging argument, for at least a 1 − 1
n2
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fraction of random tapes r for H, the deterministic machine Hr fails to decide

MKtP with probability at most n2

p(m′) . Fix some “good” randomness r such that

Hr decides MKtP with probability at least 1− n2

p(m′) . We next analyze the success

probability of Ar. Assume for contradiction that Ar outputs 1 with probability
at least 1 − 1

n + 1
nα+γ on input G(Un | En). Recall that (1) the entropy of

G(Un | En) is at least n− α log n and (2) the quantity − log Pr[G(Un | En) = y]
is upper bounded by n for all y ∈ G(Un | En). By an averaging argument, with
probability at least 1

n , a random y ∈ G(Un | En) will satisfy

− log Pr[G(Un | En) = y] ≥ (n− α log n)− 1.

We refer to an output y satisfying the above condition as being “good” and other
y’s as being “bad”. Let S = {y ∈ G(Un | En) : Ar(1n, y) = 0 ∧ y is good}, and
let S′ = {y ∈ G(Un | En) : Ar(1n, y) = 0 ∧ y is bad}. Since

Pr[Ar(1n, G(Un | En)) = 0] = Pr[G(Un | En) ∈ S] + Pr[G(Un | En) ∈ S′],

and Pr[G(Un | En) ∈ S′] is at most the probability that G(Un | En) is “bad”
(which as argued above is at most 1− 1

n ), we have that

Pr[G(Un | En) ∈ S] ≥
(

1− 1

n
+

1

nα+γ

)
−

(
1− 1

n

)
=

1

nα+γ
.

Furthermore, since for every y ∈ S, Pr[G(Un | En) = y] ≤ 2−n+α logn+1, we also
have,

Pr[G(Un | En) ∈ S] ≤ |S|2−n+α logn+1

So,

|S| ≥ 2n−α logn−1

nα+γ
= 2n−(2α+γ) logn−1

However, for any y ∈ G(Un | En), if Ar(1n, y) outputs 0, then by Equation 2,
Kt(y) ≤ m− γ/2 log n = k, so Hr fails to decide MKtP on input (y, k).

Thus, the probability that Hr fails (to decide MKtP) on a random input
(y, k) ∈ {0, 1}m′ is at least

|S|/2m
′

=
2n−(2α+γ) logn−1

2n+γ logn+dlogme ≥
2−(2α+2γ) logn−1

2dlogme
≥ 2−2(α+γ+1) logn−1 =

1

2n2(α+γ+1)

which contradicts the fact that Hr fails to decide MKtP with probability at most
n2

p(m′) <
1

2n2(α+γ+1) (since n < m′).

We conclude that for every good randomness r, Ar outputs 0 with probability
at most 1− 1

n + 1
nα+γ . Finally, by union bound (and since a random tape is bad

with probability ≤ 1
n2 ), we have that the probability that A(G(Un | En)) outputs

1 is at most
1

n2
+

(
1− 1

n
+

1

nα+γ

)
≤ 1− 1

n
+

2

n2
,

since γ ≥ 2.
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We conclude, recalling that γ ≥ 4, that A distinguishes Um and G(Un | En) with
probability of at least(

1− 2

nγ/2

)
−
(

1− 1

n
+

2

n2

)
≥

(
1− 2

n2

)
−

(
1− 1

n
+

2

n2

)
=

1

n
− 4

n2
≥ 1

n2

for all sufficiently large n ∈ N.

4 Errorless Avg-case Hardness of MKtP and EXP 6= BPP

In this section, we will prove the following theorem:

Theorem 12. EXP 6= BPP if and only if MKtP /∈ AvgnegBPP.

Roughly speaking, the above theorem is proved in two steps:

– We first observe that, assuming EXP 6= BPP, there exists an (inefficient,
infinitely-often) pseudorandom generator [IW98] that maps a nε-bit seed to
a n-bit string in time O(2n

γ

) (for some 0 < ε, γ < 1).
– We will next show that an errorless heuristic for MKtP can be used to break

such PRGs (since the Kt-complexity of the output of the PRG is at most
nε + nγ +O(1) ≤ n− 1), which is a contradiction and concludes the proof.

Recall that Impagliazzo and Wigderson [IW98] showed that BPP can be de-
randomized (on average) in subexponential time by assuming EXP 6= BPP. The
central technical contribution in their work can be stated as proving the existence
of an inefficient PRG assuming EXP 6= BPP :

Theorem 13 (implicit in [IW98], explicitly stated in e.g., [TV02, The-
orem 3.9]). Assume that EXP 6= BPP. Then, for all ε > 0, there exists an
inefficient io- 1

10 -PRG G : {0, 1}nε → {0, 1}n that runs in time 2O(nε).

We note that the proof in [IW98], is non black-box. In particular, it does not
show how to solve EXP in probabilistic polynomial-time having black-box access
to an attacker that breaks the PRG.

It remains to show that if there exists an (inefficient) ioPRG G : {0, 1}nε →
{0, 1}n with running time O(2n

γ

) (for some 0 < ε, γ < 1), then MKtP /∈
AvgnegBPP. We recall that a string’s Kt-complexity is the minimal sum of (1)
the description length of a Turing machine that prints the string and (2) the
logarithm of its running time. Note that the output of G could be printed by a
machine with the code of G (of constant length) and the seed (of length nε) hard-
wired in it within O(2n

γ

) time. Thus, strings output by G have Kt-complexity
less than or equal to O(1) +nε+nγ ≤ n− 1. On the other hand, random strings
have high Kt-complexity (e.g., > n − 1) with high probability (e.g., ≥ 1

2 ). It
follows that an errorless heuristic for MKtP can be used to break G. Let us high-
light why it is important that we have an errorless heuristic (as opposed to a
2-sided error heuristic): while a 2-sided error heuristic would still work well on
random strings, we do not have any guarantees on its success probability given
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pseudorandom strings (as they are sparse); an errorless heuristics, however, will
either correctly decide those strings, or output ⊥ (in which case, we can also
guess that the string is pseudorandom).

We proceed to a formal statement of the theorem, and its proof.

Theorem 14. Assume that there exist constants 0 < ε, γ < 1 and an inefficient
io- 1

10 -PRG G : {0, 1}nε → {0, 1}n with running time O(2n
γ

). Then, MKtP /∈
AvgnegBPP.

Proof: We assume for contradiction that MKtP ∈ AvgnegBPP, which in turn
implies that there exists an errorless PPT heuristicH such that for all sufficiently
large n, every x ∈ {0, 1}n and k ∈ {0, 1}dlogne,

Pr[H(x, k) ∈ {MKtP(x, k),⊥}] ≥ 0.9, (3)

and

Pr[x← {0, 1}n, k ← {0, 1}dlogne : H(x, k) = ⊥] ≤ 1

2n2
.

Fix some sufficiently large n, and let k = n − 1. It follows by an averaging
argument that

Pr[x← {0, 1}n : H(x, n− 1) = ⊥] ≤ 1

2n2
· 2dlogne ≤ 1

n
. (4)

We next show that we can use H to break the PRG G. On input x ∈ {0, 1}n,
our distinguisher A(1n

ε

, x) outputs 1 if H(x, n − 1) = 1 or H(x, n − 1) = ⊥. A
outputs 0 if and only if H(x, n− 1) = 0. The following two claims conclude that
A distinguishes Un and G(Unε) with probability at least 0.2.

Claim 1. A(1n
ε

,Un) will output 0 with probability at least 0.4− 1
n .

Proof: Note that the probability that a random string x ∈ {0, 1}n is of Kt-

complexity at most n−1 is at most 2n−1

2n = 1
2 (since the total number of machines

with description length ≤ n − 1 is 2n−1). And the probability that H(x, n − 1)
outputs ⊥ is at most 1

n (over random x ∈ {0, 1}n) by Equation 4. In addition,
the probability that H(x, n− 1) fails to output either MKtP(x, n− 1) or ⊥ is at
most 0.1 by Equation 3. Thus, by a union bound,

Pr[A(1n
ε

,Un) = 0]

≥1− Pr[Kt(Un) ≤ n− 1]− Pr[H(Un, n− 1) = ⊥]− Pr[H(Un, n− 1) fails]

≥1− 1

2
− 1

n
− 0.1

=0.4− 1

n
.

Claim 2. A(1n
ε

, G(Unε)) will output 0 with probability at most 0.1.
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Proof: We first show that for all z ∈ {0, 1}nε , Kt(G(z)) ≤ nε + nγ + O(1) ≤
n− 1 = s. Note that the string G(z) could be produced by a machine with the
code of G (of length O(1)) and the seed z (of length nε) in time O(2n

γ

) (which
adds logO(2n

γ

) = nγ + O(1) to its Kt-complexity). In addition, recall that H
is a probabilistic errorless heuristics. Thus, H(G(z), n − 1) will output 0 with
probability at most 0.1 (by Equation 3), and the claim follows.

This conclude the proof of Theorem 14.

We are now ready to conclude the proof of Theorem 12.
Proof: [of Theorem 12] We show each direction separately:

– To show that EXP 6= BPP =⇒ MKtP 6∈ AvgnegBPP, assume that EXP 6=
BPP and let ε = 1

3 , and γ = 1
2 . By Theorem 13, there exists an io- 1

10 -PRG

G : {0, 1}nε → {0, 1}n with running time 2O(nε) ≤ O(2n
γ

). We conclude by
Theorem 14 that MKtP 6∈ AvgnegBPP.

– To show that MKtP 6∈ AvgnegBPP =⇒ EXP 6= BPP, assume that MKtP 6∈
AvgnegBPP; this trivially implies that MKtP 6∈ BPP. We observe that MKtP ∈
EXP as by Fact 21, Kt(x) ≤ |x|+O(1) and thus the running-time for a Kt-
witness, Π, for x is bounded by 2|x|+O(1). Thus, EXP 6⊆ BPP, which in
particular means that EXP 6= BPP.

5 On the implication MKtP 6∈ AvgnegBPP =⇒ MKtP 6∈
HeurnegBPP

Recall that in Theorem 12, we showed that if one assumes an (extremely) weak
lowerbound (namely, EXP 6= BPP), then the problem MKtP is hard on aver-
age for errorless heuristics. Furthermore, in Theorem 9, we showed that if the
problem MKtP is hard-on-average for 2-sided error heuristics that only make
a small number of mistakes, then (infinitely-often) one-way functions exist.
Combining the two theorems together, we have that the implication MKtP 6∈
AvgnegBPP =⇒ MKtP 6∈ HeurnegBPP fully characterizes when we can base the
existence of (infinitely-often) one-way functions on EXP 6= BPP. Formally,

Theorem 15. MKtP 6∈ AvgnegBPP ⇒ MKtP 6∈ HeurnegBPP holds iff EXP 6=
BPP⇒ the existence of ioOWFs.

Proof: The proof immediately follows from Theorem 12 and Theorem 9.

Perhaps surprisingly, we observe that the implication itself (without any as-
sumptions) implies that NP 6= P. The pessimistic way to interpret this is that
closing the gap between 2-sided error, and errorless, heuristics will be very hard
(as it requires proving that NP 6= P). The optimistic way to interpret it, how-
ever, is as a new and algorithmic approach towards proving that NP 6= P: To
demonstrate that NP 6= P, it suffices to demonstrate that MKtP can be solved
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by an errorless heuristic, given access to a two-sided error heuristic for the same
problem. (As we shall point out shortly, this approach also does not “overshoot”
the NP vs P problem by too much: any proof of the existence of infinitely often
one-way functions, needs to show this implication.)

Theorem 16. If it holds that MKtP 6∈ AvgnegBPP⇒ MKtP 6∈ HeurnegBPP, then
NP 6= P.

Proof: Assume for contradiction that MKtP 6∈ AvgnegBPP⇒ MKtP 6∈ HeurnegBPP

holds, yet NP = P. Recall that BPP ⊆ NPNP [Sip83,Lau83], so it follows that P =
BPP, and thus by the time-hierarchy Theorem [HS65], EXP 6= BPP. Then, by
Theorem 12, MKtP 6∈ AvgnegBPP. It follows from our assumption that MKtP 6∈
AvgnegBPP ⇒ MKtP 6∈ HeurnegBPP and from Theorem 15 that ioOWFs exist,
which contradicts the assumption that NP = P.

We remark that the above theorem could be strengthened to show even that NP
is average-case hard (w.r.t. deterministic errorless heuristics), since Buhrman,
Fortnow, and Pavan [BFP03] have showed that unless this is the case, P = BPP,
which suffices to complete the rest of the proof.

Finally, we remark that the implication MKtP 6∈ AvgnegBPP ⇒ MKtP 6∈
HeurnegBPP must be true if infinitely-often one-way functions exist since by
Theorem 10, the existence of ioOWFs implies MKtP 6∈ HeurnegBPP, which in
turn implies that the implication trivially holds.
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Deferred Content Due to the page limit, we refer the read to the full paper
for characterization of log-space computable OWFs and OWFs in uniform NC0

through some notions of resource-bounded Kolmogorov complexity. We will also
present characterizations of “standard” OWFs (instead of infinitely-often) in the
appendix of the full paper.
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