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Abstract. Zero knowledge proofs are an important building block in
many cryptographic applications. Unfortunately, when the proof state-
ments become very large, existing zero-knowledge proof systems easily
reach their limits: either the computational overhead, the memory foot-
print, or the required bandwidth exceed levels that would be tolerable
in practice.
We present an interactive zero-knowledge proof system for boolean and
arithmetic circuits, called Mac′n′Cheese, with a focus on supporting large
circuits. Our work follows the commit-and-prove paradigm instantiated
using information-theoretic MACs based on vector oblivious linear eval-
uation to achieve high efficiency. We additionally show how to optimize
disjunctions, with a general OR transformation for proving the disjunc-
tion of m statements that has communication complexity proportional
to the longest statement (plus an additive term logarithmic in m). These
disjunctions can further be nested, allowing efficient proofs about com-
plex statements with many levels of disjunctions. We also show how to
make Mac′n′Cheese non-interactive (after a preprocessing phase) using
the Fiat-Shamir transform, and with only a small degradation in sound-
ness.
We have implemented the online phase of Mac′n′Cheese and achieve a
runtime of 144 ns per AND gate and 1.5 µs per multiplication gate in
F261−1 when run over a network with a 95 ms latency and a bandwidth
of 31.5 Mbps. In addition, we show that the disjunction optimization im-
proves communication as expected: when proving a boolean circuit with
eight branches and each branch containing roughly 1 billion multiplica-
tions, Mac′n′Cheese requires only 75 more bytes to communicate than in
the single branch case.

1 Introduction

Zero knowledge (ZK) proofs are interactive protocols which allow a prover P to
convince a verifier V that a certain statement x is true in such a way that V
learns nothing beyond the validity of the statement. ZK proofs have a wide range
of applications in cryptography, from signatures [BG90] to compiling other pro-
tocols from passive to active security [GMW87]. More recently, ZK proofs have



seen widespread applications outside of classical cryptography, for example in the
cryptocurrency space [BCG+14]. These constructions mostly focus on succinct-
ness and non-interactivity ; namely, the construction of “succinct” proofs that
have a small verification runtime and that do not require interaction between P
and V for validation.

However, for sufficiently large statements—on the order of billions of instructions—
most existing proof systems fail due to either memory constraints or high prover
running times. Systems such as SNARKs [BCG+13] or recent IOP-based con-
structions such as Ligero [AHIV17] or STARKs [BBHR19] suffer from exactly
this drawback: they have an inherent asymptotic prover overhead, paying at least
a multiplicative factor log(|x|) in computation when the statement has length
|x|, and they need to keep the entire statement x in memory.

1.1 Our Approach: Mac′n′Cheese

In this work we introduce a family of novel ZK proof protocols called Mac′n′Cheese,
which are optimized for statements at scale. We use the commit-and-prove paradigm [CD97],
where we “commit to” values using an information-theoretic message authenti-
cation code (MAC). For each committed value, P holds the MAC’ed value and
the tag, and V holds the MAC key. Such commitments can be generated very
efficiently using vector oblivious linear evaluation (VOLE) [BCGI18] in a prepro-
cessing phase, which can generate many such random commitments with only a
small amount of interaction and computation [WYKW20].

Naively, this commit-and-prove approach leads to a proof with bandwidth
costs that scale linearly with the circuit size. To decrease this, in Mac′n′Cheese
we support efficiently evaluating disjunctive statements, namely, to prove that
one out of m statements is true, the prover only needs to communicate the in-
formation needed to evaluate the true branch among all m disjunctions. Both
parties still perform the computations necessary to evaluate each branch, but
the verifier uses the messages for the correct branch for all m instances simul-
taneously. The idea of optimizing disjunctive statements in this way was first
considered in recent work on stacked garbling [HK20b], with proofs of disjunc-
tions based on garbled circuits. They observed that disjunctive statements can
arise in many natural applications, such as when proving in zero-knowledge the
existence of a bug in a program, so optimizing these is well-motivated.

At a high level, our technique can be seen as a generalized OR composition
for m protocols, where the resulting OR proof has communication complex-
ity proportional to max{Ci}, where Ci is the complexity of the i-th protocol.
Contrasted with the classic OR proof approach [CDS94], which requires

∑
Ci

communication, our techniques for stacking save a multiplicative factor of m.
On the other hand, compared with stacked garbling [HK20b], our underlying
protocols have around 20× less communication, and are also more flexible, since
we can support both boolean and arithmetic circuits.

Efficiency comparison and related work. Table 1 shows the efficiency of our
protocols alongside other VOLE- or garbled-circuit-based protocols, where we fo-

2



Protocol Boolean Arithmetic Disjunctions

Comm. Rounds Mmps Comm. Rounds Mmps

Stacked garbling [HK20b] 128 3 0.31 — — — X
Wolverine [WYKW20] 7∗ 3 2.02 4 3 0.22 7†

Line-Point ZK [DIO21] — — — 1 3 — 7

QuickSilver [YSWW21] 1 3 12.23 1 3 1.43 7

Mac′n′Cheese (simple) 9 3 — 3 3 — X
Mac′n′Cheese (batched) 1 + ε∗ O(log b) 6.94 1 + ε∗ O(log b) 0.64 X
∗ For large batches (e.g., b ≥ 1 million).
†While we believe Wolverine can be combined with our approach described in §3.1, the performance
implications of this combination are unclear.

1 With a 100 ms latency and a 100 Mbps bandwidth.
2 With a 0.1 ms latency and a 50 Mbps bandwidth.
3 With a 0.1 ms latency and a 30 Mbps bandwidth for boolean and a 100 Mbps bandwidth for
arithmetic.

4 With a 93 ms latency and a 31.5 Mbps bandwidth.

Table 1. Comparison of different GC and VOLE-based ZK protocols (costs exclude
OT/VOLE setup). “Comm.” denotes the number of field elements communicated per
multiplication. “Rounds” denotes the total number of rounds required, where we count
rounds as the number of message flows, so one round is a single message from the
prover to the verifier. “Mmps” denotes the number of multiplication gates per second
in millions. We caution against reading too much into these numbers due to differ-
ing experimental environments, and provide them mostly as a rough comparison guide.
“Disjunctions” denotes those protocols that support communication-optimized disjunc-
tions. The variable b denotes the batch-size of multiplications, and ε denotes a value
close to zero that depends on b. Concretely, for a batch size of b = 1 000 000 we re-
quire 17 rounds with ε = .008 for the boolean case (using F240) and ε = .257 for the
arithmetic case (using Fp for p = 261 − 1).

cus on communication cost per multiplication gate measured in field elements. As
far as we are aware, there are only two ZK approaches that can successfully scale
to large statements: the garbled circuit ZK approach [JKO13,FNO15,ZRE15,HK20b],
and the more recent approach based on VOLE, namely the concurrent works
Wolverine [WYKW20] and Line-Point ZK [DIO21], plus QuickSilver [YSWW21]
(which builds on Line-Point ZK). All of these VOLE-based approaches have
provers that run linear in the proof statement alongside the ability to “stream”—
namely, the prover and verifier are not required to store the entire proof state-
ment in memory.

For Mac′n′Cheese, our first class of “simple” protocols reduces the communi-
cation complexity of Wolverine from 4 to 3 field elements for arithmetic circuits,
and achieves a slightly higher cost (9 bits) for boolean circuits, while avoiding
the need to amortize over many gates. Our second set of protocols has essen-
tially the same practical cost as Line-Point ZK and QuickSilver, but is best run
in large batches, so suited for bigger circuits. Importantly, all of our protocols

3



are compatible with our technique for efficient disjunctions—we currently do not
know how to efficiently adapt this technique for QuickSilver or Line-Point ZK3.

Finally, note that for zero knowledge from garbled circuits, the best approach
currently has a communication cost of 128 bits per AND gate, which is around
18× higher than our approach that also supports disjunctive statements. We note
that Heath and Kolesnikov [HK20b] were the first to consider “stacked” disjunc-
tive proofs. Our approach was inspired by stacked garbling, but the technique
is very different, and closer in spirit to the earlier ‘free if’ for private function
evaluation [Kol18] (although neither technique follows from the other).

Implementation. We implemented the online phase of Mac′n′Cheese in the
Rust programming language. Currently, we do not have an implementation
of VOLE, which should add a small amount of communication—0.42 bits per
VOLE—and slight increase in runtime—at most 85 ns per VOLE [WYKW20,
Table 4].

When run on a real-world network (95 ms latency and a bandwidth of
31.5 Mbps), Mac′n′Cheese requires approximately 1.5 µs per multiplication gate
(for F261−1), and 144 ns per AND gate (using F240). Run locally, Mac′n′Cheese
requires approximately 276 ns per multiplication gate and 141 ns per AND gate.
We also show that disjunctions have large communication savings: when run on
a circuit containing eight branches each of which contains 1 billion multiplication
gates, we see a communication increase of only 75 bytes versus running a single
1-billion-gate branch.

1.2 Our Techniques

We present the Mac′n′Cheese approach in four steps: first, we describe the zero-
knowledge protocol in a setting with idealized homomorphic commitments to
single field elements. Next, we present an abstraction for such protocols which
we call Interactive Protocols with Linear Oracle Verification—IPs with LOVe for
short—and explain how IPs with LOVe naturally support nested disjunctions
and can be compiled to ZK protocols using VOLE. We then provide efficient IPs
with LOVe for general circuit satisfiability, which intuitively follow from such
protocols for homomorphic commitments. Finally, we show that our protocols
are compatible with streaming and that we can apply the Fiat-Shamir transform
to reduce the round complexity with only a small loss in soundness.

Circuit satisfiability via idealized homomorphic commitments. Assume
that the statement x, together with a witness w, is provided to P while V only
obtains x. We consider x as a circuit C over a finite field F, such that C(w) = 0
iff (x,w) ∈ R and assume that w is a vector over F.

3 The challenge in applying our disjunction optimization to these protocols is that the
verification check requires input from V, which allows a malicious V to try to guess
the evaluated branch by supplying an invalid value for all other branches.
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Implementing the test that C(w) = 0 can be done using standard techniques
with idealized homomorphic commitments [CD98], but we nevertheless sketch
these now. First, P commits to (1) w, (2) triples of the form a, b, c such that
c = a · b, and (3) the outputs of all the gates of C(w). P and V then engage in
an interactive protocol to test that:

1. The commitments to gate outputs are consistent with C and w; and
2. The output of the output gate of C is zero.

Note that these checks reduce to testing that certain committed values are zero:

– This is clear for testing the output of the output gate.
– For each addition gate (or multiplications with public constants from F) one

can simply apply the respective linear operation to the commitments to the
inputs of the gate, subtract the commitment of the output and test if the
result is a commitment to zero.

– For each multiplication gate, we use Beaver’s circuit randomization ap-
proach [Bea92,CD98,KOS16] to reduce multiplication to zero-testing a com-
mitment to a linear combination of commitments to the gate inputs, outputs,
and the random triples (a, b, c), alongside an additional random element sent
by V. (In fact, this random element can be generated by the output of a ran-
dom oracle on the protocol transcript using the Fiat-Shamir transform. We
provide more details on this in § 4.1.)

When instantiating homomorphic commitments with VOLE (as we describe
later), this basic protocol has an amortized communication complexity of 3 field
elements per multiplication gate. This improves upon the arithmetic protocol of
Weng et al. [WYKW20], which uses 4 field elements, although they also present a
variant with 2 field elements per multiplication which has a higher computational
cost due to polynomial operations.

Formalizing security using IPs with LOVe (§ 2). Proofs based on ideal
homomorphic commitments can be modeled as a functionality where the prover
initially commits to some secret values, and the verifier is then allowed to perform
linear queries to the commitments, to check that certain relations hold. For
instance, linear interactive oracle proofs (IOPs) [BBC+19] model exactly this.
In § 2, we extend this paradigm with a new abstraction called interactive proofs
with linear oracle verification (IPs with LOVe). In this abstraction, P begins
by committing some proof string π to an oracle O. The parties then exchange
messages for a fixed number of rounds, after which V sends multiple queries of
the form (zi, yi) to O. These queries are determined by V based on the messages
that it received in the previous rounds. O truthfully tells V if 〈π, zi〉 = yi or
not for each of these queries. Eventually, V outputs a bit to represent whether
it accepts or not.

The key difference between IPs with LOVe and linear IOPs [BBC+19], is
that on top of oracle queries, we allow the prover and verifier to exchange a
number of messages. Therefore, IPs with LOVe naturally model homomorphic
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commitments in the same way as linear IOPs, while also giving extra power from
the exchange of messages, which is what we exploit in our protocols for efficient
disjunctions.

From IPs with LOVe to IPs with VOLE. We show that any Public Coin
IP with LOVe can be combined with a VOLE protocol to obtain a ZK proof.
This is described in § 2.2. We instantiate the oracle O that contains the string
π using information-theoretic commitments (or MACs) of the form

MAC(α,β)(x) := xα+ β,

where x comes from a field Fp and all remaining value from an extension field Fpk
for k ≥ 1. We call α the “MAC key” and β the “MAC offset”, and sometimes use
the notation K to denote the tuple (α, β), held by the verifier, and τ to denote
the MAC tag, held by the prover. These commitments are linearly homomorphic
for keys that share the α component, so we can realize each oracle query as a
zero-test on such commitments. Their binding guarantee follows from the size
of Fpk .

A batch of n MACs on random values is exactly equivalent to a VOLE of
length n, since the MAC relation can be viewed as evaluating a linear func-
tion on the input x. This can be generated with high efficiency using recent
(random) VOLE protocols based on arithmetic variants of the LPN assump-
tion [BCGI18,BCG+19a,WYKW20], with communication almost independent
of n. VOLE on random inputs gives us a committed proof string of random el-
ements; the prover can then take any of these random values and adjust them
with a masked value to commit to an input of his choice.

Disjunctive proofs for IPs with LOVe (§ 3). Our main technical contri-
bution, described in § 3.1, can be seen as a general form of OR composition for
IPs with LOVe. The communication complexity in the resulting OR proof is
proportional to the maximum of that in the original proofs. Note that our trans-
formation is different to the stacked garbling approach [HK20b] (which does not
fit the IP with LOVe paradigm), and we obtain much greater efficiency when
using our IPs with LOVe instead.

We limit ourselves to IPs with LOVe that are public coin, i.e., where V only
sends messages that are random bits and where the queries to O can be derived
deterministically from the protocol transcript. This is indeed the case for our
general IP with LOVe protocols that we describe later. We then go on to show
that if one has m such public coin IPs with LOVe Π1, · · · , Πm whose messages
from P to V can be made “compatible”, then one can construct a (public coin) IP
with LOVe Π whose message complexity essentially only depends on the protocol
Πi which sends the most messages, plus an additional check that requires O(m)
communication but is independent of all m IPs of LOVe themselves. V accepts
in Π if and only if at least one of the instances Πi was accepting.

In order to run Π, P and V initially execute Π1, . . . ,Πm in parallel. The
key insight is that we only send those messages from P to V that belong to
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the one protocol Πi∗ where P has a witness wi∗ for xi∗ , padding with dummy
messages such that the communication looks as if it could belong to any of the
m branches. V uses the one message that it obtains per round for all Π1, . . . ,Πm

in parallel, not knowing to which of the m protocols it belongs. Finally, instead
of performing the queries to O at the end of each Πi, Π runs a standard (small)
OR-proof à la Cramer et al. [CDS94] to show that the queries in at least one
of the m branches are all valid. The trick here is that we can show that this
OR-proof can itself be expressed as sending certain messages between P and
V followed by queries to O from V, making Π a public coin IP with LOVe as
desired.

Thresholds, logarithmic overhead, and recursive nesting. The OR-proof
of Cramer et al. [CDS94] can be generalized for any threshold r out of m, showing
that at least r instances of Π1, . . . ,Πm were correct. We generalize our protocol
to this setting, with communication r times that of Πi, instead of m.

While the above techniques avoid the factor m blowup from [CDS94], they do
still incur an additive O(m) overhead in the number of statements. We present
a different approach, which reduces this to logarithmic using recursion. The key
idea is that we can build a 1-out-of-2 disjunctive proof, which itself satisfies
the conditions required to be stacked. Applying recursion in a binary tree-like
manner, we obtain a 1-out-of-m proof with O(logm) overhead. Note that the
ability to recurse is also useful when capturing proofs about complex programs,
which may contain arbitrary nested levels of disjunctions, with communication
proportional to the longest path through the entire program. The original stacked
garbling approach [HK20b] did not support nested disjunctions, however, a later
update shows how to handle them [HK20a].

Efficient IPs with LOVe for circuit satisfiability (§4). Towards efficiently
instantiating IPs with LOVe, in § 4.1 we describe a simple high-level syntax
for expressing a large class of IPs with LOVe using an abstract homomorphic
commitment notation. We refer to these as commit-and-prove (C&P) IPs with
LOVe. This avoids the low-level details in the definition, simplifying the process
of specifying and analyzing protocols. To illustrate this, we describe in § 4.2 a
simple protocol for circuit satisfiability.

Next, in § 4.3 we present an optimized circuit satisfiability protocol that
batch-checks n multiplication gates simultaneously. To achieve this, we adapt
the log(n)-round inner product check of Boneh et al. [BBC+19] to C&P IPs with
LOVe, which we then use for the batch check.

Due to the additive overhead generated from the batch check, it might not be
the most communication-efficient approach for binary circuits when n is small.
In § 4.4 we therefore present a batch check of multiplications for binary cir-
cuits that has an overhead of 9 bits, essentially independent of n. This check
uses reverse multiplication-friendly embeddings [BMN18,CCXY18] which were
previously mainly used for efficient multiplications in MPC protocols.
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Streaming and removing interaction (§ 5). We wish to obtain a zero-
knowledge proof that both has a small memory footprint, allowing streaming, and
also minimizes interaction, so that ideally the proof is completely non-interactive
after a one-time preprocessing phase (for generating the random VOLEs). We
show how to achieve a small memory footprint in our protocols by verifying each
linear oracle query as it arises during the computation, rather than batching
them together at the end. However, this introduces a high degree of interaction,
since now the parties have to interact for every multiplication gate in the circuit.

The natural approach to avoiding interaction is to apply the Fiat-Shamir
transform by obtaining the verifier’s random challenges from a random ora-
cle. However, the low-memory protocol to which we want to apply this has a
very large round complexity, possibly even linear in the circuit size. The Fiat-
Shamir transform is typically only applied to constant-round protocols, since
in the worst-case, the soundness can degrade exponentially with the number
of rounds [BCS16]. Several works, however, have defined extra conditions on
the underlying protocol which suffice to avoid this degradation, for the cases of
interactive oracle proofs [BCS16] and general interactive proofs [CCH+19].

Following in this direction, we adapt the concept of round-by-round sound-
ness [CCH+19] of interactive proofs to IPs with LOVe. We then show that by
applying a Fiat-Shamir transform, any IP with LOVe satisfying this modified no-
tion can be transformed into a NIZK (with VOLE preprocessing) in the random
oracle model, with negligible soundness degradation. Finally, we also show that
our streamable protocols for circuit satisfiability do indeed have round-by-round
soundness, so can safely be made non-interactive.

2 Interactive Proofs with Linear Oracle Verification

In this section we introduce our proof methodology, called interactive proofs
with linear oracle verification (IPs with LOVe). In addition, we show how, using
vector oblivious linear evaluation (VOLE), any public coin IP with LOVe can
be turned into a zero-knowledge proof.

Notation. For any vector r we denote by r|t the restriction to the first t elements
and by r[i] the ith element of r. Let [P↔ V] denote the distribution of exchanged
messages between two parties P and V and let [P↔ V]t denote the distribution
of the transcript of the messages exchanged in the first t rounds. Denote by
ViewV[P ↔ V] the view of V when interacting with P. We defer the (standard)
definition of zero-knowledge proofs to the full version.

2.1 Definitions

We now formalize IPs with LOVe over a finite field Fpk . This formalization is a
generalization of linear interactive oracle proofs [BBC+19], where in each round,
the verifier chooses some linear function, and learns the evaluation of this on a
proof string chosen by the prover. In comparison, we let the prover P first fix
the proof string π, which is a vector of field elements. Then, both P and the
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verifier V exchange messages for a certain number of rounds. Finally, V issues
a number of affine queries to π, upon which it makes a decision on whether to
accept or not. These queries can depend on the messages that were exchanged
between both P and V throughout the protocol.

We let P fix π ∈ F`pk at the beginning of the protocol and allow V to access
it via oracle queries only at the end of the protocol. In the oracle query stage,
we let V choose q queries (z1, y1), . . . , (zq, yq) ∈ F`pk × Fpk which it sends to an
oracle that stores π. This oracle checks that for each of the q queries the relation
〈π, zi〉 = yi holds. The query results are then (truthfully) reported to V by the
oracle.

Note that by default, both π and the queries lie over the extension field Fpk .
In some cases, such as when we are proving statements over Fp, some elements
of π may only be in Fp, which allows for improved efficiency when instantiating
IPs with LOVe, as we will see later. In this case, during the query phase we view
any Fp value as an element of Fpk via some fixed embedding.

Definition 1 (Interactive Protocol with Linear Oracle Verification).
Let Fpk be a field and `, t, q ∈ N. Then a t-round q-query interactive protocol
with linear oracle verification Π = (P,V) with oracle length `, message lengths
rP1 , r

V
1 , . . . , r

P
t , r

V
t ∈ N and message complexity

∑t
h=1(rPh + rVh) over Fpk consists

of the algorithm P and PPT algorithm V that interact as follows:

1. Initially, P obtains its respective input while V obtains the statement x. P
then submits a string π ∈ F`pk to the oracle. P then outputs a state sP0 while

V outputs a state sV0 . We set an auxiliary variable a0 = ⊥.
2. For round h ∈ [t], P and V do the following:

(a) First, V on input sVh−1 and ah−1 outputs message eh ∈ Fr
V
h
p and state sVh.

(b) Then, P on input sPh−1 and eh outputs message ah ∈ Fr
P
h
p and state sPh.

3. Finally, V on input at and state sVt makes q linear oracle queries to π over
Fpk and outputs a bit.

We say that the protocol accepts if V outputs 1 at the end of the protocol.

Remark 1. Note that the prover and verifier’s messages (ah, eh) are specified as
elements of the base field Fp, and this is how we count message complexity. This
is an arbitrary restriction, since these messages can easily be used to encode
extension field elements or general bit strings.

Definition 2 (Honest-Verifier Zero-Knowledge Interactive Proof with
Linear Oracle Verification). A t-round q-query interactive protocol with linear
oracle verification Π = (P,V) over Fpk is an honest-verifier zero-knowledge
interactive proof with linear oracle verification (HVZK IP with LOVe) for a
relation R with soundness error ε if it satisfies the following three properties:

Completeness: For all (x,w) ∈ R the interaction between P(x,w) and V(x)
is accepting.
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Soundness: For all x 6∈ L(R) and for all (unbounded) algorithms P∗, any in-
teraction of P∗ with V(x) is accepting with probability at most ε.

Honest-Verifier Zero-Knowledge: There exists a PPT algorithm S such that
for any (x,w) ∈ R the output of S(x) is perfectly indistinguishable from
ViewV [P(x,w)↔ V(x)] for any honest V.

We use the notation IP-LOVe to denote a t-round, q-query HVZK IP with
LOVe for relation R over field Fpk with oracle length `, message complexity α
elements of Fp, and soundness error ε.

In this work, all the protocols we construct will additionally be proofs of
knowledge and public coin, as in the following definitions.

Definition 3 (ZK Interactive Proof of Knowledge with LOVe). Let Π
be an IP-LOVe protocol for a statement x using a proof string π such that V
accepts with probability > ε. Then Π is a proof of knowledge if there exists a
PPT extractor E that, on input x,π, outputs a witness w such that (x,w) ∈ R.

Definition 4 (Public Coin IP with LOVe). An IP-LOVe protocol Π is public
coin if

1. V chooses each eh ∈ Fr
V
h
p for x ∈ L(R) uniformly at random (and in partic-

ular, independent of sVh−1 and ah−1).
2. There exists a deterministic polytime algorithm Q, which, on input x and
{eh,ah}h∈[t], computes the q oracle queries (z1, y1), . . . , (zq, yq) of V.

3. V accepts iff all queries generated by Q are accepting.

From q-query to 1-query. Given a q-query IP with LOVe, we can always
convert it to one with a single oracle query, with a small loss in soundness, by
taking random linear combinations of all queries over a large enough extension
field. This transformation, given below, is public-coin and adds just one extra
round of communication, so when using IPs with LOVe, we will often assume
they have only one query, to simplify our protocols.

Let Π be an IP-LOVe over Fp (p need not be prime), and let k be such that
pk is superpolynomial in a statistical security parameter. We construct an IP
with LOVe over Fpk , by viewing the proof π ∈ F`p from Π as a vector in F`pk ,
running the same protocol and then modifying the query phase as follows. Recall
that the q queries (z1, y1), . . . , (zq, yq) in Π accept if and only if 〈π, zi〉 = yi
i.e. µi := 〈π, zi〉 − yi = 0 in Fp. Now, we modify the protocol by having V send
q random elements ρ1, . . . , ρq ∈ Fpk to P.4 Notice that if µ :=

∑
i∈[q] ρiµi = 0,

all queries are satisfied except with probability p−k. We equivalently have µ =
〈π, z〉− y for z =

∑
i∈[q] ρizi and y =

∑
i∈[q] ρiyi. This shows we can reduce the

q oracle queries down to just one query (z, y) over Fpk , at the cost of an extra q
elements of Fpk sent from V to P, and the soundness error increasing by p−k.5

4 If we did not want a public-coin protocol, we could skip this message from V to P.
5 Alternatively, V could send a single random ρ ∈ Fpk , and define ρi = ρi. This

reduces communication while increasing the error probability to q · p−k, by applying
the Schwartz-Zippel Lemma.
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2.2 Instantiating IPs with LOVe Using VOLE

We now show that any IP-LOVe can be transformed into a zero-knowledge proof,
by using vector oblivious linear evaluation (VOLE) to instantiate the linear or-
acle queries. The functionality for random VOLE is given in Figure 1: it picks a
vector of random samples (r, τ ), (α,β) such that τ = rα+β, and outputs them
to the respective parties. This can be seen as a secret-sharing of the products
r[i]α, for i = 1, . . . , `. Note that we relax security slightly by allowing corrupt
parties to choose their own randomness. This models existing random VOLE
protocols based on the LPN assumption [BCGI18,BCG+19b,WYKW20], which
can generate a large, length ` VOLE with communication that is almost inde-
pendent of `.

Commitments with MACs. We can view each output of a VOLE as an information-
theoretic MAC on the value r[i], which commits the prover to r[i]. We write [x]
to denote that the prover holds x, τx ∈ Fpk , while the verifier holds βx and the
fixed MAC key α ∈ Fpk . To open a commitment to x, the prover sends x, τx
and the verifier checks that τx = xα + βx. It is easy to see that cheating in an
opening requires guessing the random MAC key α, so happens with probability
1/pk.

Since α is the same for each commitment, these commitments are linearly
homomorphic. Indeed, given two commitments [x], [y], the parties can obtain
[x+ y] by computing x+ y, τx + τy and βx + βy, respectively. Similarly, we can
do multiplication by constant, and addition by constant c (here, the verifier adds
αc to βx, while the prover adds c to x). We overload the + and · operators to
denote these operations being performed on the commitments.

The transformation (Figure 2). Given the linearly homomorphic commitment
scheme based on VOLE, obtaining a ZK proof is relatively straightforward. First,
the prover commits to its proof string π, by sending each component masked
with a random VOLE commitment. The parties then run the IP-LOVe protocol
as usual, until the query phase. Here, each linear query is computed by applying
the linear function to the committed π, followed by opening the result to check
it gives the correct value. In the full version, we prove the following.

Theorem 1. Suppose ΠLOVe is a public-coin IP-LOVe for relation R, satisfying
completeness, soudness error ε and honest-verifier zero-knowledge. Then, ΠVOLE

ZK

is an honest-verifier zero-knowledge proof for relation R, with soundness error
ε+ p−k. Furthermore, if ΠLOVe is a proof of knowledge, then so is ΠVOLE

ZK .

Optimizations: Random proof elements, and subfield VOLE. We de-
scribe two simple optimizations, which reduce communication in certain cases.

Firstly, in our protocols, the proof string π will often contain many random
field elements; clearly, the values di in Step 2 of the Input Phase (cf. Figure 2)
do not need to be sent in this case, since P can choose π[i] = r[i].
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Functionality F`,p,kVOLE

The functionality interacts with a sender S, receiver R, and adversary A.

On input α ∈ Fpk from R, the functionality does the following:

– Sample r,β ← F`pk , and set τ = rα+ β.
• If S is corrupted: receive r, τ from A and recompute β = τ − rα.
• If R is corrupted: receive β from A and recompute τ = rα+ β.

– Output (r, τ ) to S and β to R.

Fig. 1. Ideal functionality for vector oblivious linear evaluation over Fpk .

Transformation ΠLOVe → ΠVOLE
ZK

Let ` be the length of the proof string in ΠLOVe, the underlying IP with LOVe over
Fpk .

Input phase: The prover, on input the witness w, chooses the proof string π ∈
F`pk according to ΠLOVe.

1. The parties call F`,p,kVOLE . View the outputs as random commitments
[r[1]], . . . , [r[`]], where P learns r[i] ∈ Fpk .

2. P sends di = r[i]− π[i], for i = 1, . . . , `.
3. Compute the commitments [π[i]] = [r[i]]− di.

Protocol: The parties exchange messages in the protocol, according to ΠLOVe.
Query phase: Let (zj , yj) ∈ F`pk × Fpk , for j ∈ [q], be the oracle queries defined

by ΠLOVe (known to both parties, since Π is public-coin). For each j:
1. Compute [µj ] =

∑`
i=1 zj [i] · [π[i]]− yj

2. P sends τµj (the MAC on µj) to V, who checks that τµj = βµj .
The verifier outputs 1 if all checks pass.

Fig. 2. Zero-knowledge proof from VOLE and IP with LOVe.

Secondly, when working over an extension field Fpk , sometimes it is known
that π will consist mainly of elements in the base field Fp (viewed as a subset
of Fpk by a fixed embedding). In this case, we can optimize communication by
using subfield VOLE instead of VOLE over Fpk . In subfield VOLE [BCG+19b],
r is sampled as a uniform vector over Fp instead of Fpk , while the MACs τ
and keys α,β are still computed over Fpk . This allows P to commit to values
from the subfield Fp (which may be small), by sending only elements from Fp,
while still achieving soundness error p−k. Note that this still allows committing
to an extension field element x ∈ Fpk if needed, by decomposing x into a linear
combination of Fp elements, and committing to each component separately (this
works because the MACs are linear over Fpk).

When analyzing the complexity of our protocols, we assume that the above
two optimizations have been applied.
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3 Stackable Public Coin IPs with LOVe

In this section, we show that when both P and V agree onm relationsR1, . . . ,Rm
and instances x1, . . . , xm that can each be proven using (public coin HVZK) IPs
with LOVe over the same field Fp, then we can construct a communication-
efficient protocol showing that at least one of the statements was true. Following
the terminology of stacked garbling [HK20b], we sometimes refer to this as a
stacked proof. Formally, the goal of P is to show that (x1, . . . , xm) ∈ L(ROR)
where

(x1, . . . , xm) ∈ L(ROR) ⇐⇒ x1 ∈ L(R1) ∨ · · · ∨ xm ∈ L(Rm).

Throughout this section, we will write x̂ as a short-hand for x1, . . . , xm when
the statements are clear from the context. Suppose we have IPs with LOVe
over Fp for each instance xi, with message complexity αi. The classic OR-proof
technique by Cramer et al. [CDS94] can be used to give an IP with LOVe with
message complexity ≈

∑
i∈[m] αi. This would be done by running all m proofs in

parallel (which means sending messages for all of them), and then showing that
at least one finished with the expected output using [CDS94]. We show how to
instead reduce the message complexity of such a proof to 2mk+max{αi}, where
the soundness error grows by ≈ p−k. We also give a variant where the message
complexity scales with O(logm), instead of 2m.

Towards this, we introduce the notion of equisimulatable IPs with LOVe.
The idea is that we can compress the messages for the different proof branches
sent by P in such a way that for the true branch, the correct message can be
recovered by V. The distribution of the values for non-taken branches which V
will obtain is indistinguishable from a real protocol execution.

For example, assume that in the Π1 branch, P sends one Fp element that ap-
pears uniformly random to V, while in the Π2 branch it sends two such elements
with the same property. To achieve equisimulatability, if P actually proves the
first branch to be true then it can always append a uniformly random element
to the message it sends to V, whereas in the second case it just sends the actual
message. In both cases, the distribution of the message sent by P is identical and
V cannot identify which branch was taken by P.

Formally, for m statements with protocols Π1, . . . ,Πm, we use the following
two algorithms, which should satisfy the definition below.

– The “combined prover” algorithm CP takes as input instances x1, . . . xm,

instance index i, round index h, and prover message ah ∈ Fr
P
h
p , and outputs

a message c ∈ F∗p, which encodes ah while disguising it to hide the index i.
– The “decode” algorithm dec takes as input instances x1, . . . xm, index i,

round index h, and combined prover message c ∈ F∗p, and recovers a′h ∈ Fr
P
h
p .

Definition 5 (Equisimulatable IPs with LOVe). Let Π1, . . . ,Πm be pro-
tocols such that each Πi is an IP with LOVe over Fp for the relation Ri with
round complexity ti. We say that Π1, . . . ,Πm are equisimulatable if there exist
two algorithms CP and dec such that:
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1. If ah ← Πi(s
P
h−1, eh), where Πi’s inputs are from an honest execution of Πi,

then
dec(x̂, i, h, CP(x̂, i, h,ah)) = ah.

2. For any i, j, the distributions {CP(x̂, i, h,ah) | ah ← Πi(s
P
h−1, eh)}h∈[ti] and

{CP(x̂, j, h,ah) | ah ← Πj(s
P
h−1, eh)}h∈[tj ], where both the inputs of Πi and

Πj come from honest executions, are perfectly indistinguishable.

We say that CP has message complexity α if the total number of Fp elements
generated by CP for all h ∈ [maxi∈[m] ti] is at most α.

In our constructions of IPs with LOVe, all prover messages will appear uni-
formly random. We show below that this implies both the zero-knowledge prop-
erty and equisimulatability, which gives us an easy criterion for proving that an
IP-LOVe can be stacked. We prove the following lemma in the full version.

Lemma 1. Let Π be an IP-LOVe for proving relation R, satisfying complete-
ness, where V accepts iff all queries are accepting. If the messages from P in an
honest execution are (perfectly) indistinguishable from random, it holds that

1. Π is honest-verifier zero-knowledge; and
2. m such instances of Π (potentially for different relations R′ 6= R) are equi-

simulatable (cf. Definition 5).

3.1 Stacking with LOVe

Using the concept of equisimulatability of protocols we now show how to lower
the message complexity when proving ROR. The protocol, given in Figure 3, is
inspired by the stacked garbling approach [HK20b], although uses a very different
technique.

We start with m equisimulatable IPs with LOVe Πi, over Fp, for proving in-
dividual relations Ri. Note that p can be any prime power, with no restrictions
on size. We construct a protocol ΠOR, defined over Fpk , which works as follows.
P, having only wi∗ for one of the statements xi∗ , will generate the oracle string
π by running Πi∗ ’s first step to create πi∗ , which it then pads with extra ran-
dom data, and embeds in to Fpk . Then, P and V will simultaneously run all
Π1, . . . ,Πm, with the following modification: P’s message ch to V in round h
will be determined from ah,i using the combined prover algorithm CP, while V
extracts the message ah,i for each of the instances from ch using dec. Due to
equisimulatability, V can now execute all instances in parallel but cannot tell
which of these is the true one. Conversely, since all Πi are public coin, V sends
a randomness string that is long enough for any of the m instances in round h.
The message complexity is now determined by CP and not the individual proofs.

The challenge now, is that V cannot simply perform the oracle queries for
all Πi, since this would reveal the index i∗ of the true statement. Instead, we
perform a [CDS94]-style OR-proof to shows that at least one of the query’s for
the Πi is accepting. Recall, the basic idea behind [CDS94] is that given m Σ-
protocols for proving relations, an OR proof can be done by having the prover
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choose the random challenge fi for m− 1 of the instances, so it can simulate the
correct messages to be sent in every false instance, without knowing a witness.
Then, after receiving the m initial messages of each Σ-protocol, the verifier picks
a challenge f , which defines the challenge fi∗ = f −

∑
i fi corresponding to the

true instance i∗ (while hiding i∗ from V).

We instantiate the above, where each “instance” corresponds to a small pro-
tocol for verifying that the oracle query 〈πi, zi〉 = yi for protocol Πi succeeds,
without actually performing the query. To carry out one such small protocol, P
includes an extra random value ri in the proof string π := (πi‖ri) (one such ri
for each branch).

For the true Πi∗ the prover later sends di∗ := ri∗ to V. Using the random
challenge fi∗ , the verifier then makes a query to test that 〈π, zi∗‖fi∗〉 =? yi∗ +
fi∗di∗ . This clearly accepts if di∗ = ri∗ and the original query (yi∗ =? 〈πi∗ , zi∗〉)
accepts.

Importantly, if P does not know a valid witness, but can pick fi in advance,
then P can cheat by setting di = (〈πi, zi〉−yi)/fi+ri, causing the aforementioned
oracle query to succeed as well. This is the crux of Phase II of the protocol in
Figure 3.

Note that the theorem below assumes that each protocol Πi uses only one
query. As discussed at the end of §2.1, this can always be achieved by combining
queries into one (at the cost of one additional round). The proof of the following
theorem can be found in the full version.

Theorem 2. Let Π1, . . . ,Πm be protocols such that each Πi is a ti-round, 1-
query, equisimulatable Public Coin IP with LOVe over Fp for relation Ri with
oracle length `i and soundness error εi. Furthermore, assume that CP has overall
message complexity α. Then the protocol ΠOR in Figure 3 is a Public Coin IP
with LOVe over Fpk for the relation ROR with

1. round complexity 3 + maxi∈[m] ti;

2. oracle length m+ maxi∈[m] `i;

3. query complexity m;

4. message complexity 2mrk + α elements of Fp; and

5. soundness error
∑
i∈[m] εi + 1/pk.

If Π1, . . . ,Πm are all proofs of knowledge, then so is ΠOR.

Generalizing to threshold proofs. In [CDS94] the authors describe how to
additionally construct proofs of partial knowledge for any threshold, i.e., how to
show that r out of the m statements are true. Their technique, together with a
modification of ΠOR, can be used to construct a proof in our setting where we
implicitly only communicate the transcript of r statements, and not all m of
them. ΠOR can then be seen as a special case where r = 1, where for general r we
use Shamir secret-sharing, instead of additive shares of the verifier’s challenge
f . More details are found in the full version.
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Protocol ΠOR

Let Π1, . . . , Πm be protocols such that each Πi is ti-round, 1-query equisimulatable
public coin IP with LOVe over Fp for relation Ri with oracle length `i.

Both P and V have inputs x1, . . . , xm where xi ∈ L(Ri). P additionally has
input wi∗ for (at least) one i∗ ∈ [m] such that (xi∗ ,wi∗) ∈ Ri∗ . We define
` := maxi∈[m] `i, and t := maxi∈[m] ti. Let zk,i = zk,i| 0 · · · 0︸ ︷︷ ︸

`−`i times

.

1. P simulates Πi∗ on input (xi∗ ,wi∗) to obtain the string πi∗ . It then sets

π′ = πi∗‖ 0 · · · 0︸ ︷︷ ︸
`−`i∗ times

and π = π′‖r1 · · · rm

where all ri are chosen uniformly at random in Fpk .

(Phase I: Running the stacked proof)
2. Define sP0 := (xi∗ ,wi∗). For h ∈ [t], P and V do the following:

(a) Let rVh,i be the length of the challenge that V would send for protocol Πi in

round h. V sets rh = maxi∈[m] r
V
h,i, samples eh ← Frhp uniformly at random

and then sends it to P.
(b) P sets (ah, s

P
h) ← Πi∗(s

P
h−1, eh) where P only uses the first rPh,i∗ elements

of eh as required by Πi∗ . It then computes ch ← CP(x̂, h, i∗,ah) and sends
ch to V.

(Phase II: Running the small OR proof)
3. For i ∈ [m] \ {i∗}, P samples fi ← F∗pk uniformly at random and computes

(zi, yi) ← Q(xi, {eh, dec(x̂, h, i, ch)}h∈[ti]). It then computes di := (〈π′,zi〉 −
yi)/fi + ri, and defines di∗ := ri∗ . Finally, P sends (d1, . . . , dm) ∈ Fmpk to V.

4. V samples f ← Fpk uniformly at random and sends it to P.
5. P sets fi∗ := f −

∑
i∈[m]\{i∗} fi and sends f1, . . . , fm−1 to V. V computes the

last challenge fm = f −
∑m−1
i=1 fi.

6. Let βi ∈ Fmpk be the vector that is fi in the ith position and 0 everywhere else.
For i ∈ [m], V first generates (zi, yi) like P in Step 3. Then, for each i ∈ [m]
it sends the query (zi‖βi, yi + fidi) to the oracle. V accepts if all queries are
true.

Fig. 3. The protocol ΠOR for an OR-statement.

3.2 Recursive Stacking

ΠOR from §3.1 has the drawback that to verify one out of m statements, we still
need O(m) communication complexity. We now give an alternative construction
that obtains an overhead only logarithmic in m.

The idea behind this alternative protocol is as follows:

1. Any IP-LOVe Π accepts iff all queries are accepting. Assuming (wlog) there
is only one query, this means that for the query (z, y), we have 〈π, z〉 = y
i.e. µ := 〈π, z〉 − y = 0.
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2. If we simulate the parallel evaluation of m protocol instances as in ΠOR, then
if for any branch i∗ it holds that µi∗ = 0, then i∗ must correspond to a
“true” branch.

3. If the prover can then compute the product µ1 · · ·µm, and prove that this is
0, then at least one µj was 0 to begin with.

A naive instantiation of the above approach is to perform m − 1 multipli-
cations between the m implicit variables µi, and open the result. However, this
would still give O(m) overhead. Instead, we carefully apply recursion to make
this overhead logarithmic. Here, we use the fact that after combining two pro-
tocols Π1, Π2 with the multiplication method sketched above, we can obtain a
protocol which itself is again stackable: considering all multiplications as a tree,
we only have to provide those values necessary to prove a correct multiplication
that are on the path from µi∗ to the root.

The actual proof for this proceeds in the following steps:

1. First we show that if Π1, Π2 fulfill similar conditions as in ΠOR then we can
combine them using the multiplication-based approach.

2. Next, we show that starting with 2m proofs Π1, . . . ,Π2m with similar con-
ditions as in ΠOR, if we construct proofs Π ′i from Π2i−1, Π2i using the multi-
plication method, then Π ′1, . . . ,Π

′
m again fulfill the same conditions i.e. are

stackable. Also, this can be done with an overhead that is only as big as one
Πi plus one multiplication.

3. Finally, by recursing the previous step, we obtain the log-overhead OR-proof.

The full construction, together with its proof, can be found in the full version.
One drawback of this approach, though, is that unlike our previous OR-proof
based method, it does not give rise to a t-out-of-m proof.

4 IPs with LOVe for Circuit Satisfiability

In this section, we present our protocols for proving circuit satisfiability of arith-
metic and boolean circuits. First, in § 4.1, we define a high-level commit-and-
prove (C&P) syntax for IPs with LOVe. This makes it simpler to specify proto-
cols, and also aligns with the VOLE instantiation used in §2.2. We then describe
a simple protocol for arithmetic circuit satisfiability over a finite field Fp (§4.2),
with communication cost of 3 field elements per multiplication gate for large p.
We next show how we can utilize fully linear PCPs by Boneh et al. [BBC+19]
to reduce the amortized multiplication cost to just over 1 Fp element per multi-
plication gate (§ 4.3), when the circuit size is large enough. The same approach
also works over binary fields with the same cost (§ 4.4).

To highlight the power of our disjunctive proof from § 3.1, we point out
that all of these protocols fulfil the criteria of our stacking approach, so lead to
efficient proofs of disjunctions. Recall that from Lemma 1, it suffices that the
sender’s messages in the IP-LOVe are uniformly random, which we show for all
protocols in this section.
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4.1 Defining C&P Protocols

We now define a high-level, commit-and-prove (C&P) syntax for specifying a
large class of IPs with LOVe over Fpk .

We require that the witness in the IP with LOVe is a vectorw = (w1, . . . , wn)
of Fp elements, and that the prover chooses the proof string π = (w1, . . . , wn, r1, . . . , rt),
where each ri is uniformly random. As remarked in §2.2, we may sometimes wish
to mix values in Fp and Fpk , so allow the possibility that some ri’s are sampled
from Fpk and others are in the base field.

Following the notation used for homomorphic commitments in §2.2, we write
[x] to denote that some value x is committed to by the prover P. Initially, P is
committed to every element wi, ri of the proof string π. Subsequently, we allow
the parties to perform affine operations on these committed values, obtaining
new commitments.

Finally, we model the linear verification oracle by a special instruction AssertZero,
which checks whether its input is a commitment to 0. Since any commitment
comes from an affine function of π, this exactly models linear queries to π. We
then specify a C&P protocol over Fpk as follows:

Input phase: P has input the witness w1, . . . , wn ∈ Fp, and samples random
values r1, . . . , rt ← Ftpk (optionally, some ri’s may be in Fp).
P inputs the proof string π = (w1, . . . , wn, r1, . . . , rt).

Protocol phase: The parties, given commitments [w1], . . . , [wn], run a sequence
of instructions of the following types:
– Random(F) (for F ∈ {Fp,Fpk}): Retrieve [r], where r ∈ F is the next

suitable random value in π.
– Send[P→V](x): Sends value x ∈ Fp from P to V.
– Send[V→P](x): Sends value x ∈ Fp from V to P.
– [z] = a[x] + b[y] + c: Define the commitment [z] for z = ax+ by+ c, given

some public values a, b, c.
– AssertZero([x]): Asserts to V that [x] is a commitment to x = 0.

Output phase: If none of the AssertZero instructions failed, the verifier out-
puts 1. Otherwise, it outputs 0.

As described previously, by translating AssertZero calls into linear oracle
queries, any C&P protocol specified in the above syntax defines a valid IP-LOVe.

4.2 C&P IP with LOVe for Arithmetic Circuits

We now show a C&P IP with LOVe for arithmetic circuit satisfiability that
satisfies (1) completeness, (2) soundness, and (3) that all inputs to Send are
indistinguishable from random. Thus, by Lemma 1 we conclude that our protocol
is also zero knowledge and supports disjunctions. We prove circuit satisfiability
over a field Fp, but define a protocol over Fpk for some k ≥ 1, so that soundness
can be boosted if necessary.

We begin by defining two auxiliary “instructions”: (1) Fix, which allows P to
fix a random commitment to a value of its choosing, and (2) Reveal, which opens
a commitment to V and checks this was done properly using AssertZero.
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– Fix(x) → [x]: On input x ∈ F (where F ∈ {Fp,Fpk}) from P, output a
commitment [x]. This is implemented as:
1. Random(F)→ [r].
2. Send[P→V](x− r)→ y.
3. [r] + y → [x].

– Reveal([x]) → x: On input commitment [x], output x to V. This is imple-
mented as:
1. Send[P→V](x).
2. AssertZero([x]− x).

Our protocol works as follows. Let C : Fnp → Fp be a circuit known to both
parties consisting of Add and Mult gates, which we want to show evaluates to
zero on some input. The prover provides the witness w ∈ Fnp as input, so the
parties initially get commitments [w1], . . . , [wn]. The parties then execute the
following steps to evaluate the circuit C, where we denote by C∗ the set of
multiplication gates in C.

1. For each gate in C, in topological order, proceed as follows:
Add([x], [y]) : Output [x] + [y].
Mult([x], [y]) : Run Random(Fpk) → [a], Fix(xy) → [z], and Fix(ay) → [c].

Output [z], and store the commitments [a] and [c].
2. Run Send[V→P](e), where e ∈R Fpk .
3. For each i ∈ [|C∗|] let [xi] and [yi] denote the inputs and [zi], [ai] and [ci]

denote the outputs and stored values in the i-th call to Mult. Then run
AssertMult([xi], [yi], [zi], [ai], [ci], e).

4. Run AssertZero([zout]), where [zout] is the commitment to the output of C.

The subprotocol AssertMult used above works as follows:

AssertMult([x], [y], [z], [a], [c], e):
1. Run Reveal([ε]), where [ε] = e[x]− [a].
2. Run AssertZero(e[z]− [c]− ε[y]).

Before proving security, observe that the communication complexity is 3 field
elements per multiplication gate, of which one is over Fp (for fixing xy) and two
over Fpk (for fixing ay, and revealing ε).

Theorem 3. Let R be a relation that can be represented by an arithmetic circuit
C over Fp such that R(x,w) = 1 ⇔ C(w) = 0. Then the above protocol is
a C&P IP with LOVe over Fpk for R, such that (1) completeness holds, (2)
soundness holds with soundness error p−k, (3) all inputs to Send are perfectly
indistinguishable from random, and (4) the protocol is a proof of knowledge.

The proof can be found in the full version. At a high level, soundness holds
by the security of the Mult operation, where a malicious prover essentially needs
to align its invalid Fix values with the verifier’s random e value, which happens
with probability 1/|Fpk |.
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4.3 Improved C&P IP with LOVe for Arithmetic Circuits

The protocol from § 4.2 communicates 3 field elements per verified multipli-
cation. We now present an alternative multiplication verification procedure,
called AssertMultVec, that builds on a protocol from Boneh et al. [BBC+19]6.
AssertMultVec simultaneously proves n multiplication instances at the cost of
communicating n + O(log(n)) F-elements. In particular, for Fp for p = 261 − 1
we require around 64.3 bits of communication per multiplication.

Boneh et al. [BBC+19] introduce a logarithmic-sized proof for “parallel-sum”
circuits. In a “parallel-sum” circuit, identical subcircuits C ′ are evaluated in
parallel on possibly different inputs, with the sum of the output of each C ′ being
the output of the overall circuit. The high-level idea then is to embed checks for
different instances of C ′ within a single polynomial, allowing the verifier to verify
n instances of C ′ in parallel. This protocol, when letting C ′ be a multiplication
gate, can then be used to simultaneously verify the sum of n multiplications. We
call this protocol AssertDotProduct.

In more detail, the AssertDotProduct protocol works as follows. Suppose P
wants to prove that [z] =

∑
i∈[n][xi][yi]. P begins by defining n polynomials

f1, . . . , fn/2, g1, . . . , gn/2 such that fi(j) = x(j−1)n/2+i and gi(j) = y(j−1)n/2+i,
and then computing h =

∑
i∈[n/2] figi. P then commits to h by committing to

its coefficients (denoted as [h]). V defines its own polynomials f ′i , g
′
i over the

committed values [x(j−1)n/2+i] and [y(j−1)n/2+i] to check that
∑
i∈[n/2] f

′
ig
′
i = h.

By Schwartz-Zippel, this can be done by checking that∑
i∈[n/2]

f ′i(r)g
′
i(r) = h(r) (1)

for a random r chosen by V. Here, observe that the evaluation of f ′i , g
′
i, h in a

public constant r boils down to multiplying the committed coefficients of each
polynomial with appropriate powers of r and summing up the result, both of
which are local operations. Then, verifying Equation 1 after fixing r is again a
dot product check, although over vectors of length n/2, and we can recursively
apply AssertDotProduct until n = 1. Note that only two Fpr -elements are com-
municated during one iteration of AssertDotProduct: when committing to h and
sending r. See Figure 4 for a formal presentation of the protocol. There, for
the base-case of AssertDotProduct, we use the multiplication checking procedure
from § 4.2.

Given AssertDotProduct, we can batch-verify n multiplications as follows:

1. Assume that n tuples [xi], [yi], [zi] have been committed by P.
2. V chooses a randomization factor r that it sends to P.
3. P shows that 〈ri[xi], [yi]〉 =

∑
i∈[n] r

i[zi]. Since r is public, computing ri[xi]

and
∑
i∈[n] r

i[zi] is local.

This protocol, called AssertMultVec, is presented in Figure 4.

6 This approach was recently used in the context of MPC-in-the-head-based ZK pro-
tocols [dSGOT21].
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AssertMultVec([x1], . . . , [xn], [y1], . . . , [y2], [z1], . . . , [zn])⇒ ∀i xiyi = zi

1. Send[V→P](r) for r ∈R Fpk\{0}.
2. AssertDotProduct(r1[x1], . . . , rn[xn], [y1], . . . , [yn],

∑
i∈[n] r

i[zi]).

AssertDotProduct([x1], . . . , [xn], [y1], . . . , [yn], [z])⇒ z =
∑
i xiyi

If n ≤ 2:

1. For i ∈ [n]: Mult([xi], [yi])→ ([zi], [ai], [ci]).
2. Run Send[V→P](e), where e ∈R Fpk .
3. For i ∈ [n]: AssertMult([xi], [yi], [zi], [ai], [ci], e).
4. AssertZero(

∑
i∈[n][zi]− [z]).

Otherwise:

1. P defines polynomials of least degree f1, . . . , fn/2, g1, . . . , gn/2 ∈ Fp[X] such
that for j ∈ [2]: fi(j) = x(j−1)n/2+i, gi(j) = y(j−1)n/2+i.
P defines the polynomial h =

∑
i∈[n/2] figi ∈ Fp[X]. Note that h has degree

≤ 2. Let c0, c1, c2 denote the coefficients of h.
2. For i ∈ {0, 1, 2}: Fix(ci)→ [ci].
3. For i ∈ [n/2]: P and V compute (committed) polynomials of least degree [f ′i ]

and [g′i] satisfying for j ∈ [2]: f ′i(j) = [x(j−1)n/2+i], g
′
i(j) = [y(j−1)n/2+i].

4. Let [h′] be the (committed) polynomial defined by the [ci] values.
5. Send[V→P](r) where r ∈R Fpk\{0, 1}.
6. AssertZero(

∑
i∈[2][h

′](i)− [z]).

7. AssertDotProduct([f ′1](r), . . . , [f ′n/2](r), [g′1](r), . . . , [g′n/2](r), [h′](r)).

Fig. 4. Protocols for efficient multiplications. See text for necessary notation.

It is clear that both AssertDotProduct and AssertMultVec are complete and
zero-knowledge. The follow theorem, proven in the full version, shows they are
also sound.

Theorem 4. If the protocol AssertMultVec passes, then the input commitments
have the required relation except with probability n+4 logn+1

pk−2

An alternative version of AssertMultVec with a soundness error that is only
logarithmic in n can be achieved as follows:

AssertMultVec′([x1], . . . , [xn], [y1], . . . , [y2], [z1], . . . , [zn]):
1. Send[V→P](r1, . . . , rn) for r1, . . . , rn ∈R Fpk .
2. AssertDotProduct(r1[x1], . . . , rn[xn], [y1], . . . , [yn],

∑
i∈[n] ri[zi]).

One can easily show that AssertMultVec′ has the desired soundness, although at
the expense of communicating more random elements from V to P. In practice,
one can optimize this by having V choose a random PRG seed that it sends to
P, with r1, . . . , rn derived deterministically from the seed.
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4.4 C&P IP with LOVe for Binary Circuits

The protocol from § 4.3 is agnostic to the underlying field, so we can use p = 2
(and large enough k for soundness) to otain a proof for binary circuits. For F240

and a batch size of 1 000 000 this requires approximately 1.008 bits per verified
AND-gate.

One of the downsides to the batching approach is that it is most efficient for
large batches of multiplications. When evaluating a disjunctive branch, however,
the size of the batch may be limited by the number of multiplications in the
branch. This is because we need to “complete” a batch of multiplications before
we can apply the OR-proof. Unfortunately, this smaller batch size increases
the per-bit communication cost: as an example, a batch size of 100 requires
approximately 10 bits per verified AND-gate.

We now present an alternative approach that can achieve a fixed per-bit
communication cost of 9 bits per verified AND-gate. This approach uses reverse
multiplication friendly embeddings [BMN18,CCXY18] (RFMEs), defined as fol-
lows.

Definition 6. A (k,m)p-RFME is a pair (φ, ψ) of linear maps φ : Fkp → Fpm
and ψ : Fpm → Fkp such that x ∗ y = ψ(φ(x) · φ(y)), where ∗ denotes pairwise
multiplication.

Cascudo et al. [CCXY18] showed that for p = 2 and r < 33, there exist
(3r, 10r−5)2-RFMEs. Noting that for efficiency we would like as small a field as
possible, alongside the requirement of have a statistical security parameter of at
least 40, we use (15, 45)2-RFMEs, and thus work over F245 . Thus, we can verify
the multiplication of 15-element binary vectors [x] and [y] at the cost of a single
multiplication in F245 as follows. The parties locally compute [a] ← φ([x]) and
[b]← φ([y]), compute [c]← [a] · [b] using the multiplication verification protocol
over F245 , and finally locally compute [z]← ψ([c]). This has a per-multiplication
cost of 10 bits per multiplication.

We can do slightly better by having the prover provide the verifier an advice
vector to help compute [c]. Let d be a binary vector for the linear bijection
f : F15

2 × F30
2 → F45

2 such that f(z,d) = φ(x) · φ(y). If [z] is provided by the
prover, the verifier can locally compute [c] by computing [c′] ← f([z], [d]) and
then mapping [c′] to its associated element in F245 . The parties can then check
that [c] = [a] · [b] as before. Overall this gives a per-bit communication cost of 9
bits. See the full version for more details.

5 Streaming and Non-Interactive Proofs via Fiat-Shamir

We now show how to modify our previous constructions for arithmetic circuit
satisfiability and disjunctions to support streaming, and also be non-interactive
via a variant of the Fiat-Shamir transform [FS87]. We first show how to stream
our IPs with LOVe, at the cost of increased round complexity. Then, we show
how IPs with LOVe can be transformed into NIZKs (with VOLE preprocessing)
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with the Fiat-Shamir transform. To analyze the soundness of this approach, we
define a form of round-by-round soundness for IPs with LOVe, similar to Canetti
et al. [CCH+19], and show that this is satisfied by our constructions.

5.1 Streaming Interactive Proofs

We use the term streaming to refer to a protocol where both the prover and
verifier algorithms can be run using only a constant amount of memory, inde-
pendent of the size of the statement and witness. For disjunctive proofs, we relax
this to allow O(m) memory, where m is the maximum number of branches in
any disjunction. Note that when looking at a C&P IP with LOVe, in addition to
requiring a small memory footprint for P and V, we also need that the linear or-
acle queries can be performed with small memory. It is enough to require that P
can compute the result of each oracle query incrementally during the protocol,
and with constant memory; when translating the IP with LOVe into a zero-
knowledge proof based on VOLE (§2.2), this ensures that the resulting protocol
also has constant memory, since each AssertZero can be checked on-the-fly.

Recall that in our protocols for circuit satisfiability, the multiplication gates
are all verified in a batch at the end of the computation. This requires storing
all commitments created during each multiplication in memory, leading to a
memory cost that is linear in the circuit size.

For the more efficient amortized protocol, this drawback seems inherent,
however, we can easily avoid it for the simpler protocol from § 4.2, by checking
multiplications on-the-fly using an independent random challenge from V for
each multiplication. The change is very simple, and for completeness, shown in
the modified multiplication sub-protocol below.

Streaming Mult([xi], [yi]): To evaluate the i-th multiplication gate:

1. Run Random(Fp) to get [ri] and Random(Fpk) to get [r′i], [ai].
2. Run Fix(xiyi)→ [zi], and Fix(aiyi)→ [ci].
3. Run Send[V→P](ei ← Fpk).
4. Run Reveal([ε]), where [ε] = ei[xi]− [ai].
5. Run AssertZero(ei[zi]− [ci]− εi[yi]).

For the soundness of this protocol, following the exact same analysis as in
§4.2, we get a soundness error of p−k, due to the random choice of each challenge
ei. In § 5.3, we show that this protocol also satisfies round-by-round soundness,
implying that it can be made non-interactive using Fiat-Shamir.

5.2 Batching AssertZero with Constant Memory

Recall from § 2 that often, it is useful to combine all the AssertZero statements
(that is, linear oracle queries) of an IP with LOVe into just one check, by batching
them together at the end. However, just as with our original circuit evaluation
protocol, this is not amenable to constant memory for streaming algorithms.
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Transformation Stream(ΠLOVe)

1. P first commits to its inputs as in ΠLOVe.
2. Initialize a dummy commitment [z] := 0.
3. For the i-th AssertZero([γi]) instruction in ΠLOVe

– V sends a random challenge ei ∈ Fpk .
– Update [z] = [z] + ei[γi].

4. All other instructions are kept the same.
5. At the end of the program, run AssertZero([z]).

Fig. 5. The transformation to batch AssertZero in a streamable manner.

Instead, in Figure 5 we give an alternative transformation, which transforms
any C&P IP with LOVe ΠLOVe to have just one AssertZero, without storing all
intermediate values.

The idea is that, instead of taking a combination of all AssertZero’s at the end,
we can compute this combination in an incremental manner. At each AssertZero
on input [γ], we take a random challenge e and add e · [γ] to a running state
[z]. At the end of the computation, to verify that all the γ values were zero,
we simply run AssertZero on [z]. Since the challenge e is only sampled after the
value being checked for zero was committed, it holds from the argument for the
batching method from §2 that cheating in this check requires guessing a random
challenge, so this transformation only increases the soundness error by p−k.

5.3 Round-by-round soundness for IPs with LOVe

The intuition behind the definition of Round-by-round soundness is that in any
given round of a protocol Π, one can define a function State, which, given the
current transcript of Π, outputs a bit indicating whether Π’s execution will fail.
We require that, if State predicts failure in some round i, then State also predicts
failure in round i+ 1, with high probability over the verifier’s random challenge.

Previously, round-by-round soundness has been defined for standard interac-
tive proofs [CCH+19], without any form of oracle queries. Below is our modified
definition, tailored to IPs with LOVe. Note that unlike the Zero Knowledge set-
ting, where State’s inputs are publicly known, here we give the State function
also the oracle string π as input; without this, there would be no easy way for
the State algorithm to simulate whether a given oracle query to π would succeed
or not. Note also that since we assume Π is public-coin, the oracle query inputs
(z, y) are all computable given the complete transcript, so they are also known
to State.

Definition 7. Let Π be a t-round, public-coin IP-LOVe for a relation R. We
say that Π has round-by-round soundness error ε if there exists a deterministic
(not necessarily efficient) function State that takes input an instance x, proof π
and partial transcript T , and outputs accept or reject, such that the following
properties hold:
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1. If x /∈ L, then State(x,π, ∅) = reject.
2. If State(x,π, T ) = reject for a partial transcript T up to round h ∈ [t], then

for every potential prover message ah,

Pr
eh+1←FrV

h+1

[State(x,π, T ‖ah‖eh+1) = accept] ≤ ε

3. For any halting transcript T , if State(x,π, T ) = reject then V rejects.

Round-by-round soundness of our protocols for circuit satisfiability.
In the full version, we show that our IPs with LOVe for circuit satisfiability,
including the streamable protocol from § 5.1–5.2, and the efficient batched mul-
tiplication protocol from § 4.3 satisfy round-by-round soundness. We also show
that the same holds for our stacking protocol from § 3.

Roughly speaking, for our circuit satisfiability protocol, the State algorithm
takes as input the proof string π, so can immediately extract the witness and try
to verify whether the statement is true. In later rounds, State also checks whether
the prover’s messages are inconsistent with π and the verifier’s challenges, and
changes to reject if so. A similar strategy works in all our protocols to show that
round-by-round soundness holds.

Soundness of Fiat-Shamir for IPs with LOVe. We now show that the
Fiat-Shamir transformation, when applied to a zero-knowledge proof built from
VOLE and an IP with LOVe, is sound if the underlying IP with LOVe satisfies
round-by-round soundness.

For this, we follow the VOLE-based protocol from § 2.2, while replacing the
verifier’s random challenges with outputs of a random oracle. We use a slightly
augmented VOLE functionality, denoted FVOLE+id, which additionally samples a
random identifier id ∈ {0, 1}λ, and gives this to both parties after receiving their
input. We feed this into the random oracle, which binds the statement and proof
to this instance. The result we obtain is similar to the FS transform for interactive
oracle proofs [BCS16], with the differences that (1) we start from IPs with LOVe
using VOLE preprocessing, and (2) we assume round-by-round soundness, which
is a stronger property than state-restoration soundness from [BCS16], but we find
it simpler to work with. We prove the following theorem in the full version.

Theorem 5. Let ΠLOVe be a t-round, 1-query, public-coin IP-LOVe for relation
R with round-by-round soundness ε, which is also complete and zero-knowledge.
Then, the compiled protocol ΠVOLE

NIZK in Figure 6 is a non-interactive zero-knowledge
proof in the FVOLE+id-hybrid model, with soundness error at most

p−k + εt+Q(ε+ 2/|C|+ 2−λ)

where Q is the number of random oracle queries made by a malicious prover,
and |C| is the size of the smallest challenge set in any given round of Π.

Furthermore, if ΠLOVe is a proof of knowledge, then so is ΠVOLE
NIZK .
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Transformation ΠLOVe → ΠVOLE
NIZK

Let ` be the length of the proof string in ΠLOVe, the underlying IP with LOVe over
Fpk .

1. The parties call F`,p,kVOLE+id, obtaining random commitments [r1], . . . , [r`]. Both

parties also receive a random identifier id ∈ {0, 1}λ.
2. The prover chooses the proof string π ∈ F`pk according to ΠLOVe, and computes

di = ri − π[i].
3. Compute the commitments [π[i]] = [ri] − di. Let τ be the prover’s MACs on
π, and (α,β) the verifier’s keys.

4. P defines the dummy first message a0 = ⊥, and challenge e1 = H(x‖id‖d‖a0).
5. For each round i = 1, . . . , t, P computes its message ai and the next challenge

ei+1 = H(ai‖ei)

6. For the oracle query (z, y) ∈ F`pk × Fpk , P computes the MAC

τQ = 〈τ ,z〉

7. P sends the proof (d1, . . . , d`,a1, . . . ,at, τ
Q).

8. V recomputes all the challenges ei, then computes its query verification key

βQ = 〈β,z〉
and checks that τQ = βQ + α · y. If the check passes, V accepts.

Fig. 6. NIZK from VOLE and IP with LOVe.

6 Implementation and Evaluation

We have implemented the online protocol of Mac′n′Cheese with the batched
multiplication approach of § 4.3 in the Rust programming language. Our imple-
mentation achieves a computational security of 128 bits and a statistical security
of ≥ 40 bits. Our implementation supports pluggable VOLE backends. The back-
end that we use, at present, is a “dummy” backend which (insecurely) generates
random MACs by using a pre-shared seed with a PRNG.

Streaming. To facilitate streaming, our implementation does not view its input
as an explicit circuit graph. Instead, the proof statement is lazily built-up by a
series of function invocations. As a result, we get reduced memory consumption
(for free) as temporary values get automatically freed when they are no longer in-
scope. In order to stream a two-way disjunction, both branches of the disjunction
must be interleaved (otherwise the prover would be forced to either buffer the
entirety of a branch, or reveal which branch is ‘true’). To achieve this interleaving,
we leverage stackful coroutines to (cheaply) concurrently execute both branches.

Concurrency. Despite running a multi-round interactive protocol (without ex-
tensive use of the Fiat-Shamir transform), we are still able to achieve high-
performance even over a high-latency, throughput-limited network link. We reach
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this result by running one thread which exclusively sends data from the prover
to the verifier to Fix MACs to prover-private values. Once this thread has Fixed
a batch of MACs, it submits them to one of many background threads to ver-
ify the assertions on these MACs. Each background thread has its own unique
connection between the prover and the verifier, so can independently wait for
a response from the other party. As a result, we can provision a large num-
ber of background threads (which will spend most of their time waiting for the
network, rather than running computation) to mitigate the latency effects of
running our multi-round protocol over a network. In addition, this design allows
us to leverage multiple cores independent of the circuit structure.

6.1 Evaluation

We benchmarked our implementation for F240 (for boolean circuits) and F261−1
(for arithmetic circuits). Unless otherwise specified, all benchmarks were run
between two machines: a laptop (2018 MacBook Pro with 8 logical cores and
16 GB of RAM) on the east coast of the U.S., and a server (40 Intel Xeon Silver
4114 cores operating at 2.20 GHz) on the west coast of the U.S. The network
had an average latency of 95 ms and an average bandwidth of 31.5 Mbps. All
numbers are the average of at least four runs of the given experiment.

As noted above, these results do not include the cost of VOLE. We are in
the process of integrating the VOLE protocol of Weng et al. [WYKW20], but
do not believe this will have a large impact on the overall running time and
communication cost given that a single VOLE for F261−1 can be generated in
85 ns at a communication cost of 0.42 bits [WYKW20, Table 4], and can be
largely precomputed.

As mentioned above, our implementation is multi-threaded, and in order to
reduce communication latency we pipeline processing as much as possible. We use
50 threads for all of our experiments, although we note that the CPU utilization
on both the prover and verifier never exceeds 226% (where the maximum possible
utilization is the number of cores times 100%). We reiterate that our verifier was
run on a commodity laptop, and while we use a large number of threads, this
does not equate to extremely high CPU utilization.

Microbenchmarks. Using a multiplication batch size of 1 000 000, Mac′n′Cheese
achieves a per multiplication cost of approximately 144 ns for F240 and 1.5 µs
for F261−1. This equates to 6.9 million multiplications per second (mmps) for
F240 , and 0.6 mmps for F261−1. We found that the main limiter in the arithmetic
case was bandwidth, and thus also ran our microbenchmarks locally (run on the
Location B server), achieving a per multiplication cost of 141 ns (7.0 mmps) for
F240 and 276 ns (3.6 mmps) for F261−1.

Comparison to QuickSilver. We briefly compare to QuickSilver [YSWW21]. Re-
call that QuickSilver requires only a single field element per multiplication and
requires only 3 rounds (cf. Table 1), but does not support communication-
optimized disjunctions. When run on localhost within an Amazon EC2 instance,
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Branches Local Verify Comm. Increase
(seconds) (seconds) (bytes)

1 34 139 —
2 81 307 +25
4 163 568 +50
8 327 1254 +75

Table 2. Performance results for disjunctions. The “Branches” column denotes the
number of branches, where each branch contains 1 billion AND gates. The “Local”
column denotes the time to locally compute the circuit in-the-clear, and provides a
rough lower bound of performance. The “Verify” column denotes the time to verify
the ZK proof. The “Comm. Increase” column denotes the amount of communication
increase from the baseline of 124 MB required in the single-branch case.

QuickSilver achieves 7.6 mmps for boolean and 4.8 mmps for arithmetic when uti-
lizing 1 thread, and 15.8 mmps for boolean and 8.9 mmps for arithmetic when
utilizing 4 threads [YSWW21, Table 2]. While it is hard to make an apples-
to-apples comparison here, this does suggest that QuickSilver is slightly faster,
albeit at the expense of communication-optimized disjunctions. Thus, the choice
of QuickSilver versus Mac′n′Cheese may come down to the characteristics of the
input circuit.

Disjunctions. We also explored the effect our disjunction optimization has on
the communication cost. We did so by comparing a proof of a boolean circuit
containing 1 billion multiplication gates to using a boolean circuit containing two
or more branches each containing 1 billion gates7. See Table 2 for the results.

The overall communication in all cases was essentially 124 MB: the OR
proof added only an additional 25 log(m) bytes, where m denotes the number of
branches. In terms of overall running time, we see an increase with the overall
size of the circuit. This is due to the fact that the prover still needs to do the
entire computation, and for this particular example bandwidth is not the bot-
tleneck. The table also reports the time required to simply evaluate the circuit
locally—this presents a reasonable lower bound for Mac′n′Cheese. We find that
in all cases, Mac′n′Cheese takes less than 4.08× the cost of locally evaluating the
circuit.
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