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Abstract. The differential-linear cryptanalysis is an important crypt-
analytic tool in cryptography, and has been extensively researched since
its discovery by Langford and Hellman in 1994. There are nevertheless
very few methods to study the middle part where the differential and
linear trail connect. In this paper, we study differential-linear cryptanal-
ysis from an algebraic perspective. We first introduce a technique called
Differential Algebraic Transitional Form (DATF) for differential-linear
cryptanalysis, then develop a new theory of estimation of the differential-
linear bias and techniques for key recovery in differential-linear crypt-
analysis.

The techniques are applied to the CAESAR and LWC finalist Ascon,
the AES finalist Serpent, and the eSTREAM finalist Grain v1. The
bias of the differential-linear approximation is estimated for Ascon and
Serpent. The theoretical estimates of the bias are more accurate than
that obtained by the Differential-Linear Connectivity Table (Bar-On et
al., EUROCRYPT 2019), and the techniques can be applied with more
rounds. Our general techniques can also be used to estimate the bias
of Grain vl in differential cryptanalysis, and have a markedly better
performance than the Differential Engine tool tailor-made for the cipher.
The improved key recovery attacks on round-reduced variants of these
ciphers are then proposed. To the best of our knowledge, they are thus far
the best known cryptanalysis of Serpent, as well as the best differential-
linear cryptanalysis of Ascon and the best initialization analysis of
Grain v1. The results have been fully verified by experiments. Notably,
security analysis of Serpent is one of the most important applications
of differential-linear cryptanalysis in the last two decades. The results in
this paper update the differential-linear cryptanalysis of Serpent-128 and
Serpent-256 with one more round after the work of Biham, Dunkelman
and Keller in 2003.
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1 Introduction

Differential cryptanalysis and linear cryptanalysis are the two best-known
techniques for cryptanalysis of block ciphers. Differential-linear attack
[LHO4IBDKO02] is a chosen plaintext two-stage technique of cryptanalysis in
which the first stage is covered by differential cryptanalysis, which ensures prop-
agation of useful properties midway through the block cipher. The second stage
is then performed from the middle of the cipher to the ciphertext using linear
cryptanalysis. The technique was discovered by Langford and Hellman [LH94]
and demonstrated on the example of 8-round DES.

Theoretically, the differential-linear attack can be considered as a truncated
differential or a multidimensional linear attack, but is an extreme case for both
types, which is usually measured by the differential-linear bias. Recently, in
2017, Blondeau, Leander and Nyberg [BLN17] gave an exact expression of the
bias under an assumption that the two parts of the cipher are independent, and
revisited the previous treatments of differential-linear bias by Biham et al. in
2002-2003 [BDK02/BDK03], Liu et al. in 2009 [LGZL09], and Lu in 2012 [Lul2],
and formulated assumptions under which a single differential-linear characteristic
gives a close estimate of the bias.

More recently, at EUROCRYPT 2019, Bar-On et al. [BDKW19] showed
that in many cases, dependency between two parts of the cipher significantly
affects the complexity of the differential-linear attack, and might be exploited
to make the attack more efficient. The authors of [BDKWTI9|] presented the
Differential-Linear Connectivity Table (DLCT) which allows to take into account
the dependency between the two subciphers, and to choose the differential
characteristic and the linear approximation in a way that takes advantage of
this dependency. They then showed that the DLCT can be constructed efficiently
using the Fast Fourier Transform, and demonstrated the strength of the DLCT
by using it to improve differential-linear attacks on ICEPOLE and on 8-round
DES, and to explain published experimental results on Serpent and on the
CAESAR finalist Ascon which did not comply with the standard differential-
linear framework.

In this paper, we study differential-linear cryptanalysis from an algebraic
point of view. In theory, the bias of a differential-linear approximation can be
determined by the algebraic normal forms of the output bits, with input bits as
variables. Nevertheless, this is computationally infeasible for a cipher. In Section
we introduce an algebraic and feasible technique called Differential Algebraic
Transitional Form (DATF) for differential-linear cryptanalysis, and then develop
a new theory of estimation of the differential-linear bias and techniques for
key recovery in differential-linear cryptanalysis. The algebraic transitional form
(ATF) is similar to the algebraic normal form (ANF), but an algebraic expression
in the ANF can be replaced by a transitional variable in the ATF. This ensures
the feasibility of calculating the ATF by iteration. With the DATF technique,
the ATF of the difference of output bits can be computed round by round,
rather than from the derivative of the output function with respect to the input
difference. Based on the DATF algorithm, we describe two feasible frameworks



for estimating the differential-linear bias. One is efficient and has a moderate
accuracy. The other is less efficient, but more accurate. Further we exploit an
algorithm for key recovery. Unlike the convention, it is an organic combination
of distinguisher searching and key guessing, and thus has an advantage over the
existing techniques. We stress that our techniques are purely algebraic and quite
different from the previous methods, including the DLCT [BDKW19] and its
subsequent work [CKWTCKIL™19] as well as the techniques proposed for ARX
ciphers [Leul6/BLT20].

As illustrations, we apply our theory and techniques to three different types
of ciphers, the authenticated cipher Ascon [DEMSI6], the block cipher Serpent
[ABK9S], and the stream cipher Grain v1 [HIMMOS], respectively in Section
Section [Bl and Section [6l

Ascon is a family of authenticated encryption and hashing algorithms
designed by Dobraunig et ol. [DEMSI6/DEMS19] that has been selected as the
primary choice for lightweight authenticated encryption in the final portfolio of
the CAESAR competition and is currently competing in the NIST Lightweight
Cryptography competition. In [DEMST5], Dobraunig et al. presented practical
differential-linear attacks on up to 5 rounds of Ascon, including a 4-round
differential-linear distinguisher. The authors of [DEMS15| stated that while the
overall bias of the approximation is expected to be 272 by the theory of the
classical differential-linear framework, experiments show that the bias is 272
which is significantly higher. Bar-On et al. [BDKWI19|] recomputed the bias of
the distinguisher using the DLCT and obtained a theoretical bias of 27°.

The theory in this paper shows that the bias of this differential-linear
approximation is estimated to be 272365, This value is extremely close to the
experimentally obtained bias of 272, and much higher than the theoretical bias of
275 obtained in [BDKWT19] using the DLCT. We also show a 5-round differential-
linear approximation with a theoretical bias of 27%41® by imposing 9 conditions.
Our experiments show that the bias is 27%%4, when these conditions are satisfied.

We further propose in Section [4] a key recovery attack on 5-round Ascon-
128, which is also applicable to Ascon-128a. The attack benefits from the above
differential-linear approximation with an experimental bias of 27°° using less
conditions. The data complexity of the attack is on average 226, and the expected
time complexity is about 226, This attack improves the existing differential-linear
attack on 5-round Ascon-128 with complexity 23¢ [DEMSI5].

Serpent is a 128-bit block cipher designed by Anderson, Biham and Knudsen.
It is a finalist in the Advanced Encryption Standard (AES) competition. In
the past 20 years, there have been tremendous efforts devoted to cryptanalysis
of Serpent, e.g., [BDKO3IDIKO08/Lul2|Lul5IBLNI7IBDKW19]. In 2003, Biham,
Dunkelman and Keller [BDKO3] presented the first differential-linear attack on
11-round Serpent, using a 9-round differential-linear distinguisher with bias of
2769 An improved attack was presented by Dunkelman et al. in [DIKOS]. The
authors of [DIKOS| performed experiments with 4 rounds of Serpent, obtained
the bias 27137 for the 4-round approximation rather than 2715, and concluded
that the actual bias of the 9-round approximation is 27577 and not 2769, In



IBDKW19], Bar-On et al. recomputed the bias of the 4-round differential-linear
distinguisher using the DLCT and obtained the value 2713-68,

In Section [5) we revisit the analysis of the bias of this distinguisher by our
theory, and show an estimate of 2713736, This value is closer to the experimental
value even than that of [BDKWI9]. We conjecture that the gap between the
experimental value and our estimate is a statistical error. We further apply
the DATF with one more round, and obtain the bias 2717736 for the 5-round
distinguisher.

For an 11-round variant of Serpent from round 4 to round 14, we propose
in Section |p| a key recovery attack with improved time complexities. The data
complexity of the attack is 2'2°7 chosen ciphertexts, the time complexity is
21257 memory accesses, and the memory complexity is 2% bytes. The success
probability of the attack is expected to be more than 99%. As far as we know, this
is the first differential-linear attack on 11-round Serpent-128, through nearly 20
years of community efforts since the publication of its first 10-round attack of
the same kind in 2003 [BDKO3].

As mentioned in [BDKW19)], the differential-linear technique yields the best
known attacks on the AES finalist Serpent [DIKOS8/Lul5]. In Section we
nevertheless find that there is a same flaw in the attacks on 12-round Serpent-
256 in [DIKO8/Lul5] which leads to underestimated time complexity, up to a
factor of 2'6 or 22° by our analysis, and the existing 12-round attacks are thus
worse than a brute-force attack.

In Section we extend the chosen ciphertext attack on 11-round Serpent
to 12 rounds (starting from round 4 and ending at round 15). The attack on
12-round Serpent-256 has the data complexity of 2'27 chosen ciphertexts, time
complexity of 225! memory accesses, and memory complexity of 2°° bytes. The
success probability of the attack is expected to be more than 77%. To the best of
our knowledge, this is the first correct attack on 12-round Serpent as well as the
best known cryptanalysis on Serpent, almost 20 years after Biham, Dunkelman
and Keller presented the first 11-round attack of different kind in 2001 [BDKOT]
and the first 11-round attack of the same kind in 2003 [BDKO03].

The stream cipher Grain vi1, proposed by Hell et al. [HIMMOS], is an
eSTREAM finalist in the hardware profile. At ASTACRYPT 2010, Knellwolf
et al. [KMNI0] proposed conditional differential attacks on NFSR-based
cryptosystems, and applied the attack to Grain vl with 104 rounds. Since
the seminal work of [KMNI0], there are a lot of efforts working towards the
conditional differential attacks on Grain v1, e.g., [Banl4/Banl6/MTQI7LG19].
In the literature, the largest number of initialization rounds of Grain v1 that
can be attacked is 120, proposed by Li and Guan [LGI9] using a conditional
differential approximation with an experimental bias 27128,

In Section [6] we apply our theory and techniques to conditional differential
attacks on the initialization of Grain vi, and finding an optimized key recovery
attack on round-reduced Grain v1. Using the DATF, we revisit the analysis of
the bias of the 120-round differential approximation of [LG19|, and obtain an
estimate of 271339 This is very close to the experimental value 2712-%, and much



higher than the estimate of 271813 obtained by the method called Differential
Engine proposed by Banik [Ban14]. Further, a new differential with a theoretical
bias 272%77 in the output difference of 125 rounds is found for Grain v1, by an
exhaustive search over all the input differences up to 4 bits using the DATF.
We have verified by experiments that the bias is 27174, Our estimate of the
bias is smaller than the experimental value, but much higher than the estimate
272478 by the Differential Engine tool. By imposing 13 equations on the key
bits and initial value, where 18 expressions of the key bits need to be guessed,
we can mount a chosen IV attack to recover 20 key-bit information on 125-
round Grain vi1, with time complexity of about 2°7, data complexity of 2°2 and
negligible memory. The success probability of the attack is expected to be more
than 92.5%. To the best of our knowledge, this is thus far the best key recovery
attack in practical complexity as well as the best initialization analysis of Grain
v1, in the single key setting.

Table 1. The Differential-Linear and Differential Bias

cipher |type | rounds experimental theoretical estimate
value [BDKO03|[DLCT[BDKWI9]| DATF
Ascon | DL | 4/12 |27 [DEMS15]| 27 277 22365
CDL| 5/12 | 27" (Secl) - - 25415
Serpent | DL | 4/32 [27'37% [DIKOS|| 27'° 271368 27 18.736
DL | 5/32 9—17.75 [DIKOS] 9-19 _ 9—17.736
Differential Engine|[Banl4] | DATF
Grain vi| CD [120/160] 27 2% [LGI9] 21813 271539
CD |125/160| 277 (Secl6) g—2178 2-20.77

The results on the differential-linear bias of Ascon and Serpent and the
differential bias of Grain v1 are summarized in Table |1, with the comparisons
of the previous results, where CDL means conditional differential-linear (DL)
and CD means conditional differential. Compared with the DLCT tool, the
DATF techniques can be applied with more rounds for Ascon and Serpent, and
provide more accurate estimation of the DL bias. Besides, our techniques can also
be applied to differential cryptanalysis. Compared with the Differential Engine
method tailor-made for Grain-like ciphers, our techniques are more general and
have a much better performance. Compared with the experimental approach, the
algebraic techniques are more formalized and intelligent for conditional attacks
and, in particular, much faster when the bias is low. This helps us find better
conditional approximations for Ascon and Grain vi.

Our cryptanalytic results of Ascon, Serpent and Grain vl are summarized
in Table 2] with comparisons of the previous attacks. For Ascon, our attack
outperforms the previous differential-linear one but not the cube-like attack
[LDWTT]. For Serpent, to the best of our knowledge, we provide the first correct
attack on its 12-round variant, and the first differential-linear attack on its 11-
round variant with 128-bit key. The best known theoretical attack on Grain vi



Table 2. Key Recovery Attacks on Ascon, Serpent, and Grain vi

cipher |key size type rounds time data space| source
diff.-linear| 5/12 238 2% bits | neg. | [DEMS15
Ascon 128 |diff-linear| 5/12 226 220 bits | neg. Section
cube-like | 7/12 2108:9 19772 words| - | [LDWIT
192/256| diff.-linear | 11/32 [ 292 En | 2" CP [2° B| [BDKO03]
192/256|diff.-linear | 11/32 | 2357 En | 2'218 CP (276 B| [DIKOS]
Serpent [192/256|diff.-linear | 11/32 |2'37-7 MA| 2'!37 CC (2% B| [DIK0S
all |diff-linear| 11/32 [2'%57 MA| 2'%57 CC |2% B|Section [5.3]
256 | diff.-linear| 12/32 | 2°°' MA | 2" CC |2’ B|Section
differential[104/160] 277 27 neg. | [KMNI10]
Grain vi| o [|differential|120/160 268 - neg. [LGlQH_H
differential|125/160|  2°° 252 neg. |Section [6.2
fast corr. | full 2767 2751 299 | [TIM*18

is the fast correlation attack on its full version proposed in [TIM™ 18], with time
complexity of 2707 data complexity of 27! and memory [}| of about 26°. This
attack targets at state recovery in the keystream generator, while our attack
targets at key recovery in the initialization. Moreover, our attack on Grain v1
has practical complexities and has been fully verified by experiments on the real
cipher, compared with the impractical complexities of the fast correlation attack
which was verified on a toy cipher in [TIM™18§].

2 Differential-Linear Cryptanalysis

Differential-linear cryptanalysis consists of two stages. The first stage ensures
propagation of useful properties in the middle of the cipher, which is covered by

3 The space complexity of the attack was not provided in [TIMT18| and is assessed
by our analysis.
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differential cryptanalysis. The second stage is performed from the middle of the
cipher to the ciphertext using linear cryptanalysis.

Let E be a cipher which can be described as a cascade of two subciphers Ej
and Eq, i.e., B = E10FEy. Let 4;, and A, be respectively the input and output
differences of the differential characteristic for Ey, and \;;, and A,y respectively
the input and output masks of the linear characteristic for £, as shown in Fig.

Assume that the differential A;, — A, is satisfied with probability p,
and the linear approximation X;, — A,y with probability 1/2 4+ ¢ (or with
bias ¢). In case the differential is not satisfied (probability 1 — p) we assume a
random behavior of the parities of the output subset. The probability that a
pair with input difference A;,, will satisfy Aoyt - C = Apye - €7 is in that case
p(1/242¢%)+ (1 —p)-1/2 = 1/2+2pg*. The data complexity of the differential-
linear attack/distinguisher is O(p~2¢~%).

3 Algebraic Perspective of Differential-Linear
Cryptanalysis

In this section, from an algebraic perspective, we discuss the estimation of the
differential-linear bias as well as techniques for key recovery in differential-linear
cryptanalysis, starting from some basic concepts and facts.

3.1 Basic Concepts and Facts

Let Fy denote the binary field and Fy the n-dimensional vector space over Fs.
An n-variable Boolean polynomial is a mapping from F% into Fa, which can be
uniquely represented as a multivariate polynomial over Fg,

n
f(xlax%"'axn): @ acH$?i7 ac€F2>

c=(c1, - ,cn)€EFY i=1

called the algebraic normal form (ANF).

A variable is called isolated if it appears and only appears in the linear part
of the ANF of f. For example, z; is an isolated variable in x1 ® xox3 @ T4T5.

For a variable z;, the Boolean polynomial f(x1,xs,- - ,x,) can uniquely
be represented as f = f"z; ® f’ with f' and f” independent of z;, which
implies f' = fl|z,—0 and " = f|z,=1 ® flz,=0- The partial derivative of f with
respect to the variable x; is the polynomial f”, denoted by D,, f. For example,
l)w2 (.’El D xox3 D .’L‘4.Z'5) = Is3.

For A € F% and an n-variable Boolean polynomial f on X, the derivative of
f with respect to A is the polynomial

Daf(X) =f(X) @ f(X&4),

and the polynomial fa is defined as

fa(X,z) = f(X & z4),



where x is a binary variable that we introduce. Note that fa is a Boolean
polynomial on n + 1 variables. From the above definitions, it is clear that

D:L’fA = DAf

Ezample 1. Let f(x1,x2,23) = x1 ® xox3 & 23 and A = (1,1,0). On one hand,
the derivative of f with respect to A is

Daf=f(X)® f(X®A)= f(x1,22,23) D f(r1 D 1,20 1,23)
= (1'1 @$2.’E3€Bx3)@(($1 @1)@($2@1){E3@(E3) =x3® 1.

On the other hand, by the definition of fao we have
fa=f@1®z, 22z, 23) = (21B2) B (22 Px)r3Dr3 = (23D 1)xdr Baorsdas
and the partial derivative of fa with respect to z is Dy fa =x3® 1= Daf.

Given a Boolean polynomial f on X = (z1,22, -+ ,Z,), if the polynomial f
can be represented as a polynomial g on (y1,%2, - ,ym), where each y; can
be seen as a polynomial on X, to say, y; = ¢;(X), then the ANF of g is
called in this paper an algebraic transitional form (ATF) of f. The variables
Y1,Y2, ", Ym are called transitional variables. Note that the ATF of a Boolean
polynomial is not unique. Actually, the polynomial f is a composition of g and
P = (¢17¢21 T 7¢m)7 that iS7 f(X) = g(q-ﬁ(X)), denoted by f =9 o .

Each polynomial ¢; can also be represented in terms of the ATF. From this
point of view, an iterated cipher can be iteratively represented by the ATF in
practical time if it is feasible to compute the ANF of its round function. It can
be extended to iteratively computed the ATF of the difference of a cipher. To
this end, we further introduce the following notations and basic facts.

For an input difference A € F}, ¢;(X @2 A) = ¢; & (D a¢;)z. By introducing
transitional variables «;’s and f;’s, we represent ¢;(X & xzA) as a; & zf;.
Denote a = (a1, a9, ,ay,) and 8 = (B1,82, -, Bm). Then the polynomial
fa = f(X ®zA) can be represented as

g(a@xﬂ) = g(al @xﬁhaQ @$627"' y Oy @xﬁm)v

which is called a differential algebraic transitional form (DATF) of f with respect
to A. More exactly, we have

fa=f(X®zA)=g(@X ®dzA)) =g(P® (Da®)z) = g(a D xB) oV,
where ¥ = (@, DA®P). Since ¥ is independent of z, we obtain
Daf =Dyfa = Dy(g9(a@aB) o ¥) = (Dygla® zf3)) o V.

Proposition 1 If an n-variable Boolean polynomial f is a composition of an m-
variable Boolean polynomial g and a function @ from Fy into F5*, i.e., f = go®,
then the derivative of f with respect to A is a composition of the partial derivative
of the DATF g(a @ xz8) with respect to x and the function ¥ = (P, DaP), i.e.,
Daf = (Dyg(a ® xf)) o W, where o and B are m-variable vectors and z is a
binary variable.



Ezample 2. Let A = (1,1,0,0,0) and f = go® with g(y1,¥y2,y3) = y1 Dy2y3Dys,
@(131, T2, T3,T4, 175) = (IZ?l EBIQIg @Ig, Xro @1‘3564 @1‘4, T3 EBI4175 EBI5) The ANF
of fis f(X)=2a1 ®xoxyxs ® xoxs D Tex5 D T5.

On one hand, the derivative of f with respect to A is

Daf=fX)e f(X®Ad)=nzsDa5 1.
On the other hand, we have

D.g(a @ xf) = Dyg(an © 281, ap © 262, a3 © x3)
= D, ((c1 @ 2P1) © (a2 © xB2) (a3 © x03) © (a3 © 233))
=D, ((B1 @ B2(as ® B3) ® az2f3 ® P3)r ® o & a3 & a3)
= 1 © Pa(az @ f3) D azfs © Bs.

Computing Da® = (z3 ® 1,1,0) and substituting (a, 8) with ¥ = (&, Da®),
e.g.,01=x3P 1,02 =1,83 =0 and ag = 3 & 425 D x5, it gives

D.gla@xf) oV = (3D 1) © (23D 2475 D x5) = 475 w5 S 1= Daf.

3.2 Calculation of the Differential-Linear Bias

In theory, the differential-linear bias can be determined by the algebraic normal
forms (ANFs) of the output bits, with input bits as variables. Nevertheless, it is
computationally infeasible to compute the ANF's of the output bits of a cipher.
To make it feasible, we compute their algebraic transitional forms (ATFs) rather
than the ANFs. More exactly, we compute the differential algebraic transitional
forms (DATFs) of internal bits as well as output bits of a cipher, and then
estimate the differential-linear bias.

For a cipher E, we consider it as a function from [} into F3'. The differential-
linear bias corresponding to (A;n, Aowt) describes the bias of differential-linear
approximation Ayys - C® Aoyt - C' = 0, that is, Aoyt E(P)® Aout - E(P® Ay,) = 0.
Denoting f = Aput - E gives f(X) @ f(X @ A;,) = 0. The bias is determined
by the Hamming weight of the partial derivative of fa,, = f(X + zA;,) with
respect to x. By Proposition [I| we know the derivative of f with respect to A;,
can be computed from its DATF.

Now we show how to compute the DATF for an iterated cipher. Given the
round function R of the cipher and an input difference 4;,, the procedure for
computing the DATF of the output bits is depicted in Alg. |1l Note that we only
concern the nonlinear operation and thus the first (last resp.) linear layer can
be omitted in the procedure if it is performed before (after resp.) the nonlinear
operation, and that the key and round keys can be taken as a part of the state
that is treated as a vector of variables or polynomials.

For an input binary variable vector X, we first initialize Y(©) = X @ 24;,
where x is a binary variable. Any instance of (Y(©)|,—o,Y(®|,_;) corresponds
to a pair with difference 4;, in the convention. Next we compute the algebraic
normal form of the output of the first rounds, i.e., YV = R(Y(©). We then



rewrite YD as Y/0=1 @ 2Y”(~1) with both Y/~ and Y"1 independent
of z, introduce new variable vectors o~ and 80—, and record the expressions
ali=1) = y’=1) and -1 = y”(@=1 in an equation set Q. Noting that in this
step we use the “Transitional Rule” described below as the rule for introducing
transitional variable. That is, o~ @ 2801 = ATF(Y (Y z). After this we
compute the ATF of the output of the i-th round Y = R(a(=1 @ 280-1).
Finally, we obtain the ATF of the output Y (") together with an expression set
Q. A diagram of the procedure is depicted in Fig

Transitional Rule: For a Boolean polynomial v = «”z ® « with v’ and
u” independent with the variable z, if u’' involves two or more variables,
then replace u’ with a new transitional variable; if u” involves two or more
variables, then replace u” with another new transitional variable. The new
expression derived from u is denoted by ATF(u,x), or ATF(u) for short. In

other words, for any polynomial w not involving the variable x, we have

var,,, if w involves two or more variables
ATF(w) = )
w, otherwise

where var,, is a transitional variable identified by w, and thus ATF(w) is a
constant or a variable up to a constant. By the rule, we know ATF(u,z) =
ATF(u”)x @ ATF(u’) has at most three variables including x. For a polynomial
vector, ATF operates on each component of the vector. This rule ensures that
ATF(f,z) is an ATF of f in a very simplified way that keeps « unchanged.

Remark 1. Our experiments show that the DATF techniques perform best when
the Transitional Rule is applied before the nonlinear operations. Hereinafter,
the rule is thus used before the nonlinear operations by default.

Algorithm 1: Differential Algebraic Transitional Form (DATF)

Input: An input difference A;,,, the round function R of an iterated cipher, and
the number 7 of rounds.
Output: Expressions (Y(T), Q).
1: Initialize the input variable vector Y(® = X @ zA;,, and set Q = 0;
2: Compute the ANF of the first round, YY" = R(Y(©);
3: for i from 2 to r do
YDy Gen
Y//(i—l) (—Dzy(iil);
a1 ATF(Y'(~D),
BU=1  ATF(Y"G-V);

8  Add the expressions o™ = Y’ and gD = y"G-1 6 @,
9:  Compute the ATF of the i-th round, Y¥ = R(a(i_l) @ xﬁ(i_l));
10: Return (Y™, Q).

10
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Fig. 2. Differential Algebraic Transitional Form (Alg.

The polynomial Y () is a DATF of E = R” with respect to A;,, and thus
Mout - Y ) is a DATF of f = Aous - E. As analyzed previously, Da,, f can be
computed from Dy(Aous - Y ) = Agur - DY) and Q.

The complexity of Alg. [1] Let tz be the complexity of computing the ANF
of the round function R, and d the algebraic degree of R. The dominant step is
Line |§| in the loop. Usually, after a few rounds, all the components of Y’ and
Y involve at least two variables due to the propagation of both the value and
difference. By the transitional rule, each component of the vectors o(® and g%
is set to a transitional variable. Then the complexity for computing the ATF of
R(a® @ z") is at most 2%5. So the complexity of Alg. (1] is O(2%rtg) in the
worst case. Taking d and r as small constants, the complexity is then O(tg). It
is feasible to compute the algebraic expression of R(a(i) @ xfW) if it is feasible
to compute the ANF of the round function R with small degree. This is the case
for most iterated ciphers without addition operations.

Next we show how to estimate the differential-linear bias. Given the ATF
of the output Y(") and the expression set @ generated by Alg. |1l we target at
estimating the differential-linear bias of the parity of the output pair with linear
mask Agy. First we compute the ATF of the parity e = Apws - Y("), where
Y”(") = DY) is the partial derivative of Y(") with respect to z. Note that
the bias will be 0 if there is an isolated variable in the ATF of e, assuming that
all the variables follow uniform distribution and are independent of each other.
Therefore, we compute the bias of the polynomial obtained by removing all the
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isolated variables from the ATF of e. For the sum of the isolated variables, we
substitute the expressions ) and obtain a new polynomial. Then we update e
with this new polynomial, and deal with this polynomial iteratively until it is
zero. By the piling-up lemma, we finally obtain the bias €. The whole procedure
is depicted as Alg.

Algorithm 2: Estimation of the Differential-Linear Bias

Input: Linear mask A,,: and the expressions (Y(T), Q).
Output: A bias e.

1: Calculate the partial derivative of Y(™: Y « D, Y.

2: Compute the ATF of the parity e = Aout - Y, and set & = L

3: while e # 0 do

4:  Select the isolated variables in the ATF of e, and sum them to e;;

5:  Compute the bias of e* = e — e; by £* = Bias(e*), and calculate e =2 -£* - ¢;
6: Substitute the expressions () into e;, and update e with this new polynomial;
7: Return e.

8: procedure Bias(f)
9: (flana"' 7f’m) %Separate(f);

100 e+ 3

11:  for ¢ from 1 to m do

12: if the number of variables in the expression of f; is small then

13: Compute the bias ¢; of f; according to its Hamming weight;

14: else

15: Select a variable v minimizing the maximum cardinality of the variable
sets of the polynomials in Separate(fi|v=0) and Separate(f;|s,=1);

16: Compute the bias of f; by €; = %Bias(fih:o) + %Bias(fih,:l);

17: €4 2-¢g-¢€4

18: if e =0 then

19: break

20: return e.

21: procedure Separate(f)

22:  Separate the Boolean polynomial f as a sum of m polynomials f; whose
variable sets are mutually disjoint, and sort fi, f2, -, fm in ascending order
according to the number of terms in their ANFs;

23:  return (f1, fo, -, fm)-

In Alg. [2] we use a procedure Bias() to compute the bias given an algebraic
expression in binary variables, in which another procedure Separate() is used
to separate the expression as a sum of m polynomials that have no common
variables. For a polynomial that could not be separated, if it involves a small
number of variables, e.g., 20, we can easily compute the bias from its Hamming
weight; otherwise, we guess the values of the variables one by one, and apply
Bias() repeatedly until all the polynomials have a small number of variables.
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Lemma 2 Given the ATF of f, if the variables are independent and identically
distributed, then the output of Bias(f) gives the bias of f.

Proof. Let €4 be the bias of f, and it needs to prove ¢ = Bias(f). Since
f=>", fi after the first step Separate(f) and f;’s are independent (because
their variables are disjoint and independent), we have ey = 2™ ley ey, ey by
the piling-up lemma. This is calculated by 2™ !'Bias(f;)Bias(fs)---Bias(fm)
in Line of the procedure. Therefore, it is sufficient to prove e; = Bias(f)
for the case m = 1. This is clearly true when the number n of variables
is small. The rest can be proved by induction. Suppose that it is true that
€7 = Bias(f) for any f with at most n — 1 variables. Let v be a variable of f.
Since 1 + ey =Pr(v=0)-(3 +¢ey,_,) + Pr(v=1)- (3 +&y,_,), we have

ef=Pr(v=0)-g4,_, +Pr(v=1)-¢4,_, (3.1)

and according the variable distribution and the inductive assumption it implies

! 1 1. 1 _
€f = is‘f‘vzo + §5f|u21 = iBlas(f|v:O) + iBlaS(f|,U:1) = Blas(f)'

Since the ATF of the parity with respect to the output linear mask Ay, is
e = e* 4+ ¢; with ¢ = e — ¢; and ¢; sharing no common variables, where ¢;
is the sum of the isolated variables of e, the bias of e is twice the product of
the biases of e* and e;. Substituting the expressions in @ into e; gives a new
Boolean polynomial, and its bias can be computed in a similarly way. From this
observation, the following statement can be derived.

Theorem 3 Assuming that all the variables of e*’s in Alg. |4 are independent
and identically distributed, the output € of Alg.[3is the bias of the differential-
linear approximation A, — Aout-

Proof. As the previous analysis of Alg. |1} we know Y@ is a DATF of R’ with
respect to Ajp, and thus Aoy - Y is a DATF of f = Aout - R”. By Proposition
Dy(Mout - Y = Apus - DY) = ¢ is an ATF of Do, f. Suppose that Line )
executes ¢t and only ¢ times in the algorithm. Let ell) be the polynomial e; after
1 executions of Line and e the polynomial obtained by substituting the
expressions () into el(z . Then Da,, f can be represented as e* + Zf;} e () e
where e* = e — el(l) and e*() = (1) — el(ZH). Since Line [5| repeates only ¢ times,
we have e® = 0 and thus D, f is represented as e* + Zf;i e*® in which the
expressions e* and e*(V)’s have independent variables under the assumption of
the theorem. By the piling-up lemma and Lemma [2} the bias of D4, f is equal

to 2!~ 1Bias(e*) Hf;i Bias(e*(?)), which is the output € of Alg.

The complexity of Alg.[2] The complexity of Line[5]in the loop dominates the
complexity, that is, the computation of Bias(e*). The complexity of Bias(e*)
is at most 2™, where m* is the maximum cardinality of the variable sets of
the polynomials in Separate(e*). So the complexity of Alg. [2]is O(2™) in the
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worst case, where m is the maximum of m*. In the case for most iterated ciphers
without addition operations, especially for lightweight ciphers using small S-
boxes, m is small so that the algorithm is practical. In particular, when Line
executes only once, m is at most twice the size of S-boxes, since the algorithm
treat the output of the last nonlinear operation as the output of the cipher.

In the following we propose a refined method for estimating the differential-
linear bias. It follows the main framework of Alg. 1| and Alg. 2l The difference
is that the assumption of uniform distribution of the transitional variables is
removed and replaced by auxiliary computation. The procedure is depicted as
Alg. |3} and the different parts include Line 2, Line 6 and Line 12 (in blue). In
Line 2, the probability distribution of each input variable is set. In Line 6, the
probability distribution of each transitional variable is computed according to
the probability distribution of previous variables. In Line 12 of the algorithm,
each estimation of bias takes the probability distribution of transitional variables
into account. This refined method usually gives a more accurate estimation of
the bias, while it requires more computations.

With a probability distribution set D = {Pr(X; = 0) = 1 + &|X; € X,1 <
i < n}, if X;’s are independent, then the probability that f(X) equals zero is

Pr(f(X)=0)= ) H )Cie,). (3.2)

Ce{X|f(X)=0}i=1

According to (3.2)), we execute Step 6 of the algorithm. Adapting the procedure
Bias() with and , we execute Step 12. The complexity of the adapted
procedure is about n times the complexity of Bias(). Combining Alg.|l{and Alg.
with these steps, we obtain Alg.

Similarly as Theorem [3] for Alg. 2] we conclude the following statement
for Alg. Since the probability distribution of each transitional variable is
calculated in the algorithm, the assumption of their distribution is removed.

Theorem 4 Assuming that the variables of the DATF, i.e., Y9 at each round
are independent, the output € of Alg. [3 is the bias of the differential-linear
approximation Ay, — Aout-

Proof. Since the variables of each round are independent, it can proved by
induction on the number ¢ of rounds that all the probability distributions in
D are correct according to . Then under the independence assumption of
the variables of the last round, the theorem is proved by the correctness of the
modified procedure that adjusts Bias() with and (3.1)).

The complexity of Alg. [3] Let T7 and T5 respectively be the complexity of
Alg. [1] and Alg. P} and n the state size. Then the complexity of Alg. [J]is at
most T + 2nT5, since the main difference between Alg. [3| and the combination

of Alg. [Ifand Alg. [2[is generated by (3.2]).
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Algorithm 3: Refined Estimation of the Differential-Linear Bias

Input: An input difference A;,, output linear mask A,u¢, the round function R
of an iterated cipher, and the number r of rounds.
Output: A bias €.

1: Initialize the input variable vector Y (© = X @ zA;,, and set Q = 0;

2: Initialize a probability distribution set D = {Pr(X; = 0) = §|X; € X};
3: Compute the ANF of the output of the first round Y = R(Y);
4
5

: for i from 2 to r do

Write YD = Y01 @ 2V"C=D with Y'¢~Y and Y”¢~Y independent of z,
introduce new variable vectors o~ and A%, and add the expressions
a(ifl) _ Y/(ifl) and ﬂ(ifl) _ Y//(ifl) to Q;

6:  With D, compute the probabilities that a;i_l) and 6.7(-1‘_1) are respectively zero
for all j, and add to D;

7: Compute the ATF of the output of the i-th round Y = R(a“*l) ® xﬂ(ifl));

8: Calculate the partial derivative of Y(": Y"(") « D,y (™.

9: Compute the ATF of the parity e = Aout - Y, and set e = L

10: while e # 0 do

11: Select the isolated variables in the ATF of e, and sum them to e;;

12:  With D, compute the bias €* of ¢* = e — ¢;, and calculate e =2 -&* - ¢;

13:  Substitute the expressions @ into e;, and update e with this new polynomial;

14: Return €.

3.3 Key Recovery in Differential-Linear Cryptanalysis

To convert a differential-linear distinguisher to a key recovery attack, for a
block cipher, we usually guess some key bits, perform partial encryption or
decryption, and apply the distinguisher. In the previous work, the distinguisher
and the process of key guessing are separately treated. Here we show an algebraic
approach to deal with these two processes simultaneously. The approach
also applies to iterated ciphers of other types, including stream ciphers and
authenticated encryption ciphers.

A crucial stage of this approach is to impose some conditions on the
internal bits of the cipher to make uncertain differences determined in the first
rounds. Similar techniques were used in conditional differential cryptanalysis
[IBB93IKMNTI0] and conditional linear cryptanalysis [BP18], and a similar idea
called the partitioning technique was applied to differential-linear cryptanalysis
in [Leul6] with an application to Chaskey.

Our precomputation for the key recovery follows the main framework of
estimating the differential-linear bias in Alg. [3| The procedure is depicted as
Alg. [4 For the sake of brevity, here we only explain its differences with Alg.
marked blue in the procedure. The main difference is that some conditions I are
imposed in the first r; rounds. Note that in each computation of the ANF's and
ATFs we reduce the polynomials over the ideal of I, denoted by “mod I”.

After precomputation for the key recovery as shown in Alg. @l we obtain
a set of expressions (J; and a differential-linear bias . Then a system of
equations S = {f = 0|f € Qr} is derived. Assume that the equations in S
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Algorithm 4: Key Recovery in Differential-Linear Cryptanalysis

Input: An input difference A;,, output linear mask A,u¢, the round function R
of an iterated cipher, the number 7 of rounds, and a parameter r;.
Output: A set Q; of expressions in key bits and a bias e.

Initialize the input variable vector Y(©) = X @ zA;, and set Q = 0 and I = ;
Initialize a probability distribution set D = {Pr(X; = 0) = 3|X; € X};
Compute the ANF of the first round Y = R(Y®) mod TI;
for ¢ from 2 to r do
Write YO = Y071 @ 27”0~ with Y'0~Y and Y70~V independent of ;
if i <71 and Y07V ¢ {0,1} then
Add Y"C™Y to I, impose Y07 =0, and set Y'Y = y'C~1 mod T,
Introduce new variable vectors o~ and B(Fl), and add the expressions
Q=1 = y'(=1) apq gi-1 — y"G-1 ¢4 Q.
9:  With D, compute the probabilities that agifl) and ,(3?71) are zeros for j, and
add to D;
10:  Compute the ATF of the i-th round Y = R(a™V @ z8¢~Y) mod I;
11: Calculate the partial derivative of Y(": Y"(") « Dy,
12: Compute the ATF of the parity e = Aous - Y/ mod I, and set & =
13: while e # 0 do
14:  Select the isolated variables in the ATF of e, and sum them to e;;
15:  With D, compute the bias of e — ¢;, denoted by €, and calculate e =2 -€* - ¢;
16:  Substitute the expressions @ into e;, and update e with this new polynomial
(mod I);
17: Deal with I, and obtain a set of expressions in input bits, denoted by Qr;
18: Return Qy,e.

1.
29

are independently and they are always consistent for an arbitrary fixed key.
Denote by n the number of equations in .S and by m the number of independent
expressions of key bits in S. In the key recovery attack, the key is unknown, and
thus we need to guess the values of the expressions that involve the key bits. For
each guess of these expressions, O(s%) pairs of plaintexts with input difference
A;p is sufficient to mount a distinguisher. We assume a random behavior of the
parities of the output subset for a wrong key. Then the data complexity of the
attack is D = O(i—;) There are 2™ values for the m expressions that need to be
guessed in the attack, so the attack time is T = O(25)

2

The success probability of the attack is calculated according to analytical
results of the success probability of linear attacks (also applicable to differential-
linear attacks) in [Sel08, Theorem 2] as below.

Theorem 5 ([Sel08]) Denote by @ the cumulative distribution functions of the
standard normal distribution. Let Pg be the probability that a linear attack on
an m-bit subkey, with a linear approzimation of probability p, with N known
plaintext blocks, delivers an a-bit or higher advantage. Assuming that the linear
approximation’s probability to hold is independent for each key tried and is equal
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to 1/2 for all wrong keys, we have, for sufficiently large m and N,
Ps=®(2VN|p—1/2| — & 11 —2797Y)). (3.3)

The complexity of Alg. Excluding the cost of computing the ATF and
bias that is almost the same as Alg. [3] the running time of Alg. [ mainly
depends on the cost t; of each computation of mod I. The former is computed
as T35 = T} + 2nT» as previously. Then the complexity of Alg. |4|is O(T5 + nriy).
Therefore Alg. [4]is practical when Alg. [3]is feasible and the size of I is small.

We have implemented Alg. [4] in SageMath for Ascon, Serpent, and Grain
v1l. Our experiments show that the algorithm performs well when r; is small
enough (such that the number of independent expressions in [ is small), though
it is slower than Alg. [Pl and Alg. [3] It is a good choice to use Alg. 2] and Alg.
to screen differential-linear approximations. Especially for input difference and
output linear mask with small Hamming weights, we can use Alg. [2] to exhaust
all possible differential-linear approximations, and use Alg. [3] to further screen
candidates. In the applications in conditional attacks, we can equip Alg. [f] with
Alg. [2] for fast computation. As a general method, the algorithm can also be
applied with a DL distinguisher obtained by other approaches, in particular
when it can not detect a reasonable bias.

4 Applications to Ascon

In this section, we apply our techniques to Ascon for estimating the differential-
linear bias, and then propose a key recovery attack to a 5-round variant. Ascon
is a family of authenticated encryption and hashing algorithms designed by
Dobraunig et al. [DEMSI6/DEMST19]. It has been selected as the primary choice
for lightweight authenticated encryption in the final portfolio of the CAESAR
competition (2014-2019) and is currently competing in the NIST Lightweight
Cryptography competition. The analysis in this paper is focused on Ascon-128,
and the results are also applicable to Ascon-128a. Note that given the 64 bits of
the output, one can invert the last linear layer. Hereinafter we thus consider the
cipher without the last linear layer.

4.1 Differential-Linear Bias of Ascon

In [DEMST5], Dobraunig et al. presented practical differential-linear attacks on
up to 5 rounds of the Ascon permutation, based on a 4-round differential-linear
distinguisher. The authors of [DEMS15| stated that while the overall bias of
the approximation is expected to be 2720 by the theory of the differential-linear
attack, experiments show that the bias is 272 which is significantly higher.
Recently, at EUROCRYPT 2019, Bar-On et al. [BDKW19] recomputed
the bias of the distinguisher using the Differential-Linear Connectivity Table
(DLCT) and obtained a higher bias of 275. This value is significantly higher than
the value 2720 which follows from the classical differential-linear framework. On
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the other hand, it is still much lower than the experimentally obtained bias of
272, The authors of [BDKWT9] conjectured that it may be explained by the
effect of other differentials and linear approximations.

In the following, we exploit the two algorithms, Alg. 2| and Alg. [3] as shown
in Section Bl to estimate the differential-linear bias for Ascon.

Before applying Alg. [2| we have to compute the DATF of Ascon by Alg.
We divide the S-box of Ascon into two parts, ps, and ps,, and the permutation
of Ascon is then divided into two parts, pa = ps, °pc and pp = pr, o pg, . The
first part of the S-box, pg, , is actually a linear transform, as shown below.

x0 ~= x4; x4 ~= x3; x2 "= x1;

In Alg. |1} we compute the ANF of a half round of p, i.e., R = pa, instead of
the entire first round. We then set R = p4opp, and for the last round set R = pg,, .
A function of 7 rounds p” without the last linear layer is exactly pg, cR" lopa.
The 128-bit key and 128-bit nonce are set to 256 binary variables, and the IV is
set to a constant defined by the cipher.

For the input difference A;, with differences in bit 63 of x3 and x4, by
performing Alg. [1] with = 4, we obtain the ATF of the output Y together
with an expression set Q. Note that in Line [3] of Alg. [I] the number i of rounds
ranges from 1 to r = 4. Applying Alg. 2] to a single-bit linear mask in bit 9 then
gives a differential-linear bias ¢ = 273.

Similarly as done in Alg. (1} in Alg. We set R2 = pa, R =pacepg, and for the
last round R = pg,, . With the same input difference and output mask, applying
Alg. [3] to 4 rounds of Ascon permutation gives a bias ¢ = 272365, This result
slightly improves the estimate of 272 obtained by Alg. |2, at cost of computations
of the probability distribution. It is very close to the experimentally obtained bias
of 272, and much higher than the theoretical bias of 27° obtained in [BDKW19]
using the DLCT.

4.2 Differential-Linear Cryptanalysis of Ascon

Now we apply the key recovery algorithm, Alg. [4 to 5-round Ascon-128. By
performing Alg. [4 with 71 = 2 and 7 = 5 over all possible single-bit or two-bit
input differences and all possible single-bit output masks, we obtain a differential-
linear bias € = 275415 for the input difference A;, with differences in bit 63 of
x3 and x4 and the output mask A,,; in bit 36. The R function is the same as
defined previously, and in Line [4] of Alg. [4] the number ¢ of rounds ranges from
1 to 5. The set of expressions @7 has 9 polynomials, with algebraic degree at
most 2. Among these 9 polynomials, 6 of them involve both the key and nonce
bits, 2 polynomials involve only a single key bit (bit 63 and 127 respectively),
and one involves only two nonce bits (bit 63 XOR bit 127). We impose bit 63
and bit 127 of the nonce to be equal, and run all the possible cases for the other
8 polynomials by experiments on random 22® samples for each case. We then
derive a bias of 274 when all the polynomials equals zero and a reasonable
high bias of 2755 when 5 of them equals zero. The 5 equations are listed as
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follows, where k; means bit i of the key and v; means bit ¢ of the nonce.

kg3 =0;
k127 =0;

vs2 =k12v76 + k12 + k3s5vg9 + ka2v106 + Kas + k52 + koo + k100 + K116
+ v12 + va2 + Va5 + V76 + V106 + V109 + V116 + 1;

v7a =k10k7a + k10vio + k1o + ksakos + k3ovsa + k3o + kaskog + k3svss + kas
+ k7av10 + k74 + kosvs2 + kos + koguss + koo
+ v10 + v32 + U35 + Vo + Vo9 + 1;

vg3 =k19ks3 + k19v1g + k19 + kark1os + ka1v41 + ka1 + kaakios + Kaavaa + Kaa
+ kg3vig + kg3 + k105v41 + K105 + K108v44 + K108

+ v19 + V41 + V4q + V105 + V108-

Our experiments show that the differential-linear bias is significantly smaller
than 27°% when one or more equations of the above equations are not satisfied.
Fixing the values of Vﬁx = {’Ulo, V19, V32, U35, V41, V44, V76, V99, ?]106}, 215'3+3
samples with vss, v74, vg3 running over possible values are sufficient to distinguish
kes = k127 = 0 from the other cases. For the case kg3 = k127 = 0, we can also
recover 3 extra expressions on key bits. More exactly, in this case, we are able
to derive the above 5 equations. We can further set up 9 more equations by
flipping the values of Viy bit by bit. By elimination of nonlinear terms in key
bits and after simplification, we obtain 12 linear equations on key bits, that is,
kez = 0,k127 = 0, k12 = co, k35 = c1, kg = ca, kg9 = c3, k10+k7a = c4, k19+kgz =
cs, k3a+kos = co, ka1 +ki0s = c7, kaa+kios = g, kas+ksa+kio9+k116 = co. Since
we know the value ¢4 of the sum kyo + k74, we can linearize the quadratic term
k1iok74 to k‘lo(l + k1o + k74) = (1 + 04)]{310. By a similar way, the two nonlinear
equations can be linearized, and they are linearly independent with the previous
equations with a high probability.

Noting that the characteristics of Ascon are rotation-invariant within the
64-bit words, the same method can be used to set up other equations by placing
differences in bit i of x3, x4 and observing the bias at position (¢ +37) mod 64.
For each i, we can detect whether k; = k; ¢4 = 0 is satisfied, and then set up 14
linear equations. We can obtain on average 16 i’s with k; = k; 164 = 0, and thus
derive 16 x 14 = 224 linear equations on key bits, which is sufficient to recover
the correct key. We have verified by experiments on thousands of keys that for
most cases the linear system has at least 104 linearly independent equations.

The data complexity of the attack is on average 64 x 2193 +16x9x 2173 ~ 226
bits, and the expected time complexity is about 226, for most of the keys. The
complexity has been practically verified. This attack significantly improves the
existing differential-linear attack on 5-round Ascon-128 with complexity 236
[DEMSTH]. Our results are summarized in Table [3] with the comparisons of
the previous differential-linear attacks.

Remark 2. We have made a lot of efforts to apply the method to Ascon for 6
and more rounds, e.g., performing an exhaustive search over all the possible
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Table 3. Differential-Linear Cryptanalysis on Ascon-128

type rounds | time | data | source
key recovery | 4/12 | 2™ | 2™ [ [DEMS15]
key recovery | 5/12 | 2%¢ | 2%¢ | [DEMSI5)
key recovery | 5/12 | 2%° | 2%° [Section

DL approximations with low-weight differences and linear masks, but we did
not find any approximation with bias larger than 27%4. This probably enhances
confidence that there does not exist valid DL approximation for 6-round Ascon,
at least for low-weight differences and linear masks.

5 Applications to Serpent

In this section, we first give a brief description of the cipher Serpent [ABK9S],
as well as revisit the estimation of the differential-linear bias in [BDKO03] by our
techniques, and then propose key recovery attacks to round-reduced Serpent.

5.1 A Brief Description of Serpent

In [ABK98] Anderson, Biham and Knudsen presented the block cipher Serpent.
Serpent is an AES finalist. Serpent has a block size of 128 bits and supports a
key size of 128, 192 or 256 bits. The cipher is a 32-round SP-network operating
on a block of four 32-bit words. Each round is composed of key mixing, a layer
of S-boxes and a linear transformation.

In the following, we adopt the notations of [ABK98/BDKO03| in the bitsliced
version. The intermediate value of the round i is denoted by B; (which is a 128-
bit value). The rounds are numbered from 0 to 31. Each B; is composed of four
32-bit words Xo, X1, X2, X3. Serpent has 32 rounds, and a set of eight 4-bit to 4-
bit S-boxes. Each round function R;(i € {0,--- ,31}) uses a single S-box 32 times
in parallel. For example, Ry uses Sy, 32 copies of which are applied in parallel.
Thus, the first copy of Sy takes the least significant bits from Xg, X7, X5, X3
and returns the output to the same bits. This can be implemented as a Boolean
expression of the 4 words. The set of eight S-boxes is used four times. Sy is used
in round 0, S7 is used in round 1, etc. After using S7 in round 7, Sy is used
again in round 8, then S; in round 9, and so on. In the last round (round 31)
the linear transformation is omitted and another key is XORed.

5.2 Differential-Linear Bias of Serpent

One of the first applications of the differential-linear cryptanalysis is an attack
on the AES finalist Serpent presented by Biham et al. in [BDKO03|. The attack is
based on a 9-round differential-linear distinguisher with bias of 2790 and targets
an 11-round variant of the cipher. In [DIKO§|, Dunkelman et al. performed
experiments with reduced round variants of Serpent, and concluded that the
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actual bias of the approximation is 27577 and not 27%°. In [BDKW19], Bar-On
et al. recomputed the bias of the distinguisher using the DLCT and obtained
the value 275768,

In this section, we revisit the analysis of the bias of this distinguisher by
DATF techniques, and show an estimate of 2757736, This value is extremely
close to the experimental value.

Before showing our results, we recall the analysis of [BDKO03]. In the following,
we adopt the notations of [BDKWI9/BDKO03|, and refer the reader to [BDKO03]
for the exact difference and mask values. The differential-linear distinguisher of
IBDKO3| targets a 9-round reduced variant of Serpent that starts with round
2 of the cipher. This variant is denoted by E and decomposed as E = FE; o Ey,
where Ey consists of rounds 2-4 and FE; consists of rounds 5-10. For Ej, the
distinguisher uses a differential characteristic of the form

-5 —1
Po=2 pP1=2 p2=1
0 Ay A
LToSs LToSs LToSy

35

where Ay, Az are truncated differences. For Ey, the distinguisher uses a linear
approximation of the form

-5 —3 —21
qo=2 Q=2 q1=2
0 Al A2 A6s
LToSs LToSg R4

where all nonzero bits of the mask \g are included in the bits that are known to
be zero in Az. The authors of [BDKO03| found out by experiments that there are
other differentials which also predict the difference in the bits of A\g. Summing
all the differentials, they got that the probability that Ao - Az = 01is 1/2 4277,
and hence used p = 277 in their analysis. Using the complexity analysis of the
classical differential-linear framework, the authors of [BDKO03] concluded that
the overall bias of the approximation is 2 x 277 x (2727)2 = 2760,

The authors of [DIKOS|] checked experimentally the first 4 rounds of the
differential-linear distinguisher of [BDKO3|] (that is, a 4-round distinguisher
which starts with the difference Ay and ends with the mask \;) and found
that its bias is 27137, instead of the estimate 2 - 277 - (275)2 = 2716, They
concluded that the bias of the 9-round distinguisher is 27°77® instead of 2769,

The authors of [BDKWI9] considered a 3-round variant of Serpent that
starts at round 3, denoted it by E’, and found that its bias is 27868, Hence
they concluded that the bias of the 4-round distinguisher examined in [DIKOS]
is 95 .0-868 _ 9—13.68

We apply Alg. to the 3-round variant of Serpent FE’ considered in
[IBDKW19], with the input difference A;, = A; and output mask A,y = A1,
and obtain a bias ¢ = 278736, Therefore we conclude that the bias of the 4-
round distinguisher examined in [DIKO0§] is 277 - 278736 = 213736 This value
is extremely close to the experimental value, and slightly more accurate than
that of [BDKWT9]. Note that the gap is 272°4 while the standard deviation of
the bias was 271887 in the experiment of [DIKOS]. We conjecture that the gap
between the experimental value and our estimate is a statistical error.
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We further apply Alg. [B|to a 4-round variant of Serpent that starts at round
3, with the input difference 4;, = A; and output mask A,,; = A2, and obtain

a bias € = 2712736 We thus conclude that the bias of the 5-round distinguisher
is 95 .9—12.736 _ 9—17.736

5.3 Differential-Linear Cryptanalysis of 11-round and 12-round
Serpent

In this section, we first point out the flaws in the previous attacks on 12-round
Serpent, and then show our improved attack by applying Alg. [4]

Comments on the Attacks on 12-round Serpent in [DIKO08/Lul5]. The
authors of [DIKO0S] found that the S-boxes 2, 3, 19, and 23 do not affect the active
bits of LT~1(A), and used this property to extend the 11-round attack to 12
rounds by partially encrypting plaintexts for one more round. Nevertheless, in
Step 3(b) of the 11-round attack, the bits input to the 5 active S-boxes in round
1 are partially encrypted, and thus not only the differences but also the values of
these bits must be taken into account. Our experiment shows that the S-boxes 2,
3, 19, and 23 affect their values, though they do not affect their differences. This
implies that the attack on 12-round Serpent in [DIKOS| has an underestimated
time complexity, up to a factor of 2'6. The same issue exists in the 12-round
attack on Serpent in [Lulb] with time complexity of 22449 encryptions. Instead,
they used the property that the S-boxes 1, 8, 10, 30, and 14 of Round 0 do not
affect the difference corresponding to the S-boxes 18, 22, 24 and 25 of Round 1,
but our experiment shows that all the S-boxes of Round 0 affect their values. This
means that the complexity was underestimated by a factor of 22°. We therefore
conclude that these attacks are thus worse than a brute-force attack [

The Improved Attacks on 11-round Serpent. First, we consider a 6-round
variant of Serpent that starts at round 1, using Alg. [dl The input difference
is set to A, = {11, 14,18, 31,46, 49,50, 75, 78,81, 82,95,107,114,127}, and the
output mask Aoyt = Ao. With r; = 2, performing Alg. [ we obtain a bias
€ = 2712736 The set of expressions Q; has 16 independent polynomials, 11 of
which are generated in round 1. The remaining 5 polynomials are produced in
round 2, and the probability that all of these 5 polynomials equal zeros is 27°. If
we impose the 11 polynomials in round 1 to be zeros, which are all linear, then we
obtain a differential-linear distinguisher with a bias of 275 . 2712736 — 9—17.736
for 6-round Serpent. By assuming the piling-up lemma to hold for the linear

4 The authors of [DIK08] have comfirmed the issue with the attacks after a long-
time effort to find solution for fixing it. We are grateful to them for their helpful
discussions and precious feedback on the issue. The flaw was found when we tried
to apply our techniques to Serpent. We believe that the techniques can improve
the 12-round attacks in [DIKOS], but the “improved” attack is even worse than a
brute-force attack. We were then aware that this is a contradiction.

22



—21

approximation from round 7 to round 10 (Ag %) Ag), we can obtain a
10-round differential-linear distinguisher with a bias 4 - 2717-736 . 2721 . 9=21 —
2757736 Ty imposing 11 linear equations on the input bits and key bits in round
1. This is because imposing these equations makes the differential characteristic
Ain LTe5, Ag hold with probability one. Nevertheless, the technique of Section
can not be adopted directly, since the required data exceeds 228, As a trade
off, the data complexity can be cut down by imposing less equations, at cost of
increasing the attack time.

Based on the above observation, we improve the differential-linear attack on
11-round Serpent as follows.

In the attack, we use an input difference with 3 active S-boxes 11, 14, 18:
Ay, ={11,14, 18, 46,50, 75, 78,82, 107,114},
and impose the following 6 equations:

v11 = ki1;

Vg = k14 ® kg ® v7s @ 1;
vig = k1g @ kso @ vso;

v43 = k43 ® k107 D v107 D 15
V4 = ke D ks D v73 D 1;
Vg2 = Vs0 D ko D kga D 1,

(5.1)

where v; and k; respectively denote bit 7 of plain-text input to round 1 and the
128-bit subkey K3 of round 1.
The attack is described by the following procedure.

1. Select N = 2256 pairs of plaintexts with difference A;,,, consisting of 2111:6

structures, each is chosen by selecting:

(a) Any pairs of plaintexts (Py, Py & Aip).

(b) The pairs of plaintexts (P, P; @ A,) for 1 < 4 < 21 — 1
where Py,---, Pyia_; differ from Py by all the 24 — 1 possible (non-
empty) subsets of the 6 bits {11,14,18,43,46,82}, S-box 17 (bits
{17,49,81,113}) and S-box 31 (bits {31,63,95,127}) in round 1.

2. Request the ciphertexts of these plaintext structures (encrypted under the
unknown key K).

3. For each value of the 6 expressions of K7, choose the 2!19:6 pairs of plaintexts
(P, P®A;,) with P satisfying , and perform the following steps for each
value of the 8 bits of K; entering S-box 17 and S-box 31:

(a) Initialize an array of 2°6 counters to zeros.

(b) Partially encrypt for each plaintext the S-boxes 17 and 31 in round 1,
and find the pairs which satisfy the difference Ag before round 2.

(c) Given those 2196 pairs, perform for each ciphertext pair: count over all
pairs how many times each of the 2°¢ possibilities of the 56 bits entering
the 7 active S-boxes in round 11 occurs.
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(d) For each guess of the subkey entering these S-boxes, find how many pairs
agree on the output subset parity, and how many disagree.

(e) The highest entry in the array should correspond to the 28 bits of Ky
entering the 7 active S-boxes in round 11.

4. Each trial of the key gives us 42 bits of the subkeys (14 bits in round 1 and
28 bits in round 11), along with a measure for correctness. The correct value
of the 40 bits is expected to be the most frequently suggested value.

5. The rest of the key bits are then recovered by auxiliary techniques.

The data complexity of the attack is 21266 chosen plaintexts, the time complexity
of the attack is 2120-6.214. 2 = 21271 encryptions, and the memory complexity is
260 bytes for the 11-round attack. Using the formula , the success probability
of the attack is expected to be about 85%. As far as we know, this is the first
differential-linear cryptanalysis on 11-round Serpent-128.

Further Improvements on the Attacks on Serpent. In [DIKOS],
Dunkelman et al. presented a 9-round differential-linear approximation in the
inverse direction with a bias of 2754, starting from round 13 and ending at round
5, and showed an attack on 11-round Serpent with data complexity of 2137
chosen ciphertexts, time complexity of 2'377 memory accesses, and memory
complexity of 2°2 bytes.

With the help of Alg. ] we can improve the attack on 11-round Serpent
in the setting of chosen ciphertext attack, using the techniques as discussed
previously. By imposing 12 linear equations on the ciphertext and the bits of
subkey K75 that are XORed with the 6 active S-boxes in round 14, the 9-round
differential-linear approximation in the inverse direction can be extended to 10
rounds with the same bias 2%, starting from round 14 and ending at round
5. Then the time complexity can be cut down by a factor of about 272, The
improved attack on 11-round Serpent has the data complexity of 2257 chosen
ciphertexts, time complexity of 2'2>7 memory accesses, and memory complexity
of 2% bytes. Using the formula , the success probability of the attack is
expected to be more than 99%.

Our experiment shows that there is one S-box in round 15 that does not
affect either the differences or the values of the 6 active S-boxes in round 14.
Based on this observation, we can extend the chosen ciphertext attack on 11-
round Serpent to 12 rounds (starting from round 15 and ending at round 4), by
guessing the bits of the subkey K¢ that are XORed with the other 31 S-boxes.
The attack on 12-round Serpent-256 has the data complexity of 227 chosen
ciphertexts, time complexity of 2127 - 2124 = 2251 memory accesses, and memory
complexity of 279 bytes. The success probability of the attack is expected to be
more than 77%. To the best of our knowledge, this is the first correct attack on
12-round Serpent.

The cryptanalytic results are summarized in Table ] with the comparisons
of the previous differential-linear attacks.
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Table 4. Differential-Linear Cryptanalysis on Serpent

Key size |rounds time data memory | source
192 & 256 | 11/32 | 2597 En [2™3 CP| 2" B | [BDKO3]
192 & 256 21357 En | 21218 CP| 2" B | [DIKOS§]
192 & 256 2877 MA | 2137 cC| 2 B | [DIKOS
all 11/32 | 2'271 En | 2'266 CP| 2°° B | Section
all 21257 MA | 2'%57 CC| 2°° B | Section
256 12/32 | 221 MA | 227 CC | 2°° B | Section[5.3

6 Applications to Grain v1

As mentioned earlier, an extreme case of the differential-linear attack can be
theoretically considered as a truncated differential attack, see also [BLN1T].
The techniques we propose for differential-linear attack can also be used in a
(truncated) differential attack. In this section, we apply the previous techniques
to differential cryptanalysis of the stream cipher Grain v1, propose key recovery
attacks to a round-reduced variant of the cipher, and also revisit the previous
differential attacks.

Grain vl is an NFSR-based stream cipher proposed by Hell et al. [HJMMOS].
The cipher is one of the finalists which has been selected in the eSTREAM
hardware profile. Grain v1 uses an 80-bit secret key K = (ko, k1,...,k79) and a
64-bit initial value V' = (vg,v1, ..., vs3). It consists of three main building blocks:
an 80-bit LFSR, an 80-bit NFSR and a non-linear output function. In this paper,
round-reduced variants of Grain v1 with 7 initialization rounds means the cipher
outputs keystream after r rounds and the first keystream bit is z,.

At ASTACRYPT 2010, Knellwolf et al. [KMNI0] proposed conditional
differential attacks on NFSR-based cryptosystems, with applications to 104-
round Grain v1. The framework of this attack is as follows: First, in a
chosen plaintext attack scenario, the authors choose a suitable difference that
controls difference propagation as many rounds as possible. Second, they impose
conditions to prevent the propagation of the difference to the newly generated
state bits at first few rounds. Since the bias of the keystream is wanted to
be tested, there is an important trade-off between the number of imposed
conditions and the number of inputs that can be derived. Finally, depending on
whether the conditions involve the initial value only, or also key variables, they
obtain distinguishing and partial key recovering attacks. In the literature, the
largest number of initialization rounds of Grain v1 that can be attacked is 120,
proposed by Li and Guan [LGI9] using a conditional differential approximation
with an experimental bias 27128,

6.1 Searching the Differences of Round-reduced Grain vi1

In this section, we exploit the two algorithms, Alg. [1| and Alg. as shown
in Section [3| to estimate the differential-linear bias as well as search for good
differences for Grain v1i. We use Alg. [ rather than Alg. [3] because of its
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efficiency. By an exhaustive search over all the differences in at most 4 bits
of the initial value, the algorithms find a differential approximation with a
theoretical bias 272977 for 125-round Grain v1. For purposes of comparison, we
have applied the existing method called Differential Engine proposed by Banik
in [Banl4] to analyzing the bias of the same approximation, and detect a bias of
272478 which is much smaller. The found input difference is a 2-bit difference,
with differences in bit 21 and 46 of the initial value. The output linear mask is
located in the first bit of the keystream. Note here that we use modified Alg.
and Alg. 2| which partially adopt the key recovery techniques of Alg. [4] with
r1 = 50. From the algorithms we obtain 6 equations represented by the ATF's
of the internal bits of Grain vi1. The ANFs of the internal bits on the key and
initial value are very complicated. Instead of directly converting the ATF into
the ANF, we analyze these equations specifically one by one manually.

Using the same method, we revisit the analysis of the conditional differential
bias of 120 rounds in [LG19], and obtain a theoretical estimate of 271339, This is
very close to the experimental value 27'2%, and much higher than the estimate
of 271813 ohtained by the Differential Engine method.

6.2 Analysis of 125-round Grain v1

Imposing the appropriate conditions is the crucial part of conditional differential
attack. It has a trade-off between the two aims: one is to prevent a maximum
number of propagation, the other is to find enough IVs that satisfy the
conditions. A condition that we assign a certain IV bit to fixed value 0 or 1
is called Type 0 condition, and a condition which is a function of IV bits and
key bits is called Type 1 condition.

We now introduce the strategy of our conditions analysis. Since the updated
symbolic expressions of Grain v1 are rather complicated after few rounds, it is
not easy to analyze conditions. A new variable is used to compute the updated
expression and we store the original complex one and factor the condition

n
expression as f + > f;g;- Thus it is easier to analyze expressions and impose
simple conditions. ZT(l) obtain enough IVs that satisfy the conditions, we allow
Type 1 conditions to have the term ) k;v; and we guess the value of each k;

2
when we attack 125-round Grain vi. ]VVe finally impose 10 Type 0 conditions
and 13 Type 1 conditions.

We have performed for 8 random keys each with 2%° pairs of initial values
that satisfy the above equations, and observed a bias of 2717# with standard
deviation of 27205, Hence we use the bias 27174 in our attack.

In the above equations, there are in total 20 independent expressions of key
bits that need to be guessed in the attack. A primary analysis of the attack
gives a data complexity of 2-2'3.238 = 252 chosen IVs and a time complexity of
220.239 = 259 Gince 20 expressions of key bits are recovered, the full key recovery
attack runs in time 2°. Using the formula , the success probability of the
attack is expected to be more than 87.7%.
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By imposing two extra bits of IV to be zeros, e.g., v47 = v59 = 0, two less
expressions of the key need to be guessed, and the time complexity of the attack
can be cut down to 2'8 . 239 = 257 keeping the data complexity unchanged.
After recovering the 18 expressions of the key, we can recover the other two
key expressions, at cost of additional but negligible time and data. The success
probability of the attack is expected to be more than 92.5%. To the best of
our knowledge, this is the best known initialization analysis of Grain v1 in the
single key setting. The results are summarized in Table [5| with the comparisons
of the previous differential attacks. Note here that this table does not include
the distinguishing, related key or weak-key attacks.

Table 5. Differential Cryptanalysis on Grain v1 in the Single Key Setting

type rounds | time |data| gain source
partial key recovery [ 104/160| 2% | 2% | 1bit | [KMNIO0]
full key recovery |105/160] 27T - | 9bits | [Banl6]
partial key recovery | 110/160| 2% | - [15 bits| [MTQL7]
partial key recovery | 120/160 [ 2" [ - |12 bits| [LG19]
partial key recovery | 125/160 257 | 252 120 bits | Section [6.2
full key recovery |125/160| 2°° | 2°% [20 bits | Section [6.2

7 Discussions and Open Problems

Here we would like to discuss why our theoretical value is more accurate than
that of the DLCT tool [BDKW19] and why the gap behaves different for Ascon,
Serpent and Grain v1. As a general case, it has been proven in Theorem@that
the theoretical value given by Algorithm[3]is accurate, under the assumption that
the variables of each round are independent. The number of transitional variables
in each round is at most twice the number of updated bits. Thus the assumption
is competitive with the traditional assumption of differential-linear cryptanalysis,
i.e., round independence within Ey and F; (see also [BLNI7IBDKWT9]). For a
concrete case, especially in the case of low-weight differences and linear masks, a
much weaker assumption might be required in the DATF techniques. Compared
with round independence assumption, our assumption for Ascon and Serpent is
weaker, which leads to more accurate estimation.

When applying Algorithm 3 to 3- and 4-round Serpent, we have two
observations: (1) there are no isolated variables in the ATF of the parity e,
that is, Line 12 of Algorithm 3 runs only once; (2) the number of transitional
variables is small. The property (1) avoids using the piling-up lemma in Line 12
of Algorithm 3 and makes the assumption becoming a weaker one. The property
(2) makes the assumption easy to be satisfied. They are the reasons that our
value is extremely close to the experimental value and why we conjecture that
the gap between the experimental value and our estimate is generated by the
statistical error.
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For the approximation of 4-round Ascon, Line 12 of Algorithm 3 runs twice,
and the number of transitional variables is relatively small. This makes the
assumption more valid, because a transitional variable in e — ¢; relies on the
transitional variables of the expression obtained by substituting @ into e;. This
may produce an inaccurate estimation when using the piling-up lemma in Line
12. We conjecture this is the reason why there is still a gap in the case of Ascon.

For the application to Grain v1, it is much more complicated. Algorithm 2
rather than Algorithm 3 is applied in the key-dependent setting. For 120 rounds,
Line 5 of Algorithm 2 runs twice, that is, the piling-up lemma in Line 5 is
used once. For 125 rounds, Line 5 of Algorithm 2 runs three times, that is, the
piling-up lemma in Line 5 is used twice. These produce a bigger gap between
the assumption and the truth. Moreover, a significant difference between the
theoretical analysis and experimental evaluation of the 125-round bias is the
number of conditional equations, i.e., 6 equations on the internal bits for the
former and 23 conditions in the key and IV bits for the latter.

To conclude, the less the frequency of using the piling-up lemma and the
smaller the number of transitional variables related to the approximation, the
more accurate the theoretical estimation of its bias would be.

Usage and Limitation The underlying idea of the DATF techniques is simple
and easy implemented in symbolic computation software, e.g., SageMath. All
the algorithms are practical for almost iterated cipher without using addition
operations reduced to a moderate number of rounds, e.g., Ascon reduced to 4-5
out of 12 rounds, Serpent reduced to 4-6 out of 32 rounds, and Grain v1 reduced
to 125 out of 160 rounds. The running time ranges from a few seconds to dozens
of minutes, for calculating the bias of one differential-linear or differential trail
in SageMath. The techniques are superior to the DLCT in both the accuracy
and the length of the trail, which has at least been illustrated in the above
instances, and the new techniques proposed in this paper thus can be seen, at
least, as a complementary analytical tool to the existing theory of differential-
linear cryptanalysis as well as differential cryptanalysis. It seems that the DATF
techniques are suitable for analysis of low-weight differential-linear or differential
trails and not suitable for linear trails. Thus using the DATF together with the
classical differential-linear cryptanalytic methods might be a good choice.

Open Problems and Future Work In the future, it is worthy of working
on the applications of the DATF techniques to more cryptographic primitives.
The techniques can be applied to most iterated ciphers but not to ARX ciphers
that use addition operations. A natural question is how to adjust the techniques
applicable to a cipher using additions. It is also worthy of comparative study
between the DLCT and DATF techniques. A main question raised is whether
are the DATF techniques more efficient and more accurate than the DLCT tool
in the general case. Though our estimates of the bias in the differential-linear
approximation are close to the experimental values, there are still some gaps
in some cases. These cases happen when the assumption is not satisfied. It is
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worthy of further study of the DATF techniques as well as exploration of new
methods, for analysis of the differential-linear bias under weaker assumptions or
without assumptions.

8 Conclusion

In this paper, we have shown a new theory of differential-linear cryptanalysis
from an algebraic perspective, including the estimation of the differential-linear
bias and techniques for key recovery. As illustrations, we applied it to the
CAESAR finalist Ascon, the AES finalist Serpent, and the eSTREAM finalist
Grain v1, and gained the most accurate estimation of the bias as well as the
best known differential-linear or differential attacks. In particular, the results
in this paper update the cryptanalysis of Serpent with one more round. Our
technique for key recovery is an organic combination of distinguisher searching
and key guessing, and thus outperforms the previous key recovery in differential-
linear cryptanalysis. We believe that this new cryptanalytic tool is useful in both
cryptanalysis and design of symmetric cryptosystems.
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